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A b s t r a c t .  Trace semantics has been defined for various kinds of state-based systems, 
notably with different forms of branching such as non-determinism vs. probability. In this 
paper we claim to identify one underlying mathematical structure behind these “trace 
semantics,” namely coinduction in a Kleisli category. This claim is based on our technical 
result that, under a suitably order-enriched setting, a final coalgebra in a Kleisli category 
is given by an initial algebra in the category Sets. Formerly the theory of coalgebras 
has been employed mostly in Sets where coinduction yields a finer process semantics of 
bisimilarity. Therefore this paper extends the application field of coalgebras, providing a 
new instance of the principle “process semantics via coinduction.”

1. In tr o d u ctio n

Trace semantics is a commonly used semantic relation for reasoning about state-based 
systems. Trace semantics for labeled transition  systems is found on the coarsest edge of the 
linear tim e-branching tim e spectrum  [57]. Moreover, trace semantics is defined for a variety 
of systems, among which are probabilistic systems [49].

In this paper we claim th a t these various forms of “trace semantics” are instances of 
a general construction, namely coinduction in a Kleisli category. O ur point of view here is 
categorical, coalgebraic in particular. Hence this paper dem onstrates the abstraction power
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2 I. HASUO, B. JACOBS, AND A. SOKOLOVA

of categorical/coalgebraic m ethods in com puter science, uncovering basic m athem atical 
structures underlying various concrete examples.

1.1. “ T ra c e  s e m a n tic s ” in  v a r io u s  c o n te x ts .  F irst we m otivate our contribution through 
examples of various forms of “trace semantics.” Think of the following three state-based, 
branching systems.

ix ) <®D'
«[§]

- € 0
«[§]

/ a lH Q g )

a [ | ]

A context-free grammar 
(for Peano Arithmetic)
Terminal symbols: 0 , s
Non-terminal symbol: T
Generation rules:

T  -► 0
T -► sT

(1 .1)

The first one is a non-determ inistic system with a special sta te  /  denoting successful 
term ination. To its sta te  x  we can assign its trace se t:

tr(x ) =  {a, ab, abb,. . .  } =  ab* , (1.2)

th a t is, the set of the possible linear-tim e behavior (namely words) th a t can arise through 
an execution of the system .1 In this case the trace set tr(x ) is also called the  accepted 
language; formally it is defined (co)recursively by the following equations. For an arb itrary
sta te  x ,

0  € tr(x ) x  a  /
a ■ a  € tr(x ) By. ( x  A  y A a  € t r (y) )

Here () denotes the em pty word; a  =  a 1a 2 .. .a n is a word.
The second system has a different type of branching, namely probabilistic branching.

. a[1/3] . . , . . . .
Here x  — > y  denotes: at the state  x , a transition  to  y  ou tpu tting  a occurs with 
probability 1/3. Now, to  the sta te  x ' , we can assign its trace distribution :

(1.3)

tr (x) = 0
1
3 ’1
" 3

a

( i r

(1.4) 

Its  formal

(1.5)

th a t is, the probability distribution over the set of linear-tim e behavior.2 
(corecursive) definition is as follows.

tr(x )(()) =  Pr(x ^  / )  ,
t r (x )(a • a) =  E y e x  Pr(x A  V) • tr (V)((j) ,

where P r ( . .. ) denotes the  probability of a transition.
The th ird  example can be thought of as a state-based system, w ith non-term inal symbols 
as states. It is non-determ inistic because a sta te  T  has two possible transitions. It is 
natu ral to  call the following set of parse-trees its “trace semantics.”

tr(T ) 5

a

2a
a

s
s

1The infinite trace ab^ is out of our scope here: we will elaborate this point later in Section 4.2.
2Here again, we do not consider the infinite trace aw ^  1/3.
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It is again a set of “linear-tim e behavior” as in the first example, although the notion 
of linear-tim e behavior is different here. Linear-time behavior—th a t is, w hat we observe 
after we have resolved all the non-determ inistic branchings in the system—is now a parse- 
tree instead of a word.

1.2. C o a lg e b ra s  a n d  c o in d u c tio n . In recent years the  theory of coalgebras has emerged 
as the  “m athem atics of state-based system s” [25,26,47]. In the categorical theory of coalge­
bras, an im portant definition/reasoning principle is coinduction: a system (identified with 
a coalgebra c : X  ^  F X ) is assigned a unique morphism behc into the final coalgebra.

F (behc)
F X -------------------- F Z

=^final 

X - - -  -behc-“ -  " Z
T he success of coalgebras is largely due to  the fact th a t, when S e ts  is taken as the base 
category, the final coalgebra semantics is fully abstract w ith respect to  the conventional

c dnotion of bisim ilarity : for states x  and y  of coalgebras X  ^  F X  and Y  ^  F Y ,

behc(x) =  behd(y) x  and y  are bisimilar.

This is the case for a wide variety of systems (i.e. for a variety of functors F ), hence 
conduction in  S e ts  captures bisimilarity.

However, there is not so much work so far th a t captures o ther behavioral equivalences 
(coarser th an  bisimilarity) by the categorical principle of coinduction. The current work— 
capturing trace semantics by coinduction in a Kleisli category—therefore extends the ap­
plication field of the theory of coalgebras.

1.3. O u r  c o n tr ib u tio n s .  Our technical contributions are summarized as follows. Assume 
th a t T  is a monad on S e ts  which has a suitable order structure; we shall denote its Kleisli 
category by K l(T ).
•  Trace semantics via coinduction in a Kleisli category. C om m utativity of the coinduction 

diagram

_  F(trc) _
F X  in ^ t ), n  «Ï
cî  = | finai the Kleisli category for T  ( . )
X ---------- 1----------- ->Ztrc

is shown to  be equivalent to  the conventional recursive definition of trace semantics such 
as (1.3) and (1.5). This is true  for both  trace set semantics (for non-determ inistic systems) 
and trace distribution semantics (for probabilistic systems). The induced arrow trc thus 
gives (conventional) trace semantics for a system c.

•  Identification o f the final coalgebra in a Kleisli category. We show th a t

an initial algebra in S e ts  
coincides with 

a final coalgebra in K l(T ).
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In particular, the final coalgebra in R e l is the initial algebra in S e ts , because the category 
R e l of sets and relations is a Kleisli category for a suitable monad. This coincidence 
happens in the following two steps:
- the  initial algebra in S e ts  lifts to  a Kleisli category, due to  a suitable adjunction-lifting 

result;
- in a Kleisli category we have initial algebra-final coalgebra coincidence. Here we use the 

classical result by Sm yth and Plotkin [51], namely lim it-colim it coincidence which is 
applicable in a suitably order-enriched category.

Note the presence of two param eters in (1.6): a monad T  and an endofunctor F , both 
on S e ts . The monad T  specifies the branching type of systems. We have three leading 
examples:3
•  the powerset m onad P  modeling non-deterministic  or possibilistic branching;
•  the subdistribution monad D

D X  =  {d : X  a  [0,1] | d(x) <  1}
xex

modeling probabilistic branching; and
•  the  lift monad C =  l + ( _ )  modeling system with exception (or deadlock, non-term ination). 
The functor F  specifies the transition type of systems: our understanding of “transition 
type” shall be clarified by the following examples.
•  In labeled transition  systems (LTSs) with explicit term ination— no m atter if they are 

non-determ inistic or even probabilistic— a sta te  either
- term inates (x a  / ) ,  or
- ou tpu ts one symbol and moves to  another state  (x A  x r),
in one transition. This “transition  type” is expressed by the functor F X  =  1 +  E x X , 
where E is the ou tpu t alphabet and 1 =  { /} .

•  In context-free gram m ars (CFGs) as state-based systems, a sta te  evolves into a sequence 
of term inal and non-term inal symbols in a transition. The functor

F X  =  (E +  X  )*

with E being the set of term inal symbols, expresses this transition  type.
Clear separation of branching and transition  types is im portant in our generic treatm ent of 
trace semantics. The transition  type F  determines the set of linear-tim e behavior (which is 
in fact given by the initial F-algebra in S e ts). We model a system by a coalgebra X  A  F X  
in the Kleisli category K1(T)— see (1.6)—where F  is a suitable lifting of F  in K£(T). By 
the definition of a Kleisli category we will easily see the following bijective correspondence.

X — C- ^ F X  in K2(T)

X  — ^ T F X  in S e ts

Hence our system— a function  of the type X  a  T F X — first resolves a branching of type T  
and then  makes a transition  of type F . Many branching systems allow such representation 
so th a t our generic coalgebraic trace semantics applies to  them .

3Other examples include the monad X ^  (N U{to})x for multisets, the monad X ^  [0, for real 
valuations, and the monad X  i—► V(M  x  _) with a monoid M  for timed systems (cf. [29]). These monads 
can be treated in a similar way as our leading examples. We leave out the details.
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1.4. G e n e r ic  th e o r y  o f  t r a c e s  a n d  s im u la tio n s . In the study of coalgebras as ‘categor­
ical presentation of state-based system s’, there are three ingredients playing crucial roles: 
coalgebras as systems; coinduction yielding process semantics; and morphisms o f coalgebras 
as behavior-preserving maps. In this paper we study the first two in a Kleisli category. 
W hat about morphisms of coalgebras?

In [14] this question is answered by identifying lax/oplax morphisms o f coalgebras in 
a Kleisli category as forward/backward simulations. Use of traces and simulations is a 
common technique in formal verification of systems (see e.g. [41]): a desirable property 
is expressed in term s of traces; and then  a system is shown to satisfy the property by 
finding a suitable simulation. Therefore this paper, together w ith [14], forms an essential 
part of developing a “generic theory of traces and sim ulations” using coalgebras in a Kleisli 
category. The categorical genericity— especially the fact th a t we can trea t non-determ inistic 
and probabilistic branching in a uniform m anner—is exploited in [19] to  obtain a simulation- 
based proof m ethod for a probabilistic notion of anonymity for network protocols. Currently 
we are investigating how much more applicational im pact can be brought about by our 
generic theory of traces and simulations.

1.5. T e s tin g  a n d  t r a c e  se m a n tic s . Since the emergence of the theory of coalgebras, the 
significance of modal logics as specification languages has been noticed by many authors. 
This is exemplified by the slogan in [36]: ‘modal logic is to  coalgebras w hat equational 
logic is to  algebras’. Inspired by coalgebras on Stone spaces and the corresponding modal 
logic, recent developments [5 ,6 ,31,32,34,37,45] have identified the following situation as 
the essential m athem atical structure  underlying modal logics for coalgebras.

p

F°P C ^ ^ 3  M together w ith M P  P F op
S°p

In fact, it is noticed in [45] th a t such a situation not only hosts a modal logic but also a more 
general notion of testing (in the sense of [53,57], also called testing scenarios). Therefore 
we shall call the  above situation a testing situation .

In the last technical section of the paper we investigate coalgebraic trace semantics for 
the special case T  =  P  (modeling non-determ inism) from this testing point of view. F irst, 
we present some basic facts on testing situations, especially on the relationship between the 
induced testing equivalence and the final coalgebra semantics. These two process equiva­
lences are categorically presented as kernel pairs, which enables a fairly simple presentation 
of the theory of coalgebraic testing. In addition, we observe th a t the coinduction scheme 
in the Kleisli category K l(P ) gives rise to  a canonical testing situation, in which the set of 
tests is given by an initial F -algebra.

The m aterial on testing in the last section has not been presented in the earlier ver­
sions [16,17] of this paper.

1.6. O rg a n iz a tio n  o f  th e  p a p e r .  In Section 2 we observe th a t a coalgebra in a Kleisli 
category is an appropriate “denotation” of a branching system, when we focus on trace 
semantics. In Section 3 we present our main technical result th a t an initial algebra in S e ts  
yields a final coalgebra in K l(T ). The relationship to  axiomatic dom ain theory—which 
employs similar m athem atical argum ents— is also discussed here. Section 4 presents some 
examples of the use of coinduction in K l(T ) and argues th a t the coinduction principle is
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a general form of trace semantics. In Section 5 we review the preceding m aterial from the 
testing point of view.

2. COALGEBRAS IN A KLEISLI CATEGORY

In the study of coalgebras as “categorical presentations of state-based system s,” the 
category S e ts  of sets and functions has been traditionally  taken as a base category (see 
e.g. [25,47]). An im portant fact in such a setting is th a t bisimilarity is often captured by 
coinduction.4

However, bisim ilarity is not the only process equivalence. In some applications one 
would like coarser equivalences, for example in order to  abstract away internal branching 
structures. One of such coarser semantics, which has been extensively studied, is trace 
equivalence. For example, the process algebra CSP [21] has trace semantics as its operational 
model. Trace equivalence is coarser than  bisimilarity, as the following classic example of 
“trace-equivalent bu t not bisim ilar” systems illustrates.

a ,  \  a y
S  \  a l

b i ic  b̂

It is first noticed in [46] th a t the Kleisli category for the powerset monad is an appro­
priate base category for trace semantics for non-determ inistic systems. This observation is 
pursued further in [16,17,24]. In [15] it is recognized th a t the  same is true  for the  subdis­
tribu tion  monad for probabilistic systems. The current paper provides a unified framework 
which yields those preceding results, in term s of C ppo-enrichm ent of a Kleisli category; see 
Section 2.3. In this section we first aim to  justify the use of coalgebras in a Kleisli category.

2.1. M o n a d s  a n d  K le is li c a te g o rie s . Here we recall the relevant facts about monads 
and Kleisli categories. For simplicity we exclusively consider monads on S e ts .

A monad  on S e ts  is a categorical construct. It consists of
•  an endofunctor T  on S ets;

nx•  a unit natural transform ation n : id ^  T , th a t is, a function X  —x T X  for each set X  
satisfying a suitable naturality  condition; and

•  a multiplication  natu ral transform ation ^  : T 2 ^  T , consisting of functions T 2X  —x T X  
w ith X  ranging over sets.

The unit and m ultiplication are required to  satisfy the following com patibility conditions.

T X  T  2X  T X  T  3X  T  2X
MTX MX

See [3,42] for the details.

T X  T  2X ^ ^  T X

4Non-examples include LTSs with unbounded branching degree. They are modeled as coalgebras for 
FX = P  (£ x X ). Lambek’s Lemma readily shows that this choice of F  does not have a final coalgebra in 
Sets, because it would imply an isomorphism Z P (£ x Z) which is impossible for cardinality reasons.
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The monad structures play a crucial role in modeling “branching.” Intuitively, the 
unit n embeds a non-branching behavior as a trivial branching (with only one possibility 
to  choose). The m ultiplication ^  “flattens” two successive branchings into one branching, 
abstracting away internal branchings:

y
■ z

(2 .1)

The following examples will illustrate how this flattening phenomenon is a crucial feature 
of trace semantics.

In this paper we concentrate on the three monads mentioned in the introduction: L, P  
and D.
•  The lift monad £  = 1 +  (_ )—where we denote 1 =  {_L} with _L meaning deadlock— has 

a standard  monad structure  induced by a coproduct. For example, the m ultiplication 
^ X  : 1 +  1 +  X  ^  1 +  X  carries x  € X  to  itself and both  ± ’s to  ± .

•  The powerset monad P  has a unit given by singletons and a m ultiplication given by 
unions. The monad P  models non-determ inistic branching: the “flattening” in (2.1) 
corresponds to  the following application of the m ultiplication of P .

V
P P X --------------------------------> P X

{ {x, y}, {z} } -----------------------► {x, y, z}

The m onad P ’s action on arrows (as a functor) is given by direct images: for f  : X  ^  Y , 
the  function P  f  : P  X  ^  P  Y  carries a subset u  Ç X  to  the subset { f  (x) | x  € u} Ç Y .

•  The subdistribution monad D has a unit given by the Dirac distributions.

X
nX

x
x'

D X

0 (for x ' =  x)

Its m ultiplication is given by m ultiplying the probabilities along the way. T hat is,

Vx ( 0  =  ^ x - ^  £(d) ■ d(x) ,
d e v x

which models “flattening” of the following kind.

1/2
1/3

2/3
1/2

x

y
z

x1/6 
„1/ 6— > y

2/3

th a t is,

The monad D ’s action on arrows (as a functor) is given as a suitable adaptation  of 
“direct images.” Namely, for f  : X  ^  Y , the function D f  : D X  ^  D Y  carries d € D X  
to  [y ^  E xef-I(y ) d(x)] € D Y .

x  ;  1/2 
y  ;  1/2 _ ;  1/3 | A ;

x  ;  1/6 
y  ;  1/6

[z ;  1] ;  2/3 z ;  2/3

x

1x
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Given any monad T , its Kleisli category K l(T ) is defined as follows. Its objects are the 
objects of the base category, hence sets in our consideration. An arrow X  — Y  in K l(T ) is 
the same th ing as an arrow X  — T Y  in the base category, here S e ts .

X --------->Y in K£(T)

X --------->TY in S e ts

Identities and composition of arrows are defined using the unit and the m ultiplication of T . 
Moreover, there is a canonical adjunction

j
S e ts  ^  1  K l(T) (2.2)

K

such th a t J  carries X  —-— Y  in S e ts  to  X  ——* Y  in K l(T ). See [3,42] for details.
The relevance in this paper is th a t a Kleisli category can be thought of as a category 

where the branching is implicit. For example, an arrow X  — Y  in the Kleisli category 
K l(P ) is a function X  — P Y  hence a “non-determ inistic function.” W hen T  =  D, then 
by writing X  — Y  in the Kleisli category we mean a function with probabilistic branching. 
Moreover, composition of arrows in K l(T ) is given by

X  —— Y  —-  Z  in K l(T )  =  X  —-  T Y  —X  T 2Z  —̂  T Z  in S ets; 

th a t is, m aking one transition  (by g) after another (by f ), and then  flattening (by ^ z ). For 

example, this general definition instantiates as follows when T  =  D. For X  f  Y  Z ,

(g ◦ f ) ( x ) ( z )  =  E y e y  f  (x )(y ) ■ g (v )(z) ■

R e m a rk  2.1. O ur use of the sub-distribution monad instead of the d istribution monad

D = i(X ) =  {d : X  — [0,1] | ^  d(x) =  1}
x e x

needs some justification. Looking at the trace distribution (1.4), one sees th a t the  probabil­
ities add up only to  2/3 and not to  1; this is because the infinite trace (namely — 1/3) 
are not present. Therefore in this example, although the state-based system can be modeled 
as a coalgebra in the category K l(D =1), its trace semantics can only be expressed as an 
arrow in Kl(D).

W hen a system is modeled as a coalgebra in K l(D ), a sta te  may have a (sub)distribution 
over possible transitions which adds up to  less th an  1. In th a t case the missing probability 
can be understood as the probability for deadlock.

Technically, we use the monad D instead of D =1 because we need the minimum element 
(a bottom) so th a t the Kleisli category becomes C ppo-enriched (Theorem 3.3). A bottom  
is available for D  as the zero distribution [x — 0], bu t not for D =1.

2.2. Lifting functors by d istributive laws. In this paper a state-based system is pre­
sented as a coalgebra X  F X  in K2(T), where F  : K2(T) —> K2(T) is a lifting of 
F  : Sets —> Sets. This lifting F  i—> F  is equivalent to  a distributive law F T  => T F . 
The rest of this section elaborates on this point.
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Various kinds of state-based, branching systems are expressed as a function of the form 
X  A  T F X  w ith T  a monad (for branching type) and F  a functor (for transition  type). 
The following examples are already hinted at in the introduction.
•  For T  = P  and F  =  l  +  E x _ , a  function X  A  T F X  is an LTS with explicit term ination. 

For example, consider the following system

X ------------- c-------------> P  (1 +  £  x X )

x ----------------------- > { / ,  ( a i ,x i ) ,  (a,2,X2)}

where /  is the element of 1.5 Then the state  x  can make three possible transitions, 
namely: x  — /  (successful term ination), x  x i, and x  - i  x 2, when w ritten in a 
conventional way.

•  By replacing T  =  P  by D, but keeping F  the same, we obtain a probabilistic system such 
as the  one in the middle of (1.1). For example,

X ------------ c------------> D(1 +  £  x X )

(a, y ') — 1/3 
(a, z ') — 1/3 

/  — 1/3

•  For T  =  P  and F  =  (£  + _ ) * ,  a function X  T F X  is a CFG with E the term inal 
alphabet (but w ithout finiteness conditions e.g. on the state  space). See [16] for more 
details.

All these systems are modeled by a function X  A  T F X , hence an arrow X  -^  F X  in 
K l(T ). Our question here is: is c a coalgebra in K l(T )? In other words: is the functor F  
on S e ts  also a functor on K2{T)1

Hence, to  develop a generic theory of traces in K I(T ), we need to  lift F  to  a functor F  
on K£{T). A functor F  is said to  be a lifting of F  if the following diagram  commutes. Here 
J  is the  left adjoint in (2.2).

K £ (T ) ------------► K£(T) (2.3)

S e t s --------------> S e tsF
The following fact is presented in [43]; see also [39,40]. Its proof is straightforward.

L e m m a  2.2. A lifting F of F is in bijective correspondence with a d istr ibu tive  law  
\  : F T ^ T F . A  distributive law X is a natural transformation which is compatible with T  ’s 
monad structure, in the following way.

Fnx „ Atx T \x „
F X  ;--------- ► F T X  F T 2X ----------> T F T X ----------► T 2 F X

F ^ x l  l^FX
F T X ---------------------------------- ► T F X  nAx 1—1

5Note that the singleton 1 = { /}  here in F  = l +  E x _  has a different interpretation from 1 = {_L} in 
T = £ = 1 + _• The intuition is as follows. On the one hand, when an execution hits successful termination 
/ ,  it yields its history of observations as its trace. On the other hand, when an execution hits deadlock ± 
then it yields no trace no matter what is the history before hitting ±. This distinction will be made formal 
in Example 4.3.
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A distributive law A induces a lifting F  as follows. On objects: F X  = F X .  Given ƒ : 
X  —> Y  in K2(T), we need an arrow F f  : F X  —> F Y  in K2{T). Recall th a t ƒ is a function 
X  T Y  in S e ts; one takes F ƒ to  be the arrow which corresponds to  the function

F X  - U  F T Y  T F Y in S e ts

A distributive law specifies how a transition  (of type F ) “d istribu tes” over a branching 
(of type T ). Let us look at an example. For T  =  P  and F  =  1 +  E x _  (the combination 
for LTSs with explicit term ination), we have the following distributive law.

1 +  E x (P X )

/  i--------

Ax ->P (1 +  E x X ) 

--------> { /}
(a, S ) { (a ,x )  | x  € S}

For example,

ji x
U y y  th a t is (a , { x ,y , z } ) \ — > { (a ,x ), (a ,y ), (a, z)}

where waving arrows ^  denote branchings.
Throughout the paper we need the global assum ption th a t a functor F  has a lifting F  

on K l(T ), or equivalently, th a t there is a distributive law A : F T  ^  T F . Now we present 
some sufficient conditions for existence of A. In most examples one of these conditions holds.

F irst, take T  =  P , in which case we have K l(P ) =  R e l, the category of sets and binary 
relations. We can provide the following condition th a t uses relation liftings, whose definition 
is found [24].

L e m m a  2.3 (From [24]). Let F : S e ts  ^  S e ts  be a functor that preserves weak pullbacks. 
Then there exists a distributive law A : F P  ^  P F  given by

AX (u) =  { v € F X  | (v, u) € RelF (€ X) } ,

where u  € F P X  and RelF (€ X) C F X  x F P X  is the F-relation lifting o f the membership 
relation . □

In fact, the functor F  : R e l —> R e l induced by this distributive law carries an arrow 
R  : X  ^  Y  in K l(P )—which is a binary relation between X  and Y — to its F -relation 
lifting Relf (R)- T ha t is,

F R  = Relf (R) : F X  — > F Y  (2.4)
in K l(P ) =  R el.

Now let us consider a monad T  which is not P . W hen a monad T  is commutative and a 
functor F  is shapely, we can provide a canonical distributive law. The class of such monads 
and functors is wide and all the examples in this paper are contained.
•  A commutative  monad [33] is intuitively a monad whose corresponding algebraic theory 

has only com m utative operators. We exploit the fact th a t a com m utative monad is 
equipped with an arrow called double strength

dstX;Y : T X  x T Y  — ► T ( X  x Y )

for any sets X  and Y ; the double strength  m ust be com patible w ith the monad structure 
of T  in an obvious way.

a
a a

az
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O ur three examples of monads are all comm utative, w ith the following double strengths. 

L . _  ƒ (u, v) if u  € X  and v € Y,. L , x ( (u ,v)  if u  € X  and v € Y
dstX Y (u ,v) =v ' y ±  if u  =  ±  or v =
dstX , Y (u, v) =  u  X v ,
dstX y (u , v) =  \ ( x ,y ) .  u (x)  ■ v(y)
dstX y (u , v) =  u x v , (2'5)

•  The family of shapely functors  [27]6 on S e ts  is defined inductively by the following BNF 
notation:

F  ::=  id | E | F i x F2 | J J^  Fz , 
where E denotes the constant functor into an arb itrary  set E. Notice th a t taking infinite 
product is not allowed, nor exponentiation to  the power of an infinite set. This is in order 
to  ensure th a t we find an initial F -algebra as a suitable w-colimit— see Proposition A.1.

L e m m a  2.4. Let T : S e ts  ^  S e ts  be a commutative monad, and F : S e ts  ^  S e ts  a shapely 
functor. Then there is a distributive law A : F T  ^  T F .

Proof. The construction of a distributive law is done inductively on the construction of 
shapely F .
•  If F  is the  identity functor, then  the A is the  identity natural transform ation T  ^  T .
•  If F  is a constant functor, say X  ^  E, then  A is the unit n s : E ^  T E at E € S e ts .
•  If F  =  F 1 x F 2 we use induction in the form of distributive laws AFi: F iT  ^  TF i for

i € {1, 2} to  form the composite:

F 1T X  x F 2T X  AFl xA^2 >T F 1X  x T F 2X -----— >T (F 1X  x F2X ) .

•  If F  is a coproduct U k i  F i then we use laws AFi: FiT  ^  T F i for i € I  in:

U ie l  F i(T X ) |T(Ki)oAFi|iel , T (U i£i F iX ) .

It is straightforw ard to  check th a t such A is natu ral and compatible w ith the monad struc­
ture. □

We have provided some sufficient conditions for a distributive law to  exist, th a t is, 
for a functor F  to  be lifted to  K l(T ). This does not mean the results in the sequel hold 
exclusively for com m utative monads and shapely functors.

2.3. O rd e r -e n r ic h e d  s t r u c tu r e s  o f  K le is li c a te g o rie s . The notion of branching n a t­
urally involves a partial order: one branching is bigger than  another if the former offers 
“more possibilities” th an  the latter. Formally, this order appears as the  C p p o -enriched 
structure of a Kleisli category. It plays an im portant role in the initial algebra-final coalge­
bra coincidence in Section 3.1.

A C ppo-enriched  category C is a category where:
•  Each homset C (X , Y ) carries a partial order C as in

g
X ^ ^ ^ ^  Y  

f

6Shapely functors here are called polynomial functors by some authors, although other authors allow 
infinite powers or the powerset construction.
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which makes C(X , Y ) an w-cpo with a bottom . This means:
- for an increasing w-chain of arrows from X  to  Y ,

fo Q f i  Q . . .  : X  Y ,
there exists its join |_|n<^ f n : X  ^  Y ;

- for any X  and Y there exists a bottom  arrow ^ x ,y  : X  ^  Y which is the minimum in 
C (X ,Y ).

•  Moreover, composition of arrows is continuous as a function C (X , Y ) xC(Y, Z ) ^  C(X , Z ). 
This means th a t the following joins are preserved:7

9 0  (I—In<w fn ) I—ln<w(9 ◦  fn) and (Un<^ f n) 0  h =  U n<^(fn 0 h) •
Note th a t composition need not preserve bottom s (i.e. it is not necessarily stric t).

This is in fact an instance of a more general notion of V -enriched categories where V is the 
category C p p o  of pointed (i.e. w ith ± )  cpo’s and continuous (but not necessarily strict) 
functions. See [7,28,38] for more details on enriched category theory, and [1] on cpo’s and 
dom ain theory.

L e m m a  2.5. For our three examples L , P  and D  of a monad T , the Kleisli category K l(T ) 
is C p p  o-enriched. Moreover, composition o f arrows is left-strict: ±  o f  =  ± .

The left-strictness of composition will be necessary later.

Proof. Notice first th a t a set TY  for T  € {L, P , D} carries a cpo structu re  w ith ± . The set 
LY  =  {±} +  Y carries the flat order w ith a bottom :

y y "  •••

embodying the idea th a t ±  denotes non-term ination or deadlock— in contrast to  /  for 
successful term ination. The set P Y  carries an inclusion order; in D Y  we define d Q e if 
d(y) <  e(y) for each y € Y . The bottom  element in D Y  is the zero distribution [y ^  0]: 
this belongs to  the set D Y  because D  is the sub-distribution monad.

The cpo structu re  of a homset K l(T )(X , Y ) comes from th a t of T Y  in a pointwise 
manner:

g
X  Y if and only if Vx € X. f  (x) QTY g(x) .

f

It is laborious but straightforw ard to  show th a t composition in K l(T ) is continuous and 
left-strict. □

7'This component-wise preservation of joins is equivalent to the continuity of the composition function. 
See [1, Lemma 3.2.6].
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We are concerned w ith coalgebras X  —> F X  in the category K2(T), which we assume is 
C p p  o-enriched. Hence it comes natural to  require th a t functor F  is somehow compatible 
with the C p p  o-enriched structure  of K£(T). The obvious choice is to  require th a t F  is 
a C p p  o-enriched functor  (see e.g. [7]), i.e. F  is locally continuous. I t means th a t for an 
increasing w-chain f n : X  ^  Y , we have

U  /" )  =  U  W n )  •
n<^ n<^

This is indeed the assum ption chosen in axiomatic dom ain theory. We will come back to  
this point later in Section 3.3. However, for our later purpose, we only need the weaker 
condition of local monotonicity: ƒ C g implies F f  C Fg.

For a monad T  = { C ,V ,V }  and a shapely functor F  (recall Lemma 2.4), the lifted F  
is indeed locally continuous. We emphasize again th a t this does not mean our results in 
Section 3 hold exclusively for shapely functors.

L e m m a  2.6. Let F  be a shapely functor and T  e  {£, V , V } . The lifting F  : K£{T) —> K£{T) 
induced by Lemma 2.4 is locally continuous.

Proof. By induction on the construction of shapely functors.
•  F  =  id, the identity functor. Then F  = id which satisfies the condition.
•  F  = E, a constant functor. Then F  maps every arrow to  the identity m ap on E in K£{T). 

This is obviously locally continuous.
•  F  =  F\ x F2. F irst notice th a t, for ƒ : X  —> Y  in K£(T), we obtain F f  as the following 

composite in S e ts .

F1 ƒ X î2 ƒ
F 1X  x F 2X ---------- ------ ------ ► T F 1Y x T F 2Y

jdstFlY,F2 Y 
T(F1Y  x F2Y)

Because the order in K l(T )(F X , F Y ) is pointwise, it suffices to  show the following: dst : 
T X  x T Y  ^  T (X  x Y ) is a continuous m ap between cpo’s. It is easy to  check th a t this 
is indeed the case. See (2.5).

•  F  =  I W  Fj. For ƒ : X  —> Y  in K2(T), we obtain the map F f  as the  composite 
[Tk?]jeJ 0 U je J  K l(F j) ( f ) in S e ts . Since the order on the homset is pointwise, it suffices 
to  show th a t each T kj : T F jY  T (]J  -e j  F jY )  is continuous. This is easy. □

3. F inal c oa lgebra  in a K leisli category

In this section we shall prove our main technical result: the initial F -algebra in S e ts  
yields the final F-coalgebra in K£{T). It happens in the following two steps: first, the 
initial algebra in S e ts  is lifted to  the initial algebra in K l(T ); second we have the  initial 
algebra-final coalgebra coincidence in K l(T ). For the la tte r we use the classical result [51] 
of limit-colimit coincidence. This is where the C ppo-enriched structure  of K l(T ) plays a 
role.

In the proof we use two standard  constructions: initial/final sequences [2] and limit- 
colimit coincidence [51]. The reader who is not familiar w ith these constructions is invited 
to  look at Appendices A.1 and A.2 where we briefly recall them .
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R e m a rk  3.1. The proof of our main theorem  (Theorem 3.3) can be simplified if we suitably 
strengthen the assum ptions. F irst, if we assume local continuity  of the lifted functor F  
(instead of local monotonicity th a t is assumed in our main theorem ), then  the initial algebra­
final coalgebra coincidence follows from a standard  result in axiomatic dom ain theory; see 
Section 3.3. Furtherm ore, for the special case T  =  P  in which case K l(P ) =  R e l, the initial 
algebra-final coalgebra coincidence is almost obvious due to  the  duality R e l =  R e lop; see 
Section 3.2.

3.1. T h e  in it ia l  a lg e b ra  in  S e ts  is th e  fin a l c o a lg e b ra  in  K l(T ). F irst, it is standard 
th a t an initial algebra in S e ts  is lifted to  an initial algebra in K l(T ). Such a phenomenon is 
studied for instance in [11,44] in the context of combining datatypes (modeled by an initial 
algebra) and effectful com putations (modeled by a Kleisli category). For this result we do 
not need an order structure.

Proposition  3.2. Let T  be a monad and F  be a endofunctor, both on a category C. Assum e  
that we have a distributive law F T  => T F — or equivalently, we have a lifting F  on K2(T). 
I f  F  has an initial algebra a  : F A  ^  A  in  C, then

J a  =  r)A o a  : F A  — ► A  in K2(T) 

is an initial F-algebra. Here J  is the canonical Kleisli left adjoint as in (2.2).

We will use an instance of this result for C =  S e ts .

Proof. It follows from [20, Theorem 2.14] th a t a distributive law lifts the canonical Kleisli 
adjunction to  an adjunction between the categories A lg(F) and A lg(F) of algebras.

j '
A lg(F) m  I  ^  A lg(F)

J 1
C ^  I  H i  K l(T )

K

The left adjoint J '  preserves the initial object (see e.g. [42]). □

Second, we use the  initial algebra-final coalgebra coincidence in K l(T )— which holds in 
a suitable order-enriched setting— to identify the final coalgebra in K l(T ). This is our main 
theorem.

T h e o re m  3.3 (Main theorem ). A ssum e the following:
(1) A monad  T  on S e ts  is such that its Kleisli category K l(T ) is C ppo-enriched  and 

composition in  K l(T ) is left-strict.
(2) For an endofunctor F  on Sets, we have a distributive law X : F T  => T F . Equivalently, 

F  has a lifting F  on K2(T). Moreover, the lifting F  is locally monotone.
(3) The functor  F  preserves w-colimits in  S e ts , hence has an initial algebra via the initial 

sequence (see Proposition A .1 ) .

Then the initial F-algebra a  : F A  A  yields a final F-coalgebra in K£(T) by

(J a )~ l =  J ( a ~ 1) = rjpA ° a -1 : A — >FA in  K2(T) .
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We first present the main line of the proof. Some details are provided in the form of 
subsequent lemmas. Note th a t the assum ptions are satisfied by T  € {L, P , D} and shapely 
F ; see Lemmas 2.5 and 2.4.

Proof. By the assum ption (3) we obtain the initial algebra via the initial sequence in S e ts . 

In S e ts  _an———------A (colimit)

-> F n0 (3.1)

: F A  (colimit)

Here 0 =  0 € S e ts  is initial and i : 0 ^  X  is the  unique arrow from 0 to  an arb itrary  X . 
We apply the functor J  : S e ts  ^  K l(T ) to  the whole diagram. Since J  is a left adjoint it 
preserves colimits: hence the two cocones in the following diagram  are both  colimits again.

In K l(T) A (colimit)

->Fn 0 (3.2)

F A  (colimit)

The w-chain in this diagram  is in fact the initial sequence for the functor F  (Lemma 3.4) 
because, for example, a left adjoint J  preserves initial objects. Moreover the lower cone is 
the image of the upper cone under F; see the diagram  (2.3). Hence the  diagram  (3.2) is 
equal to  the following one. Recall th a t F X  = F X  on objects.

In K l(T)

F
(3.3)

Thus Proposition A .l yields th a t J a  : F A  ■=> A  is an initial F-algebra. This can be seen as 
a more concrete proof of Proposition 3.2.

Now we show the initial algebra-final coalgebra coincidence in K l(T ). This is done by 
reversing all the arrows in (3.3) and transform ing the diagram  into the one of the final 
sequence and its limits.

We notice (Lemma 3.6) th a t each arrow F  j in the initial sequence is an embedding 
(Definition A .4). Hence the limit-colimit coincidence Theorem A.8 says th a t every arrow 
in the diagram  is an embedding. Note th a t J a  and J a - 1 , inverse to  each other, form an 
embedding-projection pair.

By taking the corresponding projections— they are uniquely determ ined (Lemma A.5) 
and are denoted by ( _ ) p —we obtain the next diagram. The limit-colimit coincidence 
Theorem  A.8 says th a t the two resulting cones are bo th  limits. It is also obvious th a t the

= a-1

1
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whole diagram  commutes. 

In K l(T)

■ ■ ■ f-
(Fn ¡)J

A (limit)

(3.4)

F A  (limit)

The wop-chain here is indeed a final sequence: Lemma 3.5 shows— using the assum ption
(1) on left-strictness— th a t 0 is also final in K I(T ), and according to  Lemma 3.6 we have 
(F  \ )p  = F  ! where ! : X  —> 0 is the  unique arrow to  the final object 0 in K£(T). As to  
the lower cone we have (F J a n) P = F [ ( J a n )p ) by Lemma 3.7.

Hence the diagram  (3.4) is equal to  the following one, showing the final sequence for 
F , its limit (the upper one) and th a t limit m apped by F  (the lower one) which is again a 
limit.

In K l(T)

Fn-1 !
(3.5)

By Proposition A .2 we conclude th a t J a  1 is a final F-coalgebra. □

In the rem ainder of this section the lemmas used in the above proof are presented. We 
rely on the same assum ptions as in Theorem 3.3.

L e m m a  3.4. The uo-chain in the diagram (3.2) is indeed the initial sequence fo r  F . That 
is, we have fo r  each n  <  w,

J F n ( j Sets ) =  ~pa ( j KX(T) . J F n0 ---> jpn+1q in /Q(T),

0 ^  F 0 in  S e ts  and i Ki(T) : 0 ^  F 0 in  K l(T ) denote the unique maps.where i Sets

Proof. By induction on n. For n  =  0 the two maps are equal due to  the initiality of JO =  0 
in K1(T). For the step case we use the com m utativity J F  =  F J  of (2.3). □

L e m m a  3.5. The empty set 0 is both an initial and a final object in  K l(T ).

In particular, this implies th a t the object T 0 is final in S e ts .

Proof. The functor J  : S e ts  ^  K l(T ) preserves initial objects since it is a left adjoint. 
Therefore 0 =  J 0 is initial in K l(T ). Finality follows essentially from the left-strictness 
assum ption: for each set X  there exists at least one arrow X  ^  0 in K l(T ), for example 
±x,o. To show the uniqueness of such an arrow, take an arb itrary  arrow ƒ : X  ^  0 in 
K l(T ). Recalling th a t the bottom  m ap ± o,o : 0 ^  0 is also the identity arrow in K l(T ) 
because of initiality, we obtain

ƒ =  id o ƒ =  ± o,o ◦  ƒ =  ± x ,o ,

where the  compositions are taken in K l(T ) and the equality marked by (*) holds by left­
strictness of composition. □

i\p
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Lem m a 3.6. Each arrow F  j in  the initial sequence fo r F , as in the diagram (3.3), is an 
embedding. Its corresponding projection is given by

~Fn l
(F n i ) P = F n \ in F n0 X  \ F n+l 0 .

F "  |

Proof. We show th a t (F n j , ~Fa !) is an embedding-projection pair for all n  < u . We have 
F  ! o F  j =  id because ! o j =  id. For the o ther half we have

F n j o f !  = F n (\ o !)

=  F™(_Lo,fo ° !) initiality of 0 in K£{T)

=  F™(_Li?o,Fo) composition is left-strict

C ~Fa (id) =  id F  is locally monotone. □

Lem m a 3.7. We have (F J a n) P = F [ ( J a n )p ). Hence the lower cone in the diagram (3.4) 
is the image o f the upper cone under F .

Proof. It is easy to  check th a t ( F J a n , F(K{J a n )p ) )  indeed form an embedding-projection 
pair. Therein we use the monotonicity of F ’s action on arrows. □

3.2. S im p le r  p ro o f  in  K l(P ) =  R e l. W hen T  =  P  we have the  self-duality

Op : K l(P )op K l(P ) .

This is because of the following bijective correspondence between functions
f

X  — -— >P Y  in S e ts

fv
Y — ----->P X  in S e ts

given by ƒ v (y) =  {x € X  | y  € ƒ (x)}. Recalling K l(P ) =  R e l, this m apping ƒ ^  ƒ v 
corresponds to  taking the opposite relation.

Due to  this “global” duality K2(V) = /C£(P)op, the proof of Theorem  3.3 is drastically 
simplified for T  = P . It essentially relies on the  lifted self duality A lg(F ) =  A lg(F°p), 
where the  la tte r is isomorphic to  (C oalg(F))op. We do not need here an order structure  of 
K2(V) nor local monotonicity of F.

T heorem  3.8. Let F  : Sets —> Sets be a functor which preserves weak pullbacks, and 
F  : K2(V) —> K2(V) be its lifting induced by relation lifting (Lemma 2.3). Then the initial 
F-algebra in  Sets yields the final F-coalgebra in K2(V).

Proof. We have the  following situation because of the self-duality of K l(P ).

> Ov°p
S e t s ^  I  m  K l(P ) ----------1--------> K l(P )op

F  L J  K  F  F °p
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The adjunction J  H K  and the isomorphism Op : K l(P )op K l(P ) lift to  those between 
the categories of algebras.

A lg (F ) H  I  m  A lg ( F ) ----------i -------->• A lg (F  ) ------------------- >■ (C oalg(F ))°P

J ^ Or,°P ^
S e t s ^  I  ^  K ( P ) -----------1---------> K l(P )op

K =

Indeed, J  H K  lifts due to  Proposition 3.2; the lifted isomorphism Op' : A lg (F ) => A lg (F °p) 
is because of the following com m utativity:

K ( P ) op — —-----> K ( P )
F°pi  I f  (3 .6)

K ( P  )op — —-----> K l(P )

which is because: F R  = Relf (R) (see (2.4)); and taking relation liftings is compatible with 
opposite relations (i.e. Reli?(-Rop) =  (Reli?-R)op, see [22]). Moreover the category A lg (F °p) 
is obviously isomorphic to  (C o a lg (F ))op.

Therefore the initial object in A lg (F ) is carried to  th a t in (C o a lg (F ))op, hence the 
final object in C o a lg (F ). □

For monads such as T  =  D a “global” self-duality K l(T ) =  K l(T )op is not available. 
Instead, in the proof of Theorem 3.3, we exploit the “partial” duality which holds between 
the colim it/lim it of the initial/final sequence.

3.3. R e la te d  w ork : a x io m a tic  d o m a in  th e o ry . The initial algebra-final coalgebra co­
incidence is heavily exploited in the field of axiomatic domain theory, e.g. in [9,12,13,50]. 
There, categories which have coinciding initial algebra and final coalgebra for each endo- 
functor are called algebraically compact categories. They draw special attention as suitable 
“categories of dom ains” for denotational semantics of da ta type  construction. The relevance 
comes as follows.

Let C be a “category of dom ains.” We th ink of an object of the category C as a type. 
A “recursive” data type  constructor— a prototypical example is (X, Y ) ^  YX—is presented 
as a bifunctor G : Cop x C ^  C. Note the presence of both  covariance and contravariance. 
We expect th a t such a category C has a canonical fixed point Fix G such th a t

G (Fix G, F ix  G) ^  Fix G ,

which models the recursive type determ ined by the data type  constructor G. Freyd [12] 
showed th a t if C is algebraically compact, then  we can construct such a fixed point as a 
suitable initial algebra; moreover this fixed point is shown by Fiore [9] to  be a canonical 
one in a suitable sense. The rough idea here is th a t the covariant part of G is taken care of 
by an initial algebra; the contravariant part is by a final coalgebra; the initial algebra-final 
coalgebra coincidence yields a fixed point of overall G.

Typical examples of algebraically compact categories are enriched over C p p o  or one of 
its variants. This conforms the traditional use of the word “dom ain” for certain cpo’s (e.g. 
in [1]).
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Although we utilize the initial algebra-final coalgebra coincidence result in K l(T ), we are 
not so much interested in algebraic compactness of K l(T ). This is because our m otivation is 
different from th a t of axiomatic dom ain theory. In studying trace semantics for coalgebras, 
we need not deal w ith every endofunctor on K2(T), bu t only such an endofunctor F  which 
is a lifting of F  : S e ts  x  S e ts .

In a different context of functional programming, the work [44] also studies initial 
algebras and final coalgebras in a Kleisli category. The m otivation there is to  combine data 
types and effects. More specifically, an initial algebra and a final coalgebra support the 
fold  and the unfold operators, respectively, used in recursive programs over datatypes. A 
com putational effect is presented as a monad, and its Kleisli category is the category of 
effectful com putations.

The difference between [44] and the  current work is as follows. In [44], the original 
category of pure functions is already algebraically compact; the paper studies the condi­
tions for the algebraic compactness to  be carried over to  Kleisli categories. In contrast, in 
the current work, it is a m onad—with a suitable order structure, em bodying the essence 
of “branching”—which yields the initial algebra-final coalgebra coincidence on a Kleisli 
category; the coincidence is not present in the original category S e ts .

3.3.1. Local continuity vs. local monotonicity. In axiomatic dom ain theory, C ppo-enriched 
categories are said to  be algebraically compact because, “in a 2-category setting” [13], every 
endofunctor has an initial algebra and a final coalgebra. Concretely this means: “every 
locally continuous functor.”

In this spirit, we could have made a stronger assum ption of F ’s local continuity in 
Theorem  3.3 instead of local monotonicity. If we do so, in fact, the proof of Theorem  3.3 
becomes much simpler: the following proposition (Lemma in [13, p.98]) immediately yields 
the initial algebra-final coalgebra coincidence for a locally continuous F.

P r o p o s i t io n  3.9 ( [13]). Let D be a C ppo-enriched  category whose composition is left- 
strict, and G : D x  D be a locally continuous endofunctor. A n  initial algebra ft : G B X  B, 
i f  it exists, yields a final coalgebra ft-1 : B  X  GB.

Proof. Given a coalgebra d : Y x  G Y , the function

$  : D(Y, B) — x D(Y, B) , ƒ i— x ft o G f  o d

is continuous due to  the local continuity of G. Hence it has the  least fixed point |_|n<w $ n (^ ); 
this proves existence of a morphism from d to  ft- 1 .

G Y -----------------------> GB
4  =T 13 - 1

Y ------------------------- > B
Now we shall show its uniqueness. Assume th a t g : Y x  B  is a m orphism  of coalgebras 

as above, th a t is, $(g) =  g. Similarly to  $ , we define a function ^  : D (B , B) x  D (B , B) as



20 I. HASUO, B. JACOBS, AND A. SOKOLOVA

the one which carries h : B  x  B  to  ft o Gh o ft 1. We have

_ n $ n (± ) =  _ n $ n (B -X B  i  Y ) composition is left-strict, so ±  o g =  ±

=  _ n ( ^ n (^ )  o $ n (g)) $ n (±  o g) =  ^ n (± ) o $ n (g), by induction

=  (Lln ^ n (^ ) )  o (|_|n $ n (g)) composition is continuous 

=  _ „  ^"(g ) _ „  ^ n ( ± ) = i d ,  (*)
=  g $(g) =  g by assum ption.

Here (*) holds because |J n ^ n (± ), being a fixed point for ^ ,  is the unique morphism of 
algebras from ¡3 to  (3. This shows th a t the morphism g m ust be the  least fixed point of $ . □

For our main Theorem 3.3 we can do with only local monotonicity of the lifted functor 
F , by taking a closer look at the initial/final sequences. However at this stage it is not clear 
how much we gain from this generality: up to  now we have not found an example where 
the functor F  is only locally m onotone (and not locally continuous).

4. F in it e  tr a c e  sem a ntics  via c o in d u c tio n

In this section we shall further illustrate the observation th a t the principle of coinduc­
tion, when employed in K ( T ), captures trace semantics of state-based systems. As we have 
shown in the previous section, an initial algebra in S e ts  constitutes the semantic domain, 
i.e. is a final coalgebra in K l(T ). Viewing an initial algebra as the set of well-founded term s 
(such as finite words or finite-depth parse trees), this fact means th a t the “trace semantics” 
induced by coinduction is inevitably fin ite , in the sense th a t it captures only finite behavior. 
Here we will elaborate on this finiteness issue as well.

4.1. T ra c e  se m a n tic s  b y  c o in d u c tio n . As we have seen in Section 2.2 various types of 
state-based systems allow their presentation as coalgebras X  —> F X  in a Kleisli category 
K ( T ). For example,
•  LTSs w ith explicit term ination, w ith T  =  V  and F  =  1 +  E x _ ;
•  probabilistic LTSs (also called generative probabilistic transition systems in [52,58]) with 

explicit term ination, w ith T  = V  and F  =  1 +  E x _ ;
•  context-free gram m ars with T  =  V  and F  =  (E + _ )* .
The main observation underlying this work is the following. If we instan tia te  the param eters 

T  for branching type and F  for transition  type 

in the coinduction diagram

_  F(trc) _
F X -------------------- F A
4  =TJa-1 in K (T )  (4.1)
X ---------- 1----------- ->• Atr c

with one of the above choices, then  the com m utativity of the diagram  is equivalent to  the 
corresponding (conventional) definition of trace semantics in Section 1.1. Therefore we claim 
th a t the diagram  (4.1) is the m athem atical principle underlying various “trace semantics,” 
no m atter if it is “trace set” (non-deterministic) or “trace d istribu tion” (probabilistic).
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C o ro lla ry  4.1 (Trace semantics for coalgebras). Assum e that T  and F  are such as in 
Theorem 3.3, and a  : F A  ^  A is an initial F -algebra in  S e ts . Given a coalgebra c : X  — 
T F X  in  S e ts , we can assign a function

trc : X  — x TA  in  S e ts

which is, as an arrow X  — A in  K l(T ), the unique one making the diagram (4.1) commute. 
We shall call this function  t r c the ( f in ite )  tra ce  s e m a n t ic s  fo r  the coalgebra c. □

E x a m p le  4 .2 . As further illustration we give details for the choice of param eters T  =  P  
and F  = 1 +  E x _ .  This is the  suitable choice to  deal w ith the first system in (1.1).

Now the  coinduction diagram  looks as follows. Recall th a t an initial F-algebra is carried 
by the set E* of finite words.

1+£xtrc
1 +  E x X -------------------- -> 1 +  E x E*

4  J([nil,cons])-1  in K ( P ) (4.2)
X ---------------- -----------------> e *trc

It assigns, to  a system c, a function trc : X  — P (E * ) which carries a state  x € X  to  the 
set of finite words on E which can possibly arise as an execution “trace” of c starting  from 
x. The com m utativity states equality of two arrows X  ^  1 +  E x E* in K l(P ), th a t is, 
functions X  ^  P (1 +  E x E*). Let us denote these functions by

u =  (1 +  E x trc) o c (up, then right), v =  J  ([nil, cons] ) - 1  o trc (right, then  up).

For each x € X , the following conditions—derived straightforw ardly by definition of com­
position of O ( P ) ,  lifting of the functor 1 +  E x _ ,  etc.—specify u  and v ’s value a t x, as a 
subset of 1 +  E x E*.

/  € u(x) /  € c(x)
(a, a ) € u(x) 3x ' € X. ( (a, x ') € c(x) A a  € trc(x ') )

/  € v(x) 0  € trc(x)
(a, a) € v(x) a ■ a  € trc(x)

Com m utativity of (4.2) am ounts to  u  =  v; this gives the condition (1.3).
From a different point of view we can also express th a t as follows: finality of the 

coalgebra E* =  1 +  E x E* in (4.2) ensures th a t the conventional recursive definition (1.3) 
uniquely determines a function trc : X  — P (E * ). Hence trc is well-defined.

An easy consequence of the recursive definition (1.3) is

a 1 . . .  an € t rc(x) 3x 1, . . . , x n € X. x -V ■ ■ ■ ^  xn —> /  .

Therefore every trace a 1 . . .  an € trc(x) has term ination /  implicit at its tail. In particular, 
the set trc(x) is not necessarily prefix-closed: a 1 . . .  anan+ 1 . . .  an+m € trc(x) does not imply 
a 1 .. .a n € trc(x).

E x a m p le  4.3. Let us take T  = C (the lift monad) and F  =  l | E x _ .  In this case a 
coalgebra X  A  L (1 +  E x X ) in S e ts  is a system which can
•  get into a deadlock (c(x) = _L where C =  {_L} +  _ ) ,
•  successfully term inate (c(x) = /  where F  =  { / }  +  E x _ ) ,  or
•  ou tpu t a letter from E and move to  the next sta te  (c(x) =  (a, x ')).
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By examining trace semantics for such systems, we shall formally put the difference between 
the com putational meanings of the two elements, ±  and / .

The coinduction diagram  (4.1) instantiates to  the same diagram  as (4.2), bu t now in the 
category K l(L). Easy calculation shows th a t its com m utativity am ounts to  the  following 
condition. The function

X -----—---- ► L(E*) =  |± }  +  E* in S e ts

satisfies, for each x € X ,

trc(x) =  0  c(x) =  /  ,
trc(x) =  a ■ a  3x ' € X. (c(x) =  (a ,x ')  A trc(x') =  a )  , (4.3)
trc(x) =  ±  c(x) =  ±  or 3x' € X . (c(x) =  (a, x ') A trc(x') =  ± )  .

Here a  € E * is a word in E.
For the systems under consideration, we can th ink of three different kinds of possible 

executions.
•  An execution eventually h itting  / ,  th a t is, x —1 ■ ■ ■ xn — / .  By the condition (4.3) it 

yields a word trc(x) =  a 1 . . .  an as its trace.
•  An execution eventually h itting  ± , th a t is, x —1 ■ ■ ■ xn — ± . By the  th ird  line of 

(4.3) we see th a t trc(xn ) =  ± ; moreover t rc(xn -1 ) =  ■ ■ ■ =  trc(x) =  ± . It properly reflects 
our intuition th a t a state  x th a t eventually goes into deadlock does not yield a finite (or 
term inating) trace.

•  An execution not h itting  /  nor ± , th a t is, x —1 x 1 —2 ■ ■ ■. In this case, the only possible 
solution of the “recursive equation” (4.3) is trc(x) =  trc(x1) =  ■ ■ ■ =  ± . The intuition 
here is: a sta te  leading to  livelock does not yield a finite trace.

4.2. In f in ite  t ra c e s . The trace semantics obtained via coinduction (Corollary 4.1) assigns, 
to  each sta te  x € X , “a set of” (if T  =  P ) or “a distribution over” (if T  =  D) elements of 
the initial algebra A. Elements of A are thought of as possible linear behavior of the system 
determ ined by the transition  type (i.e. the functor F ).

Now the  intuition is th a t an initial F -algebra A consists of the well-founded (or finite- 
depth) term s and a final F-coalgebra Z  consists of the possibly non-well-founded (or infinite- 
depth) term s. For example,
•  for_F =  l  +  E x _ , A  =  E* consists of all the finite words, and Z  =  S°° =  X* +  is 

augmented with streams, i.e. infinite words;
•  for F  =  (E +  _ )* , A  is the  set of finite-depth skeletal parse trees (see [16]), and Z  

additionally contains infinite-depth ones;
•  for F  = E x _  which models LTSs without explicit term ination, A  = 0 and Z  = E w. 
Therefore our trace semantics X  TA only takes account of finite, well-founded linear­
tim e behavior bu t not infinite ones. This is why the trace set (1.2) does not contain a 6w; 
and also why we have been talking about LTSs with explicit term ination— otherwise the 
finite trace semantics is always empty.

Designing a coalgebraic framework to  capture possibly infinite trace semantics is the 
main aim of [24]. The work is done exclusively in a non-determ inistic setting and the main 
result reads as follows.
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T h e o re m  4.4  (Possibly infinite trace semantics for coalgebras, [24]). Let F  be a shapely 
functor on S e ts , and Z : Z  =  F Z  be a final coalgebra in  S e ts . The coalgebra

J (  : Z — > F Z in K2(V)

is weakly final: that is, given a coalgebra c : X  —> F X , there is a morphism from  c to J (  
but the morphism is not necessarily unique.

_  F ( t r “ ) _
F X  --------------------- >FZ
cf JZ in  K ( P ) (4.4)

z
c

Still there is a canonical choice tr£° among such morphisms, namely the one which is 
maximal with respect to the inclusion order. We shall call the function  tr£° : X  — P Z  the 
possib ly-in fin ite  trace sem an tics  fo r  c. □

Note here th a t, when we take F  =  l | E x _  and T  = V  (the choice for LTSs with 
term ination), com m utativity of (4.4) boils down to  exactly the same conditions as (1.3):

0  € tr£°(x) x — / ,  a ■ a  € tr£°(x) Ey. ( x —— y A a  € tr£°(y)).

^  ^  -  (4'5) 
Weak finality of S°° 1 +  S x  S°° (corresponding to  Z  ■=> F Z  in (4.4)) means the following. 
The recursive definition (4.5)—although it looks valid at the first sight—does not uniquely 
determ ine the infinite trace m ap tr£° : X  — P ( E ^ ) .  Instead, the m ap tr£° is the  maximal 
one among those which satisfy (4.5).

As an example take the first system in (1.1). We expect its possibly-infinite trace map 
X  — P ( E ^ )  to  be such th a t x — ab* +  abw and y — b* +  bw. Indeed this satisfies (4.5) and 
is moreover the maximal. However, the function x — ab* and y — b*—this is actually the 
finite trace X  — P(E *) embedded along E* — E ^ — also satisfies (4.5). In fact, [16, Section 
5] shows a general fact th a t such an embedding of the finite trace m ap is the minimal one 
among those morphisms which make the  diagram  (4.4) commute.

The coalgebraic characterization (Theorem 4.4) of possibly-infinite trace semantics is 
not yet fully developed. In particular the current proof of Theorem 4.4 (in [24]) is fairly 
concrete and a categorical principle behind it is less clear th an  the one behind finite traces. 
Consequently the resu lt’s applicability is limited: we do not know whether the result holds 
in a probabilistic setting; or w hether it holds for any weak-pullback-preserving functor F .

5. T race  sem a ntics  as test in g  equivalence

In this section we will observe th a t, in a non-determ inistic setting, the coalgebraic finite 
trace semantics (i.e. coinduction in K l(P )) gives rise to  a canonical testing situation  in 
which a test is an element of the initial F -algebra A in S e ts . Here F  specifies the transition  
type, ju st as before. The notion of testing situations (Definition 5.1) and its variants have 
attrac ted  many au thors’ a ttention in the context of coalgebraic modal logic; our aim here is 
to  dem onstrate genericity and pervasiveness of the notion of testing situations by presenting 
an example which is not much like modal logic (tha t is, propositional logic plus modality).

In Section 5.1 we introduce the notion of testing situations and investigate some of 
their general properties. Our main concern there is the comparison between two process 
equivalences, namely testing equivalence and equivalence modulo final coalgebra semantics.
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We present the  equivalences categorically as suitable kernel pairs; this makes the argum ents 
simple and clean. In Section 5.2 we present the canonical testing situation for trace seman­
tics. Moreover we show th a t it is expressive : the testing captures final coalgebra semantics, 
which is now trace semantics.

5.1. T e s tin g  s i tu a tio n s .  Recent studies [5,6,32,35,37,45] on coalgebra and modal logic 
have identified (variants of) the following categorical situation as the essential underlying 
structure. Following [45], we prefer using a more general term  “testing” : it subsumes “modal 
logic” in the following sense. We learn properties of a system through pass or failure of 
tests ; modal logic constitutes a special case where tests are modal formulas.

D e f in itio n  5.1. A testing situation  is the  following situation of a contravariant adjunction 
S op H P  and two endofunctors F, M

p

F°P M (5.1)
S °P

plus a “denotation” natural transform ation ô : M P  ^  P F op : Cop — A, which consists of 
arrows M P X  —̂  P F X  in A.

Note th a t the denotation ô is a param eter: the  same “syntax for tests” M  : A — A can 
have different interpretations w ith different ô.

The requirem ents in Definition 5.1 are the same as in [32,45]. They are w hat we need 
to  compare two process semantics, namely testing equivalence—which arises naturally  from 
the concept of testing— and final coalgebra sem antics.8 We shall explain each ingredient’s 
role, using the well-established terminology of modal logic.
•  The endofunctor F  : C — C makes C o a lg (F ) the category of “system s,” or “Kripke 

models” in modal logic.
•  The category A—typical examples being B o o l of Boolean algebras or H e y t  of Heyting 

algebras— is th a t of “propositional logic.” The functor M  specifies “m odality” : modal 
operators and axioms. Then A lg (M ) is the  category of “modal algebras” ; the initial 
M -algebra M L  =  L is a “modal logic” consisting of modal formulas, modulo logical 
equivalence.

•  The denotation ô specifies how the m odality M  is interpreted via transitions of type 
F . This allows to  give “Kripke semantics” for the modal logic: given a coalgebra (or a 
“Kripke model”) c : X  —> F X ,  in terpretation [[_]]c of modal formulas therein is given by 
the following induction.

M L --------------M P X
I 5*

initial = P F X  (5.2)
|P c  ’

L ----------- -  -  ^ P X

o°In fact we can be even more liberal: existence of a denotation S can be replaced by existence of a 
lifting P : Coalg(F)op ^  Alg(M) of P . The results in this section nevertheless hold in that case. The 
latter condition (there is a lifting P) is strictly weaker than the former (there is a natural transformation 
5): obviously 5 induces P but not the other way round. Let C =  wop,A =  lo, P  = id,_F =  (1 + _ )op and 
M = 2 + _ . Then both Coalg(F) and Alg(M) are the empty category hence P has the trivial lifting. 
However there is no natural transformation M PX ^  PFop X .

C
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W hy a right adjoint S  of P op? It allows us, via transposition, to  assign a modal “theory” 
to  each sta te  of a Kripke model.

L ------— ---- >PX  in A
(S °p H P ) (5.3)

X ------ —------>SL in C

The theory th c(x) associated w ith a state  x contains precisely the modal formulas th a t 
hold at x.

Following the above intuition, we define the categorical notion of testing equivalence— two 
states are testing-equivalent if they have the same modal theory.

D e f in itio n  5.2. Assume th a t we have a testing situation (5.1), and th a t C has finite limits. 
On a coalgebra X  A  F X , the testing equivalence TestEqc is the  kernel pair of the theory 
map th c defined by (5.2) and (5.3). Equivalently,

TestEqc x  x X  thc0n^ SL  (5.4)
thcon2

is an equalizer.

Similarly, we introduce the categorical notion of “equivalence modulo final coalgebra 
semantics” ; we shall call it FCS-equivalence for short.

D e f in itio n  5.3. Assume th a t there is a final F -coalgebra Z : Z  =  F Z , and th a t C has 
finite limits. On a coalgebra X  —̂ F X , the FCS-equivalence FCSEqc is the  kernel pair of 
the unique m ap behc : X  — Z  induced by finality. Equivalently,

<91,92) behco î
FCSEqc >-------->X  x X  Ẑ  (5.5)

behcon2

is an equalizer.

It is easily seen th a t the two “relations” TestEqc and FCSEqc on X  are equivalence 
relations in the sense of [23, Section 1.3]. T ha t is, they satisfy the reflexivity, symmetry, 
and transitiv ity  conditions when the conditions are suitably form ulated in categorical term s.

Now our concern is the comparison between two process semantics TestEqc and FCSEqc, 
as subobjects of X  x X . The following lemma is crucial for our investigation; in fact it is 
im portant for coalgebraic modal logic in general and appears e.g. as [32, Theorem 3.3].

L e m m a  5.4. A morphism o f F -coalgebras preserves theory maps. That is,

F X ---------------- ► F Y  X
4  Td implies f

X  — f— ’ Y Y
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Proof. The following induction diagram  proves P f  o =  L J C. N aturality  of 5 plays an 
im portant role there.

Ff MPf
M L ---------------> M P Y ------------------> M P X

initial = P F Y  ------ pF f-----  ̂P F X
„  jP c
L ----------------- ^  P Y --------------------- >• P X  .

Lid P f

Then the claim follows from naturality  of the transposition (5.3). □

We show th a t in a testing situation like (5.1), tests respect final coalgebra semantics. 
T ha t is, testing does not distinguish two FCS-equivalent states.

P r o p o s i t io n  5.5. Consider such a testing situation and equivalence relations as in Defini­
tions 5.2 and 5.3. For any coalgebra X  A  F X  we have an inclusion

FCSEqc <  TestEqc

of subobjects o f X  x X .

Proof. It suffices to  show th a t the arrow (qi, q2) in (5.5) equates the parallel arrows in (5.4); 
then the claim follows from universality of an equalizer.

thc o n i o (qi, 32) =  thc o qi

=  thz o behc o q1 (*)

=  thz o behc o q2 due to  (5.5)

=  thc o q2 (*)

=  thc o n 2 o (q i,q2) .

Here (*) is an instance of Lemma 5.4: behc is a m orphism  of coalgebras from c to  the final
C- □

The converse TestEqc <  FCSEqc does not hold in general. For a fixed type of systems 
(i.e. for fixed F  : C —>■ C), we can th ink  of logics with varying degree of expressive power; 
this results in process equivalences with varying granularity. This view is system atically 
presented by van Glabbeek in [57] as the linear time-branching time spectrum— a categorical 
version of which we consider as an im portant direction of future work.

It is when we have FCSEqc ^  TestEqc th a t a modal logic (considered as a testing 
situation) is said to  be expressive. Recall th a t FCSEqc usually coincides w ith bisimilarity if 
C is S e ts : in this case an expressive logic captures bisimilarity.

The following proposition states a (rather trivial) equivalent condition for a testing 
situation to  be expressive. For more ingenious sufficient conditions—which essentially rely 
on the transpose of 5 being monic— see e.g. [32].

P r o p o s i t io n  5.6. Consider a testing situation as in Definitions 5.2 and 5.3. The testing 
is expressive, that is, fo r  any coalgebra X  A  F X  we have

TestEqc =  FCSEqc

as subobjects o f X  x X , i f  and only i f  the theory map th^ : Z  — SL  fo r  the final coalgebra 
is a mono.
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Proof. We first prove the “if” direction. In view of Proposition 5.5, it suffices to  show th a t 
(p i,p 2) in (5.4) equalizes behc o n  and behc o n 2 (which proves TestEqc <  FCSEqc).

thz o behc o p i =  th c o p i by Lemma 5.4

=  th c o p2 due to  (5.4)
=  thz o behc o p2 by Lemma 5.4

We have behc o p i =  behc o p2 since th^ is a mono.
To prove the “only if” direction, first we observe th a t the FCS-equivalence on the final 

coalgebra Z : Z  =  F Z  is the diagonal relation: th a t is,
behzoni

FCSEqc >-------- > Z  x Z  <: Z
^ I behzon2
= Z

This is because beh^ =  id : Z  — Z . Now assume th a t th^ o k =  th^ o l for k, l : Y ^  Z . 
Universality of an equalizer TestEq^ induces a m ediating arrow m in the following diagram.

behzoni
Z  x Z  $ Z

!(id,id>behzon2
> Z

The whole diagram  commutes since TestEq^ =  FCSEq^ (by assum ption) and FCSEq^ =  Z 
(by the above observation), both  as subobjects of Z  x Z. This proves k = I. □

R e m a rk  5.7. The literature [5,6] considers more restricted settings th an  the testing situ­
ations in Definition 5.1. There an adjunction S op H P  is replaced by a dual equivalence of 
categories, and a denotation 5 is required to  be a natural isomorphism. These additional 
restrictions allow one to  say more about the situations: logics are always expressive; the 
main concern of [6] is how to  present an abstract modal logic M  : A — A by concrete syn­
tax. However, for our purpose in Section 5.2 the greater generality of our notion of testing 
situations is needed.

5.2. C a n o n ic a l  t e s t in g  fo r t r a c e  s e m a n tic s  in  K l(P ). In this section we shall present 
a canonical testing situation for coalgebras in K l(P ). We shall also show th a t the testing is 
“expressive,” in the sense th a t the testing captures final coalgebra semantics. The intuition 
is as follows.

Trace semantics for non-determ inistic systems assigns to  each system c its “(finite) trace 
set” m ap trc : X  — PA , where A  carries an initial algebra in S e ts . This suggests a natural 
testing framework where: an element t  of A is a test; a sta te  x  € X  of a system passes a 
test t  if and only if the trace set of x includes t (i.e. x |= t t  € trc(x)). An im portant 
point here is th a t A, carrying an initial algebra in S e ts , usually gives a well-founded syntax  
for tests.9

We focus on a non-determ inistic setting (i.e. T  =  P ) in this section and leave a prob­
abilistic one as fu ture work. Although the above intuition is true  in probabilistic settings

9Recall the construction of an initial algebra in Sets via the initial sequence (Proposition A.1). The set 
A is the colimit (union in Sets) of the initial sequence 0 ^  F0 ^  F20 ^  • • • . Each Fn0 can be thought of 
as the set of terms with depth < n.
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as well—where the 2-valued (pass/failure) observation scheme is replaced by the refined 
[0,1]-valued one— we do not know yet how to  extend the current m aterial to  probabilistic 
settings. The difficulty is th a t the category Kl(D) is not self-dual, as opposed to  K l(P ); see 
(5.6) below.

The canonical testing situation which captures finite trace semantics is the following
one.

n ^  FOp K
K I(P  )°p = ^ K l ( P  ) t  S e ts  (5.6)

F0 p Opop

Here J  H K  is the  canonical Kleisli adjunction. Recall the self duality Op : K l(P )op =  
K l(P ) from Section 3.2. The denotation is given by (the components of) the distributive 
law A : F P  ^  P F . The following lemma establishes naturality  of the denotation.

L e m m a  5.8. Let F  : S e ts  —> S e ts  be a functor which preserves weak pullbacks, and F  be
its lifting induced by the relation lifting (Lemma 2.3). Then the components F P X  P F X  
of the corresponding distributive law A also form  a natural transformation

F  o K  o Op = >  K  O Op O F °p : K2(V)°V — ► S e ts  .

Proof. The desired natural transform ation is obtained from another natu ral transform ation

A' : F K  = >  K F  : K2(V) — ► S e ts

which we describe in a moment, by post-composing the functor Op. T ha t is, the desired 
one is the composite

F K O p  X̂ P K F  Op = K O p F °  
or equivalently, in a 2-categorical presentation,

=;Op

K l(P )op---- -- -----> K l(P ) -----K----- > S e ts

F°P | (*V/ f [  V\> \  F 
K l(P )o p ---- ------- > K l(P ) ----- ------ > S e ts  .Op K

Here the  equality (*) is the  one in (3.6).
Now we describe the natu ral transform ation A;. Its components are given by those of 

A; naturality  of A' is an easy consequence of A’s being a distributive law. Indeed, given an 
arrow ƒ : X  —>■ Y  in K l(P ), the following shows th a t the naturality  square commutes.

K F  ƒ o Ax =  i^FY ° P F  ƒ ° definition of K

= jiypY °  °  ~PFf  o \ x  definition of F

=  o P  Ay o ApY o F P  ƒ naturality  of A

=  Ay o F ^ P o F P ƒ A is com patible w ith the m ultiplication of P
=  Ay o F K f  definition of K  □

The previous lemma establishes th a t the  situation (5.6) is indeed a testing situation as 
defined in Definition 5.1.

In the previous Section 5.1, the use of testing situations is dem onstrated through com­
paring testing equivalence and final coalgebra semantics, both  described as suitable kernel
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pairs. U nfortunately this argum ent is not valid in the current situation (5.6), since the 
category K l(P ) does not have kernel pairs.

Still, we shall claim th a t the situation (5.6) is “expressive,” in the sense th a t final 
coalgebra semantics is captured by testing. This claim is supported by the following fact: 
in the current situation the two arrows trc and th c simply coincide. Therefore their kernel 
relations— in any reasonable formalization— should coincide as well.

Proposition  5.9. Let X  A  F X  be a coalgebra in K2(V). In  the testing situation (5.6), 
the following arrows in  K l(P ) coincide.
•  trc : X  — A, giving the final coalgebra (trace) semantics fo r  c.
•  th c : X  — A, giving the testing semantics, i.e. the set o f passed tests.
Therefore the testing is “expressive”: tests from  an initial F-algebra captures trace semantics 
(which is via a final F-coalgebra).

Here A  is the carrier of an initial F-algebra, hence th a t of a final F-coalgebra. Note tha t, 
in the general setting in Section 5.1, the codomains of trc and th c need not coincide.

Proof. We shall show th a t the transpose

tr^  : A — x P X  in S e ts

of trc under the adjunction in (5.6) makes the diagram  (5.2)—which defines L f lc—commute. 
This proves tr^  =  L J C, hence trc =  L ] CV =  ^ c -

F irst note th a t the transpose tr^  : A — P X  is given by the arrow Op(trc) : A — X  in 
K l(P ) thought of as an arrow in S e ts . In the sequel we shall write Op(trc) for t r ^ . 

C om m utativity of the diagram  (4.1)—defining trc—yields the following equality.

Op{trc) o O p (Ja ~ l ) =  Op(c) o O p(F°pt rc) in KJ(V).

By the  definition of composition in K l(P ), it reads as follows in S e ts .

¡ix  o V{O p{ t r c)) o O p (J a ~ l ) = | i x o V{Op{c)) o Op(F°p t r c) (5.7)

We use this equality in showing th a t Op(trc) makes the diagram  (5.2) commute.

Op(trc) o a  =  ^ X o rix o Op(trc) o a  unit law

=  ^ X o P (O p (trc)) o nA o a  naturality  of n

=  ^ X o P (O p (trc)) o Op( J a -1 ) O p (J a -1 ) =  J a  =  nA o a

=  fix  o P (O p(c)) o O p(F°ptrc) by (5.7)

= Mx o V (O p(c)) o F O p(t rc) OpF°P = FO p, (3.6)

=  Mx ° V (O p(c )) o Ax o FO p{ trc) definition of F

=  K  Op(c) o AX o F O p (trc) .

Recall th a t M  in (5.2) is now F; P  in (5.2) is now K O p. This concludes the proof. □
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The proposition establishes a connection between two semantics for F-coalgebras in 
K2(V), namely: trc via a final F-coalgebra, and thc via an initial F -algebra. One may 
well say th a t it is a “degenerate” case because, as we have shown in Section 3, coinduction 
in K l(P ) and induction in S e ts  are essentially the same principle. Our emphasis is more 
on the fact th a t the coincidence of induction and coinduction yields a rather uncommon 
example of testing situations. Testing situations are of interest in modal logic— where the 
underlying contravariant adjunction S op H P  : A — Cop in (5.1) is often the Stone duality 
or one of its variants. Our example K l(P )op ^  S e ts  here does not look like one of those 
familiar examples.

6. C onclusions and fu t u r e  w ork

We have developed a m athem atical principle underlying “trace semantics” for various 
kinds of branching systems, namely coinduction in a Kleisli category. This general view is 
supported by a technical result th a t a final coalgebra in a Kleisli category is induced by an 
initial algebra in S e ts .

The possible instantiations of our generic framework include non-determ inistic systems 
and probabilistic systems, bu t do not yet include systems with both  non-determ inistic and 
probabilistic branching. The im portance of having both  of these branchings in system veri­
fication has been claimed by many authors e.g. [48,60], w ith an intuition th a t probabilistic 
branching models the choices “made by the system, i.e. on our side,” while (coarser) non- 
determ inistic choices are “made by the (unknown) environm ent of the system, i.e. on the 
adversary’s side.” A typical example of such systems is given by probabilistic automata 
introduced by Segala [48].

In fact this combination of non-determ inistic and probabilistic branching is a notoriously 
difficult one from a theoretical point of view [8,54,59]: many m athem atical tools th a t are 
useful in a purely non-determ inistic or probabilistic setting cease to  work in the presence of 
both. For our framework of generic trace semantics, the problem is th a t we could not find 
a suitable monad T  w ith an order structure.

We have used the  order-enriched structure  of a Kleisli category (expressing “more pos­
sibilities”) to  obtain the initial algebra-final coalgebra coincidence result. However, an order 
structure  is not the only one th a t can yield such coincidence: other examples include metric, 
quasi-metric and quantale-enriched structures (in increasing generality). See e.g. [10,56] for 
the potential use of such enriched structures in a coalgebraic setting. The relation of the 
current work to  such structures is yet to  be investigated.

In the discipline of process algebra, a system is represented by an algebraic term  (such as 
a .P  || a.Q) and a s tructural operational semantics (SOS) rule determines its dynamics, th a t 
is, its coalgebraic structure. This is where “algebra meets coalgebra” and the interaction is 
studied e.g. in [4,30,55]. In our recent work [18] we claim the im portance of the microcosm  
principle in this context and provide a “general compositionality theorem ” : under suitable 
assum ptions, the final coalgebra semantics is com patible with the algebraic structure. The 
results of the current paper say th a t the final coalgebra semantics can be interpreted as 
finite trace semantics, hence the result in [18] also yields a general compositionality result 
for trace semantics.

In this paper we have included some m aterial— on possibly-infinite traces and testing 
situations—which, unfortunately, we have worked out only in a non-determ inistic setting. 
A fully general account on these topics is left as future work.
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Finally, there are so many different process semantics for branching systems, between 
two edges of bisim ilarity and trace equivalence in the linear tim e-branching tim e spec­
trum  [57]. How to  capture them  in a coalgebraic setting is, we believe, an im portant and 
challenging question.
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A ppe n d ix  A. P relim in aries

A.1. I n i t ia l / f in a l  se q u en c e s . Here we recall the standard  construction [2] of the initial 
algebra (or the final coalgebra) via the initial (or final) sequence. Notice th a t the  base 
category need not be S e ts .

Let C be a category w ith initial object 0, and F  : C — C be an endofunctor. The initial 
sequence10 of F  is a diagram

0 ->F 0
F !

->Fn 0

where i : 0 — X  is the  unique arrow.
Now assume that:

•  the  initial sequence has an w-colimit 11 (F n0
•  the  functor F  preserves th a t w-colimit.
Then we have two cocones (a n )n<w and ( F a n -1 )n<w over the initial sequence. Moreover, 
the la tte r is again a colimit: hence we have m ediating isomorphisms between these cones.

A)

> A

->Fn 0

-Fa * F A

F n

a

10In this paper we consider only initial/final sequences of length w.
11An w-colimit is a colimit of a diagram whose shape is the ordinal w.
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P r o p o s i t io n  A .1 . The F-algebra a  : F A  =  A is initial.

Proof. For fu ture reference we prove the dual result: see Proposition A.2. □

The dual of this construction yields a final F-coalgebra. Assume th a t the base category 
C has a term inal object 1. The final sequence of F  is

if- F  if- F ! Fn-1 ! Fn !i----------- F  n U---------

where ! : X  — 1 is the  unique arrow. Assume th a t it has an wop-limit (Z  F n 1) 
and also th a t F  preserves th a t wop-limit. We have the following situation.

-c.

F n i  <

-FCn-1

Z

F Z

P r o p o s i t io n  A .2 . The coalgebra Z : Z  =  F Z  is final.

Proof. Any F-coalgebra c : X  F X  induces a cone (X  —̂  F n 1)n<w over the final 
sequence in the  following way.

fto =  ! : X  — — 1 , ftra+i =  Fft„  o c .

Now we can prove the  following: for an arrow ƒ : X  —> Z , ƒ is a morphism of coalgebras 
from c to  Z if and only if ƒ is a m ediating arrow from the cone (ftn )ra<w to  the limit (Zn)n<w. 
Hence such a morphism of coalgebras uniquely exists. □

It is easy to  see th a t every shapely functor in S e ts  preserves w-colimits and wop-limits. 
Hence we have the following.

L e m m a  A .3 . A shapely functor  F  has both an initial algebra and a final coalgebra in  S e ts .
□

A.2 . l im it-c o lim it  c o in c id en c e . We recall some relevant notions and results from [51]. 
The idea is th a t in a suitable order-enriched setting, (co)limits are equivalently described as 
an order-theoretic notion of O-(co)lim its. Due to  the inherent coincidence between O-lim its 
and O-colimits, we also obtain the  so-called lim it-colim it coincidence.

limit colimit 

O-lim it ——------- :—------O-colimitobvious coincidence

The notions of O-(co)limits are stated in term s of embedding-projection pairs which 
we can define in an order-enriched category. In the sequel we assume the C ppo-enriched  
structure.

D e f in itio n  A .4  (Em bedding-projection pairs). Let C be a C ppo-enriched category. A 
pair of arrows

e

P
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in C is said to  be an embedding-projection pair if we have p o e =  id and e o p  C id. 
D iagram m atically presented,

X  >-----% — > Y
id

.

X  >— e— * y .

By p o e =  id we autom atically have th a t e is a mono and p is an epi. Both split.

P r o p o s i t io n  A .5 . Let (e,p), (e/,p /) : X  ^  Y be two embedding-projection pairs with the 
same (co)domains. Then  e C e' holds i f  and only i f  p' C p. A s a consequence, one 
component o f an embedding-projection pair determines the other. □

This proposition justifies the notation eP for the projection corresponding to  a given em­
bedding e, and pE for the embedding corresponding to  a given projection p. It is easy to  
check th a t

(e o ƒ )P =  ƒP o eP and (p o q)E =  o pE . 
f  fl

D e f in itio n  A .6  (O-(co)lim its). Let X 0 —0 X 1 —i  ■ ■ ■ be an w-chain in a C ppo-enriched C. 
A cocone (Xn ^  C )n<w over this chain is said to  be an O -colimit if:
•  each is an embedding;

the sequence of arrows ( C  —^ X n C  )n<w is increasing. Moreover its join taken in 
the  cpo C(C, C ) is idC.

C
„p

Xo ^ -----> X ! ------- -------- ► ■ ■ ■
-0 -1

Dually, a cone (C ^  ) n<^ over an u op-chain Y0 l 0 Y! l 1 ■ ■ ■ is an O -lim it if: each 
Yn is a projection, and the sequence (ye  o Yn : C  — C )n<w is increasing and its join is idC.

The following proposition establishes the equivalence between (co)limits and O-(co)li- 
mits. For its full proof the reader is referred to  [51].

P r o p o s i t io n  A .7  (Propositions A, B, C, D in [51]). Let X 0 ■e°  X ! -V ••• be an u-chain  
where each en is an embedding.

(1) Let (Xn ^  C )n<w be the colimit over the chain. Then each a n is also an embedding. 
Moreover, (an )n<w is an O -colimit.

(2) Conversely, an O -colimit (Xn ^  C )n<w over the chain is a colimit.

Dually, let X 0 l  X ! l  ■ ■ ■ be an u op-chain where each pn is a projection.
(3) Let (D ^  X n)n<w be a lim it over the chain. Then each Tn is also a projection. 

Moreover (rn)n<w is an O -limit.
(4) Conversely, an O -lim it (D  ^  X n)n<w over the chain is a limit.

Proof. For later reference we present the proof of (4). Let (B ^  X n)n<w be an arb itrary  
cone over the chain X 0 X 1 0  ■ ■ ■. F irst we prove the uniqueness of a m ediating map

1
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ƒ : B  — D.

=  Un<w (r»E 0 Tn ◦  f  )
E

Un<^ (r»E' 0 ^n )

(Tn)n<^ is an O-lim it 

composition is continuous 

ƒ is m ediating .

We conclude the  proof by showing th a t the sequence (r^ o ftn )n<w is increasing, hence such 
ƒ indeed exists.

Tra o =  Tra o pn o ftra+1 =  Tra+1 o pn o pn o ^n+1 C Tra+1 o ^n+1

The last inequality holds because pn  o pn C id from the definition of embedding-projection 
pairs. □

T h e o re m  A .8  (Limit-colimit coincidence). Let X 0 3- X 1 -V ■ ■ ■ be an w-chain where each
en is an embedding, and (Xn C )n<w be the colimit over the chain. Then each a n is an

- p ep ep
embedding, and the cone (C  —̂  X n )n<w is a lim it over the wop-chain X 0 0  X 1 0- ■ ■ ■.

C  -p C

Xo x

colimit lim it
Xo «- X ! «-

Dually, the lim it o f an u op-chain o f projections consists o f projections. By taking the 
corresponding embeddings we obtain a colimit o f an u-chain  o f embeddings.

Proof. We prove the first statem ent. By Proposition A.7 each a n is an embedding, and
ep ep

moreover (an)n<w is an O-colimit. Now obviously (ap )n<w is a cone over X 0 l  X ! l  ■ ■ ■. 
Here we use the inherent coincidence of O-(co)limits: namely, the condition th a t (an )n<w 
is an O-colimit is exactly the same as th a t (ap )n<w is an O-lim it. We use Proposition A.7 
to  conclude the proof. □
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