472 research outputs found

    Risk and reliability modelling for multi-vehicle marine domains

    Get PDF
    It is well-known that autonomous underwater vehicle (AUV) missions are a challenging, high-risk robotics application. With many parallels to Mars rovers, AUV missions involve operating a vehicle in an inherently uncertain environment of which our prior knowledge is often sparse or low-resolution. The lack of an accurate prior, coupled with poor situational awareness and potentially significant sensor noise, presents substantial engineering challenges in navigation, localisation, state estimation and control. When constructing missions and operating AUVs, it is important to consider the risks involved. Stakeholders need to be reassured that risks of vehicle loss or damage have been minimised where possible, and scientists need to be confident that the mission is likely to produce sufficient high-quality data to meet the aims of the deployment. In this paper, we consider the challenges associated with risk analysis methods and representations for multi-vehicle missions, reviewing the relevant literature and proposing a methodology

    Risk and reliability modelling for multi-vehicle marine domains

    No full text
    It is well-known that autonomous underwater vehicle (AUV) missions are a challenging, high-risk robotics application. With many parallels to Mars rovers, AUV missions involve operating a vehicle in an inherently uncertain environment of which our prior knowledge is often sparse or low-resolution. The lack of an accurate prior, coupled with poor situational awareness and potentially significant sensor noise, presents substantial engineering challenges in navigation, localisation, state estimation and control. When constructing missions and operating AUVs, it is important to consider the risks involved. Stakeholders need to be reassured that risks of vehicle loss or damage have been minimised where possible, and scientists need to be confident that the mission is likely to produce sufficient high-quality data to meet the aims of the deployment. In this paper, we consider the challenges associated with risk analysis methods and representations for multi-vehicle missions, reviewing the relevant literature and proposing a methodology

    An Acoustic Network Navigation System

    Get PDF
    This work describes a system for acoustic‐based navigation that relies on the addition of localization services to underwater networks. The localization capability has been added on top of an existing network, without imposing constraints on its structure/operation. The approach is based on the inclusion of timing information within acoustic messages through which it is possible to know the time of an acoustic transmission in relation to its reception. Exploiting such information at the network application level makes it possible to create an interrogation scheme similar to that of a long baseline. The advantage is that the nodes/autonomous underwater vehicles (AUVs) themselves become the transponders of a network baseline, and hence there is no need for dedicated instrumentation. The paper reports at sea results obtained from the COLLAB–NGAS14 experimental campaign. During the sea trial, the approach was implemented within an operational network in different configurations to support the navigation of the two Centre for Maritime Research and Experimentation Ocean Explorer (CMRE OEX) vehicles. The obtained results demonstrate that it is possible to support AUV navigation without constraining the network design and with a minimum communication overhead. Alternative solutions (e.g., synchronized clocks or two‐way‐travel‐time interrogations) might provide higher precision or accuracy, but they come at the cost of impacting on the network design and/or on the interrogation strategies. Results are discussed, and the performance achieved at sea demonstrates the viability to use the system in real, large‐scale operations involving multiple AUVs. These results represent a step toward location‐aware underwater networks that are able to provide node localization as a service

    AN INTELLIGENT NAVIGATION SYSTEM FOR AN AUTONOMOUS UNDERWATER VEHICLE

    Get PDF
    The work in this thesis concerns with the development of a novel multisensor data fusion (MSDF) technique, which combines synergistically Kalman filtering, fuzzy logic and genetic algorithm approaches, aimed to enhance the accuracy of an autonomous underwater vehicle (AUV) navigation system, formed by an integration of global positioning system and inertial navigation system (GPS/INS). The Kalman filter has been a popular method for integrating the data produced by the GPS and INS to provide optimal estimates of AUVs position and attitude. In this thesis, a sequential use of a linear Kalman filter and extended Kalman filter is proposed. The former is used to fuse the data from a variety of INS sensors whose output is used as an input to the later where integration with GPS data takes place. The use of an adaptation scheme based on fuzzy logic approaches to cope with the divergence problem caused by the insufficiently known a priori filter statistics is also explored. The choice of fuzzy membership functions for the adaptation scheme is first carried out using a heuristic approach. Single objective and multiobjective genetic algorithm techniques are then used to optimize the parameters of the membership functions with respect to a certain performance criteria in order to improve the overall accuracy of the integrated navigation system. Results are presented that show that the proposed algorithms can provide a significant improvement in the overall navigation performance of an autonomous underwater vehicle navigation. The proposed technique is known to be the first method used in relation to AUV navigation technology and is thus considered as a major contribution thereof.J&S Marine Ltd., Qinetiq, Subsea 7 and South West Water PL

    Guidance and control of an autonomous underwater vehicle

    Get PDF
    Merged with duplicate record 10026.1/856 on 07.03.2017 by CS (TIS)A cooperative project between the Universities of Plymouth and Cranfield was aimed at designing and developing an autonomous underwater vehicle named Hammerhead. The work presented herein is to formulate an advance guidance and control system and to implement it in the Hammerhead. This involves the description of Hammerhead hardware from a control system perspective. In addition to the control system, an intelligent navigation scheme and a state of the art vision system is also developed. However, the development of these submodules is out of the scope of this thesis. To model an underwater vehicle, the traditional way is to acquire painstaking mathematical models based on laws of physics and then simplify and linearise the models to some operating point. One of the principal novelties of this research is the use of system identification techniques on actual vehicle data obtained from full scale in water experiments. Two new guidance mechanisms have also been formulated for cruising type vehicles. The first is a modification of the proportional navigation guidance for missiles whilst the other is a hybrid law which is a combination of several guidance strategies employed during different phases of the Right. In addition to the modelling process and guidance systems, a number of robust control methodologies have been conceived for Hammerhead. A discrete time linear quadratic Gaussian with loop transfer recovery based autopilot is formulated and integrated with the conventional and more advance guidance laws proposed. A model predictive controller (MPC) has also been devised which is constructed using artificial intelligence techniques such as genetic algorithms (GA) and fuzzy logic. A GA is employed as an online optimization routine whilst fuzzy logic has been exploited as an objective function in an MPC framework. The GA-MPC autopilot has been implemented in Hammerhead in real time and results demonstrate excellent robustness despite the presence of disturbances and ever present modelling uncertainty. To the author's knowledge, this is the first successful application of a GA in real time optimization for controller tuning in the marine sector and thus the thesis makes an extremely novel and useful contribution to control system design in general. The controllers are also integrated with the proposed guidance laws and is also considered to be an invaluable contribution to knowledge. Moreover, the autopilots are used in conjunction with a vision based altitude information sensor and simulation results demonstrate the efficacy of the controllers to cope with uncertain altitude demands.J&S MARINE LTD., QINETIQ, SUBSEA 7 AND SOUTH WEST WATER PL

    Towards Arctic AUV Navigation

    Get PDF
    The navigational drift for Autonomous Underwater Vehicles (AUVs) operating in open ocean can be bounded by regular surfacing. However, this is not an option when operating under ice. To operate effectively under ice requires an on-board navigation solution that does not rely on external infrastructure. Moreover, some under-ice missions require long-endurance capabilities, extending the operating time of the AUVs from hours to days, or even weeks and months. This paper proposes a particle filter based terrain-aided navigation algorithm specifically designed to be implementable in real-time on the low-powered Autosub Long Range 1500 (ALR1500) vehicle to perform long-range missions, namely crossing the Artic Ocean. The filter performance is analysed using numerical simulations with respect to various key factors, e.g. of the sea-floor morphology, bathymetric update rate, map noise, etc. Despite very noisy on-board measurements, the simulation results demonstrate that the filter is able to keep the estimation error within the mission requirements, whereas estimates using dead-reckoning techniques experience unbounded error growth. We conclude that terrain-aided navigation has the potential to prolong underwater missions to a range of thousands of kilometres, provided the vehicle crosses areas with sufficient terrain variability and the model includes adequate representation of environmental conditions and motion disturbances

    OBJECT PERCEPTION IN UNDERWATER ENVIRONMENTS: A SURVEY ON SENSORS AND SENSING METHODOLOGIES

    Get PDF
    Underwater robots play a critical role in the marine industry. Object perception is the foundation for the automatic operations of submerged vehicles in dynamic aquatic environments. However, underwater perception encounters multiple environmental challenges, including rapid light attenuation, light refraction, or backscattering effect. These problems reduce the sensing devices’ signal-to-noise ratio (SNR), making underwater perception a complicated research topic. This paper describes the state-of-the-art sensing technologies and object perception techniques for underwater robots in different environmental conditions. Due to the current sensing modalities’ various constraints and characteristics, we divide the perception ranges into close-range, medium-range, and long-range. We survey and describe recent advances for each perception range and suggest some potential future research directions worthy of investigating in this field

    Selected Papers from the 2018 IEEE International Workshop on Metrology for the Sea

    Get PDF
    This Special Issue is devoted to recent developments in instrumentation and measurement techniques applied to the marine field. ¶The sea is the medium that has allowed people to travel from one continent to another using vessels, even today despite the use of aircraft. It has also been acting as a great reservoir and source of food for all living beings. However, for many generations, it served as a landfill for depositing conventional and nuclear wastes, especially in its deep seabeds, and we are assisting in a race to exploit minerals and resources, different from foods, encompassed in it. Its health is a great challenge for the survival of all humanity since it is one of the most important environmental components targeted by global warming. ¶ As everyone may know, measuring is a step that generates substantial knowledge about a phenomenon or an asset, which is the basis for proposing correct solutions and making proper decisions. However, measurements in the sea environment pose unique difficulties and opportunities, which is made clear from the research results presented in this Special Issue
    corecore