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Abstract

Parking a car can be very cumbersome and difficult in many circumstances, especially
when the rear view of the car is blocked. This thesis designs a prototype for an efficient
parking assistant system that aims to facilitate the parking process by providing the
drivers with distance information of obstacles in the scene. A video camera mounted
on the rear window of a car is used to supply a sequence of input images to the system
which then generates a 3-D depth map of the environment. The algorithm proposed in
this thesis to reconstruct 3-D distance information from an image sequence involves
several steps. First, feature points are extracted in each image using a Curvature
Scale Space (CSS) based corner detector. Corresponding feature points are then
matched between consecutive frames and tracked through the entire sequence. Using
the motion parameters of the vehicle obtained from measuring the angular moment
of the steering wheel and the distance information provided by the wheel encoders
attached to the rear wheels of the vehicle, the distance of objects in the scene can be
reasonably estimated. The algorithm is tested on several sets of real image sequences
captured inside a parking lot. Some experimental results are presented and analyzed
in detail.

Thesis Supervisor: Dr. Ichiro Masaki
Title: Principal Research Associate
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Chapter 1

Introduction

The past few decades have seen a tremendous growth in the field of three-dimensional

image analysis. This rapid expansion is due in part to the emerging popularity of the

more recent applications of machine vision in the Intelligent Transportation System

(ITS) domain. Increasing demands from a number of companies in the automobile

industry and government agencies alike have spawned a large amount of research that

has led to many new developments of more accurate and more reliable intelligent

vehicle systems, e.g., passive navigation, automatic surveillance systems, etc.

1.1 Motivation

Several car companies have expressed their interests in manufacturing a new gen-

eration of road vehicles with intelligent functionalities that are specifically designed

to suit aged drivers. These smart vehicles will have several additional features built

into the system to alleviate, if not eliminate, the burden of driving. Aged drivers,

therefore, will benefit a great deal from this new type of vehicle and will serve as the

first group of target customers.

In this thesis, we focus on one intelligent system that could serve as an added

feature in smart cars-a parking assistant system. The goal of this thesis is to de-

velop a real-time system that aids aged drivers in various difficult parking scenarios.

Specifically, two scenarios-parallel and right-angle parking-will be addressed in this

17



research. Figure 1-1 and Figure 1-2 illustrate the two cases. Next, we present the

problem statement and the background research of various systems that have been

proposed.

Xori

A

Zori

approximate distance = 7.5 m.

z

B

Figure 1-1: Bird's eye view of parallel parking

1.2 Problem Statement

In a conventional parking situation, drivers must approximate how much parking

space is available and estimate the distance from the car and obstacles behind by

looking back through the rear window. Many problems arise when small obstacles

on the road, e.g., small children, are not visible through the rear window of minivans

and SUV's and other vehicles of similar shape. The situation becomes even worse

when parking is attempted under extreme weather conditions, e.g., rain, snow, fog,

18



Xori Zori

\2.5 m

B z A

x

Figure 1-2: Bird's eye view of right-angle parking

etc. Under those circumstances, the driver's ability to estimate the proximity of

obstacles in the scene severely deteriorates. The parking assistant system developed

in this thesis proposes a solution to this and other similar problems in parking by

providing the drivers with a 3-D distance information of obstacles in the scene. To

achieve this goal, a smart vehicle must be equipped with one or more types of sensors

through which the vehicle perceives the environment. The problem then becomes one

of designing such a system that allows a vehicle to perceive the distance of objects in

the scene and efficiently reconstructs a 3-D depth map of the environment. The next

section provides the background and literature review of the research work that has

been carried out.

1.3 Background

For several decades, the study and development of efficient depth recovery systems

has been the focus of many research topics in different areas. Particularly in the

field of autonomous robot applications where robots must rely entirely on their depth

estimation system to safely guide and navigate them through the environment, the

issue concerning the accuracy and reliability of the computed depth becomes greatly

19



emphasized. Various types of sensors with different strengths and weaknesses have

been extensively explored in many depth recovery applications. This section presents

a brief overview of some commonly used sensors.

Depending on their mechanisms to recover depth, range sensors can be categorized

into two broad classes-active and passive sensors. Active sensory systems make use of

probing signals to compute distance of objects in the scene. The concept behind depth

computation using active sensory systems is based on the principle of triangulation.

First, some types of signals are emitted into the environment in all directions. Upon

hitting some obstacles in the scene, the signals are reflected back to the sensors. By

measuring the time of flight of the returned signals, the distance of objects from

the sensors can be calculated. Passive sensory systems, on the other hand, do not

require additional signals in depth calculation. A light-based camera system is used

to capture images of the scene from different angles. Based on the discrepancy of

those images, depth can be recovered.

For different applications, different types of range sensors are preferred. Active

range finders that use sonar for example, are commonly found in many autonomous

robot systems that do not require a precise localization of objects in the scene. The

long wavelength of sonars greatly limits the spatial resolution of the computed depth

maps [17]. In other applications where the positions of obstacles in the environment

need to be more localized, the use of higher frequency signals in detecting range is

preferred. Millimeter-wave radar, for example, is gaining more popularity in ITS

applications due to the high detection range and high signal penetration level that

allows for its robust usage under various weather conditions, i.e., fog, rain, snow, etc.

One problem, however, is the degraded system performance under the presence of

signal interference. In addition, the high maintenance and operational costs associ-

ated with the use of millimeter-wave radar systems impose a major drawback to the

practical implementation of such range finder systems [17].

Passive sensor systems, i.e., light-based sensors, on the contrary, do not bear

the extra costs presented in their active system counterparts. Instead of emitting

signals into the environment and measuring the time of flight of the returned signals,

20



depths are inferred from the differences in imaging the same objects in different

views. In ITS applications, passive sensor systems have many more advantages over

active sensors besides being more economical. Among those, we found that 3-D

reconstructed maps of the environment obtained using passive sensors have a much

higher spatial resolution. Therefore, in this study we will limit ourselves to the design

and implementation of a vision-based (camera-based) navigation system. The next

section reviews the literature on many existing vision-based systems.

1.3.1 Vision-based Navigation System

Vision-based navigation systems use cameras as their means of retrieving information

from the outside world. Using a perspective projection model, i.e., a pinhole camera

model, light reflecting off a three-dimensional object must pass through the center of

projection (COP) of a camera. Figure 1-3 illustrates the mechanism of perspective

projection. As seen in Figure 1-3, point (x', y') on the image plane can be a projection

of point (X 1 , Y, Z1), or (X 2 , Y2 , Z 2 ), or (X 3, Y3 , Z 3), or any (Xi, Y, Zi) that lies along

the perspective ray that intersects the image plane at point (x', y'). This observation

implies that the mapping between points (X, Y, Z) in the environment and points

(x', y') on the image plane is not unique. Specifically, in projecting a 3D object onto

a 2D image plane, the depth, Z, is lost. The perspective projection equations relate

x', y', X, Y, Z, and the focal length of the camera, f, as follows:

, X-f , Y-f
x/ = X f and y = .Z Z

Since only the measurements of x', y', and the camera geometry, f are available, this

perspective projection relationship implies that without a priori information of X or

Y, the depth, Z, cannot be recovered from an analysis of one image alone.

Marr and Poggio proposed their theories in [16] on the mechanisms of human

stereopsis that led to the development of depth recovery systems using binocular

stereo vision (two-camera setup). Stereo vision has since then become the dominant

topic receiving a wide array of attention from many groups of researchers. Consider a
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y

(X2, Y2, Z2) - -

-' (X3, Y3, ZM)

f .-- 4- (X1, Y1, Z1)

- ' COP

(x', y')

; 
(X

Figure 1-3: A pinhole camera model illustrating perspective projection. Points
(X 1, Y1, Z1 ), (X 2, Y2 , Z2 ), and (X 3 , Y3 , Z 3 ) are imaged onto the same location (x', y')
on the image plane

basic setup as shown in Figure 1-4 where the optical axes of the two camera stations

are parallel and separated by a distance B. The concept behind a depth recovery

process of binocular stereo vision lies in the displacement of the locations of (x', y')

and (', y'), the corresponding projections of the same point p = (X, Y, Z) on the two

image planes. This difference in pixel locations, x' - x', is referred to as the disparity

between the conjugate points on the two images. By using the disparity measured in

the two images together with the known camera focal length, the depth, Z, can be

computed using the following relationship:

Z =- B -f
d

where B denotes the length of the baseline (the line connecting the two camera

centers), f denotes the focal lengths of the cameras (assuming the two cameras have

the same focal length), and d denotes the disparity value.

The key problem in binocular stereo is how to accurately locate the corresponding
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P = (X, Y, Z)

(xl', yl') (xr', yr')

B

Figure 1-4: Binocular stereo setup. The optical axes of the two cameras are parallel

and perpendicular to the line connecting the two camera centers (baseline)

points between a stereo pair of images. Many groups of researchers have studied

this correspondence problem over the years and have proposed different algorithms

to solve the problem. In general, we can broadly classify these methods into two

primary divisions, area-based and feature-based correspondence. It is observed that

in the neighborhood of the conjugate points, we should expect to see similar brightness

intensity patterns. Area-based approaches, therefore, make use of some forms of cross-

correlation functions to measure the similarity between intensity patterns within the

local windows of the two images. Given a patch in one image, we compute the

correlation with all possible patches in the other image. The point with the largest

correlation value is then selected to be the match. The result of area-based stereo

correspondence is a dense depth map of the environment. In [1], Baker shows that

area-based correspondence has been successfully applied to the stereo analysis of

rolling terrain scenes. However, many problems arise when the scene is not smoothly

varying and continuous, e.g., scenes in urban settings. In images from such domains

many windows to be matched will not have correspondences in the other image due
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to the occlusion of one object behind another.

In feature-based correspondence, however, different approaches are taken to tackle

the correspondence problem. Feature-based methods make use of the observation that

disparity should only be computed over the patches that have more or less unique in-

tensity fluctuations. Two steps are usually involved in feature-based correspondence.

First, the left and right images are separately analyzed to select the area with distinc-

tive gray-level patterns to perform the matching. This process corresponds to picking

the "feature points" in the images that have high brightness intensity gradients as

on the edges or corner points. The second step is to find the feature points in the

right image that correspond to the matching feature points in the left image. Many

algorithms define some auxiliary information, e.g., the difference in intensity values

across the edge, to help constrain the matching. Two edges are declared a match

when their corresponding auxiliary information is closely similar.

In our simple binocular stereo system-two cameras with parallel optical axes as

shown in Figure 1-4, one additional important constraint can be incorporated to assist

the matching. First, define an epipolar plane as a plane formed by the line connecting

the two camera centers, COP, and COP 2 , and the line connecting point P of interest

to one of the centers of projection. The intersection of the epipolar plane, i.e., the

plane P - (x', y') - (x', y,) as seen in Figure 1-5, with the two image planes results

in two corresponding epipolar lines. In this camera setting where the two camera

stations have parallel optical axes, the epipolar lines correspond to the two horizontal

lines as seen in Figure 1-5. This observation allows us to limit the search range

for corresponding points to be along the matching epipolar lines, thus reducing the

possibility of false matches. In practice, however, even for the simple case where

disparity is restricted to a horizontal displacement (the epipolar lines correspond

to horizontal lines), mismatches still occur when gray-level intensity patterns are

inherently similar. The occurrence of false correspondence can severely affect the

accuracy of the subsequent depth calculation. In addition, searching for corresponding

points can be a computationally intensive task. For real-time applications, several

techniques such as dynamic programming and parallel processing must be employed
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to speed up the computation. The feature-based correspondence scheme allows for

depth to be computed only at the feature locations; hence, a sparse depth map is

obtained. This quality could present drawbacks in many applications where dense

depth maps are preferred.

P = (X, Y, Z)

-9

-

Figure 1-5: An epipolar plane is defined as a plane formed by the line connecting the
two centers of projection (COP), and the line connecting point P to one of the COPs.
The intersection between the epipolar plane, plane P - (x, y') - (x', y,), and the two
image planes are the two corresponding epipolar lines. In a binocular stereo setup
with parallel optical axes, the two corresponding epipolar lines are simply horizontal.

In fact, it has been shown that the number of correspondence mismatches can

be dramatically reduced, and thus performance can be improved, by introducing

more camera geometry constraints. As Chellappa and Shekhar pointed out in [27],

the trinocular system usually yields more robust 3D depth determination than the

traditional binocular stereo system. With a multi-ocular stereo paradigm, the cor-

respondence problem should then become even more constrained and the matching

more simplified. Nevertheless, in many practical applications where the cost and

maintenance of multiple camera systems are not realizable, the use of monocular vi-

sion system for a 3-D reconstruction of the environment becomes necessary. We now
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turn ourselves to the study of depth recovery using monocular vision systems. The

next section presents a literature review and a thorough discussion of different meth-

ods and algorithms used in the problem of 3-D reconstruction of the environment and

motion analysis using a monocular stereo system.

1.3.2 Monocular Stereo

Contrary to the use of multiple stationary cameras in the case of multi-ocular systems,

in monocular vision systems, depth is recovered from a sequence of images taken from

a single moving camera. To simplify the analysis, it is assumed that all objects in the

scene remain stationary, i.e., the camera is moving through a stationary environment.

Based on very different assumptions, many algorithms have been proposed and devel-

oped to suit specific tasks and constraints. In most algorithms for monocular stereo,

the first step usually requires that feature points be extracted from each image in

the sequence and corresponding feature points be matched. However, if the motion

of the camera becomes unknown, the epipolar geometry constraint that helps limit

the search range for correspondence similar to the case in binocular stereo no longer

exists. Many researchers employ a technique that exploits the inherent topological

relationship, e.g., inter-point distance, between the feature points to help constrain

the matching process. In [8], [27], [26] and [34], for example, ambiguity in matching

has been shown to reduce by imposing topological constraints among feature points to

disambiguate false matches. When a long sequence of images are used, which often is

the case in monocular stereo vision systems, feature points are first matched between

subsequent images and then tracked over multiple frames to improve reliability.

In order to compute depths after correspondence has been found, the precise cam-

era motion between two consecutive frames in the sequence must first be determined.

For the case where the camera motion can be safely assumed to be a pure translation,

the problem of depth recovery is simplified. In [8] and [22], the camera is assumed to

move along a straight line in the direction of its optical axis. With the known feature

correspondence, Murphy et al. [22] used the principle of triangulation as shown in
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Figure 1-6 to prove the following relationship:

R 2  -D (R1 - R 2 )
D2-- D,

where R1 represents the distance of point P from the camera station at time t1; R 2

represents the distance of point P from the camera station at time t2; D, represents

the x-coordinate of the projection of point P on the image plane at time ti; and D2

represents the x-coordinate of the projection of point P on the image plane at time

ti. The depth map obtained from this algorithm is only a relative depth map of the

scene if R1 - R 2 is unknown. To obtain an absolute depth map, the distance that the

camera moves between time t, and 12 must be determined a priori or obtained from

other types of sensors. Another method to determine depth from an image sequence

P

R2 R1

02

D2

01

f

D1

Figure 1-6: When the motion between the two camera stations is restricted to be a
pure translation along the optical axis of the camera, the depth, R 2 , can be approxi-
mated using the relationship: R 2  D2Di - R2 )

when the camera motion is restricted to a pure translation was proposed by Dalmia

and Trivedi in [6]. Based on the spatio-temporal gradients (STG) technique, Dalmia
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et al. uses the relationship between spatial and temporal gradients of brightness

intensity to compute depth. In particular, STG imposes a constraint that the value

of a temporal gradient be proportional to the spatial gradient computed at the same

location. The STG constraint equation for the case of a pure translation can be

formulated as follows. Let (I,1 , I 12, ... , IN) denote a sequence of images taken at

times (t, t1 , t 2 , ... , tN). Let go(n) be the gray level intensity value at location n in

image 1 at time to. Without considering the effect of noise, we should expect the

intensity value at location n of image Io to be the same as that of location n + 6 in

image Ij, that is, go(n) = gj(n + 6). Subtracting gj(n) on both sides, we have

go(n) - gj(n) = gj(n + 6) - gjy(n).

The left-hand side corresponds to the temporal gradient and the right-hand side the

spatial gradient at location n. Rewriting the above equation, we obtain

6 go(n) = J5gj(n)

where 6, denotes the drift in space, and 6 t denotes the drift in time.

One advantage of the STG technique is that the analysis cleverly avoids the time-

consuming correspondence problem by calculating depth directly from spatial and

temporal gradients. Computing gradients for STG algorithm is computationally sim-

ple and can be done in real-time with the help of specialized hardware [6]. However,

STG uses the pixel intensity values directly to compute both spatial and temporal

gradients. This technique can thus be very susceptible to quantization and brightness

measurement noise.

One major drawback common to the three above depth recovery algorithms in [8],

[22], and [6] is the restricted camera motion assumption under which these algorithms

can be applied. In application areas such as mobile robot navigation systems, where

it is possible to physically link a camera to the wheels of the robot to allow for a

control of the orientation of the optical axis of the camera to align with the camera

motion, Zhang's and Fujii's algorithms have been shown to work rather efficiently
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and accurately. However, for the case where the optical axis of the camera is fixed

in one particular orientation, the rotational and translational motion off the optical

axis direction becomes unavoidable. In fact, the camera rotation and translation off

the optical axis direction are claimed to be the primary attribute of large errors in

the depth calculation [22].

For the case when the camera motion is unknown and is allowed to be arbitrary,

the problem of depth recovery becomes extremely complicated. First, the arbitrary

transformation between the camera stations of two consecutive image frames in the

sequence must be estimated. The problem of recovering the relative orientation and

position of two image planes relative to each other using a set of known corresponding

points is the classic relative orientation problem. Let the terms left and right denote

the earlier and later frames in the sequence. Consider a point p = (X, Y, Z) in the

world coordinate; its location as described in the left and right camera coordinates

are pi = (xi, Yi, zi) and Pr = (Xr, Yr, zr) respectively. Let p' = (x, y) be the projection

of point p = (X, Y, Z) on the left image plane and p'. = (x, y,) be the projection

of the same point on the right image plane. Under the assumption of a rigid body

motion between the left and the right camera coordinates, the transformation can be

represented by a rotation followed by a translation. That is, the relationship between

p, and Pr is described as

Pr = Rp + t

where R denotes a rotation matrix

711 r 12 713

72 1 r 2 2 r 2 3

731 T32 r 3 3

and t a translation vector [Xo, Yo, ZO]T. Plugging in x', ', y', and y, from the

perspective projection equations,

-- =-- and Y- 
f z, f Z1'
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and

rand _Y _ Yr

f Zr f Zr

we find that for a given pair of corresponding points, we have the following con-

straints [12]:
f /, Zr(1)

rlx' + r 12y' + r13f + Xo- = x'(

r 21x' + r2 2yf + r23 f + YO = y,. (1.2)
1 1ZI rZI

raiX' + r32Y' + r33f + Zo - f . (1.3)

There are 3 equations and 14 unknowns r11 , r12 , ... , Y, Zo, zI, z,. Each additional point

pair adds 3 more equations but also introduces 2 more unknowns. By additionally

constraining the rotation matrix R to be orthonormal, we introduce 3 more con-

straints:

r2 1 r2 2
r11 +r 1 2 +r 3 = 1

r2 1 r2 2
r2 ±r 22 +r2 3 = 1

r2 1 r2 2
r3 +r 3 2 +r3 3 = 1.

Given n point pairs, we have 12+ 2n unknowns and 7+ 3n equations. Finsterwalder

established that at least 5 corresponding point positions must be known to obtain

a finite number of solutions to the relative orientation problem [12]. In practice,

however, more than 5 correspondence matches are usually obtained and the least

square method is often used to attain more accurate solutions. Nevertheless, due to a

highly nonlinear nature of this system of equations, most iterative schemes proposed

suffer a convergence problem and require a good initial guess to arrive at a correct

solution. In [13], Horn proposed a least square iterative method that does not require

a good initial guess using the quarternion representation. Once the transformation

between the left and right image planes are identified, depth can be computed using

Eq.(1.1), (1.2), (1.3). The problem with recovering depth using the relative orientation

scheme is that the process can be very computationally intensive. As the focus of
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this research is on developing an efficient parking assistant system that can operate

in real time, this property can thus be highly undesirable.

Another approach to recover motion and depth that uses Extended Kalman Fil-

tering (EKF) as a prediction-and-correction tool has been extensively explored by

many groups of researchers. In [27], features are first extracted and matched using

a label-graph matching technique. Under the assumption of smoothness of motion,

Shekhar and Chellappa proposed an algorithm based on Iterated Extended Kalman

Filtering (IEKF) technique of recursive estimation to predict the motion and range

as the state parameters of the filter, which are updated at each iteration. The mo-

tion parameters are then used to predict where the feature points will lie in the next

frame. The closeness of the matched points to their predicted locations is in turn

used to update the state parameters in the next iteration. This recursive technique

has also been applied to other applications such as facial expression recognition with

satisfactory results [27].

In [7), Graefe and Dickmanns uses a combination of vision and inertial sensors to

solve the problem of 3-D reconstruction of the environment for an intelligent vehicle

application. Their method integrates the information on angular velocity of the ve-

hicle from the inertial sensors and the translational velocity from the camera (vision

sensor). Feature points are first extracted, then the matching and tracking processes

are constrained using EKF technique to find predicted locations of the edge points of

interest. The search range for matching feature points in the next image frame in the

sequence is reduced using this technique and correspondence mismatching problems

have been shown to improve.

As with other motion estimation methods, the results from motion estimation are

used to compute depth from motion. A small estimation error in motion prediction

can cause a large-scale error in depth approximation. In an application that requires

a more precise depth estimation, some other depth recovery methods are preferred.

In navigating mobile robot systems, more than one type of sensors are usually

incorporated into the system for the purpose of adding redundant information and

providing fault-tolerance. Inertial sensors, in particular, are often used to provide the
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robot with the information of its own motion (angular velocity, speed, and direction).

Some examples of such systems are discussed in more detail in [27] and [7]. In

our vision-aided driving assistant application, inertial sensors are used to provide the

angular velocity of the vehicle and the wheel encoders are used to provide the distance

information that the car travels. When the motion of the camera is known, i.e., the

relative orientation of the left and right image planes is known, the problem of 3-D

reconstruction of the environment is then simplified to the recovery of depth from

a binocular stereo system with non-parallel axes stereo geometry. The next section

gives an overview of the work that has been done for this thesis.

1.4 Overview of this Thesis

This thesis presents an algorithm for a robust depth recovery system used in the

parking assistant application. The system takes as its input a sequence of images

captured from a video camera mounted on the back of a testing van overlooking the

rear view. The goal is to reconstruct a 3-D depth map of the environment in the

parking lot from a long sequence of monocular images.

The flow diagram in Figure 1-7 shows an overview of our algorithm. As in many

other depth recovery systems described above, the first step in our implementation is

to extract feature points to be matched from each image in the sequence. We explored

several types of features that have been used in many existing systems and found that

by selecting reliable feature detectors, the subsequent step in matching and tracking

corresponding feature points through the image sequence can be simplified. Corners

are chosen as the implementation of choice. Chapter 2 first presents a brief literature

review of many existing corner detection algorithms. Our implementation is based on

the Curvature Scale Space (CSS) method, which has been proven to perform well on

video images that have been degraded by a motion blur. The implementation details

of the CSS based corner detection algorithm are discussed, and experimental results

from testing the algorithm on both synthetic and real imagery are presented.

After extracting feature points in each image in the sequence, we proceed to match
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Figure 1-7: Flow chart of depth recovery algorithm for the Parking Assistant System

the corresponding feature points in different frames. Chapter 3 first reviews several

techniques to reduce correspondence mismatches in both binocular and monocular

stereo settings. The algorithm used in this thesis exploits the densely sampled struc-

ture of the video sequence and allows for correspondence matching to be done effi-

ciently between consecutive frames in the image sequence. Feature points are then

tracked through the entire sequence using a robust tracking algorithm which performs

well even when features points disappear in some part of the sequence.

After feature points are matched and tracked, depth can then be computed using

the known camera motion and the difference in locations of corresponding points in

any two arbitrary frames in the sequence. Specifically, the precise transformation be-

tween the camera coordinates of the two image frames is obtained using the inertial

sensors to measure the rotation angle and the wheel encoders to measure the transla-
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tion distance of the vehicle. Chapter 4 describes in detail how the motion parameters

of the camera are obtained. Some experimental results of the estimated depth are

compared with the actual measured distance of objects in the environment in chapter

5. Sparse depth maps of the environment in the parking lot are also generated. In

chapter 6, conclusions are drawn from the experimental results and some suggestions

for future work are discussed.
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Chapter 2

Feature Extraction

The problem of detection and localization of edge contour and feature points has been

found to play a central role in a wide array of image analysis systems. Many computer

vision applications, e.g., object recognition and motion tracking, require that objects

in the scene be tracked over a long sequence of video frames. The problem of detecting

and localizing reliable feature points in the input images to match or track thus lies

at the heart of those applications.

2.1 Corners

Corner feature points have gained more popularity over the years and have become

one of the most widely used features in most machine vision tasks for several reasons.

In motion analysis, for example, Horn showed that optical flow velocities computed

around the corner points do not suffer from the aperture problem and thus can be

determined without ambiguity using the optical flow constraint equation [12]. For

motion estimation purpose, the moving corners thus provide very rich and reliable

information [33]. Another example is from stereo vision application where disparities

are computed by matching corresponding points between a pair of images. Several

local characteristics of corners, e.g., brightness intensity variation pattern in the lo-

cal neighborhood or the absolute curvature value at a corner point, are often used

to aid correspondence matching. The accuracy and reliability of these dynamic vi-
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sion systems therefore heavily depends on the extraction of corner points from input

images.

Section 2.2 first reviews the literature on several existing corner detection algo-

rithms. Section 2.3 describes the details of a Curvature Scale Space based corner

detection scheme implemented in this thesis for the parking assistant application.

The experimental results from testing our algorithm on both synthetic and real im-

agery are presented at the end of this chapter in section 2.4.

2.2 Literature Review

Over the past few decades, a great deal of research effort has been invested in develop-

ing reliable corner detection algorithms. Depending on different mathematical models

used in describing corners, several different techniques have been proposed. Moravec

[21] first observed that the average intensity value change around a neighborhood of

a corner is significantly high in all directions. Figure 2-1 illustrates Moravec's obser-

vation. Across the neighborhood of a flat intensity region (labeled as 1 in Figure 2-1),

the intensity change will be small in all directions, while in the neighborhood of an

edge (label 2), the change will be large only in the direction of the edge gradient. Har-

ris [10] proposed an improvement to Moravec's idea and used a Gaussian smoothing

to aid in the calculation of the first and second derivative of image intensity values

to determine a corner strength. His algorithm, called the Plessey corner detector,

later became well-known for its detection reliability. Kitchen and Rosenfeld [14] de-

fined a corner as a point where the rate of change of gradient direction is maximum

and proposed a corner detector that finds the local maxima of the gradient direc-

tion change based on a differential operator that computes the first and second-order

partial derivatives of image intensity. Mehrotra [18] observed that most corner de-

tectors were developed based on edge detection algorithms, which performed poorly

on corners. Mehrotra then proposed an approach in [18] based on applying the first

directional derivative of a Gaussian operator to detect half edges and defined a corner

as a junction where two half edges meet at an angle less than 180'. In [31], Xie pro-
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posed a method to detect corners that combines many different cues-edge strength,

curvature, and region dissimilarity-in a cost function to be minimized. For a more

extensive cover of other existing corner detectors, refer to [20]. All of the above de-

2*

3

Figure 2-1: The intensity variation over a local neighborhood of an edge point will
be high only in the direction perpendicular to the edge direction. For a region corre-
sponding to a corner however, Moravec observed that the variation must be high in
all directions

scribed algorithms, however, do not perform well when the image quality is poor.

Unfortunately, in most dynamic vision systems, image capturing devices usually un-

dergo some kinds of motion with respect to the objects in the scene; images thus

obtained under those circumstances experience some degrees of motion blur. Conse-

quently, none of the approaches to detect corners described above yield a strikingly

superior performance.

To make our approach more robust against noise in the input imagery, the corner

detection algorithm implemented in this research has been designed to exploit the idea

of multi-resolution analysis, i.e., detecting corners at multiple scales. The algorithm

starts out by first locating corner points at a coarse resolution; hence, only true

corners are extracted. To obtain a better localization, the detected corners are tracked

through several finer scales, making the detection and localization scheme of this

algorithm more robust against noise in input imagery. In the next section, the outline

of the multi-scale corner detection algorithm as well as the implementation details of

the individual steps will be presented.
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2.3 Multi-scale Corner Detection Algorithm

Research in psychophysics and physiological experiments has shown that the visual

cortex of mammals processes signals using some types of multi-scale transform [15].

This evidence implies that multi-scale information processing is inherent to many nat-

ural systems. In fact, many researchers such as Burt and Adelson [3], Marr [16], and

Witkin [30] had long realized the central importance of extracting information from

an image at various levels of details. In recent years, some of these ideas have been

formalized into multi-resolution analysis (MRA) scheme of the wavelet analysis [15].

Our implementation of the multi-scale corner detection algorithm is based primar-

ily on the Curvature Scale Space (CSS) technique discussed in more detail in [20].

In the CSS technique, edge contours of objects in the scene are first extracted from

an input image using an edge detector. A curvature value is then assigned to each

point along the contour based on the instantaneous rate of change of the slope angle

at that point [19]. A corner, defined as a point where the maximum rate of change of

the slope angle occurs, can be detected by locating the local maxima on the curva-

ture graph. The concept of multi-resolution processing is then applied at this stage

by computing curvature at multiple scales. Corners are first extracted at a coarse

scale where all the ripple noise along the contour is smoothed out, hence only true

corners are allowed to exist and be detected. Then to improve corner localization, the

detected corners are tracked through several finer scales, increasing precision in the

detected corner positions. The outline of the steps involved in CSS based multi-scale

corner detection can be summarized in the flow diagram in Figure 2-2.

This scale-space representation of corners is efficient in its robustness against noise

in input imagery. In addition, this representation allows for both the points of local

maxima, i.e., corner points, and the zero crossings of curvature graphs to be used as

features to be matched or tracked.

In the next section, the implementation details of the individual step will be

discussed.
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Figure 2-2: Flow diagram of the CSS based corner detection algorithm

2.3.1 Edge Contour Extraction

The first step in the CSS based multi-scale corner detection is the extraction of edge

contours from an intensity image. Since the output from this edge detection stage will

be used to compute curvature in a later stage, an ideal edge detector should detect all

the edges in an input image and output edge contours that are thin and connected. In

experimenting with several detectors such as Sobel, Canny [4], SUSAN [28], and half-

edge detector [18], we found that the Canny detector consistently outperformed other

detectors in its detection reliability. Moreover, Canny has a built-in non-maximum

suppression capability. Hence, the edge contour output from Canny is thinned to one

pixel wide. This allows for some computational savings in the subsequent thinning

stage. Therefore, our implementation will make use of the Canny detector to extract

edge contours from input images.

39



When the input images are very noisy, however, experiments have shown that it

is insufficient to detect edges from the gray-scale intensity values alone. Novak et

al. concluded in [23 that 10% of the edges detected by a color gradient-based edge

detector cannot be identified with analysis on gray-scale images. An experiment was

conducted by applying the Canny operator to detect edges separately on each color

component, R, G, and B of the input images. The three edge maps are then OR'ed

together to obtain a more defined and more connected edge response. Figure 2-3a

and Figure 2-3b compare the two binary edge maps. In Figure 2-3a, a color image of

a parking lot is converted to a gray-scale image and we apply Canny edge detector to

detect edge contours. In Figure 2-3b, Canny operator is used to detect edges in each

of R, G, and B components separately. As apparent in Figure 2-3, the edge detection

scheme that makes use of color information has the advantage of discovering edges in

the area that have similar gray-scale intensity values but different intensity in each

color component. A drawback of this method is that the amount of time to extract

edge contours is now tripled. In addition, the contours obtained from OR'ing the

three binary edge maps appear thick and thus need to be thinned before they can be

parameterized.

2.3.2 Edge Linking and Thinning

The edge contours obtained from the first stage must be linked and thinned before

proceeding to the parameterization stage. In this step, edge linking is designed to fill

in the gap between unconnected edge contours and eliminate short dangling edge re-

sponses. Thinning is done after the contours have been linked. The goal is to produce

edge contour output with one pixel in thickness to allow for contour parameterization

to be simplified.

Edge Linking

By OR'ing the three binary edge responses from the R, G, and B channels, the

output edge contours appear more continuous. In fact, most unconnected contours
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have automatically been linked due to the slightly different response from each color

component to the same edge operator. Therefore, the edge linking scheme used in

this stage can be simplified. By looking at the intensity pattern on a 3x3 local window

as shown in Figure 2-4, the gap will be filled when the pattern fits into one of the

possible patterns to link. For a more detailed discussion of this algorithm, refer to

Appendix A.

Edge Thinning

After filling in the gaps to link unconnected pieces of edge contours, the output edge

results vary in thickness. We then proceed to thin the contours. The goal is to

remove edge pixels until only the core "skeleton" of the contours remain. A pixel

in the skeleton can have only two other neighboring edge pixels in the 3x3 window

surrounding it, unless it is at the end of an edge, i.e. break point, or at a branch point.

The edge thinning scheme used in this thesis is based on a combination of several

edge thinning algorithms proposed in literature. One approach presented in [29] is

based on an algorithm by Heipke et al. [11] that inspects a 3x3 neighborhood of each

edge pixel to determine if the center pixel belongs to the skeleton. Certain conditions

on proper edge thinning reduce the number of 3x3 possible combinations to 17 masks.

The edge pixel in the center is not considered part of the skeleton and thus will be

removed if the 3x3 neighborhood of an edge pixel matches the pattern on any of the

17 masks. A more detailed discussion of this thinning algorithm can be found in

Appendix B.

Another edge thinning scheme that is explored in this thesis is based on an algo-

rithm proposed by Chen and Hsu [5]. Chen and Hsu developed a modified version

of Zhang-Suen algorithm that is widely used in many optical character recognition

(OCR) systems. Chen and Hsu's algorithm looks again at the 3x3 window of an

edge pixel and proposed several logical tests based on the 4-neighbor and 8-neighbor

connectivities. This method has an apparent advantage of contour noise immunity.

The output of this algorithm is thinned edge contours with less noise ripples, when

compared to Heipke's method. Refer to Appendix C of this thesis for a more detailed
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discussion of this algorithm.

Figure 2-5 shows the results of step 1, 2, and 3, of our corner detection algorithm.

Figure 2-5a shows the color image of a car obtained from a moving camera; the image

is thus slightly blurry. Figure 2-5b shows the detected edge contours obtained from

the contour extraction (step 1). As apparent in Figure 2-5b, the contours are thick

and thus need to be thinned before parameterizing. Figure 2-5c shows the result after

edge linking and thinning (step 2 and 3).

2.3.3 Contour Parameterization

After edge contours have been linked and thinned, we proceed to calculate the cur-

vature value at each point along the contour. The first step is to label all the points

on the contour starting from an end point. Since after the thinning stage, the edge

contours have been thinned so that each pixel in the "skeleton" contains 2 neigh-

boring edge pixels in the 3x3 neighborhood surrounding it; the pixels can then be

labeled and tracked using the 8-neighbor connectivity. As shown in Figure 2-6, we

start parameterizing this contour from an end point P where the center edge pixel

has only 1 neighbor. The next point to label is then P 2, which is the neighbor of P 1.

The following point to label is then P3 which is the neighbor of P2 that has not been

labeled. This process continues until another end point is found which terminates

the contour. In Figure 2-6, if the starting point of parameterization is P1 , then the

contour terminates when either P5 or P7 are reached. A problem occurs, however, at

the branch points where the center edge pixel has more than 2 neighbors. In this case,

the contour must then be split into 2 separate parameterization, P - P 2 - P3 - P4 - P5

and P - P2 - P3 - P6 - P7 , and curvature must then be computed separately for

each contour.

2.3.4 Curvature Computation

Let i = 1, 2, 3..., N be the labels of points along the contour r of length N. Many

algorithms have been proposed to find the curvature value at each i along the contour.
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One method proposed by Rosenfeld and Johnston [25] defines a curvature at point

pi to be the k-cosine of the angle of two vectors of length k that intersect at point

pi. Consider a number of subsequent and previous points from pi in the sequence

as candidates for the arms of a potential corner at pi. For a positive integer k the

forward and backward k-vector at point pi are defined as

aik = (xi - Xi+k, i Y - Yi+k) = (Xy, Yig)

bik (xi - Xi-k, yi - Yi-k) = (X , Y)

where Xjk, Yi, XJ, Y)- are the components of aik and bik, respectively. Curvature

as defined as the k-cosine of the angle between the k-vectors is computed using dot-

product relationship,

Cik (aik - bik)
Cik k -bk

This method, however, has proven to be very sensitive to the noisy ripples on the

curve. Another method to compute curvature is based on the theory of a multi-scale

description of space curves proposed by Mokhtarian [20]. Consider an edge contour

as a planar curve, P(x, y). By parameterizing a contour with respect to the arc-length

parameter t we express it in terms of 2 functions:

IFM) = (X W), Y M))

Curvature can then be computed using the following definition [20]:

k (t)Y (t)- x (t)Y (t)
K (t) = . . ._

(X (t) 2+ Y (t)2)1.5

We can make this method of computing curvature more robust against noisy

ripples on the curve by first smoothing out the contour with a Gaussian kernel,

g(t) = e7a. That is, X (t) can be computed by taking the first derivative

of the smooth contour, X(t) * g(t), with respect to t, i.e. X (t) ~ .)*g@. Since

convolution and derivative are both linear operators, their orders can be interchanged.
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We therefore obtain,

d(X(t) * g(t))
S(t)~ =dt X(t)

x (t), (t), and Y (t) can be computed in a similar manner. Thus we obtain,

x (t) d2(X(t) * g(t)) (t)
dt2

d2g(t)
Sdt2

d(Y(t) * g(t))Y (t)~ ddt

d2 (Y(t) * g(t))
Y (t)~ dt 2

dg (t)
dt

- Y(t) * d2 g(t)
dt2

2.3.5 Multi-scale Curvature Computation

The Gaussian kernel, g(t), is in fact a function of both the arc-length parameter t and

the scale parameter -. By varying the scale a of a Gaussian kernel, we control the

level of the contour noise smoothing of the Gaussian kernel. The planar curves and

the curvature of all the points along the curves can be described at different scales as

follows,

P(t, -) = (X(t, U), Y(t, -)),

and

K(t, a) k (t, -) V (t, -)-- (t, -) Y (t, -)
(X (t, o-)2+ y (t, o)2)1.5

where
x (X(t, a-) * g(t, c-))

k (t, o-) ~~1 O

S(to) 2 (X (t, c) * g(t, ))

at2a (Y(t, a) * g(t, -))
Y (t, o-) ~t

1 (t0') 12 (y (t, (-) * g (t, o-))
Y (t~o-t~

= X(t, o-) *

= X(t,-) *

= Y(t,-) *

=Y(t,or)*

Theoretically, the scale parameter o can be chosen to take on any positive value
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in a continuum range. However, in practice, we tend to choose o- to be in the form

2'. One advantage of choosing - to be in a power of 2 is that when the contour is

convolved with a Gaussian kernel with c- = 2, the number of points that need to

represent the contour can be reduced by half. This observation implies if the contour

at scale 1 is represented using N points, a sufficient representation of the contour

at scale 2i only requires w- points. This process of filtering and downsampling the

contour is illustrated using the filterbank diagram in Figure 2-7.

2.3.6 Multi-scale Tracking of Local Maxima of Curvature

After the curvature value of each point along the contour is obtained at different scales,

a coarse-to-fine multi-resolution tracking is attempted at this stage. The processing

is first done at a coarse resolution, i.e., high scale, where the Gaussian kernel with a

large support is convolved with the signal, thus the noise as well as the true signal

on the contour are heavily smoothed out. The points that correspond to the local

maxima on the smoothed curvature graph are detected to be the initial corner points.

However, a single pixel at a resolution 2i covers 2i number of pixels at resolution 1,

due to the filtering and downsampling process [15]. The corner positions detected at

scale 2i must be tracked and localized at finer scales. By letting the tracking window

be of constant size K throughout all scales, the local maxima of the curvature graph

is located over the neighborhood of varying sizes with respect to the original scale, 1.

Specifically, at scale 2j, the local maxima is located over a local window of size 2jK.

This coarse-to-fine tracking allows for most of the searching to be done at a high scale

and a minimal amount of information to be processed at lower scales, which speeds up

the process. It is apparent that this multi-resolution information processing enables

some computational savings to be gained over the conventional tracking/searching

method.
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2.4 Results

We test our corner detection algorithm on three sets of imagery. The first is a synthetic

binary image of a polygon drawn to have 14 corners as shown in Figure 2-8a. The

second test image is a real gray-scale image of several polyhedrons shown in 2-17a.

To illustrate the differences in the characteristics of the curvature graphs derived

from a synthetic image versus a real gray-scale image, we zoomed into one particular

polyhedron, a prism, as shown in Figure2-13a. The third set of test images shown

in Figure 2-18a is a real color image of a parking lot. This image was captured by a

video camera mounted on a moving car. As apparent in the example images shown,

real test images are noisier than the synthetic image. We demonstrate the difference

in performance of our detector on these three cases.

In the case of a synthetic binary image of a polygon, Figure 2-8b shows that the

edge contour detected from the Canny edge detector in step 1 is very well-defined

and the contour does not need to be linked or thinned. Since all the corners of the

synthetic polygon have very sharp angles, we expect our algorithm to be able to

accurately and reliably detect all the corner points. After contour extraction, step 4

of our algorithm parameterizes the contour with respect to the arc-length parameter.

In step 5, curvature is computed at varying scales for each point along the contour.

The smoothed contours and the absolute curvature graphs are plotted at 4 different

scales: when o- = 2, 4, 8, and 16. Figure 2-9 and Figure 2-10 show the smooth edge

contours at different scale parameters. Figure 2-11 and Figure 2-12 plot the absolute

curvature of all the points along the contour of the synthetic polygon with respect to

the arc-length parameter, again at 4 different scales. As seen in the curvature plots,

14 peaks corresponding to 14 corners of the synthetic polygon can be easily detected

at all scales due to the fact that all corner points in the synthetic polygon have

sharp angles, i.e., high curvature values. By using the multi-scale tracking/searching

scheme in step 6, our algorithm can reliably detect all the corners with great accuracy

as shown in Figure 2-16a. False detection does not appear.

The scenario in the second test image is slightly different due to the noise in

46



the gray-scale image. First, step 1 applies the Canny edge detector to extract edge

contour of the original image of a prism. The binary edge map result in Figure 2-

13b illustrates the existence of ripples along the contour, which will result in errors

in curvature computation. Linking and thinning edge contours (step 2 and 3) are

again not necessary in this case because the detected contour is already thinned and

connected. Step 4 parameterizes the contour and curvature is computed at various

scales in step 5. The smooth contours of the prism at scale a-= 1, 2, 4, and 8

are shown in Figure 2-13c, d, e, and f, respectively. As mentioned in section 2.3.5

and apparent in Figure 2-13, the sufficient number of points used in representing the

contour scale j will be - of the number of points at scale - =1. The curvature plot2i

in Figure 2-14a illustrates the appearance of many false local maxima influenced by

the ripple noise on the contour at scale o- = 1. At higher scales, however, a Gaussian

kernel with a larger support smoothes out the noise and allows for only the true

corners to be detected. As shown in Figure 2-14b and Figure 2-15a, there are 5

peaks on the absolute curvature plot corresponding to the positions of the 5 corners

of the prism. Using multi-scale tracking/searching algorithm (step 6), all the 5 corner

points are detected and localized accurately as seen in Figure 2-16b. When our corner

detection scheme is applied to the entire image that consists of several polyhedrons in

Figure 2-17a, the result is shown in Figure 2-17b. Figure 2-17b shows the detection

and localization scheme of our algorithm is working satisfactorily.

For the case of a color image of a car in the parking lot in Figure 2-18a, however,

the performance of our detection algorithm degrades slightly. The poor quality of the

image is caused by the motion blur introduced when the image was captured. The

technique of applying the Canny operator to detect edges separately in the R, G, and

B components is used. Figure 2-5b shows the edge contour output of step 1 after

OR'ing the three binary edge responses from the three channels. The final result of

the detected corners are shown in Figure 2-18b. Most corners in the input image are

detected. Although the algorithm seems to be missing some corners in the image,

all the ones that are detected are well-localized. This example illustrates a robust

performance of our coarse-to-fine processing scheme against noise in input images.
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(a)

(b)

Figure 2-3: Edge detection scheme that makes use of color information will be able to

detect edge contours in the region where gray-scale intensity values are similar but the

intensity in each color component is different. In (a), Canny edge detector is applied

on the gray-scale intensity value only; (b) shows the binary edge map from applying

Canny detector on Red, Green, Blue components separately. The three results of the

three color components are OR'ed together to produce a more defined binary edge

map.

48



Figure 2-4: Edge linking scheme based on inspection of a local 3x3 neighborhood
window. The vertical gap above will be filled when the intensity pattern of the
window fits into one of the patterns to link.

(a) (b) (c)

Figure 2-5: (a) Real blurry image of a car in a parking lot; (b) Edge contours detected
using the Canny detector ;(c) Contours after linking and thinning
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Figure 2-6: Starting parameterizing from an end point P1, using 8-neighbor connec-
tivity, the next point to label on the contour is P2 , then P3 , etc. When the branch
point is reached, the contour is split into 2 separate curves. In this case, the two
parameterized curves are P - P 2 - P3 - P 4 - P5 and P - P2 - P - P6 - P,

Scale =8

scare~ LPFF
Scale4

Scale =2 LPF 2 - HPF 2
Scale = LPF 2 - HPF 2

- HPF 2

- HPF - 2

Figure 2-7: Filterbank diagram describing the process of filtering and downsampling.
At scale 2j, the amount of information to be processed is 2-i times that at scale 1.
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(a)

(b)

Figure 2-8: (a) Synthetic binary image
from Canny Edge detector

of a polygon; (b) Binary edge map output
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(a)

(b)

Figure 2-9: (a) Smooth contour when a = 2; (b) Smooth contour when a = 4
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(a)

(b)

Figure 2-10: (a) Smooth contour when - = 8; (b) Smooth contour when o- = 16
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Figure 2-11: (a) Absolute curvature with respect to arc-length parameter, t, when o
2; (b) Absolute curvature with respect to arc-length parameter, t, when or 4
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Curvature when sigma = 8
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Figure 2-12: (a) Absolute curvature with respect to arc-length parameter, t, when a
= 8; (b) Absolute curvature with respect to arc-length parameter, t, when o = 16
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(a) (b)

(c) (d)

(e) (f)

Figure 2-13: (a) Real gray-scale image of a polyhedron; (b) Binary edge map output

from Canny Edge detector; (c) Smooth contour when - = 1; (d) Smooth contour

when o = 2; (e) Smooth contour when - = 4; (f) Smooth contour when - = 8
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Figure 2-14: (a) Absolute curvature with respect to arc-length parameter, t, when a
= 1; (b) Absolute curvature with respect to arc-length parameter, t, when a = 2
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Figure 2-15: (a) Absolute curvature with respect to arc-length parameter, t, when a
= 4; (b) Absolute curvature with respect to arc-length parameter, t, when a = 8
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(a)

(b)

Figure 2-16: (a) Detected corners in a synthetic image of a polygon; (b) Detected
corners in a real image of a polyhedron
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(a)

(b)

Figure 2-17: (a) Real image of several polyhedrons; (b) Detected corners
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(a)

(b)

Figure 2-18: (a) A full image of a parking lot; (b) Detected corners
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Chapter 3

Correspondence Matching and

Depth Calculation

After feature points in input images have been extracted, the subsequent step con-

cerns how to correctly establish correspondence among the feature points. Several

algorithms have been proposed over the years in an attempt to solve this problem.

This chapter first reviews several existing methods to reduce correspondence mis-

matching. Next, a convenient algorithm that performs well in coordination with

our particular corner detector is proposed. Then, a depth estimation algorithm that

makes use of the motion parameters from the inertial sensors and the distance infor-

mation of the wheel encoders is presented in detail. Several issues regarding camera

calibration and lens geometrical distortion correction from the use of wide-angle lens

are also discussed.

3.1 Correspondence Matching

In many depth recovery systems, correspondence matching plays a central role in

determining the accuracy and reliability of the estimated depth. Many binocular

stereo as well as monocular stereo systems with known camera motions use epipolar

constraints to restrict the search for corresponding points to be along the match-

ing epipolar lines. Nevertheless, correspondence mismatching still frequently occurs.
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The correspondence problem in binocular stereo and monocular stereo systems are

slightly different, thus the two cases are presented separately in this chapter as dif-

ferent approaches are usually taken to address them. The next section presents a

comparative overview of the correspondence problem in both binocular stereo and

monocular stereo.

3.1.1 Correspondence Matching in Binocular Stereo

The key problem in stereo processing is how to accurately locate the corresponding

points in a stereo pair of images. In general, the possibility of false matches increases

with the search range for correspondence. Recall that in a binocular stereo system

with parallel optical axes, the relationship between the difference in pixel locations

of the two corresponding points, i.e., disparity d, and the distance between the two

camera stations, i.e,, baseline B, is as follows:

d B - f
z

From the above equation, d is directly proportional to B. With a wide baseline, the

disparity between corresponding points increases, hence, the search range, becomes

large. Therefore, binocular stereo systems with the two camera stations located

further apart face the most severe problem in matching. Decreasing the baseline

reduces the search range, i.e., disparity, and thus helps simplify the matching process.

However, the small disparity, in turn, causes more uncertainty in estimating depth.

This relationship can be proven as follows. Let Z be the actual distance of an object

to be estimated. Let b and B be the smaller and larger baselines of the two binocular

stereo systems. Let d and D be the disparities of the corresponding points in the

smaller and larger baseline systems accordingly. We have the following relationships:

b-f B-f
Zz= and Z =

d D
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Given a fixed measurement error 6d in measuring disparities d and D, we can express

the depth estimation error 6z and 6Z in the two binocular stereo systems as in the

following.
-Zod _-Zod

6z= and 6Z D6d
d + 6d D+d

That is, a larger disparity D results in a smaller error in approximating depth. In

general, there is a tradeoff between accuracy in matching and precision in estimating

depth in binocular stereo processing.

One of the most common techniques in dealing with the correspondence match-

ing problem is to use a coarse-to-fine algorithm to eliminate the possibility of false

matches. Matching is first done at a low resolution where the initial results are used

to limit and guide the search in a subsequent higher resolution matching. This coarse-

to-fine approach has been proven to help reduce correspondence mismatches in many

systems [9], [2]. In many cases, however, ambiguity in matching is not removed

in a coarse resolution matching, especially when input images consist of scenes with

repeated features, e.g., a scene of a picket fence or a scene of a building with similar

windows [24]. Establishing stereo correspondence in this case becomes a very difficult

and challenging task.

3.1.2 Correspondence Matching in Monocular Stereo

In monocular stereo systems, on the other hand, the correspondence matching prob-

lem is less severe. This difference is due in part to the arbitrary baseline length

between the camera stations that the two images are taken. To reduce the possibility

of false matching in monocular stereo, correspondence matching is done between con-

secutive image frames in a densely sampled image sequence, e.g., at a video rate of

30 frames/sec. In estimating depth, however, a longer baseline is preferred to attain

a higher precision of depth calculation. This process of selecting a longer baseline

corresponds to picking two frames that are far apart in the image sequence.

In our parking assistant system, the input to the depth recovery system is a video

sequence of images taken from a video camera mounted on a car that is attempting
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to park. Since the traveling speed of the car inside the parking lot can safely be

assumed to be small, with the video capturing rate of 30 frames/sec, i.e., an approxi-

mate sampling period of 33.33 msec/frame, feature points between consecutive image

frames can only drift a few pixels away from their original positions. Let 11 and 12

be two consecutive frames in the sequence. After all the feature points, i.e., corner

points, in I1 and 12 are extracted, to find the corresponding points in 12 for all the

corner points detected in I,, a window of size W in 12 around each corner location is

searched. If only one corner exists in the search window, that corner point is declared

a match. However, when more than one corner points are found in the searching

window, the characteristics of the corner points are used to aid in the matching pro-

cess. Specifically, the best match for point p in I1 is the corner point inside the

WxW neighborhood of p in I2 with an absolute value of curvature closest to that of

point p. This algorithm allows for a very robust correspondence matching between 2

consecutive frames in an image sequence.

Correspondence Tracking in Monocular Stereo

After the matching is done between consecutive image frames in the sequence, corre-

sponding points are then tracked from frame to frame through the entire sequence.

Our implementation keeps an internal table to store and track the locations of the

moving feature points. However, many problems arise in practice when feature points

disappear in some part of the sequence due to the use of a non-ideal feature detection

scheme. If correspondence matching is only performed between consecutive image

frames, the feature points that are missing from one or two frames in the sequence

will disappear from the table. Later on in the sequence when the feature points reap-

pear, new entries which in fact correspond to the existing feature points will then be

entered as new feature points in the table.

To make our feature point tracking algorithm more robust against the problem

of missing feature points and false correspondence, correspondence matching is done

at several stages. The following example is used to illustrate the algorithm. Let

'1, 12, I3, I4, I5, '6, --, 'k ,k+1, ... be the image frames in a video sequence. Correspon-
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dence matching is done between I, and 12, 11 and 13, Ii and 14, and I1 and 15, using

the search windows of size W, W + 1, W + 2, and W + 3 respectively. In the next

stage, correspondence matching is performed between I2 and 13, 12 and 14, '2 and I5,

12 and '6 with the search windows of size W, W +1, W + 2, and W + 3. With a larger

search window, there is a higher chance of correspondence mismatching. Therefore

the matching results obtained in the later stage when the search window size is smaller

tend to be more precise and are then used to update the table accordingly. If a fea-

ture point is missing in one or two frames in the sequence (suppose a feature point

disappears in 13), the feature point will not disappear from the table entirely due

to the matching results between the prior frame (12) and the later frame (14). This

correspondence tracking method has been proven to work robustly against missing

feature points and correspondence mismatching.

The next section discusses how to determine depth after correct correspondence

has been matched and tracked through the entire image sequence.

3.2 Depth Estimation

After corresponding points have been matched and tracked through the image se-

quence, depth can be calculated using the disparities between the corresponding

points. However, before proceeding to compute depth, the positions of the corre-

sponding points must be corrected to account for the distortion introduced by the

use of non-ideal optical systems. In practice, no real optical systems function exactly

like an ideal pin-hole camera. Nevertheless, in general, a simple pin-hole camera

model serves as a good approximation for many systems that use telephoto lenses.

For wide-angle lens systems, distortion becomes very noticeable. Particularly, in the

case of a depth recovery system where the values of disparities measured are used

to compute depth in the subsequent stage, a small error in the corresponding point

locations can lead to a large-scale error in depth estimation. Therefore, before the

disparity values can be used to calculate depth, distortion in the positions of the

corresponding points must be rectified.
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3.2.1 Lens Geometrical Distortion Correction

In general, real optical systems suffer from many types of geometrical distortions. In

optical systems that have spherical surfaces, a distortion occurs in the radial direction.

There are two types of radial distortion-pin-cushion and barrel distortion. A pin-

cushion distortion describes a distortion that occurs with the use of a maximum

telephoto lens. A point P in the scene is imaged farther away from the center of the

image than its true position. As illustrated on the right diagram in Figure 3-1, Y,

denoting the distorted projection of P is located farther away from the center of the

image than Y, the predicted projection using the pin-hole camera model. For the case

where maximum wide-angle lenses are used, a barrel distortion occurs where point P

in the environment is imaged closer to the center of the image than its true location

as predicted by a pin-hole camera model. The left diagram in Figure 3-1 illustrates

a barrel distortion. The displacement from the predicted location, |Y - YI, is found

to increase with the distance from the center of the image, hence the name radial

distortion.

Another type of distortion worth mentioning in this section is tangential distortion,

which occurs in the direction perpendicular to the vector from the center of the

image. In images obtained from many electro-optical systems, besides the larger

radial distortions compared to the optical systems made of glass, some degrees of

tangential distortions are also visible. Our parking assistant system uses a video

capturing device with a wide-angle glass lens to cover a wide view of the parking lot

environment. Thus, the input images to our system only suffer a barrel distortion.

In this section, we only concern ourselves with the problem of compensating for such

a radial distortion.

A radial distortion causes a pixel displacement that can be modeled using the

following relationship:

6x x(iir2 + r 2r 4 + ...)

6y = y(ir 2 + K2r + ...)

where x and y are the distorted distance measured from the center of the image in
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Figure 3-1: Two types of radial distortion. The diagram on the left displays a barrel
distortion where the projection of point P in the scene is closer to the center of the
image, 0', than its actual position as predicted by the pin-hole camera model. On
the right is a pin-cushion distortion where the projection of P is farther away from
0' than the predicted position.

the x- and y-direction respectively; r is the distance measured from the center of

the image and is calculated using (x2 + y2). It is observed that only even powers

of the distance r from the principle point appear in the equations. In general, the

displacement, 6x and 6y, can be well-approximated using only the first two terms of

the sum. That is,

6x ~ x(Kir 2 + K2 r4)

6y y(Kir 2 + K 2 r4).

The problem now becomes how to obtain the parameters Ki and ' 2 in the above

equations. If an image contains objects with a known geometry, e.g., a straight line

describing the contour of a building or a lane marker on the street, the process of

self-calibration can be done. First, an equation of a predicted straight line, e.g., the

line describing a lane marker, is obtained. Then, the values of 6x and 6y at several
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locations are estimated from displacement of pixel locations from the predicted line.

A least-square fitting technique is used to solve the above system of equations to

obtain an approximation for K, and k 2 . For the case when the geometry of objects

in the scene is not known, a separate calibration must be done by imaging targets

with known geometry, e.g., a chess-board patterned object. The same algorithm as

the above is applied to attain the approximation of K, and K2-

In general, this radial distortion compensation step can be applied to the input

images prior to the step to detect feature points. However, the drawback to compen-

sating for radial distortion before detecting feature points is that a point might now

be imaged onto a space between pixel locations. Figure 3-2 illustrates this problem.

Let Pj, P2, P, and P4 be the new calculated positions of P1 , P2 , P, and P4 after bar-

rel distortion compensation. Since the new positions fall in between pixel locations,

the new grid structure of the new image is no longer rectangular. In order to stick

with the original rectangular grid, pixel intensity values on the original grid must be

recalculated. In Figure 3-2, the new intensity value at point P is obtained from in-

terpolating its four neighboring values Pj, P2, P3, and P4. This interpolation process

corresponds to low-pass filtering the image, which blurs the high frequency area, i.e.,

edges, of the image. The performance of an edge detection scheme in the subsequent

feature extraction step therefore will be poor. Figure 3-3a and Figure 3-3b compare

the quality of the output image after distortion correction to the original input image

before compensating for barrel distortion.

3.2.2 Computing Depth

After the correct positions of the corresponding points have been determined, depth

can be calculated using the disparity between the corresponding points. Similar to

the case of binocular stereo, in monocular stereo settings larger disparities yield more

accurate depth estimation. Therefore, after corresponding points are tracked through

the entire image sequence, Io, 1, I2, .. 1k, k+1, ... , instead of using the disparity of

corresponding points between consecutive frames, the disparity in the positions of the

corresponding points in 1 and Ik are used to compute depth. Through investigation,
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Figure 3-2: After compensating for radial distortion, the new locations Pj, P2, P3, P

lie in between the pixel locations. The new intensity value at point P is obtained

from interpolating the intensity values from its neighbor-Pj, P2, P3 and P4

the k value of 20 is shown to yield good experimental results.

Let the terms left and right denote the earlier and later frames used in the match-

ing process. A point p = (X, Y, Z) in the environment is described in the left and

right camera coordinates as pi = (Xi, y1, zI) and p, = (Xr, Yr, zr) respectively. The

transformation between the left and right carmera coordinates can be decomposed

into a rotation as described using a rotation matrix, R, and a translation described

using a translation vector, t. That is,

Pr = Rp + t.

In component form, this relationship can be expressed as:

Xr

Yr

Zr

\I Xl

ZI

r 12

r22

r32

/AXo

Yo

zo

I (3.1)

Let (x, y') and (x', y) be the two corresponding projections of point p on the left
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and right image planes. Using the perspective projection equations,

r and f Zr (3.2)
f Zr f Z

- and f= - (3.3)
f z, f z1'

we obtain the following relationship:

frl - + r12-f + ri3 )Z +Xo = ' Zr, (3.4)

f f f

21+ r2 2-+ r2 3)z +Yo = z,(3.5)

(r3 < + r32 Z.+ r33 Z + ZO = . (3.6)
f f

The camera geometry f is assumed known from a camera calibration process. The

motion parameters between two camera coordinates, r1l, r 12 , ri 3 , ... , r 32 , r 33 , X 0 , YO, ZO

are obtained from inertial sensors and wheel encoders as will be described in the next

chapter, and x', y', x', y' are measured from correspondence matching. The only two

unknowns in this system of equations are the distance z, and Zr of point p from the

camera at the two image acquisitions. Solving this system of equations yields the

recovery of depths z, and Zr.

Simplification of Rotation Matrix R and Translation Vector t

Fortunately, in most depth recovery systems for ITS applications, the rotation matrix

R contains less than 9 degrees of freedom. Since the road surface can be assumed

flat in most situations, the rotation of the vehicle, i.e., the rotation between the two

camera positions, is restricted to be about the axis perpendicular to the road surface

plane. By imposing the additional orthonormality constraint, R can be expressed

in terms of one free variable-the rotation angle 6. According to the coordinate axes

defined in Figure 3-4, the rotation between the left and right camera coordinates is

restricted to be around the y-axis Y coming out of the road surface plane. Imposing

the orthonormality constraint, a rotation around one axis can be described using
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trigonometric functions, i.e., sin, and cos, of the angle of rotation 0. That is, a

rotation around Y in the counter-clockwise direction is represented using a rotation

matrix R as follows:

(cos 0

- sin 0

sin0

cos 0

Under the assumption of a translation along a flat road surface, y, in Eq.(3.1) must

be the same as yi. The second row of the rotation matrix R, [r21 , r 22, T23 ], is simplified

to [0, 1, 0] and the Yo component of the translation vector t must be zero. That is,

the rotation matrix R, the translation vector t and Eq.(3.1) can be further simplified

to:

(o Xr cos 0 0 sin ( X1 X o

y = 0 1 0 yj + 0 (3.7)

z' sin 0 0 cos6 0 Z ZO

Expressing xr, Yr, zr, x, yi, and z, in terms of x', y', x, yj, and f using the

perspective projection relationships, Eq.(3.4), Eq.(3.5), and Eq.(3.6) which are used

to compute depth can then be simplified to:

cos 0 +sin zi+Xo =

I

( sin 0 + cos 0 Zi + Zo

7 Zr,

Zr
f

(3.8)

(3.9)

(3.10)Zr .

The only two unknowns in this system of equations are the depths z, and zr. Solving

for two unknowns in three linear equations, we use the least square approximation

method. In the next chapter, we present a method to obtain the motion parameters

0, Xo, and Zo.
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(a)

(b)

Figure 3-3: The new pixel locations after compensating for a radial distortion might

fall in between pixel locations. Interpolating from the neighboring intensity values

to obtain the new intensity values at the original pixel locations blurs the image

especially along the edges. (a) Original image of a parking lot before compensating

for barrel distortion; (b) Corrected image with some blurring effect along the edges
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(xl', y1')

P = (X, Y, Z) = (xL, yl, zi)
= (xr, yr, zr)

a

ZOf

Xo

Figure 3-4: Assume a vehicle moving on a flat road surface, the translation vector t is
simplified to (XO, 0, ZO)T. The rotation between the two camera stations is restricted
to be around the Y -axis. Imposing the orthonormality constraint, the rotation
matrix R can be represented as a function of one variable-the rotation angle, 0.
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Chapter 4

Motion Parameters and

Depth Calculation revisited

In the previous chapter, we derive an algorithm to compute depth from two image

frames in a sequence when the rotation between of the camera coordinates the two

frames is restricted to be around one axis. We found that the rotation matrix R can

be described as a function of one variable 0, and the translation vector t has only

two nonzero components (X0 and ZO). In this chapter, we begin by describing the

process of obtaining the transformation parameters 0, Xo, and Zo. Next, a practical

implementation issue concerning the camera orientation with respect to the road

surface is discussed and the depth calculation is revisited.

4.1 Obtaining Parameters 0, X0, and Zo

This section presents a summary of how the parameters 0, X0 , and Zo that describe

the rigid body motion between the left and right camera stations can be obtained.

In our parking assistant system, a video camera with wide-angle lens is mounted to

overlook the back view of the vehicle as shown in Figure 4-1. Since the camera is

mounted to have a fixed orientation with respect to the body of the car, the motion

of the camera between the time instances that the left and right images were acquired

should be the same as the motion of the vehicle between the same time period. As
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described in the previous chapter, under the assumption that a vehicle travels on a

flat road surface, this transformation can be represented as a rotation by 0 about

an axis perpendicular to the road surface plane followed by a translation [Xo, 0, ZO]T

parallel to the road plane.

The rotation parameters are obtained using the inertial sensors to measure the

angular moment of the steering wheel. We use this information to derive the steering

wheel angle, i.e., the angle which the steering wheel has been rotated, which in turn is

used to calculate the instantaneous tire inclination angle and the gyration curvature of

the moving vehicle. Using a specific conversion table for a 2-wheel vehicle model, the

information on tire inclination angle and gyration curvature is used to approximate

the rotation angle 0 that the body of car has been turned, and hence the rotation

between the left and the right camera coordinates. The translation parameters X0

and Zo are obtained by projecting onto the x- and the z-axes the micro-movement

distance measured from the wheel encoders attached to the rear wheels of the car.

C amera------

Figure 4-1: A video camera with a wide angle lens is mounted on the rear window
to capture the rear view of a car. In practice, depending on the height of the vehicle
used in the experiment, the optical axes of the camera will not be parallel to the
road surface plane, but will be tilted as seen in this figure to be able to capture the
obstacles that are closer to the vehicle.

In practice, however, the measured rotation angle 0 that the body of the car has

turned is generally not equal to the rotation angle of the camera between the two

camera positions. This discrepancy is due in part to the geometry of the vehicle used

in the experiment. If a tall vehicle, e.g., a crown van as shown in Figure 4-1, is used to
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mount the camera, the optical axis of the camera needs to be tilted down to capture

the obstacles located closer to the van, making an appreciable angle a- with the road

surface plane. In this experiment, the angles that different axes of the camera make

with the axes defined by arrows pointing in the direction of the rear and the right

of the vehicle are shown in Figure 4-2. In particular, the optical axis of the camera

makes a significant angle (40.5') with the road surface plane. The assumption used

in the previous chapter to derive Eq.(3.8), Eq.(3.9) and Eq.(3.10) no longer holds and

the depth determination problem must be revisited.

40,'5 deg. X
right side of +--' 2.5
a vehicle

Y

rear of vehicle

0.5 deg

eg. Z

era

Figure 4-2: The orientation of the camera used to capture images in this experiment
is shown above. The Y-axis makes a 40.50 angle with the axis perpendicular to the
road surface plane. The Z- and X- axes of the camera make 2.50 and 0.50 angles
with the line in the direction of rear and the right of the vehicle respectively.
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4.2 Depth Calculation Revisited

The coordinate axes are defined as in Figure 3-4. First, recall Eq.(3.7), which relates

the corrected left and right camera coordinates.

Xr cos0 0 sin0 xi X0

y = 0 1 0 y' + 0 (4.1)

z K-sin0 0 cos0 z Zo

Given a fixed angle a that the optical axis of the camera makes with the road

surface plane, we can describe the transformation between the tilted right camera

coordinate [Xt, Yrt, Zrt]T and the corrected right camera coordinate [Xr, y, Zr]T as a

rotation by oz in the clockwise direction around the x-axis.

xr 1 0 0 xrt

yr = 0 cos a - sin a Yrt (4.2)

Zr 0 sin a cos a z,t

Similarly, rotating the tilted left camera coordinate [Xit, Yit, zit]T clockwise by a,

we obtain the corrected left camera coordinate [Xi, yi, z1]T.

x1  1 0 0 Xit

yi = 0 cos a - sin a yit (4.3)

zi 0 sin a cos ce zu t

Plugging Eq.(4.2) and Eq.(4.3) into Eq.(4.1), we obtain

Xrt Xit 1 0 0 X 0

Yrt R yit + 0 cos a - sin a 0 (4.4)

Zrt ziJ 0 sin a cos 9 Zo )
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where

\1 /

1 0 0

R 0 cosa -sina

0 sina cosa

cos0

0

- sin 0

0

1

0

sin 0

0

cos 0

1 0 0

0 cosa -sina

0 sina cosa 

That is, lumping the product of three rotations by a, 0 and -a into one rota-

tion matrix, we obtain a rotation R and a translation t between [Xrt, Yrt, Zrt]T to

[Xit, Yit, zit]T as follows.

1 0 0 cos 0 0

0 cos a - sin a 0 1

0 sin a cos a -sin 0 0

cos 0 sin 0 sin a

- sin 0 sin a cos 2 a + cos 0 sin 2 a

- sin 0 cos a s"22Q (cos 0 - 1)

sin 0 1 0

0 0 cos a

cos 0 0 sin a

sin 0 cos a

s i 2a(cos 0 - 1)

sin2 a + cos 0 cos 2 a

/1 0 0 X0

t = 0 cos a - sin a 0

0 sin a cos a Zo

X0

Zo sina j.
Zo cos a

When we apply the perspective projection equations to Eq.( 4.4),

-r Xr d Yrt _Yrt

and = -
f Zrt f Zrt

and

= - and A -
f zit f zit'
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- sin a

cos a I
and

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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we obtain the following relationship:

f f

yZr = R YLZl + t (4.10)f f

Again, we have a system of three linear equations with two unknowns. A least

square estimation method can be used to solve for zt and zit.

4.3 Error Analysis in Depth Computation

How reliable is our estimated depth? Many depth recovery applications have different

design specifications that impose constraints on the required depth accuracy. As

seen from Eq.(4.10), the estimated depths zit and zt depend on several parameters

which are obtained from different sources. 4, y I, ,I, and y' are determined from

matching/tracking corresponding points through the image sequence. The effective

focal length, f, is estimated from a camera calibration stage. As discussed above, 0 is

obtained using steering sensors to measure the angular moment of the steering wheel,

and the translation distance Xo and Zo along the x- and z-axes are determined

by the wheel encoders attached to vehicle rear wheels. Starting from a given desired

accuracy of depth, how accurate must each parameter that zit and Zrt depend on be?

In this section, we attempt to derive the relationship between individual measurement

errors of different parameters and the final errors in the depth estimation results.

Specifically, we would like to see how errors in the measurements of X0 and ZO from

the wheel encoders and 0 from the steering sensors contribute to the final depth

calculation errors.

In the first case, assume no errors occur in the measurements of the rotation angle

0 and the translation distance along the z-direction. Let the measured value of X0

be X 0m which deviates from its ideal value by 6XO. And let the estimated depths

zltm and ztm be the ideal depths zlt and zt plus some errors 6 zt and 6 Zrt which are
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caused solely by 6XO. That is,

XOm = X 0 + 6XO,

Zltm = Zit + 6 Zlt,

Zrtm = Zrt + 6 zrt.

We expand Eq.(4.10) in the previous section into three equations as follows:

= (riiyt

- (r21 -7
f

Zrt = (rai
f

+ r 1 2 f

+ r22 Yt
f

+ r32 Yt
f

+ ri3)zit + Xo

+ r23)zlt + ZO sina

+ r33)zut + ZO cos a

where r11 , r 12 , r1 3 , ... , r32, r33 denote the corresponding entries in the rotation matrix

R in Eq.(4.5).

To find the relationship between 6XO and 6 zt and 6 zat, we take the partial deriva-

tive of Eq.(4.11), Eq.(4.12) and Eq.(4.13) with respect to X0 .

equations in a matrix form, we obtain

X I
f

" tf
1

-A)

-B

-C (4
9
Zr t

aziaXO) /I
Rewriting the above

1

0)

0

(4.14)

where

A = (rEl
fB

B =(r21 t
f

C = (r31 ' +
f

and

+ r1 2 - -- +r 13 ),
f

+ r 2 2  + r 23),
f

r32 Y+ r 33 )-
f
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We have a system of three linear equations in two unknowns. The least square

approximation method can be used to solve for [ , ]T as follows:

(aOr

axo

ox0 )
1

0 ,

0

= (MTM)-1MT (4.15)

where
XLt
f

Y~it

f

1

-A

-B

-C)

Since the matrix M is of size 3x2, the product matrix (MTM)-IMT will be of

size 2x3. We can denote (MTM)lMT by the following matrix

(m

p

n o

q )2 2X3

where

m = dt(B+C)

n de t (A2 + C 2)

o = A2+B2

det f2
det ( f2

q= det (A t

r = d (Axt
det f

det

-AC

+C r
fYr

f

= (A2 + B2 + C2 )( ri
f 2

- AB ft- AC)

AB ft- BC)

f-BC)t

-Art +1)

f2

2+1)

+ rt ±1 Yrt+BY+C.
Cf +

f2 f 2

+ 2 1) - (Axr + B Yt+ C)2.
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That is, Eq.(4.15) now becomes

aZt m n o11 . (4.16)
&9Zlt IaXO p q r

Multiply out the right-hand side, we obtain the relationships:

&Zrt

13zlt
__= p.ax0

Therefore, an error 6XO in measuring the camera translation along the x-axis will

result in errors Jzrt and 6zit in the estimation of zt and zij as follows:

6 zrt = m6XO, (4.17)

6 zIt = p6Xo. (4.18)

For particular values of Zo, 0, (x, yt) and (x', yt), m and p are constant. The plot

in Figure 4-3 shows a linear gain factor between the measurement errors in Xo and

the corresponding errors in depth estimation, 6 zUt. In this plot, ZO stays fixed at

0.1830m and 0 at 1.28'. The corresponding gain factor of this plot is 24.8361. That

is, an error of 1 meter in the measurement of X 0 will result in an error of 24.8361

meters in estimating zit.

Now, if instead we assume that the only erroneous measurement is the measured

distance of the wheel encoders along the z-axis, using a similar technique as in the

derivation above, we obtain the following relationships:

/0azrt m n 0azo = sin a - (4.19)
azo p q r Coa

85



0.7

0.6 -

0
Z 0.4
E

0.3

0)

0.1

0.1

0 0.005 0.01 0.015
errors in measurement of Xo (meter)

0.02 0.025

Figure 4-3: The relationship between the measurement errors in X0 and the corre-
sponding errors in depth estimation results, 6 zlt, is linear. In this particular plot, Zo
stays fixed at 0.1830m and 6 at 1.28'. The gain factor of this plot is 24.8361.

Multiply out the right-hand side, we obtain the equations that relate the final errors

in depth estimation with the measurement error 6ZO.

OZet

OZO

azo
azo

6 Zrt

6 zlt

= (n sin a + o cos a)

= (q sin a + r cos a)

= (nsina+ocosa)6Zo,

= (qsina+rcosa)6Zo.

(4.20)

(4.21)

For particular values of X 0 , 0, (x', y't) and (x',, yt), n, o, q and r are constant.

Figure 4-4 shows a linear gain factor between the measurement errors in ZO and the

corresponding errors in depth estimation, 6 zU. In this plot, Xo is fixed at 0.089m and

0 at 1.280. The corresponding gain factor of this plot is 5.6966. That is, an error of
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1 meter in measuring Zo will result in an error of 5.6966 meter in estimating zit.

0.01 0.015 0.02 0.025 0.03 0.035
errors in measurement of Zo (meter)

0.04 0.045 0.05

Figure 4-4: The relationship between the measurement errors in Zo and the corre-
sponding errors in depth estimation results, 6zit, is linear. In this particular plot, X0

stays fixed at 0.089m and 0 at 1.280. The corresponding gain factor is 5.6966.

In the last and final case of our error analysis, errors are allowed to occur only in

the measurement of the rotation angle 0. An error in the measurement of the rotation

angle causes the measured value of 0 to deviate from its true value by 60 which in

turn causes the results of depth calculation to be different from their ideal values by

6 zrt and 6 zt respectively. Again, we apply the same technique as in the previous two

cases to arrive at the following relationship:

(azrt

0zi
00 (m

p

n

q

Or 11ao
ar 1
ao

ao

ao
ar2 2
ao

0r32
00

ao
ar23
ao

ar33
00 It f

ht
f
1

Zit . (4.22)
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Taking the partial derivative of the rotation matrix R from Eq. (4.5), we obtain

cos 9

- sin 9 sin a

- sin 0 cos a

sin 9 sin a

2
cos2 a +cos 6sin 2 a

s-i" 2 c(cos - 1)

sin 0 cos a

si9a(cos 9 - 1)

sin 2a+coscos 2 a

sinacos0 cosacos0

- sin a cos 0

- cosa cos 9

-sin2 a sin 0

- sin 92

- sin 0

2cos a sin 0

Plugging Eq.(4.23) into the right-hand side of Eq.(4.22) and multiplying out, the

following equations can be obtained:

[ m
Im sin a

12 yi1-n sin a
f

- + m cos a
f

- q (sin2 a Y

sin 2a>

2

- nsina

sin 2a)
+ 2

q sin a
f

sin 2a
-0--

2a

t - 0 Cos a X'
f

sin 2a y
2

yit 2I+ cos aI zi sin0 +f /

zI cos 0,

It 2f
- + cos ai zi sin 0 +
r)I

- r cos a  Zt Cos O.
fI

That is, the relationships between 60 and 6zt and 6 zt can be described as follow:

fHm sin aYft

{-p[ -

12 yin (sin a
f

+ m cos a -

q (sin2 y&a --
f

sin 2a)
+ 2

n sin a -
f

sin 2a)
+ 2

sin 2a yt

(2 f

- ocos a ZIt Z

sin 2a y'
r it

(2 f

+_ cos 2 a)I zi sin 0+

cos 0 }60 (4

+ cos 2 a)] zI sin 0+

p sin af +p cos a - q sin a
f

- r cos a ft Zit cos 0 60.

Figure 4-5 shows the linear gain factor between errors in the measurement of 9 and

the final errors in depth estimation. When X 0 , Zo stay fixed, a small error of 1 radian

in measuring 9 will result in a corresponding error of 47.8634 meter in estimating zIt.
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0zrt

09

OzIt
00 f

p sin a p +pcosa -

6 zt

6 ZIt
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Figure 4-5: A plot shows the linear gain factor between the measurement errors in
0 in radian and the corresponding errors in estimating depth, zit. The gain factor of
this plot is 47.8634. That is, an error of 1 radian in measuring the rotation angle 0
will result in an error of 47.8634 in estimating zit.
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Chapter 5

Experimental Results

In this experiment, a video camera mounted on the rear window of a testing van

supplies the source image sequences to our system. We tested our algorithm on

several sets of video images taken in two parking scenarios-parallel and right-angle

parking. This chapter presents the calculated distance in the form of sparse depth

maps and analyzes errors in the results with the possible sources of their occurrences.

5.1 Experiments

We tested our algorithm on three sets of real video sequences taken from inside a

parking lot. To avoid the problem of shadowing and excessive specular reflection,

the shooting was done during an evening time. The first two sequences are obtained

when the testing van attempts to park in parallel as shown in Figure 5-1. The initial

distances Xori and Zori between the testing van and the parked car in the front (the

car labeled as A in Figure 5-1) are measured. At this starting point, the angle that

the body of the car makes with the z-axis of the world coordinate is also measured

to be 00. In the first test sequence, Xori and Zori are measured to be 135 cm and

190 cm respectively. And the value of Oo is +2.470 in the counter-clockwise direction

measured from the z-axis. As the testing van is being driven into the parking space

between car A and car B, the video camera mounted on the rear window captures

the different views of the parking lot. Simultaneously, as the images are captured,

91



the wheel encoders located at both the rear wheels of the van and the steering sensor

record the distance that the van has translated and the change in rotation angle from

its original value.

Figure 5-2 and Figure 5-3 show sample images from the first test sequence. Mainly,

the trunk part of car A and the front part of car B are visible from the camera.

Figure 5-2 corresponds to the first frame in the sequence and Figure 5-3 shows the

21"t image of the same sequence.

A

Zori

approximate distance = 7.5 m.

z

B

Figure 5-1: Parallel parking scenario

The second test sequence is obtained from another attempt of parallel parking.

This time, the initial distance Xori and Z0ri are measured to be 105 cm and 195 cm

from car A respectively, and the initial angle of the car with respect to the z-axis is

+1.52' measured in the counter-clockwise direction.

The last test sequence is obtained when the testing van attempts to park from

the right angle position. Figure 5-4 illustrates this scenario. The initial distance Xoi

and Z,i from car A in Figure 5-4 are measured to be 162 and 355 cm and the initial
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Figure 5-2: The first frame in the first test sequence

angle of the vehicle is -52.99' measured in the counter-clockwise direction from the

z-axis. The front part of car A and the side of car B are visible from the camera.

We would like to estimate the distance of all objects in the scene from the vehicle

position.

Feature points are first extracted from each image using the CSS based corner

detector. Corresponding features are then matched and tracked through the sequence

using the matching algorithm described in Chapter 3. Our system keeps track of the

locations of feature points via the use of an internal table which is updated when the

new frame is obtained. With the rotation angle obtained from inertial sensors and

the distance information from the wheel encoders, depths of objects in the scene can

be calculated from the difference in locations of the feature points in any two image

frames in the sequence. In this research, we tried experimenting with the different

lengths of baselines in computing distance. A plot between the calculated distance

and the length of baseline is shown in Figure 5-5, which illustrates that the use of a

longer baseline, i.e., picking the two image frames that are far apart in the sequence,

allows for depth calculation to be more accurate and stable. Two approaches can be
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Figure 5-3: The 2 0th frame in the first test sequence

taken in obtaining the final depth estimation. One approach is to average the results

of different estimation from the use of different baselines by putting more weights on

the results from longer baselines. Another approach is to fix the length of baseline or

fix the number of frames that the two images used in depth calculation must be apart.

The optimal value of this fixed length or fixed number of frames must be obtained

via experimentation in order for the depth calculation results to stabilize. As seen

in Figure 5-5, the value to use for a fixed baseline length can be set to 0.4m for the

calculated depth results to stabilize. For convenient purposes, we, however, chose to

fix the number of frames. Through experimentation the fixed number of frames that

yields optimal depth calculation results is found to be in the range of 20-30.

5.2 Generating a Sparse Depth Map

By marking the feature points in the scene that are of different distance from the

camera with different colors, a sparse depth map of the environment in the parking

lot can be obtained. We use 20 different colors to denote 20 distance ranges. The

color assigned to each feature point in a particular map will be based on the range
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Figure 5-4: Right-angle parking scenario

distribution of all the feature points in the scene. Specifically, after the distance of

each feature point from the camera is computed, the maximum and minimum depths

are determined for the color assignment. Let Zmax denotes the maximum and Zmai

the minimum distance of all feature points in a particular map, the distance resolution

of this map is d = z 2z0 . In other words, two subsequent colors will represent

points that are d meters apart in depth. In addition, our convention is such that an

object located closer to the camera will be assigned a darker color, and the further

away the lighter the color represented.

The depth map from the first test sequence of parallel parking is shown in Figure 5-

6. All objects in this map can be roughly grouped into three big ranges. The first

group contains the feature points from the part of the scene that corresponds to the

trunk of car A in the parallel parking scenario in Figure 5-1. The second group

contains the feature points from the distant background of the parking lot and the

front part of car B, which is located rather far away from the camera. The last group

consists of feature points from the cars in the near background that are located closer

to the camera (on the right side of the image in Figure 5-3). In the depth map of the

first test sequence, the maximum calculated distance from the camera is 9.4305 m

and the minimum 0.25 m. That is, the distance resolution for this particular depth
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Figure 5-5: Plot of different baseline length and the estimated distance. With a
smaller baseline, the depth estimation is not very reliable as can be seen from the
graph above. Although a longer baseline is preferred in calculating depth, the tradeoff
is that tracking the same feature point in a long sequence of images can become very
difficult. In the worse scenario, objects might disappear from the scene and thus
depth calculation using a longer baseline is not always feasible.

map is 9.4305-0.25 = 0.4590m.map is 20

The second test sequence is obtained from another shooting of a parallel parking

experiment when the testing van has moved closer to the parked car B. As seen in the

sparse depth map shown in Figure 5-7, the background environment and car B can

be distinctly identified from the difference in their relative depths from the camera.

The distance resolution of this map is 13.1694-0.4192 = 0.6375m.20

In the third test sequence, the testing van attempts a right-angle parking. In the

particular frame that we show in Figure 5-8, car A is already invisible in the map.

The detection of the distance of feature points along the lane markers and the side of

car B again shows a clear distinction in the distance from the feature points in the

background. The distance resolution of this map is 24.3038-0.3688 = 0.6967m.

96



Figure 5-6: Sparse depth map of the parking lot obtained from the first test sequence.
Feature points in the scene can be grouped into three big ranges. The first group on
the left side of the map contains those feature points that belong to the trunk of car
A. The second group is located at the top center of the map contains the feature

points of the distant background and the feature points of the front part of car B.
The third group on the right side of the map contains feature points of the cars in
the background that are closer to the camera.

5.3 Accuracy of the Computed Depth

In the first test sequence of the parallel parking scenario, the distance between the

camera location and a point at the rear end of car A in Figure 5-1 is known by

subtracting the distance the testing van has moved from the original Z,,i distance.

We, therefore, have obtained a close approximation of the actual distance of an object

in the scene, i.e., car A. The calculated distances when the testing van is located at

different distances away from car A are obtained and the results are presented in

Table 5. 1. As apparent in the positive signs in the errors, our calculation, most of
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Figure 5-7: Sparse depth map of the parking lot obtained from the second test se-

quence. Car A is already invisible from the camera and the testing van has moved

closer to car B. There are distinct differences in colors. The feature points that belong

to the front of car B are in orange while most of background have distance in the

yellow range.

the time, gives a lower estimate of the actual depth. The peak magnitude of errors

in the sample results of this test sequence is 0.5846m.

Similarly in the second test sequence, the initial distance between the camera po-

sition and the front part of car B is known apriori to be Z + 7.50M.- By subtracting

the distance the van has moved along the z-axis from the original separation, we

can determine the actual distance between the camera arid the front part of car B as

listed in the Measured Distance column in Table 5.2. In this second test sequence,

the peak magnitude of error is found to be 0.7654m.
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Table 5.1: A comparison between the actual measured distance and the computed
distance between the camera location and car A in parallel parking scenario in Fig-
ure 5-1

Measured Distance(m) Computed Distance(m) Error(m)
1.5934 1.2070 +0.3864
1.5651 1.2802 +0.2849
1.5382 1.1870 +0.3512
1.5199 1.2804 +0.2395
1.4689 1.0347 +0.4342
1.4525 1.0223 +0.4302
1.4367 0.8521 +0.5846
1.4209 1.0924 +0.3285
1.4046 1.1058 +0.2988
1.3898 0.8206 +0.5692
1.3671 0.9242 +0.4429
1.3602 0.9704 +0.3898
1.3528 1.0450 +0.3078
1.3454 1.0879 +0.2575
1.3386 1.0680 +0.2706

Table 5.2: A comparison between
between camera location and car B

the actual distance and
in the setting in Figure

the computed distance

Measured Distance(m) Computed Distance(m) Error(m)
3.5287 3.4268 +0.1019
3.4919 2.7265 +0.7654
3.4688 2.9333 +0.5355
3.4201 3.4066 +0.0135
3.3600 2.6903 +0.6697
3.3354 3.7195 -0.3841
3.3126 2.8212 +0.4914
3.3126 2.8262 +0.4864
3.2890 2.7993 +0.4897
3.2890 3.1628 +0.1262
3.2771 3.7073 -0.4302
3.2655 3.5001 -0.2346
3.2421 3.1337 +0.1084
3.2191 3.3212 -0.1021
3.1957 3.5830 -0.3873
3.1715 3.2626 -0.0911
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Figure 5-8: Sparse depth map of the parking lot of the third sequence-right angle

parking. Again, in this scenario, car A is already invisible from the camera. Although

some feature points (especially on the road) that should be detected closer to the

camera appear to be farther way, in all, there is a clear distinction between the

feature points belonging to car B and those of the distant background.

5.4 Sources of Error

Due to the imperfection of the physical implementation of the system, errors are

inevitable in our estimation of distance. In general, we can broadly identify two

different sources of errors. The first are errors from the imperfect measurements of

parameters obtained from other sensors, namely, errors introduced in the measure-

ment of 0, X0, ZO and a. As described in the previous chapter, 0 is measured using

the steering sensors attached to the steering wheel of the vehicle, and X0 and ZO are

obtained from the wheel encoders attached to the two rear wheels of the vehicle. In

general, errors in distance measurement from the use of wheel encoders and inertial
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sensors are cumulative in nature. Thus, the depth estimation results will tend to be

less reliable and the sensors will need to be reset at times. Other sources of errors in

this class are small measurement errors in different relevant parameters such as the

fixed tilting angle a that the optical axis of the camera makes with the road surface

plane. As the vehicle moves, small perturbations on the road will constantly change

the camera fixed orientation, thus causes some errors in the depth calculation results.

Errors are also caused by the imperfection of the optical system itself. Even though

we have attempted to compensate for some radial distortion for the use of wide-angle

lens in our calculation, the results are still not truly ideal.

Another source of errors comes from the imperfect nature of our calculation. In the

feature extraction stage, mis-localization of feature points can occur that will distort

the final results of depth calculation. In particular, with our corner detection scheme

based entirely on the reliability of the edge contour detection results, slight changes

in the lighting condition will result in dissimilarity between edge contours detected

between subsequent frames in the sequence, hence raising an issue of consistency and

stability of the corner points detected.

Similarly, in correspondence mismatching, despite the fact that matching is done

between consecutive frames in densely sampled video sequences, missed correspon-

dence and false correspondence still frequently occur and the errors will directly prop-

agate to become errors in depth estimation. In fact, we found that the majority of the

spurious depth estimation results in our depth map are attributed to correspondence

mismatching.
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis, we explore the problem of 3-D reconstruction of the environment in

a parking lot from a sequence of video images taken from a moving camera. We

propose an algorithm to recover distance of objects in the scene provided that the

motion and position of the camera are known. First, our algorithm extracts feature

points from each image in the sequence using the CSS based corner detection scheme.

Feature points are then matched and tracked through the sequence, and depths can

be calculated to generate a sparse depth map of the environment. The sample results

from testing our algorithm on real video image sequences have proven the reliable

performance of our algorithm in reconstructing a relative depth map of the environ-

ment. However, wrong distance estimation can be spuriously spotted in the depth

map results. The main cause of these errors is attributed to false correspondences

which occur in the matching and tracking stage.

6.2 Future work

We propose the following extensions to this research:

1. Improve reliability of the depth estimation by exploring different schemes in

matching and tracking corresponding corner points in the image sequence. A
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method that makes use of a combination of different cues in matching corre-

spondence should be explored. For example, the matching results from our

CSS based method can be used as the initial solutions in matching. The pre-

cise locations of the matching points can then be refined using the normalized

correlation coefficient as the new matching criterion.

2. Make the algorithm more robust under the existence of shadows on the road.

This case is an extension to the current research to cover the case where parking

is attempted in an outdoor parking lot during the day.
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Appendix A

Edge Linking

This section describes in details an edge linking algorithm used in the thesis. Since

the final binary edge detection output is obtained from OR'ing the binary edge maps

of the three color components-R, G, B. Due to the slightly different response from

each channel, many gaps have automatically been filled and edges are automatically

linked via the OR'ing process. Therefore, the linking algorithm implemented in this

thesis can be simplified. The algorithm inspects a 3x3 local neighborhood window and

compares the intensity pattern with the different patterns for vertical and horizontal

edge linking to determine if a gap between edge pixels should be filled. For the case

of a vertical edge linking, 10 patterns as shown in Figure A-1 are compared. The

3x3 local window is then compared with the 90 0-rotated, 180 0-rotated, 2700-rotated,

transposed versions of each of these 10 masks. If a match occurs, the middle pixel is

filled.
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Figure A-1: A simplified edge linking algorithm used in this thesis inspects a 3x3
local neighborhoold window to find the linking patterns. For vertical edge linking, 10
masks as shown above are used. The local 3x3 intensity pattern window is compared
with the original, 90'-rotated, 180 0-rotated, 270--rotated, and the transposed versions
of these masks. If a match occurs, the middle pixel is filled.

106



Appendix B

Edge Thinning I

In this section, we describe in details an edge thinning algorithm based on the algo-

rithm proposed by Heipke et al. in [11]. The goal is to remove any extraneous edge

pixels that are not parts of the edge contour skeletons. Heipke et al. considered an

edge pixel a part of a skeleton if there exists only two other edge pixels in its 3x3

neighborhood. To properly thin edges so that only the skeleton remains, Heipke et al.

proposed three thinning conditions under which a thinning algorithm must satisfy.

These three conditions are:

1. Thick edges are not split into several thin edges but are thinned to one edge

2. No holes can be created in edges

3. Edges are not shortened but must remain of the same length.

Using the above three thinning rules, Heipke reduced from all the possible patterns

in a 3x3 window to only 17 combinations of thick edge masks. Figure B-1 listed all

the 17 thick edge masks. Heipke's algorithm then examines a 3x3 neighborhood of an

edge pixel and compares the edge pattern with the original, transpose, 90'-rotated,

180 0-rotated, 2700-rotated, 900-rotate of the transpose, 180 0-rotate of the transpose,

and 270 0-rotate of the transpose versions of each of the 17 thick edge patterns. If a

match occurs, the middle edge pixel will be removed. If edge contours are not too

thick, only one pass of the algorithm is sufficient to thin edges to one-pixel wide.

Otherwise, multiple passes of the algorithm are required.
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Figure B-1: Under Heipke's proper thinning rules, the 17 possible 3x3 thick edge
masks, their transposes and their rotated versions are used to compare with a 3x3
neighborhood of an edge pixel. If a match occurs, the pixel in the middle is considered
extraneous and thus will be removed.
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Appendix C

Edge Thinning II

This section discusses a fast parallel thinning algorithm proposed by Chen and Hsu

in [5]. This algorithm is a modified version of the original Zhang-Suen method [32]

which is based on a 4-neighbor connectivity. The original Zhang-Suen algorithm is

well-known for its thinning merit against contour noise immunity by employing a 2-

subiteration scheme in thinning. However, because the algorithm was designed based

on 4-neighbor connectivity, the concept of "one-pixel wide" edge contours cannot

be achieved entirely using the original Zhang-Suen algorithm. In 1988, Chen and

Hsu proposed their algorithm based on 8-neighbor connectivity and still preserved

the original merit of the Zhang-Suen algorithm. In Chen and Hsu algorithm, a 3x3

window around an edge pixel P is examined as seen in Figure C-1. Let A(P) be the

number of 0-1 patterns in the ordered set P2 , P3, P 4, P5 , P6 , P7 , P8 , P9, and P 2. B(P1 )

denotes the number of nonzero neighbors of P1 . One pass of the algorithm is divided

into two subiterations. In the first subiteration, the edge pixel P is removed if it

satisfies all the following conditions:

1. 2 < B(P1) < 7;

2. A(P1) = 1;

(a) P2 P P6 = 0 and

(b) P4 - P 6 - P8 = 0

3. A(P1) = 2;
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(a) (P2 P4 = 1 and P6+P 7 +Ps = 0) or

(b) (P4 P6 = 1 and P2 +P 8 + P9 = 0)

The criterion in (2) is considered a criterion of 4-neighbor connectivity. Chen and

Hsu incorported additional conditions in (3) to thin edge lines to one-pixel wide from

the standpoint of 8-connectedness. In the second subiteration, the isotropic property

proposed in the original Zhang-Suen algorithm that gives this algorithm an immunity

against contour noise is employed. The edge pixels P will be removed if all the

following conditions are met.

1. 2 < B(P1) K 7;

2. A(P1) 1;

(a) P 2 P4 P8 = 0 and

(b) P 2 P6 P8 = 0

3. A(P1) = 2;

(a) (P2 -P 8 =1 and P4 +P 5 +P 6=0) or

(b) (P6-Ps= andP 2 +P 3 + P4 =0)

Figure C-1: Chen and Hsu algorithm examines a 3x3 window around an edge pixel
P1. The middle pixel, P1, is deleted when the criteria for 4-neighbor connectivity, i.e.,
logical operations on the subsets of (P2, P4, P6 , P8 ), and 8-neighbor connectivity, i.e.,
logical operations on the subsets of (P3 , P5 , P7 , P9 ) are met.
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