45,036 research outputs found

    Apples-To-Fish: Public and Private Prison Cost Comparisons

    Get PDF

    To be or not to Be? - First Evidence for Neutrinoless Double Beta Decay

    Full text link
    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν\nu oscillation experiments. Recent analysis of the most sensitive experiment since nine years - the HEIDELBERG-MOSCOW experiment in Gran-Sasso - yields a first indication for the neutrinoless decay mode. This result is the first evidence for lepton number violation and proves the neutrino to be a Majorana particle. We give the present status of the analysis in this report. It excludes several of the neutrino mass scenarios allowed from present neutrino oscillation experiments - only degenerate scenarios and those with inverse mass hierarchy survive. This result allows neutrinos to still play an important role as dark matter in the Universe. To improve the accuracy of the present result, considerably enlarged experiments are required, such as GENIUS. A GENIUS Test Facility has been funded and will come into operation by early 2003.Comment: 16 pages, latex, 10 figures, Talk was presented at International Conference "Neutrinos and Implications for Physics Beyond the Standard Model", Oct. 11-13, 2002, Stony Brook, USA, Proc. (2003) ed. by R. Shrock, also see Home Page of Heidelberg Non-Accelerator Particle Physics Group: http://www.mpi-hd.mpg.de/non_acc

    Digital image correlation (DIC) analysis of the 3 December 2013 Montescaglioso landslide (Basilicata, Southern Italy). Results from a multi-dataset investigation

    Get PDF
    Image correlation remote sensing monitoring techniques are becoming key tools for providing effective qualitative and quantitative information suitable for natural hazard assessments, specifically for landslide investigation and monitoring. In recent years, these techniques have been successfully integrated and shown to be complementary and competitive with more standard remote sensing techniques, such as satellite or terrestrial Synthetic Aperture Radar interferometry. The objective of this article is to apply the proposed in-depth calibration and validation analysis, referred to as the Digital Image Correlation technique, to measure landslide displacement. The availability of a multi-dataset for the 3 December 2013 Montescaglioso landslide, characterized by different types of imagery, such as LANDSAT 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor), high-resolution airborne optical orthophotos, Digital Terrain Models and COSMO-SkyMed Synthetic Aperture Radar, allows for the retrieval of the actual landslide displacement field at values ranging from a few meters (2–3 m in the north-eastern sector of the landslide) to 20–21 m (local peaks on the central body of the landslide). Furthermore, comprehensive sensitivity analyses and statistics-based processing approaches are used to identify the role of the background noise that affects the whole dataset. This noise has a directly proportional relationship to the different geometric and temporal resolutions of the processed imagery. Moreover, the accuracy of the environmental-instrumental background noise evaluation allowed the actual displacement measurements to be correctly calibrated and validated, thereby leading to a better definition of the threshold values of the maximum Digital Image Correlation sub-pixel accuracy and reliability (ranging from 1/10 to 8/10 pixel) for each processed dataset

    Robust Bayesian target detection algorithm for depth imaging from sparse single-photon data

    Get PDF
    This paper presents a new Bayesian model and associated algorithm for depth and intensity profiling using full waveforms from time-correlated single-photon counting (TCSPC) measurements in the limit of very low photon counts (i.e., typically less than 20 photons per pixel). The model represents each Lidar waveform as an unknown constant background level, which is combined in the presence of a target, to a known impulse response weighted by the target intensity and finally corrupted by Poisson noise. The joint target detection and depth imaging problem is expressed as a pixel-wise model selection and estimation problem which is solved using Bayesian inference. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters while accounting for their constraints. In particular, Markov random fields (MRFs) are used to model the joint distribution of the background levels and of the target presence labels, which are both expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm including reversible-jump updates is then proposed to compute the Bayesian estimates of interest. This algorithm is equipped with a stochastic optimization adaptation mechanism that automatically adjusts the parameters of the MRFs by maximum marginal likelihood estimation. Finally, the benefits of the proposed methodology are demonstrated through a series of experiments using real data.Comment: arXiv admin note: text overlap with arXiv:1507.0251

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85
    corecore