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Abstract
The interaction among components in a system is traditionally modeled by a game. In the turned-
based setting, the players in the game jointly move a token along the game graph, with each
player deciding where to move the token in vertices she controls. The objectives of the players are
modeled by ω-regular winning conditions, and players whose objectives are satisfied get rewards.
Thus, the game is non-zero-sum, and we are interested in its stable outcomes. In particular, in the
rational-synthesis problem, we seek a strategy for the system player that guarantees the satisfaction
of the system’s objective in all rational environments. In this paper, we study an extension of the
traditional setting by trading of control. In our game, the players may pay each other in exchange
for directing the token also in vertices they do not control. The utility of each player then combines
the reward for the satisfaction of her objective and the profit from the trading. The setting combines
challenges from ω-regular graph games with challenges in pricing, bidding, and auctions in classical
game theory. We study the theoretical properties of parity trading games: best-response dynamics,
existence and search for Nash equilibria, and measures for equilibrium inefficiency. We also study
the rational-synthesis problem and analyze its tight complexity in various settings.
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1 Introduction

Synthesis is the automated construction of a system from its specification. A useful way to
approach synthesis of reactive systems is to consider the situation as a game between the
system and its environment. Together, they generate a computation, and the system wins
if the computation satisfies the specification. Thus, synthesis is reduced to generation of a
winning strategy for the system in the game – a strategy that ensures that the system wins
against all environments [1, 35].

Nowadays systems have rich structures. More and more systems lack a centralized
authority and involve selfish users, giving rise to an extensive study of multi-agent systems [2]
in which the agents have their own objectives, and thus correspond to non-zero-sum games
[33]: the outcome of the game may satisfy the objectives of a subset of the agents.

The rich settings in which synthesis is applied have led to more involved definitions
of the problem. First, in rational synthesis [26, 28, 24, 25, 30], the goal is to construct a
system that satisfies the specification in all rational environments, namely environments
that are composed of components that have their own objectives and act to achieve their
objectives. The system can capitalize on the rationality of the environment, leading to
synthesis of specifications that cannot be synthesized in hostile environments. Then, in
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19:2 Games with Trading of Control

quantitative synthesis, the satisfaction value of a specification in a computation need not be
Boolean. Thus, beyond correctness, specifications may describe quality, enabling the specifier
to prioritize different satisfaction scenarios. For example, the value of a computation may
be a value in N, reflecting costs and rewards to events along the computation. A synthesis
algorithm aims to construct systems that satisfy their objectives in the highest possible value
[3, 5, 6, 18, 20]. Quantitative rational synthesis then combines the two extensions, with
systems composed of rational components having quantitative objectives [26, 28, 6, 19].

Viewing synthesis as a game has led to a fruitful exchange of ideas between formal
methods and game theory [17, 27]. The extensions to rational and quantitative synthesis make
the connection between the two communities stronger. Indeed, rationality is a prominent
notion in game theory, and most studies in game theory involve quantitative utilities for
the players. Classical game theory concerns games for economy-driven applications like
resource allocation, pricing, bidding, auctions, and more [37, 33]. Many more useful ideas in
classical game theory are waiting to be explored and used in the context of synthesis [23].
In this paper, we introduce and study a framework for extending synthesis with trading of
control. For example, in a communication network in which each company controls a subset
of the routers, companies may pay each other in exchange for committing on some routing
decisions, and in a system consisting of a server and clients, clients may pay the server for
allocating resources in some beneficial way. The decisions of the players in such settings
depend on both their behavioral objectives and their desire to maximize the profit from the
trade. When a media company decides, for example, how many and which advertisements it
broadcasts, its decisions depend not only on the expected revenue but also on its need to
limit the volume (and hopefully also content) of commercial content it broadcasts [16, 31].
More examples include shields in synthesis, which can alter commands issued by a controller,
aiming to guarantee maximal performance with minimal interference [7, 9].

Our framework considers multi-agent systems modeled by a game played on a graph.
Since we care about infinite on-going behaviors of the system, we consider infinite paths in
the graph, which correspond to computations of the system. We study settings in which
each of the players has control in different parts of the system. Formally, if there are n

players, then there is a partition V1, . . . , Vn of the set of vertices in the game graph among
the players, with Player i controlling the vertices in Vi. The game is turn-based: starting
from an initial vertex, the players jointly move a token along the game graph, with each
player deciding where to move the token in vertices she controls. A strategy for Player i

directs her how to move a token that reaches a vertex in Vi. A profile is a vector of strategies,
one for each player, and the outcome of a profile is the path generated when the players
follow their strategies in the profile. The objectives of the players refer to the generated path.
In classical parity games (PGs, for short), they are given by parity winning conditions over
the set of vertices of the graph. Thus, each player has a coloring that assigns numbers to
vertices in the graph, and her objective is that the minimal color the path visits infinitely
often is even. While satisfaction of the parity winning condition is Boolean, the players get
quantitative rewards for satisfying their objectives.

In parity trading games (PTG, for short), a strategy for Player i is composed of two
strategies: a buying strategy, which specifies, for each edge ⟨v, u⟩ in the game, how much
Player i offers to pay the player that controls v in exchange for this player selling ⟨v, u⟩; that
is, for always choosing u as v’s successor; and a selling strategy, which specifies, for each
vertex v ∈ Vi, which edge from v is sold, as a function of the offers that Player i receives
from the other players. Note that Player i need not sell the edge that gets the highest offer.
Indeed, her choice also depends on her objective. Also note that selling strategies are similar
to memoryless strategies in PGs, in the sense that a sold edge is going to be traversed in
all the visits of the token to its source vertex, regardless of the history of the path. Recall
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that we consider parity winning conditions, which admits memoryless winning strategies.
Accordingly, if a player can force the satisfaction of her parity objective in a PG she can also
force the satisfaction of her parity objective in the corresponding PTG.

A profile of strategies in a PTG induces a set of sold edges, one from each vertex. Hence,
as in PGs, the outcome of each profile is a path in the game. The utility of Player i in the
game is the sum of two factors: a satisfaction profit, which, as in PGs, is a reward that
Player i receives if the outcome satisfies her objective, and a trading profit, which is the sum
of payments she receives from the other players, minus the sum of payments she gives others,
where payments are made only for sold edges.

Related work studies synthesis of systems that combine behavioral and monetary object-
ives. One direction of work considers systems with budgets. The budget can be used for
tasks such as sensing of input signals, purchase of library components [22, 15, 4], and, in
the context of control – shielding a controller that interacts with a plant [7, 9]. Even closer
is work in which the players can use the budget in order to negotiate control. The most
relevant work here is on bidding games [12]: graph games in which in each turn an auction is
held in order to determine which player gets control. That is, whenever the token is on a
vertex v, the players submit bids, the player with the highest bid wins, she decides to which
successor of v to move the token, and the budgets of the players are updated according to the
bids. Variants of the game refer to its duration, the type of objectives, the way the budgets
are updated, and more [13, 14, 11]. Trading games are very different from bidding games: in
trading games, negotiation about buying and selling of control takes place before the game
starts, and no auctions are held during the game. Also, the games include an initial partition
of control, as is the natural setting in multi-agent systems. Moreover, control in trading
games is not sold to the highest offer. Rather, selling strategies may depend in the objective
of the seller. Finally, the games are non-zero-sum, and are studied for arbitrary number of
players.

Another direction of related work considers systems with dynamic change of control
that do not involve monetary objectives, such as pawn games [10]: zero-sum turn-based
games in which the vertices are statically partitioned between a set of pawns, the pawns are
dynamically partitioned between the players, and the player that chooses the successor for
a vertex v at a given turn is the player that controls the pawn to which v belongs. At the
end of each turn, the partition of the pawns among the players is updated according to a
predetermined mechanism.

Since a PTG is non-zero-sum, interesting questions about it concern stable outcomes, in
particular Nash equilibria (NE) [32]. A profile is an NE if no player has a beneficial deviation;
thus, no player can increase her utility by changing her strategy in the profile. Note that in
PTGs, a change of a strategy amounts to a change in the buying or selling strategies, or in
both of them.

We first study best response in PTGs – the problem of finding the most beneficial deviation
for a player in a given profile. We show that the problem can be reduced to the problem of
finding shortest paths in weighted graphs. Essentially, the weights in the graph are induced
by the maximal profit that a player can make from selling edges from vertices she owns and
the minimal profit she may lose in order to buy edges from vertices she does not own. We
conclude that the problem can be solved in polynomial time. We also study best response
dynamics – a process in which, as long as the profile is not an NE, some player is chosen
to perform her best response. We show that trading makes the setting less stable, in the
sense that best response dynamics need not converge to an NE, even when convergence is
guaranteed in the underlying PG. On the positive side, as is the case in PGs, every PTG has
an NE.

CONCUR 2023
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We continue and study rational synthesis in PTGs. Two approaches to rational synthesis
have been studied. In cooperative rational synthesis (CRS) [26], the desired output is an
NE profile whose outcome satisfies the objective of the system. In non-cooperative rational
synthesis (NRS) [28], we seek a strategy for the system such that its objective is satisfied in
the outcome of all NE profiles that include this strategy. In settings with quantitative utilities,
in particular PTGs, the input to the CRS and NRS problems includes a threshold t ≥ 0,
and we replace the requirement for the system to satisfy her objective by the requirement
that her utility is at least t. The two approaches have to do with the technical ability to
communicate strategies to the environment players, say due to different architectures, as well
as with the willingness of the environment players to follow a suggested strategy. As shown
in [6], the two approaches are related to the two stability-inefficiency measures of price of
stability (PoS) [8] and price of anarchy (PoA) [29, 34], and we study these measures in the
context of PTG.

Problem Finding an NE Cooperative Rational Synthesis Non-cooperative Rational Synthesis

Parity Games UP \ co-UP fixed n
NP-complete unfixed n

[37], [Th. 5]

UP \ co-UP fixed n
NP-complete unfixed n

[22], [37]

PSPACE, NP-hard, co-NP-hard fixed n
EXPTIME, PSPACE-hard unfixed n

[22]

Parity Trading Games NP-complete
[Th. 10]

NP-complete n = 2
⌃P

2-complete n � 3
[Th. 12], [Th. 13]

Büchi Games PTIME
[37], [Th. 5]

PTIME
[37]

PTIME fixed n
PSPACE-complete unfixed n

[22]

Büchi Trading Games NP-complete
[Th. 10]

NP-complete n = 2
⌃P

2-complete n � 3 or unfixed n
[Th. 12], [Th. 13]

TABLE I
COMPLEXITY OF DIFFERENT PROBLEMS ON n-PLAYER PGS, PTGS, BGS, AND BTGS.

and to ensure the consistency of suggested assignments. When
the number of players in the environment is bigger than 2,
we can use trade among the environment players in order to
simulate universal quantification, which explains the transition
form NP to ⌃P

2 .
Our complexity results on !-regular trading games and their

comparison to standard !-regular non-zero-sum games are
summarized in Table I.

II. PRELIMINARIES

For n � 1, let [n] = {1, ..., n}. An n-player game graph

is a tuple G = h{Vi}i2[n], v0, Ei, where {Vi}i2[n] are disjoint
sets of vertices, each owned by a different player, and we let
V =

S
i2[n] Vi. Then, v0 2 V1 is an initial vertex, which we

assume to be owned by Player 1, and E ✓ V ⇥ V is a total
edge relation, thus for every v 2 V , there is at least one u 2 V
such that hv, ui 2 E. The size |G| of G is |E|, namely the
number of edges in it.

For every vertex v 2 V , we denote by succ(v) the set of
successors of v in G. That is, succ(v) = {u 2 V : hv, ui 2 E}.
Also, for every v 2 V , we denote by Ev the set of edges from
v. That is, Ev = {hv, ui : u 2 succ(v)}. Then, for every
i 2 [n], we denote by Ei the set of edges whose source vertex
is owned by Player i. That is, Ei =

S
v2Vi

Ev .
In the beginning of the game, a token is placed on v0. The

players control the movement of the token in vertices they
own: In each turn in the game, the player that owns the vertex
with the token chooses a successor vertex and moves the token
to it. Together, the players generate a play ⇢ = v0, v1, . . . in
G, namely an infinite path that starts in v0 and respects E: for
all i � 0, we have that (vi, vi+1) 2 E.

For a play ⇢ = v0, v1, . . ., we denote by inf(⇢) the set
of vertices visited infinitely often along ⇢. That is, inf(⇢) =
{v 2 V : there are infinitely many i � 0 such that vi = v}.
A parity objective is given by a coloring function ↵ : V !
{0, . . . , k}, for some k � 0, and requires the minimal color
visited infinitely often along ⇢ to be even. Formally, a play
⇢ satisfies ↵ iff min{↵(v) : v 2 inf(⇢)} is even. A Büchi

objective is a special case of parity. For simplicity, we describe
a Büchi objective by a set of vertices ↵ ✓ V . The condition

requires that some vertex in ↵ is visited infinitely often along
⇢, thus inf(⇢) \ ↵ 6= ;.

A parity game (PG, for short) is a tuple G =
hG, {↵i}i2[n], {Ri}i2[n]i, where G is a n-player game graph,
and for every i 2 [n], we have that ↵i : V ! {0, . . . , ki} is
a parity objective for Player i. Intuitively, for every i 2 [n],
Player i aims for a play ⇢ that satisfies her objective ↵i, and
Ri 2 N is a reward that Player i gets when ↵i is satisfied.
Büchi games (BG, for short) are defined similarly, with Büchi
objectives.

A strategy for Player i is a function fi : V ⇤ · Vi ! V that
directs her how to move the token in vertices she owns. Thus,
fi maps prefixes of plays to possible extensions in a way that
respects E: for every ⇢ · v with ⇢ 2 V ⇤ and v 2 Vi, we have
that (v, fi(⇢·v)) 2 E. A strategy fi for Player i is memoryless

if it only depends on the current vertex. That is, if for every
two histories h, h0 2 V ⇤ and vertex v 2 Vi, we have that
fi(h · v) = fi(h0 · v). Note that a memoryless strategy can be
viewed as a function fi : Vi ! V .

A profile is a tuple ⇡ = hf1, ..., fni of strategies, one for
each player. The outcome of a profile ⇡ = hf1, ..., fni is
the play obtained when the players follow their strategies.
Formally, Outcome(⇡) = v0, v1, ... is such that for all j � 0,
we have that vj+1 = fi(v0, v1, . . . , vj), where i 2 [n] is such
that vj 2 Vi.

For every profile ⇡ and i 2 [n], we say that Player i wins

in ⇡ if Outcome(⇡) |= ↵i. Otherwise, Player i loses in ⇡. We
denote by Win(⇡) the set of players that win in ⇡. Then, the
satisfaction profit of Player i in ⇡, denoted sprofiti(⇡), is Ri

if i 2Win(⇡), and is 0 otherwise.
As the objectives of the players may overlap, the game is

not zero-sum and thus we are interested in stable profiles in
the game. A profile ⇡ = hf1, ..., fni is a Nash Equilibrium

(NE, for short) [33] if, intuitively, no player can benefit
(that is, increase her profit) from unilaterally changing her
strategy. Formally, for i 2 [n] and some strategy f 0

i for
Player i, let ⇡[i  f 0

i ] = hf1, ..., fi�1, f 0
i , fi+1, ..., fni be

the profile in which Player i deviates to the strategy f 0
i . We

say that ⇡ is an NE if for every i 2 [n], we have that
sprofiti(⇡) � sprofiti(⇡[i  f 0

i ]), for every strategy f 0
i for

Player i. That is, no player can unilaterally increase her profit.

3

Figure 1 Complexity of different problems on n-player PGs, PTGs, BGs, and BTGs.

In PGs, the tight complexity of rational synthesis is still open, and depends on whether
the number of players is fixed. We show that in PTGs, CRS is NP-complete, and the
complexity of NRS depends on the number of players: it is NP-complete for two players
and is ΣP

2 -complete for three or more (in particular, unfixed number of) players. Our upper
bounds are based on reductions to a sequence of shortest-path algorithms in weighted graphs.
They hold also for an unfixed number of players, making rational synthesis with an unfixed
number of players easier in PTGs than in PGs. Intuitively, it follows from the fact that
deviations in the selling or buying strategies of single players in PTGs induce a change in the
outcome only if they are matched by the buying and selling strategies, respectively, of players
that do not deviate. Our lower bounds involve reductions from SAT and QBF2, where trade
is used to incentive a satisfying assignment, when exists, and to ensure the consistency of
suggested assignments. When the number of players in the environment is bigger than 2, we
can use trade among the environment players in order to simulate universal quantification,
which explains the transition form NP to ΣP

2 .
Our complexity results on ω-regular trading games and their comparison to standard

ω-regular non-zero-sum games are summarized in the table in Figure 1. Due to the lack of
space, examples and some proofs are omitted or given partially, and can be found at the full
version.

2 Preliminaries

For n ≥ 1, let [n] = {1, . . . , n}. An n-player game graph is a tuple G = ⟨{Vi}i∈[n], v0, E⟩,
where {Vi}i∈[n] are disjoint sets of vertices, each owned by a different player, and we let
V =

⋃
i∈[n] Vi. Then, v0 ∈ V1 is an initial vertex, which we assume to be owned by Player 1,

and E ⊆ V × V is a total edge relation, thus for every v ∈ V , there is at least one u ∈ V

such that ⟨v, u⟩ ∈ E. The size |G| of G is |E|, namely the number of edges in it.
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For every vertex v ∈ V , we denote by succ(v) the set of successors of v in G. That is,
succ(v) = {u ∈ V : ⟨v, u⟩ ∈ E}. Also, for every v ∈ V , we denote by Ev the set of edges from
v. That is, Ev = {⟨v, u⟩ : u ∈ succ(v)}. Then, for every i ∈ [n], we denote by Ei the set of
edges whose source vertex is owned by Player i. That is, Ei =

⋃
v∈Vi

Ev.
In the beginning of the game, a token is placed on v0. The players control the movement

of the token in vertices they own: In each turn in the game, the player that owns the vertex
with the token chooses a successor vertex and moves the token to it. Together, the players
generate a play ρ = v0, v1, . . . in G, namely an infinite path that starts in v0 and respects E:
for all i ≥ 0, we have that (vi, vi+1) ∈ E.

For a play ρ = v0, v1, . . ., we denote by inf(ρ) the set of vertices visited infinitely often
along ρ. That is, inf(ρ) = {v ∈ V : there are infinitely many i ≥ 0 such that vi = v}. A
parity objective is given by a coloring function α : V → {0, . . . , k}, for some k ≥ 0, and
requires the minimal color visited infinitely often along ρ to be even. Formally, a play ρ

satisfies α iff min{α(v) : v ∈ inf(ρ)} is even. A Büchi objective is a special case of parity. For
simplicity, we describe a Büchi objective by a set of vertices α ⊆ V . The condition requires
that some vertex in α is visited infinitely often along ρ, thus inf(ρ) ∩ α ̸= ∅.

A parity game (PG, for short) is a tuple G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩, where G is a
n-player game graph, and for every i ∈ [n], we have that αi : V → {0, . . . , ki} is a parity
objective for Player i. Intuitively, for every i ∈ [n], Player i aims for a play ρ that satisfies
her objective αi, and Ri ∈ N is a reward that Player i gets when αi is satisfied. Büchi games
(BG, for short) are defined similarly, with Büchi objectives. We assume that at least one
condition is satisfiable.

A strategy for Player i is a function fi : V ∗ · Vi → V that directs her how to move the
token in vertices she owns. Thus, fi maps prefixes of plays to possible extensions in a way
that respects E: for every ρ · v with ρ ∈ V ∗ and v ∈ Vi, we have that (v, fi(ρ · v)) ∈ E. A
strategy fi for Player i is memoryless if it only depends on the current vertex. That is, if
for every two histories h, h′ ∈ V ∗ and vertex v ∈ Vi, we have that fi(h · v) = fi(h′ · v). Note
that a memoryless strategy can be viewed as a function fi : Vi → V .

A profile is a tuple π = ⟨f1, . . . , fn⟩ of strategies, one for each player. The outcome of a
profile π = ⟨f1, . . . , fn⟩ is the play obtained when the players follow their strategies. Formally,
Outcome(π) = v0, v1, . . . is such that for all j ≥ 0, we have that vj+1 = fi(v0, v1, . . . , vj),
where i ∈ [n] is such that vj ∈ Vi. For every profile π and i ∈ [n], we say that Player i wins
in π if Outcome(π) |= αi. Otherwise, Player i loses in π. We denote by Win(π) the set of
players that win in π. Then, the satisfaction profit of Player i in π, denoted sprofiti(π), is
Ri if i ∈Win(π), and is 0 otherwise.

As the objectives of the players may overlap, the game is not zero-sum and thus we are
interested in stable profiles in the game. A profile π = ⟨f1, . . . , fn⟩ is a Nash Equilibrium
(NE, for short) [32] if, intuitively, no player can benefit (that is, increase her profit) from
unilaterally changing her strategy. Formally, for i ∈ [n] and some strategy f ′

i for Player i,
let π[i ← f ′

i ] = ⟨f1, . . . , fi−1, f ′
i , fi+1, . . . , fn⟩ be the profile in which Player i deviates to

the strategy f ′
i . We say that π is an NE if for every i ∈ [n], we have that sprofiti(π) ≥

sprofiti(π[i ← f ′
i ]), for every strategy f ′

i for Player i. That is, no player can unilaterally
increase her profit.

In rational synthesis, we consider a game between a system, modeled by Player 1, and an
environment composed of several components, modeled by Players 2 . . . n. Then, we seek a
strategy for Player 1 with which she wins, assuming rationality of the other players. Note
that the system may also be composed of several components, each with its own objective.
It is not hard to see, however, that they can be merged to a single player whose objective is
the conjunction of the underlying components.

CONCUR 2023



19:6 Games with Trading of Control

We say that a profile π = ⟨f1, . . . , fn⟩ is a 1-fixed NE, if no player i ∈ [n] \ {1} has a
beneficial deviation. We formalize the intuition behind rational synthesis in two ways, as
follows. Consider an n-player game G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩, and a threshold t ≥ 0.
The problem of cooperative rational synthesis (CRS) is to return a 1-fixed NE π such that
sprofit1(π) ≥ t. The problem of non-cooperative rational synthesis (NRS) is to return a
strategy f1 for Player 1 such that for every 1-fixed NE π that extends f1, we have that
sprofit1(π) ≥ t.

As in traditional synthesis, one can also define the corresponding decision problems, of
rational realizability, where we only need to decide whether the desired strategies exist. In
order to avoid additional notations, we refer to CRS and NRS also as decision problems.

3 Parity Trading Games

Parity trading games (PTG, for short, or BTG, when the objectives of the players are Büchi
objectives) are similar to parity games, except that now, the movement of the token along
the game graph depends on trade among the players, who pay each other in exchange for
certain behaviors. Thus, instead of strategies that direct them how to move the token, now
the players have strategies that direct the trade.

Consider a PTG G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩, defined on top of a game graph G =
⟨{Vi}i∈[n], v0, E⟩. A buying strategy for Player i is a function bi : E → N that maps each
edge e = ⟨v, u⟩ ∈ E to the price that Player i is willing to pay to the owner of v in exchange
for selling e; that is, for always choosing u as v’s successor when the token is in v. For edges
e ∈ Ei, we require bi(e) to be 0.

Consider a vector β = ⟨b1, . . . , bn⟩ of buying strategies, one for each player. The vector β

determines, for an edge e ∈ E, the collective price that the players are willing to pay for e.
Accordingly, we sometime refer to β as a price list, namely a function in NE , where for every
e ∈ E, we have that β(e) =

∑
i∈[n] bi(e).

A selling strategy for Player i determines which edges Player i sells. The strategy is a
collection of policies, which determines for each v ∈ Vi, which edge from v to sell, given prices
offered for the edges in Ev. Formally, a selling policy for v ∈ Vi is a function sv : NEv → Ev

that maps each price list for the edges in Ev to an edge in Ev. Note that the mapping is
arbitrary, thus a player need not sell the edge that gets the highest price. We refer to the
selling strategy for Player i, thus the collection {sv : v ∈ Vi} of selling policies for her vertices,
as a function si : NE → 2Ei that maps price lists to the set of edges that Player i chooses to
sell. Note also that selling strategies in PTGs are similar to memoryless strategies in PGs, in
the sense that the choice of the edge that is sold from v is independent of the history of the
game.

A profile is a tuple π = ⟨(b1, s1), . . . , (bn, sn)⟩ of pairs of buying and selling strategies, one
for each player. We sometime refer to the pair of buying and selling strategies for Player i as
a single strategy, and use the notation fi = (bi, si). We also use βπ to denote the price list
induced by the buying strategies in π. We say that an edge e ∈ Ei is sold in π iff e ∈ si(βπ).
We denote by S(π) the set of edges sold in π. Recall that for every v ∈ V , there exists exactly
one edge e ∈ Ev such that e ∈ S(π). The outcome of a profile π, denoted Outcome(π), is
then the path v0, v1, . . ., where for all j ≥ 0, we have that (vj , vj+1) ∈ S(π).

As in PGs, the satisfaction profit of Player i in π, denoted sprofiti(π), is Ri if αi is
satisfied in Outcome(π), and is 0 otherwise. In PTGs, however, we consider also the trading
profits of the players: For every player i ∈ [n], the gain of Player i in π, denoted gaini(π),
is the sum of payments she receives from other players, and the loss of Player i, denoted
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lossi(π), is the sum of payments she pays others. That is, gaini(π) =
∑

e∈S(π)∩Ei
βπ(e), and

lossi(π) =
∑

e∈S(π) bi(e). Then, the trading profit of Player i in π, denoted tprofiti(π), is her
gain minus her loss in π. That is, tprofiti(π) = gaini(π)− lossi(π). Note that while all the
edges in Outcome(π) are in S(π), not all edges in S(π) are traversed during the play. Still,
payments depend only on S(π), regardless of whether the edges are traversed. Finally, the
utility of Player i in π, denoted utili(π), is the sum of her satisfaction and trading profits in
π. That is, utili(π) = sprofiti(π) + tprofiti(π). The definitions of beneficial deviations, NEs,
and 1-fixed NEs are then defined as in the case of PG.

Note that the definition of a selling strategy si as a function from NE hides the fact that
the selling policy for each vertex v ∈ Vi depends only on the price list for the edges in Ev.
Note also that as there are infinitely many price lists, an enumerative presentation of selling
strategies is infinite. As we detail in the full version, we assume that selling strategies are
given symbolically. For example, a selling strategy for a vertex v with successors {u1, u2, u3},
may be “if the price offered for u2 is at least p, then sell (v, u2); otherwise, sell (v, u1)”.
Specifically, a strategy for Player i is given by a set of pairs of the form ⟨b, T ⟩, where b is
a predicate on NE and T ⊆ Ei is the set of edges that Player i sells when then price list
satisfies b. The predicates are disjoint, and can be computed in polynomial time. In the full
version we also argue that every profile π of strategies can be simplified so that the set of
winners and the utilities for the players are preserved, and all prices are of polynomial size.
As we argue in the sequel, restricting attention to simple profiles and to strategies that can
be represented symbolically does not lose generality, in the sense that whenever we search
for a profile of strategies and a desired profile exists, then there is also a profile that consists
of strategies that can be represented symbolically.

Describing a profile π = ⟨(b1, s1), . . . , (bn, sn)⟩, we sometimes use a symbolic description,
as follows. For players i, j ∈ [n], an edge e ∈ Ej , and a price p ∈ N, we say that Player i

offers to buy e for price p if bi(e) = p, and that Player i pays p for e if, in addition, e ∈ sj(βπ).
For a vertex v ∈ Vi, and an edge e = ⟨v, u⟩ ∈ Ev, we say that Player i moves from v to u,
if e ∈ si(βπ), thus Player i sells e in βπ. Then, we say that Player i always moves from v

to u, if Player i always sells e, thus e ∈ si(β) for every price list β. Describing a deviation
from π to a profile π′ = ⟨(b′

1, s′
1), . . . , (b′

n, s′
n)⟩, we sometimes use a symbolic description, as

follows. For a player i ∈ [n] and an edge e ∈ E, we say that Player i cancels the purchase of
e if bi(e) > 0 and b′

i(e) = 0. For an edge e ∈ Ei, we say that Player i cancels the sale of e if
e ∈ si(βπ) and e /∈ si(βπ′).

4 Stability in Parity Trading Games

In this section we study the stability of PTGs. We start with the best-response problem,
which searches for deviations that are most beneficial for the players, and show that the
problem can be solved in polynomial time. On the negative side, a best-response dynamics in
PTGs, where players repeatedly perform their most beneficial deviations, need not converge.
We then study the existence of NEs in PTGs, show that every PTG has an NE, and relate
the stability in a PTG and its underlying PG. Finally, we study the inefficiency that may be
caused by instability, and show that the price of stability and price of anarchy in PTGs are
unbounded and infinite, respectively.

Throughout this section, we consider an n-player game G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩,
defined on top of a game graph G = ⟨{Vi}i∈[n], v0, E⟩. We use GP and GT to denote G when
viewed as a PG and PTG, respectively.
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4.1 Best response
The input to the best response (BR, for short) problem is a game G, a profile π, and i ∈ [n].
The goal is to find a strategy f ′

i for Player i such that utili(π[i ← f ′
i ]) is maximal. We

describe an algorithm that solves the BR problem in polynomial time. The key idea behind
our algorithm is as follows. Consider a profile π = ⟨(b1, s1), . . . , (bn, sn)⟩. Recall that the
utility of Player i in π is the sum of her satisfaction and trading profits in π. If Player i

ignores her objective and only tries to maximize her trading profit, then her strategy is
straightforward: she buys no edge, and in each vertex v ∈ Vi, she sells an edge with the
maximal price in βπ. If there is a strategy f∗

i as above such that the outcome of π[i← f∗
i ]

satisfies αi, then clearly f∗
i is a best response for Player i, and we are done. Otherwise, the

algorithm searches for a minimal reduction in the trading profit with which Player i can
induce an outcome that satisfies αi. For this, the algorithm labels each edge e = ⟨v, u⟩ in
G by the cost of ensuring that e is sold. If Player i owns e, then this cost is the difference
between βπ(e) and max{βπ(e′) : e′ ∈ Ev}. If Player i does not own e, thus v ∈ Vj , for some
player j ̸= i, then this cost is the minimal price that Player i has to offer for e in order
to change βπ to a price list β for which sj(β) = e. Once the graph G is labeled by costs
as above, the desired strategy is induced by the path with the minimal cost that satisfies
αi. Finally, if the minimal cost of satisfying αi is higher than her reward Ri, then the best
response for Player i is to give up the satisfaction of αi and follow the strategy f∗

i , in which
the maximal trading profit is attained.

We now describe the algorithm in detail. We first label the edges from every vertex v ∈ V

by costs in N. For every vertex v ∈ Vi, we denote by potential(π, v) the maximal price that
Player i can get from selling an edge from v. That is, potential(π, v) = max{βπ(e) : e ∈ Ev}.
For every vertex v ∈ Vi and edge e ∈ Ev, we define cost(π, e) as the cost for Player i of selling
e rather then an edge that attains potential(π, v). That is, cost(π, e) = potential(π, v)−βπ(e).

We continue to vertices v ̸∈ Vi. For j ∈ [n] \ {i} and an edge e ∈ Ej , we define cost(π, e)
as the minimal price that Player i needs to pay to Player j in order for her to sell e. Formally,
let Be

i be the set of buying strategies for Player i that cause Player j to sell e. That is,
Be

i = {b′
i : E → N : e ∈ sj(βπ[i← b′

i])}. When Player i uses a strategy b′
i ∈ Be

i as her buying
strategy, Player j sells e, and Player i pays the price b′

i(e). Hence, the minimal price that
Player i needs to pay in order for Player j to sell e is cost(π, e) = min{b′

i(e) : b′
i ∈ Be

i }. Note
that Be

i may be empty, in which case cost(π, e) =∞.
We define best(π) ⊆ E as the set of edges that minimize the cost of Player i. Formally,

best(π) =
⋃

v∈V best(π, v), where for v ∈ Vi, we have that best(π, v) ⊆ Ev is the set of
edges from v with which potential(π, v) is attained, thus best(π, v) = {e ∈ Ev : βπ(e) =
potential(π, v)}; and for v ∈ Vj , for j ̸= i, we have that best(π, v) is the set of edges from
v that Player i can make Player j sell without paying for e, thus best(π, v) = {e ∈ Ev :
cost(π, e) = 0}. Note that for every vertex v ∈ V , the set best(π, v) is not empty.

We say that a path ρ in G is feasible if cost(π, e) <∞ for every edge e in ρ. In Lemma 1
below, we argue that for every feasible path ρ, Player i can change her strategy in π so that
the outcome of the new profile is ρ. We also calculate the cost required for Player i to do so.

▶ Lemma 1. Let ρ be a feasible path in G. Then, there exists a strategy fρ
i for Player i

such that Outcome(π[i ← fρ
i ]) = ρ, and tprofiti(π[i ← fρ

i ]) =
∑

v∈Vi
potential(π, v) −∑

e∈ρ cost(π, e). Also, tprofiti(π[i← fρ
i ]) is the maximal trading profit for Player i when she

changes her strategy in π to a strategy that causes the outcome to be ρ.

For a path ρ in G, let fρ
i be a strategy for Player i such that the outcome of π[i← fρ

i ] is
ρ. Note that fρ

i can be described symbolically.
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Our algorithms for finding beneficial deviations are based on a search for short lassos
in weighted variants of the graph G. A lasso is a path of the form ρ1 · ρω

2 , for finite paths
ρ1 ∈ V ∗ and ρ2 ∈ V +. When G is weighted, the length of the lasso is defined as the sum of
the weights in the path ρ1 · ρ2.

▶ Theorem 2. The BR problem in PTGs can be solved in polynomial time.

Proof. Given an n-player PTG G, a profile π, and i ∈ [n], the algorithm for finding a BR for
Player i proceeds as follows.
1. Let Gbest(π) = ⟨V, best(π)⟩ be the restriction of G to edges in best(π).
2. If there is a path ρ in Gbest(π) that satisfies αi, then return fρ

i . Otherwise, let f∗
i be a

strategy for Player i that induces some lasso in Gbest(π).
3. Let G′ = ⟨V, E, w⟩ be the weighted extension of G, where w : E → N is such that for

every edge e ∈ E, we have that w(e) = cost(π, e).
4. Let ρ be a shortest (with respect to the weights in w) lasso that satisfies αi.
5. If w(ρ) ≥ Ri, then return f∗

i , else return fρ
i . ◀

Recall that a best response dynamic (BRD) is an iterative process in which as long as the
profile is not an NE, some player is chosen to perform a best response. In Theorem 3 below,
we demonstrate that a BRD in a PTG (in fact, a BTG) need not converge, even in settings
in which every BRD in the corresponding PG does converge.

▶ Theorem 3. There is a game G such that every BRD in the PG GP converges to an NE,
yet a BRD in GT need not converge.

Proof. Consider the 2-player Büchi game G = ⟨G, {α1, α2}, {1, 3}⟩, where G is described in
Figure 2, α1 = {a, c}, and α2 = {b, d}.

v0v u

a

b d

c

Figure 2 The game graph G. All the vertices are owned by Player 1.

All the vertices in G are owned by Player 1, and the vertices in α1 are reachable sinks.
Hence, once Player 1 is chosen to deviate in GP , an NE is reached.

In the full version we describe a BRD in GT that does not converge. ◀

4.2 Nash equilibria
We continue and show that while a BRD in GT need not converge even when every BRD
in GP does, we can still use NEs in GP in order to obtain NEs in GT . Consider a profile
π = ⟨f1, . . . , fn⟩ of memoryless strategies for the players in GP . We define the trivial-trading
analogue of π, denoted tt(π) as the a profile in GT that is obtained from π by replacing
each strategy fi by the pair (bi, si), for an empty buying strategy bi (that is, bi(e) = 0 for
all e ∈ E), and a selling strategy si that mimics fi (that is, for every price list β, we have
that ⟨v, u⟩ ∈ si(β) iff fi(v) = u). Note that all the strategies in tt(π) can be described
symbolically.

▶ Lemma 4. If π is an NE in GP that consists of memoryless strategies, then tt(π) is an
NE in GT .
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Lemma 4 enables us to reduce the search for an NE in an n-player PTG GT to a search
for an NE in the PG GP :

▶ Theorem 5. Every PTG has an NE, which can be found in UP ∩ co-UP when the number
of players is fixed, and in NP when the number of players is not fixed. For BTGs, an NE
can be found in polynomial time.

Recall that for solving the rational-synthesis problem, we are not interested in arbitrary
NEs, but in 1-fixed NEs in which the utility of Player 1 is above some threshold. As
we shall see now, the situation here is more complicated: searching for solutions for the
rational-synthesis problem in a PTG, we cannot reason about the corresponding PG.

▶ Theorem 6. There is a PTG GT and t ≥ 1 such that there is a 1-fixed NE πT in GT

with util1(πT ) ≥ t, yet for every 1-fixed NE of memoryless strategies π in GP , we have that
util1(tt(π)) < t.

Proof. Consider the 2-player BTG GT = ⟨G, {{a}, {b}}, {1, 3}⟩, where G appears in Figure 3.
Consider a profile πT in which the strategy for Player 1 moves from v0 to b if Player 2
offers to buy ⟨v0, b⟩ for price 2, and moves to a otherwise, and the strategy for Player 2
offers to buy ⟨v0, b⟩ for price 2. In the full version, we prove that πT is a 1-fixed NE with
util1(πT ) = 2, whereas for every 1-fixed NE of memoryless strategies π in GP , we have that
util1(tt(π)) < 2. ◀

Figure 3 The game graph G. All the vertices are owned by Player 1.

Note that while Theorem 6 considers a 1-fixed NE, and thus corresponds to the setting of
CRS, the strategy for Player 1 described there is in fact an NRS solution for the threshold
t = 2, and the latter cannot be obtained by extending an NRS solution for Player 1 in GP .

4.3 Equilibrium inefficiency
In this section we study the price of stability (PoS) and price of anarchy (PoA) measures
[33] in PTGs, describing the best-case and worst-case inefficiency of a Nash equilibrium.

Before we define these measures formally, we observe that for every PTG, outcomes that
agree on the set of winners also agree in the sum of utilities of the players. Essentially, this
follows from the fact that the trading profits for the players sum to 0. Formally, we have the
following.

▶ Lemma 7. Let ρ be a path in G, and let Win(ρ) be the set of players whose objectives
are satisfied in ρ. Then, for every profile π with Outcome(π) = ρ, we have that the sum of
utilities of the players in π is exactly

∑
i∈Win(ρ) Ri.

The social optimum in a game G, denoted SO(G), is the maximal sum of utilities that the
players can have in some profile. Thus, SO(G) is the maximal

∑
i∈[n] utili(π) over all profiles

π for G. Since every path ρ in G can be the outcome of some profile, then, by Lemma 7, we
have that SO(G) is the maximal

∑
i∈Win(ρ) Ri over all paths ρ in G.
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Let πB and πW be NEs with the highest and lowest sum of utilities for the players,
respectively. We define BNE(G) =

∑
i∈[n] utili(πB) and WNE(G) =

∑
i∈[n] utili(πW ). We

then define the price of stability in G as PoS(G) = SO(G)/BNE(G), and the price of anarchy
in G as PoA(G) = SO(G)/WNE(G). Analyzing the prices of stability and anarchy of PTGs,
we assume that all rewards in a game G are positive, thus Ri > 0 for all i ∈ [n]. Note that
without this assumption, it is easy to define a game G with SO(G) > 0 yet BNE(G) = 0, and
hence with PoS(G) = PoA(G) =∞.

We start with the price of anarchy. It is easy to see that it may be infinite even in simple
PTGs in which all rewards are positive:

▶ Theorem 8. There is a 2-player BTG G with PoA(G) =∞.

Proof. Consider the BTG G = ⟨GP oA, {{a}, {a}}, {1, 1}⟩, where the game graph GP oA is
described in Figure 4. In the full version we show that SO(G) = 1 + 1 = 2, whereas
WNE(G) = 0, and so PoA(G) = 2/0 =∞. ◀

v0 v ab

Figure 4 The game graph GP oA. The circles are vertices controlled by Player 1, and the squares
are vertices controlled by Player 2.

We continue to the price of stability. It can be shown that every PG has an NE in
which all players use memoryless strategies and at least one player satisfies her objective.
Essentially, this follows from the fact that either at least one player in the game has a strategy
to fulfill her objective from some vertex in all environments (that is, in the zero-sum game
played with her objective), or all players do not have such a strategy. In the first case, the
outcome of the required NE reaches the winning (in the zero-sum sense) vertex for the player
along vertices that are losing (in the zero-sum sense) for the other players. In the second,
the outcome traverses a lasso that satisfies the objective of at least one player but consists of
vertices that are losing (again, in the zero-sum sense) for all players. By Lemma 4, it then
follows that every PTG also has an NE in which at least one player satisfies her objective.
Thus, as we assume that all rewards are strictly positive, we conclude that BNE(G) > 0 for
every PTG G. Therefore, we cannot expect PoS(G) to be ∞, and the strongest result we can
prove is that PoS(G) is unbounded:

▶ Theorem 9. For every x ∈ N, there exists a two-player BTG G with PoS(G) = x.

Proof. Given x, consider the two-player game graph G = ⟨V1, V2, v1, E⟩, where V1 = ∅,
V2 = {v1, . . . , vx+2, u}, and E = {⟨vi, vi+1⟩, ⟨vi, u⟩ : 1 ≤ i ≤ x + 1} ∪ {⟨u, u⟩, ⟨vx+2, vx+2⟩}
(see Figure 5).

Consider the BTG G = ⟨G, {{vx+2}, {u}}, {x, 1}⟩. In the full version, we show that
SO(G) = x whereas BNE(G) = 1, thus PoS(G) = x. ◀

5 Cooperative Rational Synthesis in Parity Trading Games

In this section, we study the complexity of the the CRS problem for PTGs and BTGs. Recall
that for PGs, the CRS problem can be solved in UP ∩ co-UP when the number of players
is fixed, and is in NP when the number of players is not fixed [24]. For BGs, CRS can be
solved in polynomial time [36]. We show that trading make the problem harder: CRS in
PTGs is NP-complete already for a fixed number of players and for Büchi objectives.
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Figure 5 The game graph G. All the vertices are owned by Player 2.

▶ Theorem 10. CRS for PTGs is NP-complete. Hardness in NP holds already for BTGs.

Proof. We start with membership in NP. Given a threshold t ≥ 0, an NP algorithm
guesses a profile π, checks that util1(π) ≥ t, and checks that π is a 1-fixed NE as follows.
For every i ∈ [n] \ {1}, it finds the best response f∗

i for Player i in π, and checks that
utili(π) ≥ utili(π[i ← f∗

i ]), thus Player i has no beneficial deviation in π. By Theorem 2,
finding the best response for each player in π can be done in polynomial time, hence the
check is in polynomial time.

For the lower bound, we describe a reduction from 3-SAT to CRS in BTGs. Let
X = {x1, . . . , xn}, X = {x1, . . . , xn}, and let φ be a Boolean formula over the variables in
X, given in 3CNF. That is, φ = (l1

1 ∨ l2
1 ∨ l3

1)∧ · · · ∧ (l1
k ∨ l2

k ∨ l3
k), where for all 1 ≤ i ≤ k and

1 ≤ j ≤ 3, we have that lj
i ∈ X ∪X. For every 1 ≤ i ≤ k, let Ci = (l1

i ∨ l2
i ∨ l3

i ).
Given a formula φ, we construct (see Figure 6) a two-player BG G = ⟨GSAT , {α1, α2},

{R1, R2}⟩, where α1 = V \ {s}, α2 = {s}, R1 = n + 1 and R2 = 1, such that φ is satisfiable
iff there exists a 1-fixed NE π in G in which util1(π) ≥ 1. The main idea of the reduction
is that Player 1 chooses an assignment to the variables in X, and then Player 2 challenges
the assignment by choosing a clause of φ. The objective of Player 1 is to not get stuck in a
sink, and the objective of Player 2 is to get stuck in the sink. Whenever Player 1 chooses an
assignment to a variable, Player 2 has an opportunity to go to the sink, and Player 1 has to
buy an edge in order to prevent her from doing so. The reward R1 for Player 1 is n + 1, and
so Player 1 can buy n edges and still have utility 1. If Player 1 chooses an assignment that
satisfies φ, then she can prevent the game from going to the sink by buying only n edges –
one for each variable. Otherwise, Player 2 can choose a clause that is not satisfied by the
assignment, which forces Player 1 to buy more than n edges or give up the prevention of the
sink. ◀

Figure 6 The game graph GSAT . The circles are vertices owned by Player 1, and the squares
are vertices owned by Player 2. The dashed vertices are the corresponding literal vertices on the
assignment part of the graph.
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6 Non-cooperative Rational Synthesis in Parity Trading Games

In this section we study NRS for PTGs. Recall that in PGs, the NRS problem is in PSPACE
when the number of players is fixed, and can be solved in exponential time when their number
is not fixed [24]. In BGs, NRS can be solved in polynomial time when the number of players
is fixed, and the problem is PSPACE-complete when the number of players is not fixed. We
show that the NRS problem in PTGs and BTGs is NP-complete for games with two players,
and is ΣP

2 -complete for games with three or more players.

6.1 Two-player NRS
Consider a game G = ⟨G, {α1, α2}, {R1, R2}⟩, a strategy f1 = (b1, s1) for Player 1, and a
threshold t ≥ 0. We describe an algorithm that determines if f1 is an NRS solution for t in
polynomial time. The key idea behind our algorithm is as follows. Let U2 be the maximal
utility for Player 2 in a profile π that extends f1. Then, as Player 2 can ensure she gets
utility of U2, we have that every profile π in which util2(π) = U2 is a 1-fixed NE, and every
profile π in which util2(π) < U2 is not a 1-fixed NE. Hence, f1 is an NRS solution iff for
every profile π that extends f1 with util2(π) = U2, we have that util1(π) ≥ t.

We now describe the algorithm in detail. The algorithm first labels the edges from every
vertex v ∈ V by costs in N. Recall the weights cost(π, e) described in Section 4 in the context
of deviations for Player i. Observe that cost(π, e) is independent of the strategy fi of Player i

in π. In particular, when we consider deviations for Player 2, we have that cost(π, e) depends
only on the function f1 of Player 1, and can thus be denoted cost(f1, e).

▶ Lemma 11. Checking whether a given strategy for Player 1 is an NRS solution in a PTG
can be done in polynomial time.

Proof. Consider a PTG G = ⟨G, {α1, α2}, {R1, R2}⟩, a strategy f1 for Player 1, and a
threshold t ≥ 0. Let G = ⟨V, E⟩.
1. Let G′ = ⟨V, E, w⟩ be a weighted version of G, where for every edge e ∈ E, we have that

w(e) = cost(f1, e).
2. For every W ⊆ {1, 2}, let ρW be the shortest lasso in G′ such that the set of winners in

ρW is W . Let fW
2 denote the corresponding strategy for Player 2.

3. Let U2 = max{util2(⟨f1, fW
2 ⟩) : W ⊆ {1, 2}}. Note that U2 is the maximal utility that

Player 2 can get when the strategy for Player 1 is f1.
4. If there exists a set W ⊆ {1, 2} such that util2(⟨f1, fW

2 ⟩) = U2 and util1(⟨f1, fW
2 ⟩) < t,

then f1 is not a NRS solution. Otherwise, f1 is an NRS solution. ◀

Lemma 11 implies an NP upper bound for NRS for 2-players PTGs. A matching lower
bound is proven by a reduction from 3SAT.

▶ Theorem 12. NRS for 2-players PTGs is NP-complete. Hardness in NP holds already for
BTGs.

6.2 n-player NRS for n ≥ 3
We continue and study NRS for PTGs with strictly more than two players. As bad news, we
show that the polynomial algorithm from the proof of Theorem 12 cannot be generalized
for NRS with three or more players. Intuitively, the reason is as follows. In the case of two
players, there is a single environment player, and when the strategy for the system player is
fixed, we could find the maximal possible utility for the environment player. On the other
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hand, when there are two or more environment players, the maximal possible utility for
each of them depends on both the strategy of the system player and the strategies of the
other environment players, which are not fixed. Formally, we prove that NRS for PTGs with
strictly more than two players is ΣP

2 -complete. As good news, NRS stays ΣP
2 also when the

number of players in not fixed; thus is is easier than NRS in PGs, where the problem is
PSPACE-hard for an unfixed number of players.

▶ Theorem 13. NRS for n-players PTGs with n ≥ 3 is ΣP
2 -complete. Hardness in ΣP

2 holds
already for BTGs.

Proof. We start with the upper bound. We say that a profile π is good if util1(π) ≥ t, or π

is not a 1-fixed NE. Checking whether a given profile π is good can be done in polynomial
time. Indeed, for checking whether util1(π) ≥ t, we can find S(π) and Outcome(π), and then
calculate util1(π) in polynomial time. For checking whether π is not a 1-fixed NE, we can
use Theorem 2 and check if some player i ∈ [n] \ {1} has a beneficial deviation. Hence, an
algorithm in ΣP

2 for NRS guesses a strategy f1 for Player 1 and then checks that for all
guessed strategies f2, . . . , fn for Players 2 . . . n, the profile ⟨f1, f2, . . . , fn⟩ is good. Note that
the complexity is independent of n being fixed.

We continue to the lower bound and show that NRS is ΣP
2 -hard already for three players

in BTGs. We describe a reduction from QBF2, the problem of determining the truth of
quantified Boolean formulas with one alternation of quantifiers, where the external quantifier
is “exists”. Consider a QBF2 formula Φ = ∃x1, . . . , xn∀y1, . . . , ymφ. We assume that φ is a
Boolean propositional formula in 3DNF. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Given
Φ, we construct a 3-player Büchi game such that there exists an NRS solution f1 in G for
t = 1 iff Φ = true.

The main idea of the reduction is to construct a game in which Player 1 chooses an
assignment to the variables in X; Player 2 tries to prove that Φ = false, by showing that
there exists an assignment to the variables in Y with which for every clause Ci, there is
a literal lj

i such that lj
i = false; and Player 3 can point out whenever Player 2’s proof is

incorrect. The game has a sink s. The objective of Player 1 and Player 3 is to not get stuck
in the sink, and the objective of Player 2 is V . That is, Player 2 wins in every path in the
game. The reward to Player 1 is n + 1, and she can pay 1 for each assignment in order to
ensure that the play does not reach s. If Player 1 chooses an assignment for the variables in
X such that for every assignment to the variables in Y , we have that φ is satisfied, then she
and Player 3 can prevent the game from going to s, with Player 1 paying a total price of n.
Otherwise, Player 2 can prove that Φ = false, and by that forces the play to reach s, unless
Player 1 pays more than n, which exceeds her reward. ◀

7 Discussion

We introduced trading games, which extend ω-regular graph games with trading of control.
Our buying and selling strategies concern edges in the game graph, and the result of the
trading is a set of sold edges. In this section we discuss richer settings, classified according
to the parameter they extend the setting with.

Buying strategies. We see two interesting ways to enrich buying strategies. The first, which
is common in game theory, is to allow dependencies between the sold goods, thus let players
bid on sets of edges [33]. Indeed, a company may be willing to pay for the rights to direct the
traffic in a certain router in a communication network only if it also gets the right to direct
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traffic in a certain neighbour router. While it is not hard to extend our results to a setting
with such dependencies, it makes the description of strategies more complex. The second
way concerns the type of control that is traded. Rather than buying edges, a player may buy
ownership of vertices. In the case of games with objectives that only require memoryless
strategies, the difference boils down to information: the new owner is still going to use the
same edge in all visits to a vertex she bought, yet unlike in our setting, the seller of the vertex
does not known which edge it is. For games in which memoryless strategies are too weak (for
example, games with generalized parity objectives, or objectives in LTL [21]), the suggested
model allows the buyer to proceed with different edges in different visits to the sold vertex.
Moreover, by allowing buying strategies that specify scenarios in which control is wanted,
we can let players share control on a vertex. Thus, buying strategies may involve regular
expressions that specify conditions on the history of the computation, and the suggested
prices depend on these conditions. For example, a user may be willing to pay for an edge
that guarantees a certain service only after certain events have happened.

Pricing and deviations. In our setting, payments are made for all the sold edges. It is not
hard to see that stability can be increased by charging players only for edges that actually
participate in the outcome of the profile. On the other hand, the latter charging policy
encourages players to bid for more edges. Also, in our setting, a player can deviate from
a profile only if unilaterally changing her buying or selling strategies increases her utility.
This deviation rule prevents players from initiating a trade, even if both the seller and buyer
benefit from it. This motivates the definition of joined deviations, where, for example, two
players can deviate together by offering and accepting an offer, respectively, as long as they
both increase their utilities.

Game graphs. The fact our games are turned-based makes the ownership of control simple:
Player i controls and may sell the vertices in Vi. It is possible, however, to trade control also
in concurrent games. There, the movement of the token depends on actions taken by all the
players in all the vertices. Two natural ways to trade control in a concurrent setting are
transverse – when players buy the right to choose an action for the seller in certain vertices,
or longitudinal – when each player has a set of variables she controls, and an action amounts
to assigning values to these variables. Then, players may buy variables, namely the right
to assign values to these variable throughout the computation. For example, in a system
with users that direct robots in warehouse by assigning them a direction and speed, a user
may sell the control on her robot in certain locations in the warehouse, or sell the ability to
decide its speed throughout the computation. Finally, as in other game-graphs studied in
formal methods, it is interesting to study extensions to richer settings, addressing incomplete
information, infinite domains, stochastic behavior, and more.
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