417 research outputs found

    Determinising Parity Automata

    Full text link
    Parity word automata and their determinisation play an important role in automata and game theory. We discuss a determinisation procedure for nondeterministic parity automata through deterministic Rabin to deterministic parity automata. We prove that the intermediate determinisation to Rabin automata is optimal. We show that the resulting determinisation to parity automata is optimal up to a small constant. Moreover, the lower bound refers to the more liberal Streett acceptance. We thus show that determinisation to Streett would not lead to better bounds than determinisation to parity. As a side-result, this optimality extends to the determinisation of B\"uchi automata

    An Efficient Normalisation Procedure for Linear Temporal Logic and Very Weak Alternating Automata

    Full text link
    In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form ⋀i=1nGFφi∨FGψi\bigwedge_{i=1}^n \mathbf{G}\mathbf{F} \varphi_i \vee \mathbf{F}\mathbf{G} \psi_i, where φi\varphi_i and ψi\psi_i contain only past operators. Some years later, Chang, Manna, and Pnueli built on this result to derive a similar normal form for LTL. Both normalisation procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. We improve on both points. We present a direct and purely syntactic normalisation procedure for LTL yielding a normal form, comparable to the one by Chang, Manna, and Pnueli, that has only a single exponential blow-up. As an application, we derive a simple algorithm to translate LTL into deterministic Rabin automata. The algorithm normalises the formula, translates it into a special very weak alternating automaton, and applies a simple determinisation procedure, valid only for these special automata.Comment: This is the extended version of the referenced conference paper and contains an appendix with additional materia

    Robust Linear Temporal Logic

    Get PDF
    Although it is widely accepted that every system should be robust, in the sense that "small" violations of environment assumptions should lead to "small" violations of system guarantees, it is less clear how to make this intuitive notion of robustness mathematically precise. In this paper, we address this problem by developing a robust version of Linear Temporal Logic (LTL), which we call robust LTL and denote by rLTL. Formulas in rLTL are syntactically identical to LTL formulas but are endowed with a many-valued semantics that encodes robustness. In particular, the semantics of the rLTL formula φ⇒ψ\varphi \Rightarrow \psi is such that a "small" violation of the environment assumption φ\varphi is guaranteed to only produce a "small" violation of the system guarantee ψ\psi. In addition to introducing rLTL, we study the verification and synthesis problems for this logic: similarly to LTL, we show that both problems are decidable, that the verification problem can be solved in time exponential in the number of subformulas of the rLTL formula at hand, and that the synthesis problem can be solved in doubly exponential time

    Lazy Probabilistic Model Checking without Determinisation

    Get PDF
    The bottleneck in the quantitative analysis of Markov chains and Markov decision processes against specifications given in LTL or as some form of nondeterministic B\"uchi automata is the inclusion of a determinisation step of the automaton under consideration. In this paper, we show that full determinisation can be avoided: subset and breakpoint constructions suffice. We have implemented our approach---both explicit and symbolic versions---in a prototype tool. Our experiments show that our prototype can compete with mature tools like PRISM.Comment: 38 pages. Updated version for introducing the following changes: - general improvement on paper presentation; - extension of the approach to avoid full determinisation; - added proofs for such an extension; - added case studies; - updated old case studies to reflect the added extensio

    Index problems for game automata

    Full text link
    For a given regular language of infinite trees, one can ask about the minimal number of priorities needed to recognize this language with a non-deterministic, alternating, or weak alternating parity automaton. These questions are known as, respectively, the non-deterministic, alternating, and weak Rabin-Mostowski index problems. Whether they can be answered effectively is a long-standing open problem, solved so far only for languages recognizable by deterministic automata (the alternating variant trivializes). We investigate a wider class of regular languages, recognizable by so-called game automata, which can be seen as the closure of deterministic ones under complementation and composition. Game automata are known to recognize languages arbitrarily high in the alternating Rabin-Mostowski index hierarchy; that is, the alternating index problem does not trivialize any more. Our main contribution is that all three index problems are decidable for languages recognizable by game automata. Additionally, we show that it is decidable whether a given regular language can be recognized by a game automaton

    Games with Trading of Control

    Get PDF

    Responsibility and verification: Importance value in temporal logics

    Full text link
    We aim at measuring the influence of the nondeterministic choices of a part of a system on its ability to satisfy a specification. For this purpose, we apply the concept of Shapley values to verification as a means to evaluate how important a part of a system is. The importance of a component is measured by giving its control to an adversary, alone or along with other components, and testing whether the system can still fulfill the specification. We study this idea in the framework of model-checking with various classical types of linear-time specification, and propose several ways to transpose it to branching ones. We also provide tight complexity bounds in almost every case.Comment: 22 pages, 12 figure

    Temporalised Description Logics for Monitoring Partially Observable Events

    Get PDF
    Inevitably, it becomes more and more important to verify that the systems surrounding us have certain properties. This is indeed unavoidable for safety-critical systems such as power plants and intensive-care units. We refer to the term system in a broad sense: it may be man-made (e.g. a computer system) or natural (e.g. a patient in an intensive-care unit). Whereas in Model Checking it is assumed that one has complete knowledge about the functioning of the system, we consider an open-world scenario and assume that we can only observe the behaviour of the actual running system by sensors. Such an abstract sensor could sense e.g. the blood pressure of a patient or the air traffic observed by radar. Then the observed data are preprocessed appropriately and stored in a fact base. Based on the data available in the fact base, situation-awareness tools are supposed to help the user to detect certain situations that require intervention by an expert. Such situations could be that the heart-rate of a patient is rather high while the blood pressure is low, or that a collision of two aeroplanes is about to happen. Moreover, the information in the fact base can be used by monitors to verify that the system has certain properties. It is not realistic, however, to assume that the sensors always yield a complete description of the current state of the observed system. Thus, it makes sense to assume that information that is not present in the fact base is unknown rather than false. Moreover, very often one has some knowledge about the functioning of the system. This background knowledge can be used to draw conclusions about the possible future behaviour of the system. Employing description logics (DLs) is one way to deal with these requirements. In this thesis, we tackle the sketched problem in three different contexts: (i) runtime verification using a temporalised DL, (ii) temporalised query entailment, and (iii) verification in DL-based action formalisms

    Strategy Complexity of Parity Objectives in Countable MDPs

    Get PDF
    We study countably infinite MDPs with parity objectives. Unlike in finite MDPs, optimal strategies need not exist, and may require infinite memory if they do. We provide a complete picture of the exact strategy complexity of ε\varepsilon-optimal strategies (and optimal strategies, where they exist) for all subclasses of parity objectives in the Mostowski hierarchy. Either MD-strategies, Markov strategies, or 1-bit Markov strategies are necessary and sufficient, depending on the number of colors, the branching degree of the MDP, and whether one considers ε\varepsilon-optimal or optimal strategies. In particular, 1-bit Markov strategies are necessary and sufficient for ε\varepsilon-optimal (resp. optimal) strategies for general parity objectives.Comment: This is the full version of a paper presented at CONCUR 202
    • …
    corecore