100 research outputs found

    Coalgebraic Weak Bisimulation from Recursive Equations over Monads

    Full text link
    Strong bisimulation for labelled transition systems is one of the most fundamental equivalences in process algebra, and has been generalised to numerous classes of systems that exhibit richer transition behaviour. Nearly all of the ensuing notions are instances of the more general notion of coalgebraic bisimulation. Weak bisimulation, however, has so far been much less amenable to a coalgebraic treatment. Here we attempt to close this gap by giving a coalgebraic treatment of (parametrized) weak equivalences, including weak bisimulation. Our analysis requires that the functor defining the transition type of the system is based on a suitable order-enriched monad, which allows us to capture weak equivalences by least fixpoints of recursive equations. Our notion is in agreement with existing notions of weak bisimulations for labelled transition systems, probabilistic and weighted systems, and simple Segala systems.Comment: final versio

    Presenting Distributive Laws

    Get PDF
    Distributive laws of a monad T over a functor F are categorical tools for specifying algebra-coalgebra interaction. They proved to be important for solving systems of corecursive equations, for the specification of well-behaved structural operational semantics and, more recently, also for enhancements of the bisimulation proof method. If T is a free monad, then such distributive laws correspond to simple natural transformations. However, when T is not free it can be rather difficult to prove the defining axioms of a distributive law. In this paper we describe how to obtain a distributive law for a monad with an equational presentation from a distributive law for the underlying free monad. We apply this result to show the equivalence between two different representations of context-free languages

    Behavioural equivalences for timed systems

    Full text link
    Timed transition systems are behavioural models that include an explicit treatment of time flow and are used to formalise the semantics of several foundational process calculi and automata. Despite their relevance, a general mathematical characterisation of timed transition systems and their behavioural theory is still missing. We introduce the first uniform framework for timed behavioural models that encompasses known behavioural equivalences such as timed bisimulations, timed language equivalences as well as their weak and time-abstract counterparts. All these notions of equivalences are naturally organised by their discriminating power in a spectrum. We prove that this result does not depend on the type of the systems under scrutiny: it holds for any generalisation of timed transition system. We instantiate our framework to timed transition systems and their quantitative extensions such as timed probabilistic systems

    Combining Bialgebraic Semantics and Equations

    Get PDF

    Generic Trace Semantics via Coinduction

    Get PDF
    Trace semantics has been defined for various kinds of state-based systems, notably with different forms of branching such as non-determinism vs. probability. In this paper we claim to identify one underlying mathematical structure behind these "trace semantics," namely coinduction in a Kleisli category. This claim is based on our technical result that, under a suitably order-enriched setting, a final coalgebra in a Kleisli category is given by an initial algebra in the category Sets. Formerly the theory of coalgebras has been employed mostly in Sets where coinduction yields a finer process semantics of bisimilarity. Therefore this paper extends the application field of coalgebras, providing a new instance of the principle "process semantics via coinduction."Comment: To appear in Logical Methods in Computer Science. 36 page
    • …
    corecore