
Temporalised Description Logics for

Monitoring Partially Observable Events

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Marcel Lippmann

geboren am 11. April 1985 in Dippoldiswalde

verteidigt am 1. Juli 2014

Gutachter:
Prof. Dr.-Ing. Franz Baader

Technische Universität Dresden

Prof. Dr. rer. nat. habil. Frank Wolter
University of Liverpool

Dresden, im Juli 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236371488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 1

1.1 Description Logics . 2
1.2 Temporalised Description Logics . 3
1.3 Runtime Verification . 6
1.4 Temporalised Query Entailment . 7
1.5 Verification in DL-Based Action Formalisms . 9
1.6 Outline and Contributions of the Thesis . 10

2 Preliminaries 13

2.1 Basic Notions of Description Logics . 13
2.1.1 Description Logic Concepts . 13
2.1.2 Knowledge Bases . 15
2.1.3 Specific Description Logics . 17
2.1.4 Boolean Knowledge Bases . 18

2.2 Propositional Linear-Time Temporal Logic and ω-Automata 19
2.2.1 Syntax and Semantics of Propositional LTL 19
2.2.2 ω-Automata and Their Connection to Propositional LTL 21

3 The Temporalised Description Logic SHOQ-LTL 29

3.1 Syntax and Semantics of SHOQ-LTL . 29
3.2 The Complexity of Satisfiability in SHOQ-LTL . 31

3.2.1 Satisfiability in SHOQ-LTL for the Case without Rigid Names 36
3.2.2 Satisfiability in SHOQ-LTL for the Case of Rigid Concept Names and

Role Names . 37
3.2.3 Satisfiability in SHOQ-LTL for the Case of Rigid Concept Names 39
3.2.4 Consistency of Boolean SHOQ⊓-knowledge bases 41

3.3 Summary . 55

4 Runtime Verification Using SHOQ-LTL 57

4.1 Runtime Verification Using Propositional LTL . 57
4.2 Büchi-Automata for SHOQ-LTL-Formulas . 61

4.2.1 The Case without Rigid Names . 64
4.2.2 The Case of Rigid Concept and Role Names 66

4.3 Monitoring SHOQ-LTL-Formulas . 67
4.3.1 Basic Definitions . 68
4.3.2 An Auxiliary Deterministic Finite Automaton 70
4.3.3 The Monitor Construction . 74

4.4 The Complexity of Deciding Liveness and Monitorability in SHOQ-LTL 75
4.4.1 Deciding Liveness . 76

iii

iv Contents

4.4.2 Deciding Monitorability . 78
4.5 Summary . 80

5 Temporalised Query Entailment in SHQ 83

5.1 The Temporal Query Language . 83
5.1.1 Conjunctive Queries . 86
5.1.2 Temporal Knowledge Bases . 88
5.1.3 Temporal Conjunctive Queries . 88

5.2 The Complexity of Temporalised Query Entailment 91
5.2.1 Lower Bounds for Temporalised Query Entailment in ALC 93
5.2.2 Upper Bounds for Temporalised Query Entailment in SHQ 94
5.2.3 Data Complexity for the Case of Rigid Concept Names 104
5.2.4 Combined Complexity for the Case of Rigid Concept Names 107

5.3 Summary . 117

6 Verification in Action Formalisms Based on ALCQIO 119

6.1 DL-Based Action Formalisms and Causal Relationships 119
6.1.1 The Ramification Problem . 120
6.1.2 A DL-Based Action Formalism with Causal Relationships 122

6.2 Deciding the Consistency Problem . 129
6.2.1 Deciding the Consistency Problem w.r.t. the Empty TBox 129
6.2.2 Deciding the Consistency Problem w.r.t. a General TBox 134

6.3 Deciding the Projection Problem . 148
6.4 Verification of DL-Actions . 151
6.5 Summary . 161

7 Conclusions 165

7.1 Main Results . 165
7.2 Future Work . 166

Bibliography 169

Chapter 1

Introduction

In this day and age, it is not possible to imagine our world without complex hardware and
software systems. Inevitably, it becomes more and more important to verify that the systems
that surround us have certain properties. This is indeed unavoidable for safety-critical
systems such as power plants and intensive-care units. Throughout this thesis, we refer to
the term ‘system’ in a broad sense: it may be a ‘man-made system’ (e.g. a computer system)
or a ‘natural system’ (e.g. a patient in an intensive-care unit).

Model Checking [CGP99; BK08] is a prominent field of research that addresses these issues.
However, there it is assumed that one has complete knowledge about the functioning of the
system, which is not always a reasonable assumption. In the present thesis, we consider an
open-world scenario. Instead of having a complete model of the system, we assume that we
can only observe the behaviour of the actual running system by ‘sensors’. Such an abstract
sensor could, for instance, sense the blood pressure of a patient or the air traffic observed
by radar. Then the observed data are preprocessed appropriately and stored in a fact base.
Based on the data available in the fact base, situation-awareness tools [BBB+09; End95] are
supposed to help the user to detect certain situations, e.g. situations that require intervention
by an expert. Such situations could be, for instance, that the heart-rate of a patient is rather
high while the blood pressure is low, or that a collision of two aeroplanes is about to happen.
Such critical situations can be overcome by reacting accordingly, e.g. giving an appropriate
medication to the patient and informing the pilots of the aeroplanes, respectively. Moreover,
the information in the fact base can be used by monitors to verify that the system has certain
properties. Such a property could be, for instance, that nothing ‘bad’ will happen, i.e. a
so-called safety property.

It is not realistic, however, to assume that the sensors always yield a complete description
of the current state of the observed system. Thus, it makes sense to assume that information
that is not present in the fact base is unknown rather than to assume that this information
does not hold, which we call the open-world assumption. Moreover, very often one has some

knowledge about the functioning of the system. This background knowledge can be used to
draw conclusions about the possible future behaviour of the system.

Employing description logics [BCM+07] is one way to deal with these requirements. In
this thesis, we tackle the sketched problem in three different contexts: (i) runtime verification
using a temporal extension of a description logic, (ii) temporalised query entailment, and
(iii) verification in action formalisms based on description logics.

In the remainder of this chapter, we give an abstract overview of the present work. In
Section 1.1, we provide the reader with an intuitive understanding of basic notions in descrip-
tion logics. Then in Section 1.2, we go one step further and consider temporal extensions of
description logics. After that in Section 1.3, we give details about Context (i), i.e. runtime

1

2 Chapter 1. Introduction

verification using a temporalised description logic. Section 1.4 deals with Context (ii),
i.e. temporalised query entailment, and Section 1.5 respectively deals with Context (iii),
i.e. verification in the research area of action formalisms that are based on description lo-
gics. Finally, Section 1.6 contains an outline of the present thesis and summarises the main
contributions.

1.1 Description Logics

Description logics (DLs) [BCM+07] are a family of logic-based knowledge representation
formalisms. Since they are logic-based, DLs have the advantage of being equipped with
a formal semantics, which lacks in early knowledge representation formalisms such as
Quillian’s Semantic Networks [Qui67] and Minsky’s Frames [Min81]. More information about
the history of DLs can be found in the Description Logic Handbook [BCM+07].

Each DL is defined using a set of concept names, a set of role names, and a set of individual

names. These names are used to express knowledge in the respective application domain. In
the following, we consider a zoo as application domain in order to be able to give simple
examples that are easy to comprehend. In principle, concept names describe simple properties
of elements in the domain. For example, the concept name Camel can be used to describe all
camels (domain elements) in a zoo (domain). Role names, e.g. is-father-of, describe binary
relations between domain elements. Finally, individual names give names to specific domain
elements, e.g. leah can be used as a name of a specific camel in the zoo. These sets are used
by concept and role constructors to form complex concepts and roles. Which concept and role
constructors are available depends on the specific DL.

The smallest propositionally closed description logic is called ALC [SS91]. The name ALC

stands for ‘attributive language with complements’. There are, however, DLs that are less
expressive than ALC such as EL [Baa03; Bra04] and extensions of EL [BBL05; BBL08] for
which standard reasoning problems are tractable. With different reasoning problems in mind,
other light-weight DLs such as members of the DL-Lite family [CDL+05; ACK+09; CDL+09]
have been developed. On the other hand, there are also DLs whose expressive power goes
far beyond ALC such as SROIQ [HKS06].

As an example of a concept that is expressible in ALC, consider

¬Dromedary⊓ ∃likes.Foliage,

where Dromedary and Foliage are concept names, and likes is a role name. Intuitively, this
concept describes all domain elements that are not dromedaries and like foliage.

Besides the logic-based semantics, another advantage of DLs is that most of them can be
seen as decidable fragments of first-order predicate logic (FOL), which are still more expressive
than propositional logic. Hence, important reasoning problems such as concept satisfiability
are decidable for DLs. Concepts formulated in ALC, for instance, can be translated into
formulas of the two-variable fragment of FOL. The concept above can be formulated as

¬dromedary(x)∧ ∃y.
�
likes(x , y)∧ foliage(y)

�
,

1.2 Temporalised Description Logics 3

where dromedary and foliage are unary predicates, and likes is a binary predicate. In this
FOL-formula, the free variable x captures all domain elements that are not dromedaries and
like foliage.

There is also a close connection between description logics and modal logics. In fact, ALC

can be seen as a notational variant of the multi-modal logic K n (see e.g. [GKW+03; BBW07]).
For instance, the above concept can be expressed in K n as

¬dromedary∧◊likesfoliage,

where dromedary and foliage are propositional variables, and ◊likes is a modal operator.

However, description logics do not only offer a language for describing concepts, but allow
to state knowledge in so-called knowledge bases, which are split into an assertional part (the
ABox) and a terminological part (the TBox). The ABox consists of a finite sets of ABox-axioms

(or assertions) such as concept assertions and role assertions. For instance, consider the ABox

�
(¬Dromedary⊓ ∃likes.Foliage)(leah), is-father-of(hassan, leah)

	
,

which states that Leah is not a dromedary and likes foliage, and that Hassan is Leah’s father.
The following TBox captures the terminological knowledge:

�
¬Dromedary⊓ ∃likes.Foliage⊑ NiceCamel

	
.

It states that each domain element which is not a dromedary and likes foliage is actually a
nice camel.

Interesting reasoning problems for such knowledge bases are, for instance, consistency
and entailment, i.e. the question whether such a knowledge base has a model and whether
it entails certain implicit facts. The formal definition of the notions introduced intuitively
above that are relevant for this thesis can be found in Section 2.1.

Description logics are successfully employed in many areas such as natural-language
processing, conceptual modelling, and databases. The most notable success, however, has
been achieved lately by adopting the Web Ontology Language (OWL), which is based on an
expressive DL, as standard language for the semantic web [HPH03]. Recently, the second
refinement OWL 2 has been endorsed by the World Wide Web Consortium (W3C) as W3C
Recommendation.1 Additionally, tractable description logics are successfully employed for
defining medical ontologies, see e.g. [SBS+07].

However, DLs are not expressive enough to describe the temporal behaviour of systems.
Therefore, description logics have been ‘temporalised’, i.e. equipped with temporal operators.
The next section gives a brief overview on temporalised DLs.

1.2 Temporalised Description Logics

In the literature, a plethora of temporalised description logics has been introduced (surveyed
e.g. in [AF00; AF05; LWZ08]). To obtain a temporalised DL, one combines a DL with a

1See http://www.w3.org/TR/owl2-overview/.

http://www.w3.org/TR/owl2-overview/

4 Chapter 1. Introduction

temporal logic.2 For a comprehensive introduction to temporal logics, the reader is referred
to e.g. [Eme90; GHR94; BK08]. In linear-time temporal logics, the flow of time is assumed
to be linear, i.e. each point in time has exactly one successor, whereas in branching-time

temporal logics, each point in time may have more than one successor, i.e. the flow of time is
assumed to be a tree. A well-investigated temporal logic with linear flow of time is linear-time

temporal logic (LTL) [Pnu77], and logics with branching flow of time include computation-tree

logic (CTL) [CE82] and its extension CTL∗ [EH86]. It is a long-standing debate whether
linear-time temporal logics or branching-time temporal logics should be adopted, as both
have strengths and weaknesses in terms of expressiveness and computational complexity of
reasoning [Var01; NV07].

In this thesis, we consider only combinations of LTL with description logics.3 The first linear-
time temporalised DL, called LTLALC , was introduced by Schild [Sch93b]. This temporalised
DL is a combination of LTL with the description logic ALC. In LTLALC, concepts are built
using concept constructors and temporal operators, i.e. temporal operators are allowed to
occur within concepts. For instance,

¬Dromedary⊓◊∃likes.Foliage

is a concept formulated in LTLALC. The semantics of LTLALC is two-dimensional, i.e. one
dimension describes the flow of time and a second dimension is used for the domains. Thus,
the above concept captures all domain elements which are not dromedaries (now), and will
like foliage at some point in the future.

An important question is what assumptions are made on the domains. If we make the
constant-domain assumption, the domain elements are global, i.e. the same domain elements
are available at all points in time. If the domains are assumed to be expanding (increasing), the
domain of the next point in time contains always the current domain. Similarly, if the domains
are assumed to be decreasing, the domain of the next point in time is always contained in the
current domain. If no restriction on the domains is imposed, we speak of varying domains.
However, for the satisfiability problem in LTLALC is is enough to consider constant domains,
since the satisfiability problem with expanding, decreasing and varying domains can be
polynomially reduced to the satisfiability problem with constant domains [GKW+03]. Note
that this reduction works also for other temporalised DLs that allow temporal operators to
occur in front of concepts such as the ones in [WZ00].

Moreover, it is often desirable to ensure that the interpretation of certain concept and role
names does not change over time. We call such concept and role names rigid. For instance,
one can argue that the concept name Dromedary should be rigid, i.e. if a domain element
is a dromedary, it will always stay a dromedary in the future, and conversely, if a domain
element is not a dromedary, it will never become a dromedary. Rigid concept names can be
simulated in LTLALC and similar temporalised DLs. To ensure that e.g. Dromedary is rigid,
the following two TBox-axioms are sufficient:

Dromedary ⊑ �Dromedary, ¬Dromedary ⊑ �¬Dromedary.

2Other approaches to obtain a temporalised DL, which are out of the scope of this thesis, include using fixpoint
extensions [FT03; FT11], and encoding time in so-called concrete domains [Lut01].

3Combinations of a branching-time temporal logic such as CTL or CTL∗ with a description logic have been
investigated e.g. in [HWZ02; BHW+04; GJL12].

1.2 Temporalised Description Logics 5

However, rigid role names cannot be simulated in LTLALC . Interestingly, already one rigid
role name causes the satisfiability problem of LTLALC-concepts w.r.t. global TBoxes to be un-
decidable [GKW+03; LWZ08]. Moreover, one can show by a reduction of the recurrent tiling
problem that the problem is actually Σ1

1-hard, i.e. not even recursively enumerable [LWZ08].
The reduction crucially depends on the presence of a global TBox. One way to regain decidab-
ility is to restrict the TBox to an acyclic one.4 However, the problem of deciding satisfiability
of LTLALC-concepts w.r.t. rigid roles and acyclic TBoxes is still hard for non-elementary
time [GKW+03].

If no rigid role names are allowed, the satisfiability problem of LTLALC-concepts w.r.t. global
TBoxes is EXPTIME-complete, which was originally stated in [Sch93b].5 More generally, for
any description logic L between ALC and SHIQ, the complexity of deciding satisfiability in
LTLL is the same as the complexity of deciding satisfiability of L-concepts [LWZ08]. Hence,
the satisfiability problem of LTLALC-concepts (without a global TBox) is PSPACE-complete,
since the satisfiability problem of ALC-concepts is PSPACE-complete [SS91].

Moreover, if one additionally allows temporal operators to occur in front of axioms,
i.e. deals with temporal knowledge bases, the complexity of deciding whether such a temporal
knowledge base has a model, turns out to be EXPSPACE-complete [GKW+03] in LTLALC if no
rigid role names are considered.

Due to the high complexity of reasoning and the undecidability results for the case where
rigid role names are allowed, in [AKL+07; AKR+10], light-weight DLs have been extended by
allowing temporal operators to occur in front of concepts. There, various complexity results
for temporal extensions of members of the DL-Lite family are shown. However, in [AKL+07],
the authors also show that reasoning easily becomes undecidable (if rigid role names are
allowed) already in a small temporal extension of EL that is subsumed by LTLEL.

Another temporalised DL, which is a combination of ALC and LTL, is ALC-LTL [BGL12]. In
ALC-LTL, temporal operators are not allowed to occur in front of concepts, but rather in front
of axioms. More precisely, ALC-LTL is ‘LTL over ALC-axioms’, i.e. it is LTL with ALC-axioms
instead of propositional variables. For instance, the following is an ALC-LTL-formula:

¬Dromedary(leah)∧◊(∃likes.Foliage)(leah).

It states that Leah is not a dromedary (now), and she will like foliage at some point in the
future. The complexity of deciding whether an ALC-LTL-formula is satisfiable is investigated
in detail in [BGL12]. For ALC-LTL, one needs to distinguish three different settings: (i) no
rigid names are available, (ii) only rigid concept names are available, and (iii) rigid role
names are available. Since temporal operators are not allowed to occur in front of concepts,
rigid concept names are no longer expressible in the logic. However, it is well-known that
rigid role names can simulate rigid concept names [BGL12], and thus there are only three
cases to consider. Complexity results for the satisfiability problem in all three settings are
obtained in [BGL12] for the case of constant domains. If no rigid names are available, the
satisfiability problem is EXPTIME-complete. If only rigid concept names are available, the
complexity increases to NEXPTIME-complete, and if rigid role names are available, we have
2EXPTIME-completeness. Note that it is not clear whether considering different kinds of
domains like varying, expanding, or decreasing domains has an impact on the complexity

4For a formal definition of the syntax of acyclic TBoxes, see Definition 2.5.
5As remarked in [LWZ08], the original proof is incorrect. For a correct proof, see [LWZ08].

6 Chapter 1. Introduction

of the satisfiability problem, since the reduction from varying, expanding, and decreasing
domains to the constant-domain case in [GKW+03] does not work if temporal operators are
not allowed to occur in front of concepts. In [BGL12], it is conjectured, however, that in
some settings the complexity of the satisfiability problem may decrease.

In this thesis, we use temporalised description logics to formulate knowledge about the
temporal behaviour of systems. The next section gives an overview of their application in
runtime verification.

1.3 Runtime Verification

Runtime verification [CM04] allows to verify whether an observed system has certain (wanted
or unwanted) properties. These properties are usually expressed in a temporal formalism.
This property is then ‘translated’ into a so-called monitor. Intuitively, such a monitor solves
the following task. Having consumed a finite prefix of the actual behaviour of the system,
the monitor indicates whether the property is satisfied or not.

In the literature, there is a plethora of approaches to constructing such monitors, see
e.g. [HR04; RH05; Roş12; dR05; BLS10; BLS11; BGH+04; BRH07; BBL09]. Here, we extend
the work of [BLS11] where the property is specified in propositional LTL [Pnu77] and a
three-valued approach is developed. To illustrate the idea, consider the following example.
Suppose that the vital parameters of patient Bob are measured in an emergency ward. If
Bob has a high heart rate and a low blood pressure, then an alarm should be raised. This
property can be expressed using the propositional LTL-formula

φBob := �(¬(highHeartRateBob∧ lowBloodPressureBob)),

where highHeartRateBob and lowBloodPressureBob are propositional variables whose validity
at each point in time can be checked by evaluating the results of sensing. Intuitively, φBob

expresses that it is always the case that Bob has not both a high hear rate and a low blood
pressure. If the formula is violated, then we raise an alarm. The information about Bob’s
health status at each point in time now yields a finite prefix u. We need to check whether all

continuations of this prefix satisfy or violate φBob, i.e. no matter how the system’s behaviour
evolves over time, we certainly know whether the formula is satisfied or not. Thus, there are
three possible answers that a monitor may give having read such a prefix u:

• ‘true’ if all continuations of u satisfy φBob;

• ‘false’ if all continuations of u do not satisfy φBob; and

• ‘inconclusive’ if none of the above holds, i.e. no definite answer can be given.

In our example, it should be clear that the monitor can never output ‘true’ since the ‘bad’
state of the system could still be observed in the future. However, as soon as it outputs ‘false’,
we can raise an alarm and call for intervention by the medical staff.

Note that runtime verification is not about answering such a single question given a prefix u

and a propositional LTL-formula φ. In fact, since the behaviour of the system is observed
over time, this prefix u is continuously extended by adding new observations. The monitor
should not answer the questions for the prefixes one after another independently of each
other. On the contrary, the monitor should successively read the input, and based on this

1.4 Temporalised Query Entailment 7

information it should compute the answer in constant time (if the size of the propositional
LTL-formula is assumed to be constant). Thus, the answer of the monitor does not depend
on the length of the already observed prefix.

This approach presupposes, however, that the relevant propositional variables can be
evaluated at each point in time. This is not always realistic due to the following reasons.
Firstly, the states of the system may have a complex internal structure, and secondly, the
assumption that we have complete information about the system’s status at each point in
time may be too strict. Temporalised description logics help to overcome these issues. A
first step in that direction was done in [BBL09] where the temporalised description logic
ALC-LTL [BGL12] was used for constructing monitors. There, ALC-axioms capture the
observations and at each point in time, the monitor observes the system’s status incompletely
by reading an ABox. Unfortunately, in the presence of rigid names, the approach developed
in [BBL09] does not work. In Chapter 4, we give a correct monitor construction for the
even more expressive temporalised description logic SHOQ-LTL. Moreover, the approach
developed here has a better computational complexity, even though it also takes into account
background knowledge in the form of another SHOQ-LTL-formula that specifies temporal

information about the future behaviour of the system.
Considering again the example above, patient Bob’s medical status can be captured in

ABoxes, whereas additional information about Bob is available from the patient record
and added by the medical staff. Such background information is encoded using concepts
defined in a medical ontology like SNOMED CT.6 The observed sequence of ABoxes contain a
high-level view of the patient’s medical status, which the monitor uses to determine whether
a critical situation specified by a SHOQ-LTL-formula has arisen.

In the next section, we consider a similar problem, namely temporalised query entailment.

1.4 Temporalised Query Entailment

In a simple setting, one could realise a situation-awareness tool that helps the user to detect
certain situations by using standard database techniques. For that, the information obtained
from the sensors is stored in a relational database, and the situations to be recognised are
specified by queries in an appropriate query language, e.g. conjunctive queries [AHV95].
However, database systems employ the closed-world assumption (CWA), i.e. knowledge that
is not present in the database is assumed to be false rather than unknown. As argued above,
this assumption is not always appropriate as the sensors may provide us with incomplete
information about the current state of the system. Also, additional global knowledge,
i.e. knowledge that holds true at each point in time, may be available, which allows for a
limited projection into the future such that maybe more (or less) answers to the query are
found.

These requirements are addressed in the research field of ontology-based data access
(OBDA) [DEF+99; PCD+08]. There, the fact base is an ABox, which is interpreted with the
open-world assumption, and an ontology is used to encode the background knowledge. In
OBDA, one usually assumes that the ABox is obtained from external data sources (in the case
of situation awareness, the raw sensor data) through appropriate mappings (which in our
case realise the preprocessing and aggregation of the sensor data), but here we abstract from

6See http://www.ihtsdo.org/snomed-ct/.

http://www.ihtsdo.org/snomed-ct/

8 Chapter 1. Introduction

the mapping step and assume that the result of the preprocessing is explicitly represented in
an ABox.

As an example, consider again patient Bob. Assume that the ABox contains the following
information:

systolic-pressure(bob, p1), High-pressure(p1),
history(bob, h1), Hypertension(h1), Male(bob).

Intuitively, the first line expresses that Bob has high blood pressure, which is information
obtained from sensor data. The second line expresses that Bob has a history of hypertension
and that he is male, which is information obtained from the patient record. In addition, we
have an ontology that states that patients with high blood pressure have hypertension, and
that patients that currently have hypertension and also have a history of hypertension are at
risk of a heart attack:

∃systolic-pressure.High-pressure ⊑ ∃finding.Hypertension,

∃finding.Hypertension⊓ ∃history.Hypertension ⊑ ∃risk.Myocardial-infarction.

Assume that the situation we want to recognise for a given patient x is whether this patient
is a male person who is at risk of a heart attack. This situation can be described by the
conjunctive query

∃y.Male(x)∧ risk(x , y)∧Myocardial-infarction(y),

i.e. ‘give me all x such that x is male and at risk of y , which is a heart attack’.
Given the information in the ABox and the axioms in the ontology, we can derive that bob

is a certain answer to the query in the ABox w.r.t. the ontology, i.e. the following conjunctive
query (without free variables)

∃y.Male(bob)∧ risk(bob, y)∧Myocardial-infarction(y)

is entailed by the ABox and the ontology. Obviously, this answer cannot be derived without
the ontology.

The complexity of query entailment w.r.t. an ontology, i.e. the complexity of checking
whether a given tuple of individual names is a certain answer to a query in an ABox w.r.t.
an ontology, has been investigated in detail for cases where the ontology is expressed in
an appropriate description and the query is a conjunctive query. One can either consider
the combined complexity, which is measured in the size of the whole input (consisting of
the query, the ontology, and the ABox), or the data complexity, which is measured in the
size of the ABox only (i.e. the query and the ontology are assumed to be of constant size).
The underlying assumption is that the query and the ontology are usually relatively small,
whereas the size of the data may be huge.

In the database setting (where there is no ontology and the CWA is used), conjunctive-
query entailment is NP-complete w.r.t. combined complexity and in AC0 w.r.t. data com-
plexity [CM77; AHV95]. For expressive DLs, the complexity of checking certain answers is
considerably higher: for ALC, the query entailment problem is EXPTIME-complete w.r.t. com-
bined complexity and CO-NP-complete w.r.t. data complexity [CDL98; Lut08a; CDL+06]. For

1.5 Verification in DL-Based Action Formalisms 9

this reason, the more light-weight DLs of the DL-Lite-family have been developed, for which
the entailment problem is still in AC0 w.r.t. data complexity, and for which computing certain
answers can be reduced to answering conjunctive queries in the database setting [CDL+09].

Unfortunately, OBDA as described until now is not sufficient to achieve high-level situation
awareness. The reason is that the situations we want to recognise may depend on states
of the system at different time points. To illustrate this, consider again the above example.
There, it was explicitly stated in the patient records that Bob has a history of hypertension.
It makes more sense to derive this piece of information automatically from the data obtained
about blood pressure etc.

To achieve this, we propose a temporal query language that extends propositional LTL
by allowing conjunctive queries in place of propositional variables, which is very similar to
some of the temporalised DLs considered above. In our example, we want to query for male
patients with a history of hypertension, which can be expressed by the temporal query

Male(x)∧ X−◊−
�
∃y.finding(x , y)∧Hypertension(y)

�
.

Intuitively, this temporal query asks for all x such that x is male and at some point in the
(strict) past, x had a finding y of hypertension.

As for temporalised description logics, it makes perfect sense to consider rigid concept and
role names. For example, we may want to assume that the concept Male is rigid, and thus a
patient that is male now also has been male in the past and will stay male in the future.

Thus, our overall setting for recognising situations will be the following. In addition to a
global ontology (which describes properties of the system that hold at every point in time),
we have a sequence of ABoxes A0, A1, . . . , An, which (incompletely) describe the states of the
system at the previous time points 0, 1, . . . , n− 1 and the current time point n. The situation
to be recognised is expressed by a temporal conjunctive query, as introduced above, which is
evaluated w.r.t. the current time point n. In Chapter 5, we consider the complexity of this
approach, i.e. the complexity of temporalised query entailment. There, we adopt SHQ as
description logic, which is an extension of the description logic ALC.

1.5 Verification in DL-Based Action Formalisms

In this section, we consider a different scenario. We assume that we have a system that
executes predefined actions. Moreover, we assume that we have some knowledge about
which actions the system executes. This is captured in a so-called action program. We
consider non-terminating action programs, and are interested in the verification problem,
i.e. the problem of deciding whether a certain (temporal) property holds after executing an
action program.

High-level action programming languages such as GOLOG [LRL+97] and FLUX [Thi05a] are
based on the situation calculus [Rei01] and the fluent calculus [Thi05b], respectively. These
calculi encompass full first-order logic, which implies that interesting reasoning problems
in them are undecidable. To regain decidability, we restrict our action formalism in two
directions: (i) our action formalism is based on a decidable description logic, and (ii) the
action program is ‘generated’ by an ω-automaton (i.e. an automaton working on infinite
words).

10 Chapter 1. Introduction

In [BLM10], it is shown that the verification problem is decidable for the DL-based action
formalism introduced in [BLM+05a]. The properties are formulated in a restricted version of
the temporalised description logic ALCO-LTL. The authors of [BLM+05a; BLM10] consider,
however, only the case where domain constraints are encoded with acyclic TBoxes. If one
allows general TBoxes, one has to deal with the ramification problem, i.e. the question which
additional effects the executing of an action has in order to satisfy the domain constraints.
In Chapter 6, we introduce a DL-based action formalism that is extended with so-called
causal relationships that take care of this issue. We prove that important inference problems
in the extended action formalism stay decidable and derive complexity results from the
obtained decision procedures. Moreover, we continue the work of [BLM10] by considering
the verification problem in the extended action formalism.

1.6 Outline and Contributions of the Thesis

In the following, we give a broad outline of the present thesis and summarise the main
scientific contributions.

In Chapter 2, we formally introduce the basic notions that are needed for the thesis. These
are foundations of description logics and of propositional LTL. Moreover, we revisit the
relationship between propositional LTL and ω-automata.

In Chapter 3, we introduce the temporalised description logic SHOQ-LTL, and prove
complexity results for the satisfiability problem in this logic. We consider three different
settings: (i) neither concept names nor role names are allowed to be rigid, (ii) only concept
names are allowed to be rigid, and (iii) both concept and role names are allowed to be rigid.
We can show that the complexity is the same as in the less expressive temporalised description
logic ALC-LTL [BGL12], namely EXPTIME-complete in Setting (i), NEXPTIME-complete in
Setting (ii), and 2EXPTIME-complete in Setting (iii). In order to prove these results, we need
to consider also the consistency problem of Boolean SHOQ-knowledge bases (w.r.t. some
side condition). We can prove that this problem, which is interesting on its own, can be
decided in exponential time. Some of the (ideas of the proofs of the) results of this chapter
are already published:

• Franz Baader, Stefan Borgwardt, and Marcel Lippmann: ‘Temporalizing Ontology-
Based Data Access’. In Proc. of the 24th Int. Conf. on Automated Deduction (CADE-24),
Lake Placid, NY, USA. Edited by Maria Paola Bonacina. Volume 7898. Lecture Notes in
Artificial Intelligence. Springer-Verlag, June 2013, pages 330–344

• Franz Baader, Stefan Borgwardt, and Marcel Lippmann: ‘On the Complexity of Tem-
poral Query Answering’. LTCS-Report 13-01. Chair of Automata Theory, Institute
of Theoretical Computer Science, Technische Universität Dresden, Mar. 2013. URL:
http://lat.inf.tu-dresden.de/research/reports.html

In Chapter 4, we consider runtime verification using the temporalised description logic
SHOQ-LTL. Before we can construct monitors for SHOQ-LTL-formulas, we need to construct
ω-automata for SHOQ-LTL-formulas. For this construction, we reuse certain results from
Chapter 3. We are able to show that even in the most complex case where both rigid
concept names and rigid role names are allowed, monitors of doubly exponential size can be
constructed using doubly exponential time. Moreover, we show that this doubly exponential

http://lat.inf.tu-dresden.de/research/reports.html

1.6 Outline and Contributions of the Thesis 11

blow-up in the construction of the monitor cannot be avoided. Indeed, as we show, such a
blow-up in unavoidable even for propositional LTL. Finally, we consider the complexity of the
deciding liveness and monitorability, which are two important related decision problems, for
the three settings above. Our results are only tight for the case where both rigid concept and
role names are allowed. There, both problems are 2EXPTIME-complete. For the other cases,
a gap remains: both problems are EXPTIME-hard and in 2EXPTIME if no rigid names are
allowed, and CO-NEXPTIME-hard and in 2EXPTIME if only rigid concept names are allowed.
However, the exact complexity of these problems are not even known for propositional LTL.
Some of the results of this chapter are already published. However, we considered only the
less expressive temporalised description logic ALC-LTL in the following publications:

• Franz Baader, Andreas Bauer, and Marcel Lippmann: ‘Runtime Verification Using a
Temporal Description Logic’. In Proc. of the 7th Int. Symp. on Frontiers of Combining

Systems (FroCoS 2009), Trento, Italy. Edited by Silvio Ghilardi and Roberto Sebasti-
ani. Volume 5749. Lecture Notes in Computer Science. Springer-Verlag, Sept. 2009,
pages 149–164

• Franz Baader and Marcel Lippmann: ‘Runtime Verification Using a Temporal De-
scription Logic Revisited’. LTCS-Report 14-01. Chair of Automata Theory, Institute
of Theoretical Computer Science, Technische Universität Dresden, Mar. 2014. URL:
http://lat.inf.tu-dresden.de/research/reports.html

In Chapter 5, we consider temporalised query entailment in any description logic between
ALC and SHQ. After formally introducing the temporal query language that we consider,
we provide complexity results of the corresponding entailment problem. For the three
settings above, we have shown results both for data complexity and combined complexity. If
neither concept nor role names are allowed to be rigid, temporalised query entailment is
CO-NP-complete w.r.t. data complexity and EXPTIME-complete w.r.t. combined complexity. If
only concept names may be rigid, the problem is CO-NP-complete w.r.t. data complexity and
CO-NEXPTIME-complete w.r.t. combined complexity. Finally, if both concept and role names
are allowed to be rigid, the problem is CO-NP-hard and in EXPTIME w.r.t. data complexity
and 2EXPTIME-complete w.r.t. combined complexity. For showing these results, some results
of Chapter 3 are used. Most of the results of this chapter are already published:

• Franz Baader, Stefan Borgwardt, and Marcel Lippmann: ‘Temporalizing Ontology-
Based Data Access’. In Proc. of the 24th Int. Conf. on Automated Deduction (CADE-24),
Lake Placid, NY, USA. Edited by Maria Paola Bonacina. Volume 7898. Lecture Notes in
Artificial Intelligence. Springer-Verlag, June 2013, pages 330–344

• Franz Baader, Stefan Borgwardt, and Marcel Lippmann: ‘On the Complexity of Tem-
poral Query Answering’. LTCS-Report 13-01. Chair of Automata Theory, Institute
of Theoretical Computer Science, Technische Universität Dresden, Mar. 2013. URL:
http://lat.inf.tu-dresden.de/research/reports.html

Finally, in Chapter 6, we consider the verification problem in action formalisms based on
description logics between ALC and ALCQIO. To solve the ramification problem, i.e. the
question how to deal with indirect effects caused by domain constraints (which arises if we
allow general TBoxes), we extend the DL-based action formalism introduced in [BLM+05a]

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

12 Chapter 1. Introduction

(which could deal only with acyclic TBoxes) with causal relationships. We show that im-
portant inference problems such as the consistency problem and the projection problem are
decidable in our new formalism, and continue the work of [BLM10] by generalising the
verification problem. We derive a number of complexity results from the obtained decision
procedures. Depending on the base DL, the complexity results range from PSPACE-complete to
CO-NEXPTIME-hard and in PNEXPTIME for the consistency problem, and from PSPACE-complete
to CO-NEXPTIME-complete for the projection problem. For the verification problem, the
complexity ranges from in EXPSPACE to in CO-2NEXPTIME, and it is unknown whether these
bounds are tight. Some of the results of this chapter are already published:

• Franz Baader, Marcel Lippmann, and Hongkai Liu: ‘Using Causal Relationships to
Deal with the Ramification Problem in Action Formalisms Based on Description Logics’.
In Proc. of the 17th Int. Conf. on Logic for Programming, Artificial Intelligence, and

Reasoning (LPAR-17), Yogyakarta, Indonesia. Edited by Christian G. Fermüller and
Andrei Voronkov. Volume 6397. Lecture Notes in Computer Science. Springer-Verlag,
Oct. 2010, pages 82–96

• Wael Yehia, Hongkai Liu, Marcel Lippmann, Franz Baader, and Mikhail Soutchanski:
‘Experimental Results on Solving the Projection Problem in Action Formalisms Based
on Description Logics’. In Proc. of the 25th Int. Workshop on Description Logics (DL

2012), Rome, Italy. Edited by Yevgeny Kazakov, Domenico Lembo, and Frank Wolter.
Volume 846. CEUR Workshop Proceedings. CEUR-WS.org, June 2012

• Franz Baader, Marcel Lippmann, and Hongkai Liu: ‘Adding Causal Relationships to
DL-based Action Formalisms’. LTCS-Report 10-01. Chair of Automata Theory, Institute
of Theoretical Computer Science, Technische Universität Dresden, Feb. 2010. URL:
http://lat.inf.tu-dresden.de/research/reports.html

CEUR-WS.org
http://lat.inf.tu-dresden.de/research/reports.html

Chapter 2

Preliminaries

In this chapter, we set a basis for the later chapters by introducing the basic notions that
we need. Firstly, we introduce description logics (DLs) as the logical formalism that we use
throughout the thesis. Secondly, we give the basic definitions of propositional linear-time

temporal logic and recall the relationship with ω-automata, i.e. automata working on infinite
words. These notions are needed to obtain the linear-time temporalised description logic

SHOQ-LTL (see Chapter 3).
More specific notions like the basics of DL-based query answering and action formalisms

based on description logics are not covered in this chapter but introduced in the respective
later chapters.

2.1 Basic Notions of Description Logics

As already sketched in the Chapter 1, description logics [BCM+07] are a successful family of
logic-based knowledge representation formalisms. In this section, we introduce the basic
notions of DLs that are relevant for this thesis. For a more thorough introduction to DLs, the
interested reader is referred to the Description Logic Handbook [BCM+07].

2.1.1 Description Logic Concepts

As discussed in Section 1.1, concepts are defined using concept names, role names, individual
names, and concept and role constructors. Throughout the thesis, let NC, NR, and NI,
respectively, denote pairwise disjoint sets of concept names, role names, and individual
names. We introduce now the concept and role constructors that are relevant for this thesis,
and show how they are used to define the syntax of concepts (sometimes called concept

descriptions).

Definition 2.1 (Syntax of concepts). A role r is either a role name, i.e. r ∈ NR, or it is of the

form s− for s ∈ NR (inverse role). The set of concepts is the smallest set such that

• every concept name A∈ NC is a concept; and

• if C , D are concepts, a ∈ NI, r is a role, and n is a non-negative integer, then the following

are also concepts: ¬C (negation), C ⊓ D (conjunction), {a} (nominal), ∃r.C (existential

restriction), and ≥n r.C (at-least restriction). ♦

As usual in description logics, we use

• C ⊔ D (disjunction) as an abbreviation for ¬(¬C ⊓¬D);

13

14 Chapter 2. Preliminaries

• C → D (implication) as an abbreviation for ¬C ⊔ D;

• ⊤ (top) as an abbreviation for A⊔¬A where A∈ NC is arbitrary but fixed;

• ⊥ (bottom) as an abbreviation for ¬⊤;

• ∀r.C (value restriction) as an abbreviation for ¬(∃r.¬C); and

• ≤n r.C (at-most restriction) as an abbreviation for ¬(≥(n+ 1) r.C).

Note that there are more concept and role constructors introduced in the literature. These
are either beyond the scope of this thesis or introduced where needed.

The semantics of concepts is given in a model-theoretic way using the notion of an
interpretation.

Definition 2.2 (Semantics of concepts). An interpretation is a pair I = (∆I , ·I), where the

domain ∆I is a non-empty set, and the interpretation function ·I assigns to every A ∈ NC a

set AI ⊆∆I , to every r ∈ NR a binary relation rI ⊆∆I ×∆I , and to every a ∈ NI an element

aI ∈∆I such that the unique-name assumption (UNA) holds, i.e. for all a, b ∈ NI with a 6= b,

we have aI 6= bI . This function is extended to inverse roles and concepts as follows:

• (s−)I := {(e, d) | (d, e) ∈ sI};
• (¬C)I :=∆I \ CI;

• (C ⊓ D)I := CI ∩ DI;

• {a}I := {aI};
• (∃r.C)I := {d ∈∆I | there exists an e ∈∆I with (d, e) ∈ rI and e ∈ CI}; and

• (≥n r.C)I :=
�

d ∈∆I | |{e ∈∆I | (d, e) ∈ rI and e ∈ CI}| ≥ n
	
.

We call a concept C satisfiable if there is a interpretation I such that CI 6= ;. ♦

Note that in our definition of the semantics, we make the unique-name assumption, which
is an assumption often made in DLs. We continue by giving an example of the notions
introduced so far.

Example 2.3. Let C be the following concept:

{leah} ⊓ ¬Dromedary⊓ ∃likes.Foliage⊓≤1 has.Hump⊓ ∃is-father-of−.{hassan}.

It is not hard to see that C is satisfiable. Figure 2.4 depicts the graphical representation of

an interpretation I with CI = {leahI} 6= ;. Note that for this interpretation I, we have

DromedaryI = ;. ♦

It is important to note that the semantics of a concept is entirely given by an interpretation.
The concept, role, and individual names itself do not imply anything. For instance, the
concept name Dromedary does not necessarily denote dromedaries. It is just a name, and
the actual interpretation has to ensure the expected meaning.

2.1 Basic Notions of Description Logics 15

leah hassan

Hump

Foliage

has

likes

is-father-of

Figure 2.4: An interpretation I such that CI 6= ; for the concept C of Example 2.3

2.1.2 Knowledge Bases

To restrict ourselves to certain kinds of interpretations, we capture the domain knowledge in a
so-called knowledge base (KB). Each KB consists of three parts: a TBox (terminological box),
an RBox (role box), and an ABox (assertional box). Intuitively, the RBox states knowledge
about roles, the TBox states knowledge about all domain elements, whilst the ABox states
knowledge about specific individuals.1

Definition 2.5 (Syntax of TBoxes). An concept definition is of the form A≡ C where A∈ NC

and C is a concept. A general concept inclusion (GCI) is of the form C ⊑ D where C , D are

concepts. We call both concept definitions and GCIs TBox-axioms.
A (general) TBox is a finite set of TBox-axioms. An acyclic TBox T is a finite set of concept

definitions such that the following two conditions are satisfied:

• if A≡ C , A≡ D ∈ T , then C = D (unambiguity); and

• there is no sequence A1 ≡ C1, . . . , An ≡ Cn ∈ T with n ≥ 1 such that Ai+1 occurs in Ci

(for 1≤ i < n) and A1 occurs in Cn (no cyclic definitions).

We call the concept names that occur on the left-hand side of some concept definition in T

defined concept names whereas we call the others primitive concept names. ♦

Intuitively, an acyclic TBox consists of ‘macros’, i.e. definitions of shorthands for (complex)
concepts. Therefore, acyclic TBoxes are sometimes called unfoldable TBoxes. The semantics
of TBoxes can now be defined in a straightforward manner.

Definition 2.6 (Semantics of TBoxes). The interpretation I is a model

• of the concept definition A≡ C (written I |= A≡ C) if AI = CI; and

• of the GCI C ⊑ D (written I |= C ⊑ D) if CI ⊆ DI .

I is a model of the TBox T (written I |= T) if it is a model of each TBox-axiom in T . We call a

TBox consistent if it has a model. ♦

Note that the concept definition A ≡ C can be captured by two GCIs, namely A ⊑ C and
C ⊑ A. For ease of presentation, we thus often assume in the following that general TBoxes
do not contain concept definitions or that a concept definition is an ‘abbreviation’ for two
GCIs.

1In the literature, sometimes the information from the RBox is included in the TBox. However, we keep them
separately here as this turns out to be useful later.

16 Chapter 2. Preliminaries

Definition 2.7 (Syntax of RBoxes). A transitivity axiom is of the form trans(r) where r is a

role, and a role-inclusion axiom is of the form r ⊑ s where r, s are roles. We call both transitivity

axioms and role-inclusion axioms RBox-axioms. An RBox is a finite set of RBox-axioms. ♦

Again, the semantics is straightforward.

Definition 2.8 (Semantics of RBoxes). The interpretation I is a model

• of the transitivity axiom trans(r) (written I |= trans(r)) if rI◦rI ⊆ rI , i.e. rI is transitive;

and

• of the role-inclusion axiom r ⊑ s (written I |= r ⊑ s) if rI ⊆ sI .

I is a model of the RBox R (written I |=R) if it is a model of each RBox-axiom in R. We call

R consistent if it has a model. ♦

Finally, we define the syntax of ABoxes as follows.

Definition 2.9 (Syntax of ABoxes). A concept assertion is of the form C(a) where C is a

concept, and a ∈ NI. A role assertion is of the form r(a, b) where r ∈ NR, and a, b ∈ NI. We

call both concept assertions and role assertions ABox-axioms. An ABox-axiom is atomic if it is

either a role assertion or an atomic concept assertion, i.e. it is of the form A(a) where A∈ NC

and a ∈ NI.

A (complex) ABox is a finite set of ABox-axioms. A simple ABox is a finite set of atomic

ABox-axioms. ♦

We call ABox-axioms sometimes assertions. Note that every simple ABox is also a (complex)
ABox. The semantics of ABoxes is defined as follows.

Definition 2.10 (Semantics of ABoxes). The interpretation I is a model

• of the concept assertion C(a) (written I |= C(a)) if aI ∈ CI; and

• of the role assertion r(a, b) (written I |= r(a, b)) if (aI , bI) ∈ rI .

I is a model of the ABox A (written I |= A) if it is a model of each ABox-axiom in A. We call A

consistent if it has a model. ♦

Note that in the definition of the syntax of role assertions, we do not allow inverse roles. This
is not a real restriction as an ‘assertion’ of the form r−(a, b) can be equivalently expressed by
r(b, a).

In the following, we often call TBox-axioms, RBox-axioms, and ABox-axioms simply axioms.
Now, we are ready to give the formal definition of the syntax and the semantics of knowledge
bases.

Definition 2.11 (Knowledge base). A knowledge base is a triple K = (A, T , R) where A is

an ABox, T is a TBox, and R is an RBox.

The interpretation I is a model of K (written I |= K) if it is a model of A, T , and R. We

call K consistent if it has a model. We say that K entails an axiom α (written K |= α) if every

model of K is also a model of α. ♦

2.1 Basic Notions of Description Logics 17

leah

NiceCamel,
Llama, Camel

hassan

Llama, Camel

yusuf

Llama, Camel

Foliage

likes

is-father-of

is-ancestor-of,

is-father-of

is-ancestor-of,

is-ancestor-of

Figure 2.13: A model I of the KB K of Example 2.12

If a component of a knowledge base is empty, we may also omit it, i.e. we write e.g. (A, T)

instead of (A, T ,;) if the RBox is empty.
We now consider an example of a knowledge base that illustrates how knowledge bases

may be used. Note that this example serves only didactic purposes, and its content might
not reflect everybody’s mindset and is highly debatable.

Example 2.12. Let A be the ABox that consists of the following assertions:

NiceCamel(leah), is-father-of(hassan, leah), is-father-of(yusuf, hassan).

Intuitively, the first assertion states that Leah is a nice camel. The second one states that Hassan

is the father of Leah, and the third one states that Yusuf is the father of Hassan.

Let R be the RBox that consists of the following two axioms:

is-father-of ⊑ is-ancestor-of, trans(is-ancestor-of).

The first axiom states that if d is the father of e, then d is also an ancestor of e. The second

axiom states that is-ancestor-of is transitive.

Let T be the TBox that consists of the following GCIs and concept definitions:

• BactrianCamel⊔Dromedary ⊑ Camel;

• Llama⊔Guanaco⊔ Alpaca⊔ Vicuña ⊑ Camel;

• TrueCamel≡ BactrianCamel⊔Dromedary; and

• NiceCamel≡ ¬Dromedary⊓ ∃likes.Foliage.

Intuitively, the GCIs state that Bactrian camels, dromedaries, llamas, etc. are camels. The first

concept definition states that true camels are Bactrian camels or dromedaries, and the second

one states that nice camels are no dromedaries and they like foliage.

Figure 2.13 depicts the graphical representation of a model I of K := (A, T , R). Note that I

is also a model of the axiom Llama(hassan), which is, however, not entailed by K. ♦

2.1.3 Specific Description Logics

As mentioned above, what differs from DL to DL is which concept and role constructors are
available. The smallest propositionally closed DL is ALC [SS91]. In this DL, the allowed

18 Chapter 2. Preliminaries

concept constructors are negation, conjunction, and existential restrictions, and thus also
disjunctions, universal restrictions, and the top and bottom concepts can be expressed.

If additional concept or role constructors are available, this is denoted by concatenating
a corresponding letter: Q means (qualified) number restrictions, I means inverse roles, O

means nominals, and H means role-inclusion axioms (role hierarchies). For instance, the DL
which is an extension of ALC and allows inverse roles is called ALCI. The extension of ALC

with transitivity axioms is usually denoted by S due to its close relationship with the modal
logic S4. Thus, the DL that allows all the concept and role constructors introduced above is
called SHOIQ.

Throughout this thesis, we sometimes prefix some notions with the specific DL to make
clear which DL is used to construct the concepts or axioms. For instance, we may write
‘ALC-knowledge base’ to make clear that the knowledge base is constructed using concepts
expressible in ALC, and does not contain e.g. inverse roles. If the DL under consideration is
clear from the context, we omit this prefix for ease of presentation.

Given a knowledge base K = (A, T , R), we say that a role name r is transitive (w.r.t. K)
if K |= trans(r), and r is a subrole of a role name s (w.r.t. K) if K |= r ⊑ s. Moreover, we
call r simple (w.r.t. K) if it has no transitive subrole. Note that entailments of the form
K |= trans(r) and K |= r ⊑ s only depend on the RBox R. Such entailments can be decided
in time polynomial in the size of R [HST00]. As shown in [HST00], already for the DL SHQ,
the problem of deciding whether a given knowledge base is consistent is undecidable, even
if all at-least restrictions are unqualified, i.e. of the form ≥n r.⊤. One reason for that is
the occurrence of non-simple role names in such restrictions. To regain decidability of this
important inference problem, role names occurring in at-least restrictions are therefore
usually required to be simple. In the following, we also make this restriction to the syntax
of SHQ and every of its superlogics.

Under this assumption, the problem of deciding the consistency of knowledge bases
is in EXPTIME, even if the numbers occurring in at-least restrictions are given in binary
encoding [Tob01]. On the other hand, the problem is EXPTIME-hard already in ALC [Sch91].
If we add nominals (SHOQ) [Sch94; HS01] or inverse roles (SHIQ) [Sch94; Tob01], the
complexity of this problem stays in EXPTIME, but it increases to NEXPTIME-complete if we
include both (SHOIQ) [Sch94; Tob00; Pra05].

2.1.4 Boolean Knowledge Bases

The notion of a knowledge base (see Definition 2.11) can be generalised to Boolean knowledge
bases.

Definition 2.14 (Boolean knowledge base). Let R be an RBox. The set of Boolean axiom
formulas w.r.t. R is the smallest set such that

• every ABox-axiom and every TBox-axiom in which at-least restrictions contain only simple

roles w.r.t. R is a Boolean axiom formula; and

• if Ψ1 and Ψ2 are Boolean axiom formulas, then so are ¬Ψ1 (negation) and Ψ1 ∧ Ψ2

(conjunction).

A Boolean knowledge base is a pair B = (Ψ, R), where R is an RBox, and Ψ is a Boolean axiom

formula w.r.t. R.

2.2 Propositional Linear-Time Temporal Logic and ω-Automata 19

The interpretation I is a model of B (written I |= B) iff I |=R and I |= Ψ, where the latter

is defined inductively as follows:

• I |= ¬Ψ1 iff I 6|= Ψ1; and

• I |= Ψ1 ∧Ψ2 iff I |= Ψ1 and I |= Ψ2.

We call B consistent if it has a model. We say that B entails the axiom α (written B |= α) if

every model of B is also a model of α. ♦

For convenience, we use the Boolean knowledge base (Ψ1 ∨Ψ2, R) as an abbreviation for
(¬(¬Ψ1 ∧¬Ψ2), R).

The reason why we do not allow RBox-axioms as Boolean axiom formulas is that the
notion of simple roles does not make sense w.r.t. a Boolean combination of RBox-axioms.

According to this definition, knowledge bases can be seen as special kinds of Boolean
knowledge bases. In fact, the knowledge base K = (A, T , R) induces the Boolean knowledge
base BK = (ΨK, R) with ΨK :=

∧
A∧
∧

T , where
∧

A denotes
∧
α∈A

α, and
∧

T denotes∧
β∈T

β . Thus, Boolean knowledge bases generalise classical knowledge bases as introduced
in Definition 2.11.

The problem of deciding the consistency of Boolean knowledge bases, however, is not so
well-investigated as for ‘classical’ knowledge bases. It is known that for the description logic
ALC, this problem is EXPTIME-complete [GKW+03], and we show in Section 3.2.4 that it
remains in EXPTIME for an extension of the description logic SHOQ.

2.2 Propositional Linear-Time Temporal Logic and ω-Automata

In this section, we recall the definitions for the prominent temporal logic propositional linear-

time temporal logic (LTL) [Pnu77] that are relevant for this thesis. After introducing the
syntax and semantics of propositional LTL in Section 2.2.1, we consider its connection to
ω-automata in Section 2.2.2.

2.2.1 Syntax and Semantics of Propositional LTL

Propositional LTL extends propositional logic with modal operators that can be used to talk
about the past and the future. The syntax of propositional LTL is defined as follows.

Definition 2.15 (Syntax of propositional LTL). Let P = {p1, . . . , pm} be a finite set of pro-
positional variables. The set of propositional LTL-formulas over P is the smallest set such

that

• if p ∈ P, then p is a propositional LTL-formula over P; and

• if φ1 and φ2 are propositional LTL-formulas over P, then so are: ¬φ1 (negation), φ1∧φ2

(conjunction), Xφ1 (next), X−φ1 (previous), φ1 Uφ2 (until), and φ1 Sφ2 (since). ♦

If the set of propositional variables is clear from the context or irrelevant, we talk about
propositional LTL-formulas rather than propositional LTL-formulas over P.

As usual in temporal logics, we use

20 Chapter 2. Preliminaries

• φ1 ∨φ2 (disjunction) as an abbreviation for ¬(¬φ1 ∧¬φ2);

• φ1→ φ2 (implication) as an abbreviation for ¬φ1 ∨φ2;

• true as an abbreviation for an arbitrary but fixed propositional tautology such as p∨¬p

with p ∈ P;

• false as an abbreviation for ¬true;

• ◊φ (diamond, which should be read as ‘eventually’ or ‘some time in the future’) as an
abbreviation for true Uφ;

• �φ (box, which should be read as ‘always’ or ‘always in the future’) as an abbreviation
for ¬◊¬φ;

• ◊−φ (which should be read as ‘once’ or ‘some time in the past’) as an abbreviation for
true Sφ; and

• �−φ (which should be read as ‘historically’ or ‘always in the past’) as an abbreviation
for ¬◊−¬φ.

The semantics of propositional LTL is defined using the non-negative integers as discrete
linear flow of time. For each point in time, i.e. non-negative integer, the semantic structure
determines which of the propositional variables are true at this point. This is captured in the
notion of a propositional LTL-structure.

Definition 2.16 (Semantics of propositional LTL). Let P = {p1, . . . , pm} be a set of propos-

itional variables. A propositional LTL-structure over P is an infinite sequence W= (wi)i≥0 of

sets wi ⊆ P, which we call worlds.
Given a propositional LTL-formula φ, a propositional LTL-structure W = (wi)i≥0, and a time

point i ≥ 0, validity of φ in W at time i (written W, i |= φ) is defined inductively as follows:

W, i |= p iff p ∈ wi

W, i |= ¬φ1 iff W, i 6|= φ1, i.e. not W, i |= φ1

W, i |= φ1 ∧φ2 iff W, i |= φ1 and W, i |= φ2

W, i |= Xφ1 iff W, i + 1 |= φ1

W, i |= X−φ1 iff i > 0 and W, i − 1 |= φ1

W, i |= φ1 Uφ2 iff there is some k ≥ i such that W, k |= φ2, and

W, j |= φ1 for every j, i ≤ j < k

W, i |= φ1 Sφ2 iff there is some k, 0≤ k ≤ i, such that W, k |= φ2, and

W, j |= φ1 for every j, k < j ≤ i

If W, 0 |= φ, then we call W a model of φ. We call the propositional LTL-formula φ satisfiable
if it has a model.

The satisfiability problem in propositional LTL is the problem of deciding, given a propositional

LTL-formula φ, whether φ is satisfiable.

Two propositional LTL-formulas φ1,φ2 are equivalent (written φ1 ≡ φ2) if they have the

same models. ♦

Note that we defined here the so-called non-strict U and non-strict S. For the strict version
U< of U, one needs to replace in the definition of the semantics of U ‘there is some k ≥ i’ by

2.2 Propositional Linear-Time Temporal Logic and ω-Automata 21

W1:
{p2} {p1, p2} {p2} {p3} ;

. . .

W2:
; {p1, p2} {p1, p2} {p3} {p2}

. . .

Figure 2.18: The propositional LTL-structures W1,W2 of Example 2.17

‘there is some k > i’. It is not hard to see that, in the presence of X, both U and U< have the
same expressive power. In fact, the formula φ1 Uφ2 is equivalent to φ2 ∨ (φ1 U< φ2), and
conversely, φ1 U< φ2 is equivalent to φ1 ∧ X(φ1 Uφ2). Similar arguments apply to the strict
version S< of S.

We continue by giving an example of a propositional LTL-formula.

Example 2.17. Let φ := X p1 ∧ (p2 U p3) be a propositional LTL-formula. Consider the two

propositional LTL-structures W1,W2 that are depicted in Figure 2.18 in a graphical repres-

entation. We have W1, 0 |= φ, and thus φ is satisfiable. Moreover, we have W2, 0 6|= φ, but

W2, 1 |= φ. ♦

We call the temporal operators X and U future operators, whereas we call X− and S past oper-

ators. Note that propositional LTL is normally defined using only future operators [Pnu77],
and the extension with past operators [GPS+80] is usually called propositional Past-LTL. It is
a well-known result, however, that the past operators do not add expressive power [GPS+80],
even though some properties are easier to express using past operators [LPZ85]. Indeed,
using Gabbay’s separation theorem [Gab89], one can construct for each propositional LTL-
formula φ with past operators, an equivalent propositional LTL-formula φ′ that does not
contain past operators. However, this construction is in general non-elementary in the size
of φ, as basically the size of the constructed formula increases by one exponential for each U

nested inside an S, and vice versa. This upper bound can be improved, but no constructions
of size less than triply exponential in the size of φ are known [LMS02]. For the lower bound,
it is known that past operators make propositional LTL exponentially more succinct [LMS02],
i.e. there is a propositional LTL-formula φ with past operators such that the size of an
equivalent propositional LTL-formula φ′ without past operators is bounded by 2Ω(|φ|), where
|φ| denotes the size of φ.

Moreover, the satisfiability problem in propositional LTL is PSPACE-complete irrespective
of the use of past operators [SC85; Mar04]. In the next section, we recall the connection
between propositional LTL and ω-automata.

2.2.2 ω-Automata and Their Connection to Propositional LTL

For propositional LTL, the satisfiability problem can be decided by first constructing an
ω-automaton for the given formula, and then testing this automaton for emptiness. In
general, ω-automata accept ω-words over an alphabet Σ, i.e. infinite sequences of letters
w = σ0σ1σ2 . . . with σi ∈ Σ for every i ≥ 0. The set of all ω-words over Σ is denoted by
Σ
ω, and a subset L of Σω is called ω-language.
There are various ω-automata models that can be employed for solving the satisfiability

problem for propositional LTL such as Büchi-automata [Büc62], Muller-automata [Mul63],

22 Chapter 2. Preliminaries

Rabin-automata [Rab69], and Streett-automata [Str82]. To keep the explanations simple, in
this thesis we focus on (non-deterministic) Büchi-automata.

Definition 2.19 (Generalised Büchi-automaton). A generalised Büchi-automaton G is a

tuple G = (Q,Σ,∆,Q0, F) consisting of a finite set of states Q, a finite input alphabet Σ, a

transition relation ∆ ⊆Q×Σ×Q, a set of initial states Q0 ⊆Q, and a set of sets of final states

F ⊆ 2Q.

Given an ω-word w = σ0σ1σ2 . . . ∈ Σω, a run of G on w is an ω-word q0q1q2 . . . ∈Qω such

that q0 ∈ Q0 and (qi ,σi , qi+1) ∈ ∆ for every i ≥ 0. This run is accepting if for every F ∈ F ,

there are infinitely many i ≥ 0 such that qi ∈ F. The language Lω(G) accepted by G is defined

as

Lω(G) := {w ∈ Σω | there is an accepting run of G on w}.
The emptiness problem for generalised Büchi-automata is the problem of deciding, given a

generalised Büchi-automaton G, whether Lω(G) = ; or not.

Moreover, we call G deterministic if |Q0| = 1 and for every q ∈Q and σ ∈ Σ, there is at most

one q′ ∈Q with (q,σ, q′) ∈∆. ♦

Normal Büchi-automata are a special case of a generalised Büchi-automata where F = {F},
and are denoted by N = (Q,Σ,∆,Q0, F). It is common knowledge that every generalised
Büchi-automaton G, can be transformed into a Büchi automaton N such that Lω(G) = Lω(N)

in time polynomial in the size of G [GPV+96; BK08].
Regarding the complexity of the emptiness problem for Büchi-automata, it is well-known

that it can be solved in time polynomial in the size of the Büchi-automaton [VW94]. Together
with the arguments of the previous paragraph, this yields that the emptiness problem
for generalised Büchi-automata can also be solved in time polynomial in the size of the
generalised Büchi-automaton.

Additionally, there is a well-known connection between (generalised) Büchi-automata and
propositional LTL. In fact, given a propositional LTL-formula φ over P, we can view any
propositional LTL-structure W = (wi)i≥0 as an ω-word w = w0w1w2 . . . ∈ Σω

P
, where the

alphabet ΣP consists of all subsets of P. It is well-known that one can build a generalised
Büchi-automaton that accepts exactly the models of φ.

Definition 2.20 (Büchi-automaton for propositional LTL-formula). Let φ be a proposi-

tional LTL-formula over P, and let G be a generalised Büchi-automaton working on the alpha-

bet ΣP . We define

Lω(φ) := {w0w1w2 . . . ∈ Σω
P
|W= (wi)i≥0 is a model of φ},

and say that G is a Büchi-automaton for φ if Lω(G) = Lω(φ). ♦

If G is a Büchi-automaton for φ, then φ is satisfiable iff Lω(G) 6= ;. Thus, by constructing
a Büchi-automaton for φ, we can reduce the satisfiability problem in propositional LTL to
the emptiness problem for Büchi-automata. It is well-known that, given a propositional
LTL-formula φ, one can construct a (generalised) Büchi-automaton for φ in time exponential
in the size of φ [WVS83; VW94; LPZ85]. However, for propositional LTL-formulas involving
past-operators, this construction is often not done explicitly. We include it here, and generalise
it as follows. Instead of constructing a Büchi-automaton for a propositional LTL-formula φ

2.2 Propositional Linear-Time Temporal Logic and ω-Automata 23

over P, we define a Büchi-automaton that, given n≥ 0, accepts allω-words w0w1w2 . . . ∈ Σω
P

such that φ is valid in W= (wi)i≥0 at time n. This generalisation will prove to be useful in
Section 5.2.2.

To define the Büchi-automaton, we need a few more notions. From now on, let φ be a
propositional LTL-formula over P, and let n≥ 0. As usual, the set of subformulas of φ is the
smallest set containing all propositional LTL-formulas occurring in φ (including φ itself).
We define Clp(φ) to be the closure under negation of the set of subformulas of φ. In the
following, we identify ¬¬ψ with ψ for every subformula ψ of φ. Thus, the set Clp(φ) is of
size polynomial in the size of φ.

Definition 2.21 (Propositional LTL-type). Let φ be a propositional LTL-formula. A proposi-
tional LTL-type for φ is a set T ⊆ Clp(φ) such that:

• for every ψ1 ∧ψ2 ∈ Clp(φ), we have ψ1 ∧ψ2 ∈ T iff {ψ1,ψ2} ⊆ T; and

• for every ¬ψ ∈ Clp(φ), we have ¬ψ ∈ T iff ψ /∈ T. ♦

Obviously, the set of all propositional LTL-types for a given propositional LTL-formula φ is
exponential in the size of φ.

Now, we are ready to define the generalised Büchi-automaton with the above properties
by equipping the set of states with a counter from {0, . . . , n + 1}. Transitions where the
counter is i = n ensure that φ is satisfied. We construct the generalised Büchi-automaton
Gφ,n = (Q,ΣP ,∆,Q0, F) as follows:

• Q :=
�
(q, k) | q is a propositional LTL-type for φ, and 0≤ k ≤ n+ 1

	
;

• ((T, k), σ, (T ′, k′)) ∈ ∆ iff
– σ = T ∩P;
– for every Xψ ∈ Clp(φ), we have Xψ ∈ T iff ψ ∈ T ′;
– for every X−ψ ∈ Clp(φ), we have X−ψ ∈ T ′ iff ψ ∈ T ;
– for every ψ1 Uψ2 ∈ Clp(φ), we have ψ1 Uψ2 ∈ T iff (i) ψ2 ∈ T or (ii) ψ1 ∈ T

and ψ1 Uψ2 ∈ T ′;
– for every ψ1 Sψ2 ∈ Clp(φ), we have ψ1 Sψ2 ∈ T ′ iff (i) ψ2 ∈ T ′ or (ii) ψ1 ∈ T ′

and ψ1 Sψ2 ∈ T ;
– k = n implies φ ∈ T ; and

– k′ =

¨
k+ 1 if k ≤ n, and

k otherwise;

• Q0 :=
�
(T, 0) | there is no X−ψ ∈ T , and for every ψ1 Sψ2 ∈ T , we have ψ2 ∈ T

	
;

and

• F :=
�

Fψ1Uψ2
× {n+ 1} |ψ1 Uψ2 ∈ Clp(φ)

	
, where

Fψ1Uψ2
:= {T | for every ψ1 Uψ2 ∈ T, we have ψ2 ∈ T}.

We show now that Gφ,n has indeed the above properties.

Lemma 2.22. For every ω-word w = w0w1w2 . . . ∈ Σω
P

, we have w ∈ Lω(Gφ,n) iff φ is valid

in the propositional LTL-structure W= (wi)i≥0 at time n.

24 Chapter 2. Preliminaries

Proof. For the ‘only if’ direction, assume that φ is valid in the propositional LTL-structure
W= (wi)i≥0 at time n. We define Si := {ψ ∈ Clp(φ) |W, i |=ψ} for i ≥ 0. Then,

(S0, 0)(S1, 1) . . . (Sn, n)(Sn+1, n+ 1)(Sn+2, n+ 1) . . .

is a run of Gφ,n on w0w1w2 . . . due to the following reasons:

• We have (Si , k) ∈Q for every i ≥ 0 and every k, 0≤ k ≤ n+ 1, since:
– For everyψ1∧ψ2 ∈ Clp(φ), we have W, i |=ψ1∧ψ2 iff W, i |=ψ1 and W, i |=ψ2.

Thus, we have ψ1 ∧ψ2 ∈ Si iff {ψ1,ψ2} ⊆ Si .
– For every ¬ψ ∈ Clp(φ), we have either W, i |= ¬ψ or W, i |=ψ. Thus, we have
¬ψ ∈ Si iff ψ /∈ Si .

• We have for every i, 0≤ i ≤ n, that

((Si , i), wi , (Si+1, i + 1)) ∈ ∆,

and for every i ≥ n+ 1 that

((Si , n+ 1), wi , (Si+1, n+ 1)) ∈ ∆

since:
– by the definition of Si , we have wi = Si ∩P;
– for every Xψ ∈ Clp(φ), we have Xψ ∈ Si iff W, i |= Xψ iff W, i + 1 |= ψ iff
ψ ∈ Si+1;

– for every X−ψ ∈ Clp(φ), we have X−ψ ∈ Si+1 iff W, i + 1 |= X−ψ iff W, i |= ψ
iff ψ ∈ Si;

– for every ψ1 U ψ2 ∈ Clp(φ), we have ψ1 U ψ2 ∈ Si iff W, i |= ψ1 U ψ2 iff
(i) W, i |= ψ2 or (ii) W, i |= ψ1 and W, i + 1 |= ψ1 U ψ2 iff (i) ψ2 ∈ Si or
(ii) ψ1 ∈ Si and ψ1 Uψ2 ∈ Si+1;

– for every ψ1 Sψ2 ∈ Clp(φ), we have ψ1 Sψ2 ∈ Si+1 iff W, i + 1 |= ψ1 Sψ2 iff
(i) W, i + 1 |= ψ2 or (ii) W, i + 1 |= ψ1 and W, i |= ψ1 Sψ2 iff (i) ψ2 ∈ Si+1 or
(ii) ψ1 ∈ Si+1 and ψ1 Sψ2 ∈ Si;

– for i = n, we have φ ∈ Si since W, n |= φ; and
– the condition for incrementing the second component of a state (until n+ 1 is

reached) is obviously also satisfied.

• We have for every X−ψ ∈ Clp(φ) that W, 0 6|= X−ψ, and thus X−ψ /∈ S0. Additionally,
we have for every ψ1 Sψ2 ∈ S0, since W, 0 |= ψ1 Sψ2, also W, 0 |= ψ2, and thus
ψ2 ∈ S0. This yields that (S0, 0) ∈Q0.

Moreover, the above run is accepting. We prove this by contradiction. Suppose that for some
ψ1 Uψ2 ∈ Clp(φ), the set {i ≥ 0 | Si ∈ Fψ1Uψ2

} is finite. Then there exists some k ≥ 0 such
that Sℓ /∈ Fψ1Uψ2

for every ℓ ≥ k. This means ψ1 Uψ2 ∈ Sℓ and ψ2 /∈ Sℓ for every ℓ ≥ k.
Hence, W, k |=ψ1 Uψ2 and W,ℓ 6|=ψ2 for every ℓ≥ k. This contradicts the semantics of U.

For the ‘if’ direction, assume that w0w1w2 . . . ∈ Lω(Gφn
), i.e. there is an accepting run

(S0, 0)(S1, 1) . . . (Sn, n)(Sn+1, n+ 1)(Sn+2, n+ 1) . . .

2.2 Propositional Linear-Time Temporal Logic and ω-Automata 25

of Gφ,n on w0w1w2 We show that φ is valid in W := (wi)i≥0 at time n. We have φ ∈ Sn

by the definition of ∆. Thus, it is enough to show that for every ψ ∈ Clp(φ) and every i ≥ 0,
we have ψ ∈ Si iff W, i |= ψ. This can be shown by induction on the structure of ψ using
the definition of ∆.

• If ψ ∈ P, we have ψ ∈ Si iff ψ ∈ wi iff W, i |=ψ.

• If ψ = ¬χ , we have ¬χ ∈ Si iff χ /∈ Si iff W, i 6|= χ iff W, i |= ¬χ .

• If ψ = χ1 ∧ χ2, we have χ1 ∧ χ2 ∈ Si iff {χ1,χ2} ⊆ Si iff W, i |= χ1 and W, i |= χ2 iff
W, i |= χ1 ∧χ2.

• If ψ = Xχ , we have Xχ ∈ Si iff χ ∈ Si+1 iff W, i + 1 |= χ iff W, i |= Xχ .

• If ψ = X−χ, we have X−χ ∈ Si iff i > 0 and χ ∈ Si−1 iff i > 0 and W, i − 1 |= χ iff
W, i |= X−χ . The first iff holds because of the definition of Q0.

• Ifψ = χ1 Uχ2, we prove χ1 Uχ2 ∈ Si iff W, i |= χ1 Uχ2 as follows. For the ‘if’ direction,
assume that W, i |= χ1 U χ2. Then there is some k ≥ i such that W, k |= χ2 and
W,ℓ |= χ1 for every ℓ, i ≤ ℓ < k. We show by induction on j that χ1 Uχ2 ∈ Sk− j for j,
j ≤ k− i.
For j = 0, we have: W, k |= χ2 implies χ2 ∈ Sk by the outer induction hypothesis, and
the definition of ∆ yields χ1 Uχ2 ∈ Sk.
For j > 0, we have: W, k− j |= χ1 implies χ1 ∈ Sk− j by the outer induction hypothesis.
By the inner induction hypothesis, we have χ1 Uχ2 ∈ Sk− j+1. Thus, by the definition
of ∆, it follows that χ1 Uχ2 ∈ Sk− j .
For the ‘only if’ direction, assume that χ1 U χ2 ∈ Si. Since states of Fχ1Uχ2

× {n+ 1}
occur infinitely often among S0, S1, S2, . . . , there is some k ≥ i such that Sk ∈ Fχ1Uχ2

.
Let k be the smallest index with that property. Then it follows that χ1 Uχ2 ∈ Sℓ and
χ2 /∈ Sℓ for every ℓ, i ≤ ℓ < k.
Since χ1 Uχ2 ∈ Sℓ and χ2 /∈ Sℓ for every ℓ, i ≤ ℓ < k, we have χ1 ∈ Sℓ because of the
definition of ∆. Thus, W,ℓ |= χ1 for every ℓ, i ≤ ℓ < k (∗).
Moreover, χ1 Uχ2 ∈ Sk−1 and χ2 /∈ Sk−1 imply χ1 Uχ2 ∈ Sk because of the definition
of ∆. This yields χ2 ∈ Sk since Sk ∈ Fχ1Uχ2

, and thus W, k |= χ2 (∗∗).
Finally, (∗) and (∗∗) yield that W, i |= χ1 Uχ2 by the semantics of U.

• If ψ = χ1 Sχ2, we prove χ1 Sχ2 ∈ Si iff W, i |= χ1 Sχ2 similarly. For the ‘if’ direction,
assume that W, i |= χ1 Sχ2. Then there is some k, 0≤ k ≤ i such that W, k |= χ2 and
W,ℓ |= χ1 for every ℓ, k < ℓ≤ i. We show by induction on j that χ1 Sχ2 ∈ Sk+ j for j,
j ≤ i − k.
For j = 0, we have: W, k |= χ2 implies χ2 ∈ Sk by the outer induction hypothesis, and
the definition of ∆ yields χ1 Sχ2 ∈ Sk.
For j > 0, we have: W, k+ j |= χ1 implies χ1 ∈ Sk+ j by the outer induction hypothesis.
By the inner induction hypothesis, we have χ1 Sχ2 ∈ Sk+ j−1. Thus, by the definition
of ∆, it follows that χ1 Sχ2 ∈ Sk+ j .
For the ‘only if’ direction, assume that χ1 Sχ2 ∈ Si. There are two cases to consider:
either i = 0 or i > 0.
For i = 0, we have: χ1 Sχ2 ∈ S0 implies χ2 ∈ S0 by the definition of Q0. This yields
W, 0 |= χ2, and thus W, 0 |= χ1 Sχ2.

26 Chapter 2. Preliminaries

For i > 0, we have again two cases: either χ2 ∈ Si or χ1 ∈ Si and χ1 S χ2 ∈ Si−1.
For the case where χ1 ∈ Si, it directly follows that W, i |= χ1 S χ2. For the other
case where χ1 ∈ Si and χ1 S χ2 ∈ Si−1, we have by the inner induction hypothesis
that W, i − 1 |= χ1 S χ2. Thus, there is a k, 0 ≤ k ≤ i − 1, such that W, k |= χ2 and
W, j |= χ1 for every j, k < j ≤ i − 1. Since we have by the outer induction hypothesis
also that W, i |= χ1, it follows that there is some k, 0≤ k ≤ i, such that W, k |= χ2 and
W, j |= χ1 for every j, k < j ≤ i. Hence, W, i |= χ1 Sχ2. �

We immediately obtain the following corollary.

Corollary 2.23. The generalised Büchi-automaton Gφ,0 is a Büchi-automaton for φ.

Proof. By Lemma 2.22, we have

Lω(Gφ,0) = {w0w1w2 . . . ∈ Σω
P
|W= (wi)i≥0 is a model of φ}= Lω(φ). �

As already mentioned above, one can transform the Büchi-automaton Gφ,n into a ‘nor-
mal’ Büchi-automaton Nφ,n such that Lω(Gφ,n) = Lω(Nφ,n) in time polynomial in the size
of Gφ,n [GPV+96; BK08]. An analysis of the construction of Gφ,n yields the following lemma.

Lemma 2.24. The Büchi-automaton Nφ,n is of size exponential in the size of φ and polynomial

in n, and can be constructed in time exponential in the size of φ and polynomial in n.

Proof. Note that Gφ,n, and thus Nφ,n, have exponentially many states in the size of φ and
linearly many states in the size of n, and each state can be represented using only space
polynomial in the size of φ and n. Moreover, the alphabet ΣPφ

is exponential in the size of φ.
The set of final states of Gφ,n contains linearly many sets of size at most exponential in φ,
while the size of the set of initial states and the transition relation is bounded polynomially
in the size of the set of states, which is exponential in the size of φ and linear in n.

Since all conditions that need to be checked to construct the components of Gφ,n can be
checked in time exponential in the size ofφ and polynomial in n, and Nφ,n can be constructed
in time polynomial in the size of Gφ,n, we obtain the claim of the lemma. �

We will use the result of this lemma later in Section 5.2.2. Note that instead of constructing
the Büchi-automaton Nφ,n, we could also omit the counter and construct a Büchi-automaton
for Xnφ, e.g. NXnφ,0, that accepts the same ω-language. However, the size of this Büchi-
automaton is exponential in the size of Xnφ, and thus also exponential in n. With the
construction above, we have shown that we can do better.

Regarding the satisfiability problem in propositional LTL, Lemma 2.24 yields the following.
If we first compute an exponentially large Büchi-automaton for φ and then apply the empti-
ness test for Büchi-automata, we obtain an EXPTIME decision procedure for the satisfiability
problem. In order to reduce the complexity to PSPACE, one has to generate the relevant parts
of the Büchi-automaton on-the-fly while performing the emptiness check [SC85; LPZ85].

It can be shown that, in the worst case, an exponential blow-up in the construction of
the Büchi-automaton for a propositional LTL-formula cannot be avoided (see Theorem 5.42
in [BK08] for a proof). However, there are optimised implementations of the construction
that try to keep the number of states as small as possible (see e.g. [GO01; GO03; GPV+96]).
Experiments with these implementations show that an exponential blow-up can frequently be

2.2 Propositional Linear-Time Temporal Logic and ω-Automata 27

q0

q1

q2

q3

q4

p2

p3

p1 ∧ p2

p1 ∧ p3

p1

p2

p3

true

Figure 2.26: A Büchi-automaton for the propositional LTL-formula φ of Example 2.17

avoided. For example, the tool LTL2BA2 is widely used in practice to generate Büchi-automata
from propositional LTL-formulas.3

Example 2.25. Reconsider the propositional LTL-formula φ = X p1∧(p2 U p3) of Example 2.17.

Figure 2.26 depicts a Büchi-automaton for this formula, which was generated by LTL2BA. Note

that edges with propositional formulas ψ as labels are used as abbreviations for sets of edges

labelled with those subsets of P that represent models of ψ. For example, the edge with label

p1 ∧ p2 from q1 to q3 stands for two edges between these states, one with label {p1, p2} and one

with label {p1, p2, p3}.
This automaton accepts, for example, the ω-word {p2}{p1, p2}{p2}{p3}; . . . , which corres-

ponds to the propositional LTL-structure W1 of Example 2.17 with W1, 0 |= φ. ♦

In this chapter, we have introduced description logics. Moreover, we have given the basic
definitions of propositional LTL and have recalled its relationship with ω-automata. This
sets a basis for the later chapters.

2See http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/.
3Unfortunately, like most other such tools, LTL2BA does not support propositional LTL with past-operators.

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

28 Chapter 2. Preliminaries

Chapter 3

The Temporalised Description Logic

SHOQ-LTL

Temporalised description logics extend description logics with temporal modalities. As
discussed in Section 1.2, there are many different approaches to temporalising description
logics. In this thesis, we follow the approach that was taken by introducing ALC-LTL [BGL12],
i.e. a combination of ALC with propositional LTL where ALC-axioms replace propositional
variables, and temporal operators are only allowed to occur in front of ALC-axioms rather
than inside of concepts.

The temporalised description logic SHOQ-LTL, which we examine in this chapter, general-
ises ALC-LTL. In fact, several constructions in the present chapter are adaptations of those
for ALC-LTL, in particular the ones used to show Lemmas 4.3 and 6.4 in [BGL12]. Some of
the results of this chapter have already been published in [BL14].

This chapter is organised as follows. In Section 3.1, we formally introduce the temporalised
description logic SHOQ-LTL. Then, in Section 3.2, we show complexity results for the
satisfiability problem in SHOQ-LTL. Finally, we provide a brief summary of the obtained
results in Section 3.3.

3.1 Syntax and Semantics of SHOQ-LTL

The temporalised description logic SHOQ-LTL combines the description logic SHOQ with
the temporal logic LTL. Its syntax is very similar to the one of propositional LTL (see
Definition 2.15), but in SHOQ-LTL propositional variables are replaced by SHOQ-axioms.

Definition 3.1 (Syntax of SHOQ-LTL). Let R be an RBox. The set of SHOQ-LTL-formulas
w.r.t. R is the smallest set such that

• every ABox-axiom and every TBox-axiom in which at-least restrictions contain only simple

roles w.r.t. R is a SHOQ-LTL-formula w.r.t. R; and

• if φ1 and φ2 are SHOQ-LTL-formulas w.r.t. R, then so are: ¬φ1 (negation), φ1 ∧φ2

(conjunction), Xφ1 (next), X−φ1 (previous), φ1 Uφ2 (until), and φ1 Sφ2 (since). ♦

We denote the set of axioms occurring in a SHOQ-LTL-formula φ by Ax(φ). Clearly, the
cardinality of Ax(φ) is bounded by the size of φ. Similar to propositional LTL, we use

• φ1 ∨φ2 (disjunction) as an abbreviation for ¬(¬φ1 ∧¬φ2);

• φ1→ φ2 (implication) as an abbreviation for ¬φ1 ∨φ2;

29

30 Chapter 3. The Temporalised Description Logic SHOQ-LTL

• true as an abbreviation for an arbitrary but fixed tautology such as A(a)∨¬A(a) with
A∈ NC and a ∈ NI;

• false as an abbreviation for ¬true;

• ◊φ (diamond, which should be read as ‘eventually’ or ‘some time in the future’) as an
abbreviation for true Uφ;

• �φ (box, which should be read as ‘always’ or ‘always in the future’) as an abbreviation
for ¬◊¬φ;

• ◊−φ (which should be read as ‘once’ or ‘some time in the past’) as an abbreviation for
true Sφ; and

• �−φ (which should be read as ‘historically’ or ‘always in the past’) as an abbreviation
for ¬◊−¬φ.

The semantics of SHOQ-LTL is based on DL-LTL-structures, which are infinite sequences
of interpretations over the same non-empty domain ∆ (constant-domain assumption). As
discussed in Section 1.2, for some concept and role names it is also not desirable that their
interpretation changes over time. Thus, we assume in the following that a subset of the set
of concept and role names can be designated as being rigid. Let NRC denote the set of rigid

concept names and NRR the set of rigid role names where NRC ⊆ NC and NRR ⊆ NR. All concept
and role names in NC \NRC and NR \NRR are then called flexible. Moreover, we make the
rigid-individual assumption, i.e. we assume that every individual name stands for a unique
element of the domain ∆.

Definition 3.2 (DL-LTL-structure). We call an infinite sequence I = (Ii)i≥0 of interpretations

Ii = (∆, ·Ii) a DL-LTL-structure if

• aIi = aI j holds for every a ∈ NI and all i, j ≥ 0 (rigid-individual assumption);

• AIi = AI j holds for every A∈ NRC and all i, j ≥ 0; and

• rIi = rI j holds for every r ∈ NRR and all i, j ≥ 0. ♦

This notion is now used to define the semantics of SHOQ-LTL-formulas.

Definition 3.3 (Semantics of SHOQ-LTL). Given a SHOQ-LTL-formula φ w.r.t. an RBox R,

a DL-LTL-structure I = (Ii)i≥0, and a time point i ≥ 0, validity of φ in I at time i (written

I, i |= φ) is defined inductively as follows:

I, i |= α iff Ii |= α
I, i |= ¬φ1 iff I, i 6|= φ1, i.e. not I, i |= φ1

I, i |= φ1 ∧φ2 iff I, i |= φ1 and I, i |= φ2

I, i |= Xφ1 iff I, i + 1 |= φ1

I, i |= X−φ1 iff i > 0 and I, i − 1 |= φ1

I, i |= φ1 Uφ2 iff there is some k ≥ i such that I, k |= φ2, and

I, j |= φ1 for every j, i ≤ j < k

I, i |= φ1 Sφ2 iff there is some k, 0≤ k ≤ i, such that I, k |= φ2, and

I, j |= φ1 for every j, k < j ≤ i

3.2 The Complexity of Satisfiability in SHOQ-LTL 31

Table 3.4: The complexity of the satisfiability problem in SHOQ-LTL

Setting (i) EXPTIME-complete (Theorems 3.5 and 3.15)

Setting (ii) NEXPTIME-complete (Theorems 3.5 and 3.20)

Setting (iii) 2EXPTIME-complete (Theorems 3.5 and 3.17)

Settings: (i) neither concept names nor role names are allowed to be rigid; (ii) only concept
names may be rigid; and (iii) both concept names and role names may be rigid.

If Ii |=R for every i ≥ 0 (written I |=R), and I, 0 |= φ, then we call I a model of φ w.r.t. R.

We call φ satisfiable w.r.t. R if it has a model w.r.t. R.

The satisfiability problem in SHOQ-LTL is the problem of deciding, given a SHOQ-LTL-

formula φ w.r.t. an RBox R, whether φ is satisfiable w.r.t. R.

Moreover, two SHOQ-LTL-formulasφ1,φ2 w.r.t. an RBox R are equivalent (writtenφ1 ≡ φ2)

if they have the same models w.r.t. R. ♦

In [BGL12], the temporalised description logic ALC-LTL, which is a fragment of SHOQ-LTL,
is considered. There, the authors show that satisfiability in ALC-LTL is EXPTIME-complete
if no rigid names are present. If rigid concept names are allowed, the problem becomes
NEXPTIME-complete, and if additionally rigid role names are allowed, the problem becomes
even 2EXPTIME-complete.1 In the next section, we show that the same complexity bounds
also apply to the satisfiability problem in SHOQ-LTL (see Table 3.4).2

The results obtained in the next sections are used in later chapters of this thesis. For
instance, the ideas ideas underlying the decision procedures to show the complexity upper
bounds for the cases without rigid names and with rigid concept and role names can also be
used to obtain automata-based decision procedures. These constructions of ω-automata are
then used in Chapter 4. Moreover, the proof ideas and in particular the results of Section 3.2.4
are used in Chapter 5.

3.2 The Complexity of Satisfiability in SHOQ-LTL

In this section, we examine the complexity of the satisfiability problem in SHOQ-LTL. We
consider three different settings: (i) neither concept names nor role names are allowed to be
rigid, i.e. NRC = NRR = ;, (ii) only concept names may be rigid, i.e. NRC 6= ; and NRR = ;, and
(iii) both concept and role names may be rigid, i.e. NRC 6= ; and NRR 6= ;. It is well-known
that one can simulate rigid concept names by rigid role names [BGL12], which is why there
are only three cases to consider. The results of this section are summarised in Table 3.4.

Since ALC-LTL is a fragment of SHOQ-LTL, we immediately obtain the following lower
bounds for the satisfiability problem.

1Additional intermediate cases (such as the case where GCIs occurring in the formula are global, i.e. required
to hold at every point in time; or where only the temporal operator ◊ may be used) are also considered
in [BGL12], but are not considered in this thesis.

2Thus, the complexity of the satisfiability problem in L-LTL is the same as of ALC-LTL for any description
logic L between ALC and SHOQ.

32 Chapter 3. The Temporalised Description Logic SHOQ-LTL

Theorem 3.5. The satisfiability problem in SHOQ-LTL is

1. EXPTIME-hard if NRC = NRR = ;;
2. NEXPTIME-hard if NRC 6= ; and NRR = ;; and

3. 2EXPTIME-hard if NRC 6= ; and NRR 6= ;.

Proof. We reduce the satisfiability problem in ALC-LTL. This problem is EXPTIME-complete
if NRC = NRR = ;, NEXPTIME-complete if NRC 6= ; and NRR = ;, and 2EXPTIME-complete if
NRC 6= ; and NRR 6= ; as shown in [BGL12].

Let now φ be an ALC-LTL-formula. Obviously, φ is a SHOQ-LTL-formula w.r.t. the empty
RBox. Thus, we have that the ALC-LTL-formula φ is satisfiable iff the SHOQ-LTL-formula φ
is satisfiable w.r.t. ;. �

To obtain the corresponding upper bounds, we reduce the satisfiability problem in SHOQ-LTL
to two separate satisfiability problems. For that, we use the idea of Lemma 4.3 in [BGL12],
where this was done for ALC-LTL.

In the following, let R be an RBox, and let φ be a SHOQ-LTL-formula w.r.t. R. For the first
satisfiability problem is called t-satisfiability, because it takes care of the temporal structure
of φ. For this, we consider the propositional abstraction. The propositional abstraction
of φ is constructed by replacing each axiom occurring in φ with a propositional variable
such that there is a 1–1 relationship between the axioms α1, . . . ,αm occurring in φ and the
propositional variables p1, . . . , pm occurring in its abstraction.

Definition 3.6 (Propositional abstraction). Let R be an RBox, and let φ be a SHOQ-LTL-

formula w.r.t. R. Furthermore, let Pφ be a finite set of propositional variables such that there is

a bijection p: Ax(φ)→ Pφ .

1. The propositional LTL-formula φp is obtained from φ by replacing every occurrence of an

axiom α in φ by its p-image p(α). We call φp the propositional abstraction of φ w.r.t. p.

2. Given a DL-LTL-structure I = (Ii)i≥0, its propositional abstraction w.r.t. p is the proposi-

tional LTL-structure Ip = (wi)i≥0 with

wi :=
�

p(α) | α ∈ Ax(φ) and Ii |= α
	

for every i ≥ 0. ♦

In the following, we assume that p: Ax(φ) → Pφ is a bijection.3 For simplicity, for a
subformula ψ of φ, we denote by ψp the propositional abstraction of ψ w.r.t. the restriction
of p to Ax(ψ). We now give an example of a propositional abstraction.

Example 3.7. Let φex := X
�
A(a)
�
∧
�
(A⊑ B)U ((¬B)(a))

�
be a SHOQ-LTL-formula w.r.t. the

empty RBox, and let p: Ax(φex)→ {p1, p2, p3} be the bijection that maps A(a) to p1, A⊑ B

to p2, and (¬B)(a) to p3. Then the propositional LTL-formula X p1∧(p2Up3) is the propositional

abstraction of φex w.r.t. p. ♦
3Obviously, for every SHOQ-LTL-formula φ w.r.t. an RBox R, there is a finite set Pφ of propositional variables

such that a bijection p: Ax(φ)→ Pφ exists.

3.2 The Complexity of Satisfiability in SHOQ-LTL 33

The propositional abstraction φp of φ w.r.t. p allows us to analyse the temporal structure of φ
separately from the DL-component. The following lemma states the relationships between φ
and its propositional abstraction φp.

Lemma 3.8. Let I be a DL-LTL-structure with I |=R. Then, I is a model of φ w.r.t. R iff Ip is

a model of φp.

Proof. Let I= (Ii)i≥0 be a DL-LTL-structure with I |=R, and Ip = (wi)i≥0 its propositional
abstraction w.r.t. p. We prove this lemma by showing that I, i |= φ iff Ip, i |= φp for
every i ≥ 0 by induction of the structure of φ.

For the base case, let φ be an axiom. Then, we have for every i ≥ 0 that I, i |= φ iff

Ii |= φ iff p(φ) ∈ wi iff wi |= φp iff Ip, i |= φp.
If φ is of the form ¬φ1, we have for every i ≥ 0 that I, i |= ¬φ1 iff I, i 6|= φ1 iff Ip, i 6|= φp

1
iff Ip |= (¬φ1)

p.
If φ is of the form φ1 ∧φ2, we have for every i ≥ 0 that I, i |= φ1 ∧φ2 iff I, i |= φ1 and

I, i |= φ2 iff Ip, i |= φp

1 and Ip, i |= φp

2 iff Ip, i |= (φ1 ∧φ2)
p.

If φ is of the form Xφ1, we have for every i ≥ 0 that I, i |= Xφ1 iff I, i + 1 |= φ1 iff

Ip, i + 1 |= φp

1 iff Ip, i |= (Xφ1)
p.

Ifφ is of the form X−φ1, we have for every i ≥ 0 that I, i |= X−φ1 iff i > 0 and I, i−1 |= φ1

iff i > 0 and Ip, i − 1 |= φp

1 iff Ip, i |= (X−φ1)
p.

If φ is of the form φ1 Uφ2, we have for every i ≥ 0 that I, i |= φ1 Uφ2 iff there is some
k ≥ i such that I, k |= φ2, and I, j |= φ1 for every j, i ≤ j < k iff there is some k ≥ i such
that Ip, k |= φp

2, and Ip, j |= φp

1 for every j, i ≤ j < k iff Ip, i |= (φ1 Uφ2)
p.

Finally, if φ is of the form φ1 Sφ2, we have for every i ≥ 0 that I, i |= φ1 Sφ2 iff there is
some k, 0≤ k ≤ i, such that I, k |= φ2, and I, j |= φ1 for every j, k < j ≤ i iff there is some k,
0≤ k ≤ i, such that Ip, k |= φp

2, and Ip, j |= φp

1 for every j, k < j ≤ i iff Ip, i |= (φ1 Sφ2)
p.�

The ‘only if’ direction of this lemma yields that satisfiability of φ w.r.t. R implies satisfiability
of φp. However, the ‘if’ direction does not yield the converse of this implication. In fact,
the propositional LTL-formula φp may turn out to be satisfiable even though the original
SHOQ-LTL-formula φ is not. The reason is that there may exist propositional LTL-structures
that are not propositional abstractions of DL-LTL-structures.

Example 3.9. Take the SHOQ-LTL-formulaφex and the bijection p of Example 3.7, and consider

the propositional LTL-structure W= (wi)i≥0 with wi = {p1, p2, p3} for every i ≥ 0. Obviously,

we have W, 0 |= φp
ex, but there is no DL-LTL-structure I such that Ip =W. In fact, every world

of this DL-LTL-structure would need to satisfy the three axioms in Ax(φex) simultaneously, which

is clearly not possible. ♦

To address this problem, we need some more notions. We consider a set W ⊆ 2Pφ , which
intuitively specifies the worlds that are allowed to occur in a propositional LTL-structure
satisfying φp. To express this restriction, we the define the propositional LTL-formula

φ
p

W
:= φp ∧�
� ∨

X∈W

�∧

p∈X

p ∧
∧

p∈Pφ\X
¬p

��
.

The second satisfiability problem is called r-satisfiability, because it is used to determine
whether it is possible to satisfy the rigidity constraints for the names in NRC and NRR. Thus,

34 Chapter 3. The Temporalised Description Logic SHOQ-LTL

it can be used to check whether the set W can indeed be induced by a DL-LTL-structure that
is a model of φ w.r.t. R.

Definition 3.10 (R-satisfiability). Let W = {X1, . . . , Xk} ⊆ 2Pφ . We call W r-satisfiable
w.r.t. R if there exist interpretations I1 = (∆, ·I1), . . . , Ik = (∆, ·Ik) such that

• aIi = aI j holds for every a ∈ NI and all i, j, 1≤ i < j ≤ k;

• AIi = AI j holds for every A∈ NRC and all i, j, 1≤ i < j ≤ k;

• rIi = rI j holds for every r ∈ NRR and all i, j, 1≤ i < j ≤ k; and

• every Ii , 1≤ i ≤ k, is a model of the Boolean knowledge base

BX i
:=

�∧

p∈X i

p−1(p)∧
∧

p∈Pφ\X i

¬p−1(p), R

�
.

♦

Note that any subset of a set W that is r-satisfiable w.r.t. R is again r-satisfiable w.r.t. R. In
particular, the empty set is always r-satisfiable w.r.t. R.

The intuition underlying the definition of r-satisfiability is the following. The existence of
the interpretations Ii, 1 ≤ i ≤ k, ensures that the Boolean knowledge base induced by X i

and R is consistent. In fact, a set W containing a set X i for which this does not hold cannot
be induced by a DL-LTL-structure. Moreover, we ensure that the interpretations share the
same domain and respect rigid names. As we will see later, for deciding whether a set W is
r-satisfiable w.r.t. R, the difficulty lies in ensuring that the interpretations share the same
domain and respect rigid names.

Satisfaction of the temporal structure of φ by a DL-LTL-structure built this way is ensured
by testing φp

W
for satisfiability. This is captured in the notion of t-satisfiability.

Definition 3.11 (T-satisfiability). Let W ⊆ 2Pφ . We call the propositional LTL-formula φp

t-satisfiable w.r.t. W if there exists a propositional LTL-structure W = (wi)i≥0 such that

W, 0 |= φp

W
. ♦

The next two lemmas show that these two satisfiability problems, namely, t-satisfiability and
r-satisfiability, can be combined to decidable the satisfiability problem in SHOQ-LTL. The
statements of the lemmas were also proved in [BGL12] for ALC-LTL, but again the same
arguments can also be used to prove them for SHOQ-LTL. Yet, we repeat these arguments
for the sake of completeness.

Lemma 3.12. For every propositional LTL-structure W = (wi)i≥0 with wi ⊆ Pφ for every i ≥ 0,

the following two statements are equivalent:

1. There is a model I of φ w.r.t. R with Ip =W.

2. W is a model of φp and the set W := {wi | i ≥ 0} is r-satisfiable w.r.t. R.

Proof. For the direction ‘1 =⇒ 2’, assume that there is a DL-LTL-structure I = (Ii)i≥0 that is
a model of φ w.r.t. R with Ip =W. Since I |=R, we have by Lemma 3.8 that W is a model
of φp. Since wi ⊆ Pφ for every i ≥ 0, we have that W = {wi | i ≥ 0} ⊆ 2Pφ is finite. Let

3.2 The Complexity of Satisfiability in SHOQ-LTL 35

W = {X1, . . . , Xk}. We have that for every i ≥ 0, there is an index νi ∈ {1, . . . , k} such that Ii

induces the set Xνi
, i.e.

Xνi
=
�

p(α) | α ∈ Ax(φ) and Ii |= α
	
,

and, conversely, for every ν ∈ {1, . . . , k}, there is an index i ≥ 0 such that ν = νi . For every i,
1≤ i ≤ k, the interpretation Ji is obtained as follows. Let ℓ1, . . . ,ℓk be such that νℓ1

= 1, . . . ,
νℓk
= k. Now, if we set Ji := Iℓi

, then we clearly have Ji |= BX i
. It is now easy to see that

the interpretations J1, . . . , Jk satisfy the conditions for r-satisfiability of W w.r.t. R.
For the direction ‘2 =⇒ 1’, assume that W is a model of φp and the set W = {wi | i ≥ 0}

is r-satisfiable w.r.t. R. Since wi ⊆ Pφ for every i ≥ 0, we have that W = {wi | i ≥ 0} ⊆ 2Pφ

is finite. Let W = {X1, . . . , Xk}. Since W is r-satisfiable w.r.t. R, there are interpretations
J1, . . . , Jk such that the conditions in Definition 3.10 are satisfied. Moreover, we have that
for every world wi , there is exactly one index νi ∈ {1, . . . , k} such that wi satisfies

∧

p∈Xνi

p ∧
∧

p∈Pφ\Xνi

¬p.

We can now define a DL-LTL-structure I := (Ii)i≥0 as follows. We set Ii := Jνi
for i ≥ 0.

By construction, we have Ip =W. By Definition 3.10, each Ii is a model of BXνi
, i.e. it is a

model of R and satisfies exactly the axioms specified by the propositional variables in Xνi
.

This yields that I |=R, and since W, 0 |= φp, we have by Lemma 3.8 that I, 0 |= φ. Thus, I
is a model of φ w.r.t. R. �

The following lemma is an immediate consequence of the previous lemma.

Lemma 3.13. The SHOQ-LTL-formula φ is satisfiable w.r.t. the RBox R iff there is a set

W =
�

X1, . . . , Xk

	
⊆ 2Pφ such that

• W is r-satisfiable w.r.t. R, and

• φp is t-satisfiable w.r.t. W.

Proof. For the ‘only if’ direction, assume that there is a DL-LTL-structure I = (Ii)i≥0 that is a
model of φ w.r.t. R. Let Ip = (wi)i≥0, and let W = {wi | i ≥ 0}. By Lemma 3.12, we have
that Ip is a model of φp and that W is r-satisfiable w.r.t. R. By construction of W, we have
also that Ip is a model of φp

W
. Hence, φp is t-satisfiable w.r.t. W.

For the ‘if’ direction, assume that there is a set W = {X1, . . . , Xk} ⊆ 2Pφ such that W is
r-satisfiable w.r.t. R and φp is t-satisfiable w.r.t. W. Hence, there is a propositional LTL-
structure W = (wi)i≥0 such that W is a model of φp

W
. Hence W is a model of φp. We define

W ′ := {wi | i ≥ 0}. Since W is a model of φp

W
, we have that W ′ ⊆W. Since W is r-satisfiable

w.r.t. R, this yields that W ′ is r-satisfiable w.r.t. R. Then, Lemma 3.12 yields that there is a
model I of φ w.r.t. R with Ip =W, i.e. φ is satisfiable w.r.t. R. �

To obtain a decision procedure for the satisfiability problem in SHOQ-LTL, we have to
non-deterministically guess or construct the set W, and then check the two conditions
of Lemma 3.13. Depending on which symbols are allowed to be rigid, we use different
constructions to achieve that.

36 Chapter 3. The Temporalised Description Logic SHOQ-LTL

First, we focus on deciding t-satisfiability w.r.t. a given set W. From now on, let W ⊆ 2Pφ .
Obviously, the size ofφp

W
may be exponential in the size ofφ. Since we can decide satisfiability

of a propositional LTL-formula in PSPACE [SC85; LPZ85], this yields an EXPSPACE-decision
procedure for deciding the satisfiability of φp

W
. However, using a trick from [BGL12], we

can reduce the complexity to EXPTIME.

Lemma 3.14. Deciding whether φp is t-satisfiable w.r.t. W can be done in time exponential in

the size of φp and linear in the size of W.

Proof. We first construct a Büchi-automaton for φp, which can be done in time exponential in
the size of φp as discussed in Section 2.2.2. Let N = (Q,ΣPφ

,∆,Q0, F) be a Büchi-automaton
for φp. We obtain the Büchi-automaton N ′ = (Q,ΣPφ

,∆′,Q0, F) by removing all transitions
that are labelled with a letter σ ∈ ΣPφ

\W, i.e. we define

∆
′ :=
�
(q,σ, q′) ∈∆ | σ ∈W

	
.

It is easy to verify that N ′ is a Büchi-automaton for φp

W
.

Note that the Büchi-automaton N ′ can be constructed in time polynomial in the size of N

and linear in the size of W, and thus the size of N ′ is exponential in the size of φp. Since
the emptiness problem for Büchi-automata can be solved in polynomial time [VW94], this
yields that t-satisfiability of φp w.r.t. W can be decided in time exponential in the size of φp

and linear in the size of W. �

Due to Lemma 3.13, the complexity of the satisfiability problem in SHOQ-LTL also depends
on the complexity of the deciding whether W is r-satisfiable w.r.t. R. However, this depends
on the fact whether there are concept or role names that are allowed to be rigid.

In Section 3.2.1, we consider the case without rigid names, and in Section 3.2.2, we
consider the most general case with rigid concept and role names. Finally, we consider the
case with rigid concept names in Section 3.2.3. A result that is needed in Section 3.2.3 is
proved in a separate section, namely, in Section 3.2.4.

3.2.1 Satisfiability in SHOQ-LTL for the Case without Rigid Names

In this section, we consider the case where neither concept names nor role names are allowed
to be rigid, i.e. NRC = NRR = ;. We establish the following complexity result.

Theorem 3.15. The satisfiability problem in SHOQ-LTL is in EXPTIME if NRC = NRR = ;.

Proof. Let R be an RBox, and let φ be a SHOQ-LTL-formula w.r.t. R. We can decide satis-
fiability of φ w.r.t. R using Lemma 3.13. For that, let p: Ax(φ)→ Pφ be a bijection, and
define

W := {X ∈ 2Pφ | BX is consistent},
where BX is defined as in Definition 3.10. We first show that W = {X1, . . . , Xk} is r-satisfiable
w.r.t. R. Since every BX i

, 1 ≤ i ≤ k is consistent, there are models I1, . . . , Ik such that
every Ii , 1≤ i ≤ k, is a model of BX i

. We can assume w.l.o.g. that all of these models have
the same domain since we can assume w.l.o.g. that their domains are countably infinite due
to to the Löwenheim-Skolem theorem [Löw15; Sko20]. Furthermore, we can assume w.l.o.g.

3.2 The Complexity of Satisfiability in SHOQ-LTL 37

that all individual names are interpreted by the same domain elements in all models. Since
NRC = NRR = ;, this yields that W is r-satisfiable w.r.t. R.

Thus, we have by Lemma 3.13 that if φp is t-satisfiable w.r.t. W, then φ is satisfiable
w.r.t. R. Conversely, again by Lemma 3.13, we have that if φ is satisfiable w.r.t. R, then there
is a set W ′ ⊆ 2Pφ such that W ′ is r-satisfiable w.r.t. R and φp is t-satisfiable w.r.t. W ′. The
definition of W yields that W is the maximal subset of 2Pφ that is r-satisfiable w.r.t. R. Thus,
we have that W ′ ⊆W. It is easy to see that the t-satisfiability of φp w.r.t. W ′ implies that
φp is t-satisfiable w.r.t. W. Hence, we have that φ is satisfiable w.r.t. R iff φp is t-satisfiable
w.r.t. W.

Note that W can be constructed in time exponential in the size of φ and R. Indeed, there
are exponentially many X ∈ 2Pφ , but each BX can be constructed in time polynomial in
the size of φ and R, and is thus of size polynomial in the size of φ and R. We show in
Corollary 3.34 (see Section 3.2.4) that consistency of a Boolean SHOQ-knowledge base B

can be decided in time exponential in the size of B. Thus, overall, deciding for every BX

whether it is consistent can be done in time exponential in the size of φ and R. Due to
Lemma 3.14, deciding whether φp is t-satisfiable w.r.t. W can be done in time exponential in
the size of φp (and thus in time exponential in the size of φ) and linear in the size of W.
Thus, we can decide whether φ is satisfiable w.r.t. R in time exponential in the size of φ
and R. �

Together with Theorem 3.5, we obtain that the satisfiability problem in SHOQ-LTL is EXPTIME-
complete if neither concept nor role names are allowed to be rigid.

3.2.2 Satisfiability in SHOQ-LTL for the Case of Rigid Concept Names and Role

Names

In this section, we consider the case where both concept and role names may be rigid,
i.e. NRC 6= ; and NRR 6= ;.

Let us assume that a set W = {X1, . . . , Xk} ⊆ 2Pφ is given. Note that deciding whether W is
r-satisfiable w.r.t. R cannot be done by simply checking for each X ∈W whether the Boolean
knowledge base BX is consistent as we did in Section 3.2.1 for the case without rigid names.
In fact, these consistency checks are not independent any longer since one has to ensure that
rigid concept and role names are interpreted in the same way. To achieve this, we adopt the
renaming technique from [BGL12] that works by introducing copies of the flexible symbols.

For every i, 1 ≤ i ≤ k, every flexible concept name A occurring in φ, and every flexible

role name r occurring in φ or R, we introduce copies A(i) and r(i). We call A(i) the i-th
copy of A, and similarly r(i) the i-th copy of r. The axiom α(i) is obtained from the axiom α

by replacing every occurrence of a flexible name by its i-th copy. Similarly, the Boolean
axiom formula Ψ(i) (RBox R(i)) is obtained from the Boolean axiom formula Ψ (RBox R) by
replacing each axiom α occurring in Ψ (R) by α(i).

Moreover, let BX i
= (ΨX i

, R), 1≤ i ≤ k, denote the Boolean knowledge bases defined in
Definition 3.10. We define

BW :=

� ∧

1≤i≤k

Ψ
(i)
X i

,
⋃

1≤i≤k

R(i)

�
.

38 Chapter 3. The Temporalised Description Logic SHOQ-LTL

The next lemma states that consistency of BW is enough for ensuring r-satisfiability of W

w.r.t. R.

Lemma 3.16. The set W is r-satisfiable w.r.t. R iff the Boolean knowledge base BW is consistent.

Proof. For the ‘only if’ direction, let I1 = (∆, ·I1), . . . , Ik = (∆, ·Ik) be the interpretations
required by Definition 3.10 for the r-satisfiability of W w.r.t. R. We construct the interpretation
J = (∆, ·J) as follows:

• every individual name and every rigid name is interpreted as in I1; and

• the i-th copy, 1 ≤ i ≤ k, of each flexible name is interpreted like the original name
in Ii .

It is easy to verify that J is a model of BW .
For the ‘if’ direction, let J be a model of BW . We obtain the interpretations I1, . . . , Ik by

the inverse construction to the one above:

• the domain of all these interpretations is the domain of J ;

• every individual name and every rigid name is interpreted by these interpretations as
in J ; and

• every flexible name is interpreted in Ii , 1≤ i ≤ k, as its i-th copy is interpreted in J .

It is again easy to verify that the interpretations I1, . . . , Ik satisfy the conditions for r-
satisfiability of W w.r.t. R. �

Using this lemma, we can prove our complexity result.

Theorem 3.17. The satisfiability problem in SHOQ-LTL is in 2EXPTIME if NRC 6= ; and

NRR 6= ;.

Proof. Let R be an RBox, let φ be a SHOQ-LTL-formula w.r.t. R, and let p: Ax(φ) → Pφ
be a bijection. We use again Lemma 3.13 for deciding satisfiability of φ w.r.t. R. We first
enumerate all sets W ⊆ 2Pφ , which can be done in time doubly exponential in φ and R. For
each of these sets W, we check t-satisfiability of φp w.r.t. W and r-satisfiability of W w.r.t. R.
By Lemma 3.14, the t-satisfiability check can be done in time exponential in the size of φp

(and thus in time exponential in the size of φ) and linear in the size of W.
For the r-satisfiability check, we use Lemma 3.16. We construct the Boolean knowledge

base BW , which can be done in time exponential in the size of φ and R. Also, BW is of
size at most exponential in the size of φ and R. Consistency of BW can be checked in time
exponential in the size of BW by Corollary 3.34, which we prove in Section 3.2.4. Thus,
checking whether W is r-satisfiable w.r.t. R can be done in time doubly exponential in the
size of φ and R.

Thus, overall, we can decide whether φ is satisfiable w.r.t. R in time doubly exponential
in the size of φ and R. �

Together with Theorem 3.5, we obtain that the satisfiability problem in SHOQ-LTL is
2EXPTIME-complete if both concept and role names are allowed to be rigid.

3.2 The Complexity of Satisfiability in SHOQ-LTL 39

3.2.3 Satisfiability in SHOQ-LTL for the Case of Rigid Concept Names

In this section, we consider the case where only concept names may be rigid, i.e. NRC 6= ;
and NRR = ;.

Let us again assume that a set W = {X1, . . . , Xk} ⊆ 2Pφ is given. By Lemma 3.16, for
checking whether W is r-satisfiable w.r.t. R, it is enough to construct the Boolean knowledge
base BW and to check it for consistency. As we have seen in the proof of Theorem 3.17, this
yields a 2EXPTIME decision procedure. However, we can reduce the complexity to NEXPTIME

by using the ideas of the proof of Lemma 6.3 in [BGL12], where the same complexity result
is shown for ALC-LTL. The principal idea is to fix the combinations of rigid concept names
that are allowed to occur in the models of the Boolean knowledge bases BX i

, 1≤ i ≤ k. For
that, we need some more notation.

Definition 3.18 (Interpretation respects D). Let I = (∆I , ·I) be an interpretation, and let

D = (U , Y) be a pair such that U is a set of concept names and Y ⊆ 2U .

We say that I respects D if

Y =
�

Y ⊆ U | there is some d ∈∆I with d ∈ (CU ,Y)
I
	
,

where

CU ,Y :=
l

A∈Y

A ⊓
l

A∈U\Y
¬A.

♦

Intuitively, this definitions states that every combination of concept names in Y is realised by
a domain element of I, and conversely, every such combination that is realised by a domain
element of I must occur in Y.

Let RCon(φ) denote the set of rigid concept names occurring inφ, and let Ind(φ) denote the
set of individual names occurring in φ. Furthermore, let D = (RCon(φ), Y)with Y ⊆ 2RCon(φ)

be arbitrary, and letτ be a mapping from Ind(φ) to Y. The idea is that D fixes the combinations
of rigid concept names that are allowed to occur in the models of BX i

, 1 ≤ i ≤ k. The
mapping τ assigns to each individual name occurring in φ one such combination. We define
Ψτ to be the following Boolean axiom formula:

Ψτ :=
∧

a∈Ind(φ)

CRCon(φ),τ(a)(a).

The next lemma states how these notions can be used to characterise r-satisfiability of W

w.r.t. R.

Lemma 3.19. If NRC 6= ; and NRR = ;, then W is r-satisfiable w.r.t. R iff there exist a pair

D = (RCon(φ), Y) with Y ⊆ 2RCon(φ) and a mapping τ: Ind(φ) → Y such that for every i,

1≤ i ≤ k, the Boolean knowledge base (ΨX i
∧Ψτ, R) has a model that respects D.

Proof. For the ‘if’ direction, assume that Ii, 1 ≤ i ≤ k, are the models of (ΨX i
∧ Ψτ, R),

respectively, that respect D. Similar to the proof of Lemma 6.3 in [BGL12], we can assume
w.l.o.g. that their domains ∆i are countably infinite and for each Y ∈ Y there are countably
infinitely many elements d ∈ (CRCon(φ),Y)

Ii . This is a consequence of the Löwenheim-Skolem
theorem [Löw15; Sko20] and the fact that the countably infinite disjoint union of Ii with
itself is again a model of (ΨX i

∧Ψτ, R).

40 Chapter 3. The Temporalised Description Logic SHOQ-LTL

Consequently, we can partition the domains ∆i into the countably infinite sets

∆i(Y) :=
�

d ∈∆i | d ∈ (CRCon(φ),Y)
Ii
	

for Y ∈ Y. By the assumptions above and the fact that every Ii satisfies Ψτ, there are
bijections πi : ∆1→∆i , 2≤ i ≤ k, such that

• πi(∆1(Y)) =∆i(Y) for every Y ∈ Y, and

• πi(a
I1) = aIi for every a ∈ Ind(φ).

Thus, we can assume in the following that the models Ii , 1≤ i ≤ k, actually share the same
domain and interpret the concept names in RCon(φ) and the individual names occurring
in φ in the same way. Note that the interpretation of the names in NRC \ RCon(φ) and
NI \ Ind(φ) is irrelevant and can be fixed arbitrarily, as long as the UNA is satisfied.

Since for every i, 1≤ i ≤ k, we have that Ii is a model of (ΨX i
∧Ψτ, R), we have also that

Ii is a model of BX i
= (ΨX i

, R). Thus, the conditions required for the r-satisfiability of W

w.r.t. R by Definition 3.10 are satisfied.
For the ‘only if’ direction, assume that Ii = (∆, ·Ii), 1 ≤ i ≤ k, are the interpretations

required for r-satisfiability of W w.r.t. R by Definition 3.10. Since these interpretations share
the same domain, interpret the rigid concept names in the same way, it follows that for every
Y ⊆ RCon(φ), we have that (CRCon(φ),Y)

I1 = (CRCon(φ),Y)
Ii for every i, 2≤ i ≤ k. We define

D := (RCon(φ), Y) with

Y :=
�

Y ⊆ RCon(φ) | there is some d ∈∆ with d ∈ (CRCon(φ),Y)
I1
	
.

Moreover, for every a ∈ Ind(φ), we define τ(a) := Y ⊆ RCon(φ) iff a ∈ (CRCon(φ),Y)
I1 . Since

the interpretations I1, . . . , Ik interpret the individual names in the same way, and for every i,
1 ≤ i ≤ k, the interpretation Ii is a model of BX i

= (ΨX i
, R), we have thus that Ii is also a

model of (ΨX i
∧Ψτ, R). Moreover, every Ii , 1≤ i ≤ k, respects D by construction of D. �

Using this lemma, we can prove our complexity result.

Theorem 3.20. The satisfiability problem in SHOQ-LTL is in NEXPTIME if NRC 6= ; and

NRR = ;.

Proof. Let R be an RBox, let φ be a SHOQ-LTL-formula w.r.t. R, and let p: Ax(φ) → Pφ
be a bijection. Again, we use Lemma 3.13 for deciding whether φ is satisfiable w.r.t. R.
We first non-deterministically guess a set W = {X1, . . . , Xk} ⊆ 2Pφ , which is of size at most
exponential in the size of φ and R. Next, we check whether φp is t-satisfiable w.r.t. W, which
can be done in time exponential in the size of φp (and thus in time exponential in the size
of φ) and linear in the size of W by Lemma 3.14.

For the r-consistency check, we use Lemma 3.19. For that, we non-deterministically guess
a set Y ⊆ 2RCon(φ) and a mapping τ: Ind(φ)→ Y, which also can be done in time exponential
in the size of φ and R. We define D := (RCon(φ), Y). For every i, 1≤ i ≤ k, we construct the
Boolean knowledge base (ΨX i

∧Ψτ, R), which is of size polynomial in the size ofφ and R, and
can be constructed in time exponential in the size of φ and R (due to the mapping τ). Thus,
it is only left to show that we can check whether the Boolean knowledge base (ΨX i

∧Ψτ, R)

has a model that respects D in time exponential in the size of the Boolean knowledge base,

3.2 The Complexity of Satisfiability in SHOQ-LTL 41

and thus exponential in the size of φ and R. This follows immediately from Theorem 3.33,
which we show in Section 3.2.4.

Thus, overall, we can decide whether φ is satisfiable w.r.t. R in NEXPTIME. �

Together with Theorem 3.5, we obtain now that the satisfiability problem in SHOQ-LTL is
NEXPTIME-complete if only concept names are allowed to be rigid.

3.2.4 Consistency of Boolean SHOQ⊓-knowledge bases

In this section, we prove the result that is needed to finish the proof of Theorem 3.20, namely,
that the consistency of a Boolean SHOQ-knowledge base w.r.t. a pair D can be checked in
time exponential in the size of this Boolean knowledge base, where we call a Boolean KB
consistent w.r.t. a pair D if it has a model that respects D. Moreover, we derive the corollary
that checking the consistency of a Boolean SHOQ-knowledge base (without D) can also be
done in time exponential in the size of this Boolean knowledge base. This result then finishes
the proofs of Theorems 3.15 and 3.17.

In Chapter 5, we deal with Boolean SHQ⊓-knowledge bases. The description logic SHQ⊓

extends SHQ with role conjunctions of the form r1⊓· · ·⊓ rℓ, ℓ≥ 1, where r1, . . . , rℓ are simple

role names. Such role conjunctions are allowed to occur in existential restrictions instead of
a single role, but not in at-least restrictions or role assertions. An interpretation I is extended
to role conjunction as follows: (r1 ⊓ · · · ⊓ rℓ)

I := rI
1 ∩ · · · ∩ rI

ℓ
. Therefore, in this section, we

consider Boolean SHOQ⊓-knowledge bases rather than Boolean SHOQ-knowledge bases.
In the following, let B = (Ψ, R) be a Boolean SHOQ⊓-knowledge base, and let D = (U , Y)

be a pair such that U is a set of concept names occurring in B and Y ⊆ 2U . We assume here
that all GCIs occurring in Ψ are of the form ⊤ ⊑ C; this is without loss of generality since
any GCI C ⊑ D is equivalent to ⊤ ⊑ ¬(C ⊓¬D).

We show that consistency of B w.r.t. D can be decided in time exponential in the size of B.
This complexity result is tight since already for ‘classical’ SHQ⊓-knowledge bases (without
nominals), the consistency problem (without D) is EXPTIME-complete [Tob01; Lut08a]. The
complexity of this problem even remains in EXPTIME when simple role conjunctions are
allowed to occur in at-least restrictions and non-simple roles are allowed in role conjunctions
in existential restrictions [GK08]. However, if we move to SHOQ⊓, i.e. we consider ‘classical’
SHOQ⊓-knowledge bases where simple role conjunctions are allowed to occur in at-least
restrictions and non-simple roles are allowed in role conjunctions in existential restrictions,
the best known upper bound of the consistency problem (without D) is 2EXPTIME [GHS08;
Gli07].

The proof of our result is an adaptation of the proof of Lemma 6.4 in [BGL12], which is
again an adaptation of the proof of Theorem 2.27 in [GKW+03], which shows that consistency
of Boolean ALC-knowledge bases can be decided in exponential time. An earlier version
of this proof for ALC⊓ can be found in [BBL13a; BBL13b]. There, for role conjunctions,
additional concept names are introduced that function as so-called pebbles that mark elements
that have specific role predecessors, an idea borrowed from [Dan84; DM00; Mas01]. Here,
we employ systems of equations over non-negative integers to deal with role conjunctions,
transitivity axioms, role-inclusion axioms, and at-least restrictions simultaneously.

For the subsequent construction, we extend the notion of a quasimodel from [BGL12],
which is an abstract description of a model. Quasimodels characterise domain elements by

42 Chapter 3. The Temporalised Description Logic SHOQ-LTL

the concepts they satisfy. We start by introducing several auxiliary notions that we need in
the construction.

We define Con(Ψ) to be the set of all concepts occurring in Ψ, Ind(Ψ) to be the set of all
individual names occurring in Ψ, and Rol(B) to the set of all role names occurring in B. Then,
Clc(B) is defined to be the closure under negation of the set

Con(Ψ)∪
�
∃r.C | ∃s.C ∈ Con(Ψ), R |= r ⊑ s, and R |= trans(r)

	

∪
�
{a} | a ∈ Ind(Ψ)

	

∪
�
∃r.{a} | r ∈ Rol(B) and a ∈ Ind(Ψ)

	
.

The reason why we consider these additional sets is that they are needed to properly deal
with transitive roles and nominals (see Definition 3.21). Similarly, we define Clf(Ψ) to be the
closure under negation of the set of all subformulas of Ψ.

In the following, we identify ¬¬ψ with ψ for every concept ψ. Similarly, we identify
¬¬Ψ with Ψ for every Boolean axiom formula Ψ. Thus, all sets introduced above are of size
polynomial in the size of B, and can also be constructed in time polynomial in the size of B.

Definition 3.21 (Concept type). A concept type for B is a set ❝ ⊆ Clc(B) such that:

• for every C ⊓ D ∈ Clc(B), we have C ⊓ D ∈ ❝ iff {C , D} ⊆ ❝;

• for every ¬C ∈ Clc(B), we have ¬C ∈ ❝ iff C /∈ ❝;

• for every {a} ∈ Clc(B), we have {a} ∈ ❝ implies {b} /∈ ❝ for every {b} ∈ Clc(B) with

{b} 6= {a}; and

• for every ∃r.{a} ∈ Clc(B), we have that if ∃r.{a} ∈ ❝ and R |= r ⊑ s, then ∃s.{a} ∈ ❝.

Given two concept types ❝,❞ for B and a role name r ∈ Rol(B), we say that ❝ and ❞ are

r-compatible w.r.t. R (written ❝
r
 R ❞) if the following conditions are satisfied:

• for every ¬(∃r.D) ∈ ❝, we have ¬D ∈ ❞; and

• for every s ∈ Rol(B) with R |= r ⊑ s, R |= trans(r), and ¬(∃s.D) ∈ ❝, we have

¬(∃r.D) ∈ ❞. ♦

Obviously, the number of concept types for B is exponential in the size of B. Intuitively,
the r-compatibility of two concept types ❝,❞ w.r.t. R indicates that it is possible to connect
them with an r-edge without violating the value restrictions in ❝. These conditions are very
similar to the tableau rules (∀) and (∀+) that deal with value restrictions in the presence of
role-inclusion axioms and transitivity axioms (see e.g. [HST00]).

Definition 3.22 (Role type). A role type for B is a set r ⊆ Rol(B) such that:

• if R |= s ⊑ r, then s ∈ r implies r ∈ r.

We denote the set of all role types for B by R(B).

Given two concept types ❝,❞ for B and a role type r ∈ R(B), we say that ❝ and ❞ are

r-compatible w.r.t. R (written ❝
r

 R ❞) iff ❝
r
 R ❞ for every r ∈ r. ♦

Again, the number of role types for B is exponential in the size of B. Finally, a quasimodel
also has to determine which of the axioms in Ψ it satisfies.

3.2 The Complexity of Satisfiability in SHOQ-LTL 43

Definition 3.23 (Formula type). A formula type for B is a set ❢ ⊆ Clf(Ψ) such that:

• Ψ ∈ ❢;

• for every ¬ψ ∈ Clf(Ψ), we have ¬ψ ∈ ❢ iff ψ /∈ ❢; and

• for every Ψ1 ∧Ψ2 ∈ Clf(Ψ), we have Ψ1 ∧Ψ2 ∈ ❢ iff {Ψ1,Ψ2} ⊆ ❢. ♦

The number of formula types for B is exponential in the size of B. Using these definitions, we
can now define the notion of a model candidate, and later refine this notion to characterise
quasimodels.

Definition 3.24 (Model candidate). A model candidate for B is a triple M = (W, ι, ❢) such

that:

• W is a set of concept types for B such that for any ❝,❞ ∈ W with ❝ 6= ❞, we have

❝∩❞∩
�
{a} | a ∈ Ind(Ψ)

	
= ;;

• ι : Ind(Ψ)→W is a function such that {a} ∈ ι(a) for every a ∈ Ind(Ψ); and

• ❢ is a formula type for B. ♦

Intuitively, the set W determines the behaviour of the domain elements, while the function ι
fixes the interpretation of the named domain elements, and the formula type ❢ ensures that B

is satisfied. In the following, we denote by Wu the set W \ ι(Ind(Ψ)), i.e. the set of all those
concept types for B that do not contain a nominal concept {a} with a ∈ Ind(Ψ). Those types
represent the unnamed domain elements of the model candidate. To define quasimodels, we
add to the definition of a model candidate several conditions that ensure that it can indeed
be transformed into a model of B.

To satisfy the (negated) at-least restrictions in the concept types of a model candidate
M = (W, ι, ❢), we introduce for each ❝ ∈ W, a system of equations EM,❝ with variables
ranging over the non-negative integers. In EM,❝, we use variables of the form x❝,r,❞, which
determine for a domain element of type ❝, the number of unnamed role successors of type r

(called r-successors) of concept type ❞, where we require that ❝
r

 R ❞ and ❞ ∈Wu, i.e. ❝
and ❞ are r-compatible w.r.t. R and ❞ does not represent a named individual.

Given ❝ ∈ W, C ∈ Clc(B), and r ∈ R(B), we can now count the number of unnamed

r-successors of ❝ that satisfy C using the following expression:

ΞM,❝,r,C :=
∑

C∈❞∈Wu, ❝
r

 R❞

x❝,r,❞.

To count the named r-successors of ❝ that satisfy C , we define the following constant:

ΓM,❝,r,C :=
���b ∈ Ind(Ψ) | C ∈ ι(b), and ∃r.{b} ∈ ❝ iff r ∈ r

	��.

To ensure that the at-least restrictions in ❝ are satisfied, we add the following equation to
EM,❝ for each ≥n r.C ∈ ❝:

−y❝,≥n r.C +
∑

r∈r∈R(B)
(ΞM,❝,r,C + ΓM,❝,r,C) = n, (E1)

44 Chapter 3. The Temporalised Description Logic SHOQ-LTL

where y❝,≥n r.C is a slack variable that is used to obtain an equation instead of an inequation.
Similarly, for each ¬(≥n r.C) ∈ ❝, we add

y❝,¬(≥n r.C) +
∑

r∈r∈R(B)
(ΞM,❝,r,C + ΓM,❝,r,C) = n− 1. (E2)

For each existential restriction D = ∃(r1 ⊓ · · · ⊓ rℓ).C ∈ ❝, we add the following equation to
EM,❝:

−y❝,D +
∑

{r1,...,rℓ}⊆r∈R(B)
(ΞM,❝,r,C + ΓM,❝,r,C) = 1. (E3)

Finally, for each ¬(∃(r1 ⊓ · · · ⊓ rℓ).C) ∈ ❝, we add the equation
∑

{r1,...,rℓ}⊆r∈R(B)
(ΞM,❝,r,C + ΓM,❝,r,C) = 0, (E4)

where no slack variable is needed since the sum cannot be smaller than 0.
This finishes the description of the system of equations EM,❝. Note that this system contains

exponentially many variables in the size of B, but only polynomially many equations, and thus
it can be solved in exponential time, even if the numbers are given in binary encoding [Pap81]
(for details, see the proof of Theorem 3.33).

Now we are ready to introduce the notion of a quasimodel.

Definition 3.25 (Quasimodel). The model candidate M = (W, ι, ❢) for B is a quasimodel
for B if it satisfies the following properties:

(a) W is not empty;

(b) for every A(a) ∈ Clf(Ψ), we have A(a) ∈ ❢ iff A∈ ι(a);
(c) for every r(a, b) ∈ Clf(Ψ), we have r(a, b) ∈ ❢ iff ∃r.{b} ∈ ι(a);
(d) for every ⊤ ⊑ C ∈ ❢ and every ❝ ∈W, we have C ∈ ❝;

(e) for every ¬(⊤ ⊑ C) ∈ ❢, there is a ❝ ∈W such that C /∈ ❝;

(f) for every ❝ ∈W, if ∃r.{a} ∈ ❝, then ❝
r
 R ι(a); and

(g) for every ❝ ∈ W, the system of equations EM,❝ has a solution over the non-negative

integers.

The quasimodel M= (W, ι, ❢) for B respects D = (U , Y) if it additionally satisfies:

(h) for every ❝ ∈W, there is a set Y ∈ Y such that Y = ❝∩ U; and

(i) for every Y ∈ Y, there is a concept type ❝ ∈W such that Y = ❝∩ U . ♦

We can show to in order to check consistency of B w.r.t. D it suffices to search for a quasimodel
for B that respects D.

Lemma 3.26. Let B be a Boolean SHOQ⊓-knowledge base, and let D = (U , Y) be a pair such

that U is a set of concept names occurring in B and Y ⊆ 2U . Then, B is consistent w.r.t. D iff

there is a quasimodel for B that respects D.

3.2 The Complexity of Satisfiability in SHOQ-LTL 45

Proof. For the ‘if’ direction, suppose that M = (W, ι, ❢) is a quasimodel for B = (Ψ, R)

that respects D. Then by Condition (g), for each ❝ ∈ W, the system of equations EM,❝

has a solution ν❝ that maps the variables in EM,❝ to non-negative integers. Let zM be the
greatest non-negative integer that occurs in any of these solutions, and let Z denote the set
{1, . . . , zM}.

We define the interpretation J = (∆J , ·J) as follows:

• ∆J := Anon∪Ind(Ψ), where Anon :=Wu × Z×R(B);
• aJ := a for every a ∈ Ind(Ψ);4

• AJ := {(❝, i,r) ∈ Anon | A∈ ❝} ∪ {a ∈ Ind(Ψ) | A∈ ι(a)} for every A∈ NC; and

• for every r ∈ NR, (❝, i,r), (❞, j,s) ∈ Anon, and a, b ∈ Ind(Ψ), we define:

(a, b) ∈ rJ iff ∃r.{b} ∈ ι(a);�
(❝, i,r), b
�
∈ rJ iff ∃r.{b} ∈ ❝;

(a, (❞, j,s)) ∈ rJ iff r ∈ s, ι(a)
s

 R ❞, and νι(a)(xι(a),s,❞)≥ j;�
(❝, i,r), (❞, j,s)

�
∈ rJ iff r ∈ s, ❝

s

 R ❞, and ν❝(x❝,s,❞)≥ j.

Note that ∆J 6= ; since even if Ind(Ψ) = ;, we have that Wu 6= ; by Condition (a).
Now we construct a model I = (∆I , ·I) of B by defining ∆I := ∆J , for each A ∈ NC,

AI := AJ , for each a ∈ Ind(Ψ), aI := aJ , and for each r ∈ NR,

rI := rJ ∪
⋃

R|=s⊑r, R|=trans(s)

(sJ)+,

where ·+ denotes the transitive closure.
We denote by κ: ∆I →W the following function:

κ(d) :=

¨
❝ if d = (❝, i,r) ∈ Anon, and

ι(b) if d = b ∈ Ind(Ψ).

The following claim can be proved by a careful case distinction.

Claim 3.27. Let d ∈ ∆I . If ¬(∃r.D) ∈ κ(d), and there is an s ∈ Rol(B) and an e ∈ ∆I with

R |= s ⊑ r and (d, e) ∈ sJ , then we have:

• ¬D ∈ κ(e), and

• if R |= trans(s), then ¬(∃s.D) ∈ κ(e).

Assume first that e = b ∈ Ind(Ψ). Then the definition of J yields that ∃s.{b} ∈ κ(d). Since
κ(d) is a concept type, we by Definition 3.21 that ∃r.{b} ∈ κ(d). By Condition (f), this implies
κ(d)

r
 R ι(b), and thus κ(d)

r
 R κ(e). By Definition 3.21, we obtain ¬D ∈ κ(e). Moreover,

by Condition (f), we have κ(d)
s
 R ι(b), and thus κ(d)

s
 R κ(e). Hence, if R |= trans(s),

we have by Definition 3.21 also that ¬(∃s.D) ∈ κ(e).
4For now, we ignore the individual names in NI \ Ind(Ψ) since they are irrelevant for the consistency of B. After

constructing the model I below, one can ensure that it respects the UNA by constructing the countably infinite
disjoint union of I with itself to allow for different interpretations of each of these individual names.

46 Chapter 3. The Temporalised Description Logic SHOQ-LTL

Assume now that e = (❞, j,s) ∈ Anon. The definition of J yields that s ∈ s, κ(d)
s

 R ❞,
and νκ(d)(xκ(d),s,❞) ≥ j. Since s is a role type, and R |= s ⊑ r, we have r ∈ s. Thus, we
have by Definition 3.22 that κ(d)

r
 R ❞. By Definition 3.21, we obtain ¬D ∈ ❞, and thus

¬D ∈ κ(e). Moreover, since s ∈ s, we have by Definition 3.22 that κ(d)
s
 R ❞. Hence, if

R |= trans(s), we have by Definition 3.21 also that ¬(∃s.D) ∈ ❞, and thus ¬(∃s.D) ∈ κ(e).
This finishes the proof of Claim 3.27.

Using Claim 3.27, we now prove the following claim by structural induction.

Claim 3.28. For every concept C ∈ Clc(B), we have CI = {d ∈∆I | C ∈ κ(d)}.

For the base case, C being a concept name, the definition of I nd the definition of κ
immediately imply the claim.

For the case that C is of the form ¬D, we have by the semantics of SHOQ⊓, the induction
hypothesis, the definition of I, the definition of κ, and the definition of concept types the
following for every d ∈∆I:

d ∈ (¬D)I iff d /∈ DI iff D /∈ κ(d) iff ¬D ∈ κ(d).

For the case that C is of the form D ⊓ E, we have by similar arguments the following for
every d ∈∆I:

d ∈ (D ⊓ E)I iff d ∈ DI and d ∈ EI iff D ∈ κ(d) and E ∈ κ(d) iff D ⊓ E ∈ κ(d).

For the case that C is of the form ∃(r1 ⊓ · · · ⊓ rℓ).D, we have by similar arguments the
following:

(∃(r1 ⊓ · · · ⊓ rℓ).D)
I

= {d ∈∆I | there is an e ∈∆I with (d, e) ∈ rI

1 ∩ · · · ∩ rI

ℓ and e ∈ DI}
= {d ∈∆I | there is an e ∈∆I with (d, e) ∈ rI

1 ∩ · · · ∩ rI

ℓ and D ∈ κ(e)}
∗
= {d ∈∆I | ∃(r1 ⊓ · · · ⊓ rℓ).D ∈ κ(d)}

The starred equality
∗
= holds due to the following arguments. Assume, for the direction (⊇),

that d ∈∆I and ∃(r1 ⊓ · · · ⊓ rℓ).D ∈ κ(d). Since νκ(d) solves (E3), there is an r ∈R(B) such
that {r1, . . . , rℓ} ⊆ r and

• either there is a ❞ ∈Wu with D ∈ ❞, κ(d)
r

 R ❞, and νκ(d)(xκ(d),r,❞)≥ 1; or

• there is a b ∈ Ind(Ψ) such that D ∈ ι(b) and
�
∃r1.{b}, . . . ,∃rℓ.{b}

	
⊆ κ(d).

The definition of rJ

1 , . . . , rJ

ℓ
yields in the first case that

(d, (❞, 1,r)) ∈ rJ

1 ∩ · · · ∩ rJ

ℓ
⊆ rI

1 ∩ · · · ∩ rI

ℓ ,

and in the second case that

(d, b) ∈ rJ

1 ∩ · · · ∩ rJ

ℓ
⊆ rI

1 ∩ · · · ∩ rI

ℓ .

Since we have also D ∈ κ
�
(❞, 1,r)
�

and D ∈ κ(b), this finishes this direction.

3.2 The Complexity of Satisfiability in SHOQ-LTL 47

For the other direction (⊆), take any d ∈∆I such that there is an e ∈∆I with the property
that (d, e) ∈ rI

1 ∩ · · · ∩ rI

ℓ
and D ∈ κ(e). We show that C = ∃(r1 ⊓ · · · ⊓ rℓ).D ∈ κ(d). Assume

to the contrary that C /∈ κ(d), and thus ¬C ∈ κ(d).

• For the case ℓ > 1, we have that r1, . . . , rℓ are simple role names, and thus that
(d, e) ∈ rJ

1 ∩ · · · ∩ rJ

ℓ
. For the case that e = b ∈ Ind(Ψ), we have by the definition of J

that
�
∃r1.{b}, . . . ,∃rℓ.{b}

	
∈ κ(d). Take the set r :=

�
r ∈ Rol(B) | ∃r.{b} ∈ κ(d)

	
.

Since κ(d) is a concept type, we have by Definition 3.21 that r is a role type that contains
r1, . . . , rℓ. Since D ∈ κ(e) = ι(b), we have that ΓM,κ(d),r,D ≥ 1, which contradicts the
assumption that (E4) has a solution. For the case that e = (❞, j,s) ∈ Anon, we have
by the definition of J that {r1, . . . , rℓ} ⊆ s, κ(d)

s

 R ❞, and νκ(d)(xκ(d),s,❞) ≥ j ≥ 1.
Since νκ(d) is a solution of (E4), we must have νκ(d)(xκ(d),s,❞) = 0, which is again a
contradiction.

• For the case ℓ = 1, we have by the definition of rI
1 that (d, e) ∈ rJ

1 or (d, e) ∈ (sJ)+ for
some s ∈ NR with R |= s ⊑ r1 and R |= trans(s). The first case can be handled as in the
case of ℓ > 1. In the second case, there is a sequence d0, . . . , dn in ∆I such that n≥ 1,
d0 = d, dn = e, and for every k, 0≤ k ≤ n− 1, we have that (dk, dk+1) ∈ sJ .

– If n= 1, then we have (d, e) ∈ sJ . Thus, we have by Claim 3.27 that ¬D ∈ κ(e),
which is a contradiction.

– If n > 1, we have by Claim 3.27 that ¬(∃s.D) ∈ κ(d1). Since R |= s ⊑ s, using
Claim 3.27 again, we obtain that ¬(∃s.D) ∈ κ(dn−1). By Claim 3.27, we have
¬D ∈ κ(dn) = κ(e), which is again a contradiction.

Finally, consider the case that C is of the form ≥n r.D. Recall that r must be simple, and thus
rI = rJ . We first count, for any element d ∈∆I , the number n1 of unnamed rJ -successors
that satisfy D. For a fixed role type s ∈R(B) and concept type ❞ ∈Wu with r ∈ s, D ∈ ❞, and
κ(d)

s

 R ❞, we have by definition of J that (d, (❞, j,s)) ∈ rJ iff νκ(d)(xκ(d),s,❞)≥ j. Thus,
the number of rJ -successors of d that are of the form (❞, j,s) is exactly νκ(d)(xκ(d),s,❞). By
induction, we obtain the following:

n1 = |{(❞, j,s) ∈ Anon | (d, (❞, j,s)) ∈ rJ , (❞, j,s) ∈ DI}|

= |{(❞, j,s) ∈ Anon | (d, (❞, j,s)) ∈ rJ , D ∈ ❞}|

=
∑

r∈s∈R(B)
D∈❞∈Wu, κ(d)

s

 R❞

|{ j ∈ Z | (d, (❞, j,s)) ∈ rJ }|

=
∑

r∈s∈R(B)
D∈❞∈Wu, κ(d)

s

 R❞

νκ(d)(xκ(d),s,❞) =
∑

r∈s∈R(B)
νκ(d)(ΞM,κ(d),s,D).

Similarly, we count the number n2 of named rJ -successors of d ∈ ∆I that satisfy D. Take
again the set r :=

�
r ∈ Rol(B) | ∃r.{b} ∈ κ(d)

	
. Since κ(d) is a concept type, we have by

48 Chapter 3. The Temporalised Description Logic SHOQ-LTL

Definition 3.21 that r is a role type. By the definition of J , this yields for every b ∈ Ind(Ψ)

that (d, b) ∈ rJ iff ∃r.{b} ∈ κ(d) iff r ∈ r. Thus, by induction, we obtain the following:

n2 = |{b ∈ Ind(Ψ) | (d, b) ∈ rJ , b ∈ DI}|

= |{b ∈ Ind(Ψ) | (d, b) ∈ rJ , D ∈ ι(b)}|

=
∑

r∈s∈R(B)
|{b ∈ Ind(Ψ) | D ∈ ι(b), and (d, b) ∈ sJ iff s ∈ s}|

=
∑

r∈s∈R(B)

���b ∈ Ind(Ψ) | D ∈ ι(b), and ∃s.{b} ∈ κ(d) iff s ∈ s
	��

=
∑

r∈s∈R(B)
ΓM,κ(d),s,D.

For every d ∈∆I , we know that νκ(d) solves the equations in (E1) and (E2). Thus, we have
≥n r.D ∈ κ(d) iff the sum of n1 and n2 is greater or equal to n iff d ∈ (≥n r.D)I . This finishes
the proof of Claim 3.28.

To show that I is indeed a model of B, we first show the following claim by structural
induction.

Claim 3.29. For all ψ ∈ Clf(Ψ), we have ψ ∈ ❢ iff I |=ψ.

For the first base case, assume that ψ is of the form A(a) for A ∈ NC and a ∈ NI. We have
A(a) ∈ ❢ iff A∈ ι(a) by Condition (b). Thus, A(a) ∈ ❢ iff aI = aJ = a ∈ AJ = AI iff I |= A(a).

For the second base case, assume that ψ is of the form r(a, b) for a, b ∈ NI and r ∈ NR.
If r(a, b) ∈ ❢, we have by Condition (c) that ∃r.{b} ∈ ι(a), and thus (a, b) ∈ rJ by the
definition of rJ . Since rJ ⊆ rI , a = aI , and b = bI , we obtain (aI , bI) ∈ rI , and thus
I |= r(a, b).

Conversely, if I |= r(a, b), we have by the definition of rI that (a, b) ∈ rJ or (a, b) ∈ (sJ)+

for some s ∈ NR with R |= s ⊑ r and R |= trans(s). If (a, b) ∈ rJ , the definition of rJ

implies that ∃r.{b} ∈ ι(a). This yields by Condition (c) that r(a, b) ∈ ❢. Otherwise, there is a
sequence d0, . . . , dn in ∆I such that n≥ 1, d0 = a, dn = b, and for every k, 0≤ k ≤ n−1, we
have that (dk, dk+1) ∈ sJ . Assume to the contrary that ∃s.{b} /∈ ι(a). Thus, ¬(∃s.{b}) ∈ ι(a).

• If n = 1, then we have (a, b) ∈ sJ . Thus, we have by Claim 3.27 that ¬{b} ∈ ι(b),
which is a contradiction.

• If n> 1, we have by Claim 3.27 that ¬(∃s.{b}) ∈ κ(d1). Using Claim 3.27 again, we
obtain that ¬(∃s.{b}) ∈ κ(dn−1). By Claim 3.27, we have ¬{b} ∈ κ(dn) = ι(b), which
is again a contradiction.

Hence, ∃s.{b} ∈ ι(a). Since ι(a) is a concept type, Definition 3.21 yields that ∃r.{b} ∈ ι(a).
Thus, by Condition (c), we obtain r(a, b) ∈ ❢.

For the third base case, assume that ψ is of the form ⊤ ⊑ C . If ⊤ ⊑ C ∈ ❢, then for every
❝ ∈W, we have C ∈ ❝ by Condition (d). Since ι maps into W, we have that C ∈ κ(d) for
every d ∈∆I . Hence, Claim 3.28 yields CI =∆I . For the converse direction, if ⊤ ⊑ C /∈ ❢,
then by the definition of a formula type, ¬(⊤ ⊑ C) ∈ ❢. Then, by Condition (e), there is a

3.2 The Complexity of Satisfiability in SHOQ-LTL 49

❝ ∈W such that C /∈ ❝, which implies ¬C ∈ ❝, because ❝ is a concept type. Hence, there
is a d ∈ ∆I such that ¬C ∈ κ(d). Claim 3.28 yields that d ∈ (¬C)I . Thus, we have that
CI 6=∆I .

For the induction step, assume first that ψ is of the form ¬ψ1. By induction, we have
ψ ∈ ❢ iff ψ1 /∈ ❢ iff I 6|=ψ1 iff I |= ¬ψ1. Similarly, if ψ is of the form ψ1∧ψ2, then ψ ∈ ❢ iff
{ψ1,ψ2} ⊆ ❢ iff I |=ψ1 and I |=ψ2 iff I |=ψ1 ∧ψ2. This finishes the proof of Claim 3.29.

Since ❢ is a formula type for Ψ, we have Ψ ∈ ❢, and thus together with Claim 3.29 that
I |= Ψ. We now show that I is also a model of R.

Claim 3.30. For every α ∈R, we have I |= α.

Assume first that α is of the form r ⊑ s. Since r ⊑ s ∈R, we have also R |= r ⊑ s. We first
show that rJ ⊆ sJ . For this, take (d, e) ∈ rJ . There are two cases to consider:

• If e = b ∈ Ind(Ψ), then the definition of rJ yields that ∃r.{b} ∈ κ(d). Since R |= r ⊑ s,
we have ∃s.{b} ∈ κ(d) since κ(d) is a concept type (see Definition 3.21). The definition
of sJ yields that (d, b) ∈ sJ .

• If e = (❞, j,s) ∈ Anon, then the definition of rJ yields that r ∈ s, κ(d)
s

 R ❞, and
νκ(d)(xκ(d),s,❞) ≥ j. Then, R |= r ⊑ s yields s ∈ s since s is a role type (see Defini-
tion 3.22). Hence, the definition of sJ yields that (d, (❞, j,s)) ∈ sJ .

To show that rI ⊆ sI , take (d, e) ∈ rI . If (d, e) ∈ rJ , we have (d, e) ∈ sJ , and thus (d, e) ∈ sI .
Otherwise, we have (d, e) ∈ (tJ)+ with R |= t ⊑ r and R |= trans(t). Since R |= r ⊑ s, we
also have R |= t ⊑ s. The definition of sI yields that (tJ)+ ⊆ sI , and hence (d, e) ∈ sI .

Assume now that α is of the form trans(r). Since trans(r) ∈ R, we have also that
R |= trans(r). Obviously, also R |= r ⊑ r holds. By the same arguments as above, we
have that for each t with R |= t ⊑ r that tJ ⊆ rJ , and thus (tJ)+ ⊆ (rJ)+ since the
transitive closure is monotonic. This yields that rI = (rJ)+, and thus I |= trans(r). This
finishes the proof of Claim 3.30.

Thus, we have shown that I is indeed a model of B. It only remains to be shown that I

respects D.
By Condition (h), we have for every d ∈∆I that there is a set Y ∈ Y such that Y = κ(d)∩U .

Claim 3.28 yields that d ∈ (CU ,Y)
I . By Condition (i), we have for every Y ∈ Y that there is a

d ∈∆I such that Y = κ(d)∩ U . Claim 3.28 yields again that d ∈ (CU ,Y)
I . This shows that I

respects D, and finishes the proof of the ‘if’ direction of the lemma.
For the ‘only if’ direction, assume that there is a model I = (∆I , ·I) of B = (Ψ, R) that

respects D. We now construct a quasimodel for B. Let τ(d) := {C ∈ Clc(B) | d ∈ CI} for
d ∈∆I . We define M= (W, ι, ❢) as follows:

• W := {τ(d) | d ∈∆I};
• ι(a) := τ(aI) for every a ∈ Ind(Ψ); and

• ❢ := {ψ ∈ Clf(Ψ) | I |=ψ}.

We first show that W is a set of concept types for B. For this, we take any d ∈∆I , and show
that τ(d) is a concept type for B. The semantics of SHOQ⊓ and the definition of τ yield
immediately that for every C ⊓D ∈ Clc(B), we have C ⊓D ∈ τ(d) iff {C , D} ⊆ τ(d). Similarly,
for every ¬C ∈ Clc(B), we have ¬C ∈ τ(d) iff C /∈ τ(d). Because of the UNA, we have

50 Chapter 3. The Temporalised Description Logic SHOQ-LTL

also that for every {a} ∈ Clc(B), {a} ∈ τ(d) implies that {b} /∈ τ(d) for every {b} ∈ Clc(B)

with {b} 6= {a}. The semantics of SHOQ⊓ and the definition of τ yield also that for every
∃r.{a} ∈ Clc(B), we have that if ∃r.{a} ∈ τ(d) and R |= r ⊑ s, then ∃s.{a} ∈ τ(d).

Obviously, ❢ is a formula type for B, and we have also, by the UNA, that for any ❝,❞ ∈W

with ❝ 6= ❞ that ❝∩❞∩
�
{a} | a ∈ Ind(Ψ)

	
= ;. By definition, {a} ∈ τ(aI) = ι(a) for every

a ∈ Ind(Ψ). Hence, M is a model candidate for B. We continue showing the following claim.

Claim 3.31. For every d, e ∈ ∆I and every r ∈ Rol(B), we have that (d, e) ∈ rI implies

τ(d)
r
 R τ(e).

To prove the claim, take any (d, e) ∈ rI . For the first condition of r-compatibility (see
Definition 3.21), take any ¬(∃r.D) ∈ τ(d), which implies that d ∈ (¬∃r.D)I . By the semantics
of SHOQ⊓, we have e ∈ (¬D)I , and thus ¬D ∈ τ(e).

For the second condition of r-compatibility, take any s ∈ Rol(B) with R |= r ⊑ s,
R |= trans(r), and ¬(∃s.D) ∈ τ(d). Since I is a model of R, we have that rI ⊆ sI and
that rI is transitive. Suppose that ¬(∃r.D) /∈ τ(e), and thus ∃r.D ∈ τ(e). Then there is an
e′ ∈ ∆I with e′ ∈ DI and (e, e′) ∈ rI . Since rI is transitive, we have also (d, e′) ∈ rI , and
thus (d, e′) ∈ sI , which yields a contradiction to ¬(∃s.D) ∈ τ(d). This finishes the proof of
Claim 3.31.

We now use this claim to show that M is a quasimodel for B that respects D. Condition (a)
is obviously satisfied since ∆I 6= ; by definition.

For Condition (b), we have for every A(a) ∈ Clf(Ψ) that A(a) ∈ ❢ iff I |= A(a) iff aI ∈ AI iff
A∈ τ(aI) = ι(a).

For Condition (c), we have for every r(a, b) ∈ Clf(Ψ) that r(a, b) ∈ ❢ iff I |= r(a, b) iff
(aI , bI) ∈ rI iff aI ∈ (∃r.{b})I iff ∃r.{b} ∈ τ(aI) = ι(a).

For Condition (d), take any⊤ ⊑ C ∈ ❢ and any ❝ ∈W. The definition of ❢ yields I |= ⊤ ⊑ C ,
and thus CI =∆I . Hence, C ∈ τ(d) for any d ∈∆I , which yields by the definition of W that
C ∈ ❝.

For Condition (e), take any ¬(⊤ ⊑ C) ∈ f . By the definition of ❢, this implies I 6|= ⊤ ⊑ C .
Thus, there is a d ∈∆I with d /∈ CI . Thus, we have C /∈ τ(d) ∈W.

For Condition (f), take any d ∈ ∆I with ∃r.{a} ∈ τ(d). Then, d ∈ (∃r.{a})I , and thus
(d, aI) ∈ rI . Claim 3.31 yields that τ(d)

r
 R τ(a

I), i.e. τ(d)
r
 R ι(a).

For Condition (g), take any d ∈∆I . We construct a solution ντ(d) of the system of equations
EM,τ(d). Let z denote the maximal integer that occurs in any number restriction in B. We
denote by ∆I

u
the set {d ∈∆I | d 6= aI for every a ∈ NI} of unnamed domain elements, and

by ∆I
n

the set ∆I \∆I
u

of named domain elements. We first consider the variables xτ(d),r,❞.
Take any r ∈R(B) and any ❞ ∈Wu such that τ(d)

r

 R ❞. Then we define

ντ(d)(xτ(d),r,❞) :=min
�
z, |{e ∈∆I

u
| τ(e) = ❞, and (d, e) ∈ sI iff s ∈ r}|

	
.

We set ντ(d)(xτ(d),r,❞) to at most z to ensure that this value is finite. Note that this value
counts the unnamed role successors of type r of concept type ❞.

The following claim implies that the equations of the form (E1) and (E2) are satisfiable by
appropriately defining ντ(d)(yτ(d),≥n r.C) and ντ(d)(yτ(d),¬(≥n r.C)).

3.2 The Complexity of Satisfiability in SHOQ-LTL 51

Claim 3.32. For every ≥n r.C ∈ Clc(B), we have

≥n r.C ∈ τ(d) iff
∑

r∈r∈R(B)
(ντ(d)(ΞM,τ(d),r,C) + ΓM,τ(d),r,C)≥ n.

Assume first that there are ❞ ∈Wu and r ∈ R(B) such that C ∈ ❞, r ∈ r, τ(d)
r

 R ❞, and
ντ(d)(xτ(d),r,❞) = z ≥ n. Then by definition of ντ(d), there are at least n unnamed domain
elements e ∈∆I

u
with C ∈ ❞= τ(e) and (d, e) ∈ rI , which implies that d ∈ (≥n r.C)I , and

thus ≥n r.C ∈ τ(d). Additionally, ντ(d)(ΞM,τ(d),r,C) ≥ z ≥ n, which shows that Claim 3.32
holds.

We assume in the following that for every ❞ ∈Wu and r ∈ R(B) with C ∈ ❞, r ∈ r, and
τ(d)

r

 R ❞, we have ντ(d)(xτ(d),r,❞) = |{e ∈∆I
u
| τ(e) = ❞, and (d, e) ∈ sI iff s ∈ r}| ≤ z. It

now follows that, for each r ∈R(B), we have

ντ(d)(ΞM,τ(d),r,C) =
∑

C∈❞∈Wu, τ(d)
r

 R❞

ντ(d)(xτ(d),r,❞)

=
∑

C∈❞∈Wu, τ(d)
r

 R❞

|{e ∈∆I

u
| τ(e) = ❞, and (d, e) ∈ sI iff s ∈ r}|

= |{e ∈ CI ∩∆I

u
| (d, e) ∈ sI iff s ∈ r}|,

where the third equality follows by Claim 3.31. Thus,
∑

r∈r∈R(B)
ντ(d)(ΞM,τ(d),r,C) = |{e ∈ CI ∩∆I

u
| (d, e) ∈ rI}|.

Moreover, we have
∑

r∈r∈R(B)
ΓM,τ(d),r,C =

∑

r∈r∈R(B)

���b ∈ Ind(Ψ) | C ∈ ι(b), and ∃s.{b} ∈ τ(d) iff s ∈ r
	��

=
���b ∈ Ind(Ψ) | C ∈ ι(b) and ∃r.{b} ∈ τ(d)

	��

= |{b ∈ Ind(Ψ) | bI ∈ CI and (d, bI) ∈ rI}|

= |{e ∈ CI ∩∆I

n
| (d, e) ∈ rI}|.

Since {∆I
u
,∆I

n
} is a partition of ∆I , we have that ≥n r.C ∈ τ(d) iff d ∈ (≥n r.C)I iff

|{e ∈ CI | (d, e) ∈ rI}| ≥ n iff

∑

r∈r∈R(B)
(ν❝(ΞM,❝,r,C) + ΓM,❝,r,C)≥ n

by the above equations, which finishes the proof of Claim 3.32.

Consider now any E = ∃(r1 ⊓ · · · ⊓ rℓ).C ∈ Clc(B). As above, if there are ❞ ∈ Wu and
r ∈ R(B) such that C ∈ ❞, {r1, . . . , rℓ} ⊆ r, τ(d)

r

 R ❞, and ντ(d)(xτ(d),r,❞) = z ≥ 1, then
there is at least one unnamed domain element e ∈∆I

u
with C ∈ ❞ = τ(e) and (d, e) ∈ rI

1 ∩ rI

ℓ
.

This implies that d ∈ EI , and thus E ∈ τ(d). Also, ντ(d)(ΞM,τ(d),r,C) ≥ z ≥ 1, which

52 Chapter 3. The Temporalised Description Logic SHOQ-LTL

shows that the corresponding equation of the form (E3) is satisfied if ντ(d)(yτ(d),E) is set
appropriately.

We consider now the case where for every ❞ ∈ Wu and every r ∈ R(B) with C ∈ ❞,
{r1, . . . , rℓ} ⊆ r, and τ(d)

r

 R ❞, we have ντ(d)(xτ(d),r,❞) ≤ z. Then, by similar arguments
as above, we have:
∑

{r1,...,rℓ}⊆r∈R(B)
ντ(d)(ΞM,τ(d),r,C) = |{e ∈ CI ∩∆I

u
| (d, e) ∈ rI

1 ∩ · · · ∩ rI

ℓ }|,

and also
∑

{r1,...,rℓ}⊆r∈R(B)
ΓM,τ(d),r,C = |{e ∈ CI ∩∆I

n
| (d, e) ∈ rI

1 ∩ · · · ∩ rI

ℓ }|.

Again, this yields that we have E ∈ τ(d) iff d ∈ EI iff there is at least one e ∈ CI with
(d, e) ∈ rI

1 ∩ · · · ∩ rI

ℓ
iff

∑

{r1,...,rℓ}⊆r∈R(B)
(ντ(d)(ΞM,τ(d),r,C) + ΓM,τ(d),r,C)≥ 1,

which shows that the equations of the form (E3) and (E4) can be satisfied by appropriately
setting ντ(d)(yτ(d),E). This finishes the proof that M satisfies Condition (g).

For Condition (h), take any d ∈∆I . Since I respects D, there must be a set Y ∈ Y such
that d ∈ (CU ,Y)

I . Hence, by definition of τ(d), we have Y = τ(d)∩ U .
For Condition (i), let Y ∈ Y. Since I respects D, there must be a d ∈ (CU ,Y)

I . Thus, by
definition of τ(d), we have Y = τ(d)∩ U with τ(d) ∈W. �

It remains to be shown that one can check the existence of a quasimodel for B that respects D

in time exponential in the size of B. For this, consider the following algorithm. Given
B = (Ψ, R) and D, it enumerates all model candidates (W, ι, ❢) for B, where W is the set of
all concept types for B. We denote these candidates by M1, . . . , MN . Note that each of them
is of size exponential in the size of B. It should be clear that

N ≤ 2|Clc(B)|·|Ind(Ψ)| · 2|Clf(Ψ)|,

and thus the enumeration of M1, . . . , MN can be done in exponential time since Clc(B) and
Clf(Ψ) are of size polynomial in the size of B.

The algorithm works as follows. First, initialise i := 1 and consider Mi = (W, ι, ❢).

Step 1. Check whether Mi satisfies Conditions (b) and (c).
If it does, continue with Step 2. Otherwise, stop considering Mi and go to Step 5.

Step 2. Check each concept type ❝ ∈ W. We call a concept type ❝ ∈ W defective if it
violates Condition (d) for some ⊤ ⊑ C ∈ ❢, it violates Condition (f), or it violates
Condition (h).
If we find a defective concept type ❝, and have ❝ ∈Wu, then we set W :=W \ {❝}
and continue with Step 2. If we find a defective ❝ /∈Wu, i.e. ❝ ∈ ι(Ind(Ψ)), then
stop considering Mi and go to Step 5. If we have found no defective concept types
in W, continue with Step 3.

3.2 The Complexity of Satisfiability in SHOQ-LTL 53

Step 3. Consider the model candidate M′ = (W ′, ι, ❢) obtained from the previous step. For
every ❝ ∈W ′, check whether EM′,❝ has a solution.
If we find a ❝ ∈W ′

u
such that EM′,❝ has no solution, then set W ′ :=W ′ \ {❝} and

redo Step 3. If we find a ❝ ∈ ι(Ind(Ψ)) such that EM′,❝ has no solution, then go to
Step 5. If we have found no such concept type in W ′, continue with Step 4.

Step 4. Check whether the model candidate M′′ = (W ′′, ι, ❢) obtained from Step 3 satisfies
Conditions (a), (e), and (i).
If it does, stop with output ‘quasimodel that respects D found’. Otherwise, continue
with Step 5.

Step 5. Set i := i + 1. If i ≤ N , continue with Step 1. Otherwise, stop with output ‘no
quasimodel that respects D exists’.

Using this algorithm, we are now ready to prove one of the main results of this section.

Theorem 3.33. Let B be a Boolean SHOQ⊓-knowledge base, and let D = (U , Y) be a pair such

that U is a set of concept names occurring in B and Y ⊆ 2U . Then, consistency of B w.r.t. D can

be decided in time exponential in the size of B.

Proof. By Lemma 3.26, it suffices to show that the algorithm described above to find quasimod-
els for B that respect D is sound, complete, and terminates in time exponential in the size
of B.

If the algorithm has constructed a model candidate M = (W, ι, ❢) that passed all tests,
then M obviously satisfies Conditions (a)–(i) of Definition 3.25.

Conversely, if M= (W, ι, ❢) is a quasimodel for B that respects D, then ι and ❢ must be
enumerated by the algorithm at some point. Since ι and ❢ satisfy Conditions (b) and (c),
they pass the tests in Step 1, and we continue with Step 2. There, a model candidate
M′ = (W ′, ι, ❢) is constructed. Note that the concept types in W cannot be defective because
of Conditions (d), (f), and (h). Since ι maps to concept types in W, we indeed obtain M′

with W ⊆ W ′, and continue with Step 3. There, a model candidate M′′ = (W ′′, ι, ❢) is
constructed. Since for every ❝ ∈W, EM,❝ has a solution, also EM′′,❝ has a solution. Indeed,
the additional variables that occur in EM′′,❝ but not in EM,❝ can be set to 0. Since ι maps to
the concept types in W, we indeed obtain a model candidate M′′ with W ⊆W ′′ that satisfies
Condition (g), and continue with Step 4. Finally, W ′′ satisfies the Conditions (a), (e), and (i),
because W ⊆W ′′. This shows that the algorithm detects the existence of a quasimodel for B

that respects D.
To analyse the running time of the algorithm, observe first that r-compatibility w.r.t. R

can be checked in polynomial time since this only involves inclusion tests for two concept
types, which are sets of polynomial size, and entailment tests of role axioms w.r.t. R, which
can be done in time polynomial in the size of R [HST00].

As mentioned above, the number N of model candidates is at most exponential in the
size of B, while each model candidate Mi is of size exponential in the size of B. Also the
sequence of model candidates M1, . . . , MN can be enumerated in time exponential in the
size of B.

For each of these exponentially many model candidates, the checks in Step 1 can be done
in time polynomial in the size of B, and the checks in Step 2 are done at most exponentially
often since each time one of the exponentially many concept types in W is removed. Each of

54 Chapter 3. The Temporalised Description Logic SHOQ-LTL

these checks can be done in time exponential in the size of B since the following conditions
are checked for at most exponentially many concept types ❝:

• for Condition (d), we check for inclusion of polynomially many concepts in ❝;

• for Condition (f), we have polynomially many r-compatibility tests; and

• for Condition (h), we enumerate all (at most exponentially many) elements of Y and
do a simple test.

By similar arguments as above, the checks in Step 3 are done at most exponentially often
since each time one of the exponentially many concept types in W ′ is removed. Each time
Step 3 is performed, for exponentially many concept types ❝ ∈ W ′, it must be checked
whether EM′,❝ has a solution. We denote the number of variables in EM′,❝ by n, and the
number of equations in EM′,❝ by m. Note that n may be exponential in the size of B since
there are exponentially many concept types and role types. However, m is polynomial in
the size of B since we have one equation per at-least and existential restriction occurring
in Ψ. In [Pap81], it was shown that EM′,❝ can be solved in time O(n2m+2(ma)(m+1)(2m+1)),
where a denotes the value of the largest number appearing in the equations. Thus, even if
the numbers in the at-least restrictions occurring in Ψ are given in binary encoding, checking
whether the system of equations EM′,❝ has a solution can be done in time exponential in the
size of B. Overall, Step 3 takes only time exponential in the size of B.

Finally, Step 4 can also be done in time exponential in the size of B. Checking Condition (a)
is trivial. Checking Condition (e) involves enumerating polynomially many ¬(⊤ ⊑ C) ∈ ❢ and
at most exponentially many concept types in W ′′ to do an inclusion test. For Condition (i),
we enumerate at most exponentially many elements of Y and at most exponentially many
concept types in W ′′ to do a simple test.

Overall, the algorithm runs in time exponential in the size of B. �

The following corollary captures the special case of Boolean SHOQ-knowledge bases without
a set D.

Corollary 3.34. Let B be a Boolean SHOQ-knowledge base. Then, consistency of B can be

decided in time exponential in the size of B.

Proof. Obviously, B is also a Boolean SHOQ⊓-knowledge base as SHOQ is a fragment of
SHOQ⊓. We define D := (U , Y) with U := ; and Y := {;}. It is easy to see that B is consistent
iff B is consistent w.r.t. D. Indeed, the ‘if’ direction is trivial. For the ‘only if’ direction, assume
that B is consistent. Then, there is a model I = (∆I , ·I) of B. Note that C;,; is equivalent to
⊤, and thus (C;,;)

I =∆I 6= ;. Hence, we have

Y = {;}=
�

Y ⊆ U = ; | there is a d ∈∆I with d ∈ (CU ,Y)
I
	
,

which shows that I respects D. Thus, Theorem 3.33 yields that consistency of B can be
decided in time exponential in the size of B. �

Theorem 3.33 and Corollary 3.34 yield the results that are needed in the proofs of Theor-
ems 3.15, 3.17, and 3.20.

3.3 Summary 55

3.3 Summary

In this chapter, we obtained complexity results for the satisfiability problem in the temporal-
ised description logic SHOQ-LTL as shown in Table 3.4. More precisely, we considered the
satisfiability problem in the settings where (i) neither concept names nor role names are
allowed to be rigid, (ii) only concept names may be rigid, and (iii) both concept names and
role names may be rigid. It turned out that in all three settings, the satisfiability problem in
SHOQ-LTL has the same complexity as the satisfiability problem in the less expressive tem-
poralised description logic ALC-LTL. Hence, for every description logic L between ALC and
SHOQ, we have that the satisfiability problem in L-LTL is EXPTIME-complete in Setting (i),
which is the same complexity as the satisfiability problem in L. Moreover, the satisfiability
problem in L-LTL is NEXPTIME-complete if we allow rigid concept names (but no rigid role
names), i.e. in Setting (ii), and 2EXPTIME-complete in Setting (iii), where we further allow
rigid role names.

56 Chapter 3. The Temporalised Description Logic SHOQ-LTL

Chapter 4

Runtime Verification Using the Temporalised

Description Logic SHOQ-LTL

Runtime verification deals with the problem of verifying properties about the behaviour of
observed systems. In this chapter, we investigate runtime verification using the temporalised
description logic SHOQ-LTL. We show how monitors for SHOQ-LTL-formulas can be con-
structed and establish complexity results for related decision problems. Some of the results
of this chapter have already been published in [BL14].

This chapter is organised as follows. In Section 4.1, we first consider propositional runtime
verification, and revisit known results to be able to compare them to one we establish.
Then, in Section 4.2 we show how to construct Büchi-automata for SHOQ-LTL-formulas.
This section is very related to Chapter 3 where we established complexity results for the
satisfiability problem in SHOQ-LTL. After that, we consider the actual monitor construction
for SHOQ-LTL in Section 4.3. Then, in Section 4.4, we show some complexity results about
the important related decision problems ‘liveness’ and ‘monitorability’. Finally, Section 4.5
gives a brief summary of the main results of this chapter.

4.1 Runtime Verification Using Propositional LTL

In propositional runtime verification [BLS10; BLS11], one observes the actual behaviour of
the given system since it started, which at any point in time can be described by a finite word u

over ΣP . Here P is a finite set of propositional variables whose truth values at any point in
time can be determined by observing the system. Given such a word u = u0u1 . . . ut ∈ Σ∗P , we
say that the propositional LTL-structure W = (wi)i≥0 extends u if ui = wi for every i, 0≤ i ≤ t.
In this case, we also call W an extension of u. In principle, a monitor for a propositional
LTL-formula φ needs to realise the following monitoring function mφ : Σ∗

P
→ {⊤,⊥, ?}:

mφ(u) :=

⊤ if W, 0 |= φ for every propositional LTL-structure W that extends u;

⊥ if W, 0 |= ¬φ for every propositional LTL-structure W that extends u; and

? otherwise.

As mentioned above, this function should not be computed from scratch whenever a new
observation σ ∈ ΣP is added. In particular, the time needed for computing the next function
value mφ(uσ) should not depend on the length of the already observed word u. This can be
achieved by constructing a deterministic Moore-automaton as monitor.

57

58 Chapter 4. Runtime Verification Using SHOQ-LTL

Definition 4.1 (Deterministic Moore-automaton). A deterministic Moore-automaton is a

tuple M = (S,Σ,δ, s0, Γ ,λ) consisting of a finite set of states S, a finite input alphabet Σ, a

transition function δ : S ×Σ→ S, an initial state s0 ∈ S, a finite output alphabet Γ , and an

output function λ : S→ Γ .
The transition function and the output function can be extended to functions δ∗ : S ×Σ∗→ S

and λ∗ : Σ∗→ Γ as follows:

• δ∗(s,ǫ) := s where ǫ denotes the empty word;

• δ∗(s, uσ) := δ(δ∗(s, u),σ) where u ∈ Σ∗ and σ ∈ Σ; and

for every u ∈ Σ∗, λ∗(u) := λ(δ∗(s0, u)). ♦

Such a deterministic Moore-automaton is a monitor for φ if its extended output function is
the monitoring function for φ.

Definition 4.2 (Monitor for propositional LTL-formula). Let P be a finite set of proposi-

tional variables, and let φ be a propositional LTL-formula over P. The deterministic Moore-

automaton M = (S,ΣP ,δ, s0, {⊤,⊥, ?},λ) is a monitor for φ if λ∗(u) = mφ(u) holds for every

u ∈ Σ∗
P

. ♦

Given a propositional LTL-formula φ over P, a monitor for φ can effectively be com-
puted [BLS11]. Basically, on proceeds as follows. First, one computes Büchi-automata
for φ and ¬φ. These automata are then determinised (viewed as finite automata rather
than Büchi-automata). Finally, one builds the product of the two deterministic automata.
The output function is computed using reachability tests in the Büchi-automata (see [BLS11]
and the monitor construction for SHOQ-LTL in Section 4.3 below for details). The monitor
obtained this way is in the worst case of doubly exponential size and be be computed in
doubly exponential time.

One can actually show that this doubly exponential blow-up in the construction of the
monitor cannot be avoided. Such a doubly exponential lower bound was already claimed
in [BLS11], referring to a result of Kupferman and Vardi [KV01]. However, a closer look

at Theorem 3.3 in [KV01] shows that it only yields a lower bound of 22
p

n

. Fortunately, a
more recent result by Kupferman and Rosenberg [KR10] can be used to show a lower bound
of 22n

. We include a proof of this tight lower bound for the monitor construction here for the
sake of completeness. This lower bound can also be used to show optimality of our monitor
constructions for SHOQ-LTL.

Kupferman and Rosenberg show (see Theorem 3 in [KR10]) that there exists a sequence
(Ln)n≥1 of ω-languages and a sequence (φn)n≥1 of propositional LTL-formulas such that the
following holds for every n≥ 1:

1. theω-language Ln can be accepted by a deterministic Büchi-automaton, but the number
of states of any deterministic Büchi-automaton accepting Ln is at least 22n

; and

2. Ln = Lω(φn) and the size of φn is linear in n.

Using an argument similar to the one employed in [KR10], we can show that the number of
states of any monitor for φn is at least 22n

. For this purpose, we first recall the definition of
the languages Ln from [KR10].

4.1 Runtime Verification Using Propositional LTL 59

For every n≥ 0, we consider the alphabet Σn := {a1, . . . , an} ∪ {b1, . . . , bn} ∪ {#,$}, and
define

Tn := {a1, b1} · . . . · {an, bn},

Sn := {#} · (Tn · {#})∗ · {$} · Tn · {#}ω,

Rn :=
⋃

w∈Tn

Σ
∗
n · {#} · {w} · {#} ·Σ∗n · {$} ·Σ∗n · {w} · {#}ω,

Ln := Sn ∩ Rn.

Thus, the language Tn consist of the words of length n such that the letter at position i is ai

or bi . Obviously, there are 2n such words. The ω-language Sn consists of ω-words that start
with a finite sequence of elements of Tn, which are separated by the #-symbol. This sequence
is terminated by the $-symbol, which is followed by exactly one element of Tn. Then comes
an infinite sequence of #-symbols. Intersecting the ω-language Sn with the ω-language Rn

has the following effect: it ensures that the element w of Tn that follows the $-symbol has
already occurred in the sequence of elements of Tn before the $-symbol.

The propositional LTL-formulas φn representing the ω-languages Ln are built over sets
of propositional variables with 2n+ 2 elements, i.e. over Pn := {p1, . . . , p2n+2}. Recall that
such a propositional LTL-formula defines a ω-language over the alphabet ΣPn

, whose letters
are the subsets of Pn. Of these exponentially many letters, the language Ln uses only the
(linearly many) singleton sets, where

• {pi} represents the letter ai for i, 1≤ i ≤ n;

• {pn+i} represents the letter bi for i, 1≤ i ≤ n;

• {p2n+1} represents the letter #; and

• {p2n+2} represents the letter $.

In order to increase readability, we continue to use the letters from Σn rather than these
singleton sets in our argument below.

Theorem 4.3. There is a sequence (φn)n≥1 of propositional LTL-formulas of size linear in n

such that the number of states of any monitor for φn is at least 22n

.

Proof. Let (φn)n≥1 be the sequence of propositional LTL-formulas constructed in the proof of
Theorem 3 of [KR10]. It is shown in that proof that Ln = Lω(φn) and that the size of φn is
linear in n.

Now assume that Mn = (Sn,Σn,δn, s0,n, {⊤,⊥, ?},λn) is a monitor for φn with less than
22n

states. Given a set T ⊆ Tn, we enumerate its elements in lexicographic order (where ai

comes before bi). Assume that w1, . . . , wm is the enumeration of the elements of T in this
order. Then we define

w(T) := #w1# . . . #wm#.

Moreover, let s(T) be the state reached in Mn with input w(T) when starting at the initial
state s0,n. Since there are 22n

different subsets of Tn, but less than 22n

states, there must be
two different such subsets T, T ′ such that s(T) = s(T ′). We assume without loss of generality

60 Chapter 4. Runtime Verification Using SHOQ-LTL

that there is a word w ∈ T \T ′.1 Now consider the state s reached from s0,n on input w(T)w#.
Since s(T) = s(T ′), this is the same state as the one reached from s0,n on input w(T ′)w#.
Since Mn is a monitor for φn, this implies that

mφn
(w(T)w#) = λn(s) = mφn

(w(T ′)w#).

This, however, yields a contradiction since actually we have

mφn
(w(T)w#) = ? 6= ⊥ = mφn

(w(T ′)w#).

In fact, we can extend w(T)w# to an ω-word belonging to Ln (and thus satisfying φn) by
adding an infinite sequence of #-symbols. Any other extension of w(T)w# does not belong
to Ln. This shows that mφn

(w(T)w#) = ?. The word w(T ′)w#, however, cannot be extended
to an element of Ln since w does not occur in the sequence before the $-symbol. This shows
that mφn

(w(T ′)w#) = ⊥.
Summing up, we have seen that our assumption that there is a monitor for φn with less

than 22n

states leads to a contradiction, which shows that any monitor for φn must have at
least 22n

states. �

Before building a monitor for a propositional LTL-formula φ, it makes sense to check whether
the monitor will actually be able to give reasonable answers. For example, a monitor that
always, i.e. for every finite word, returns the answer ? is clearly useless. Similarly, when
running the monitor, it makes sense to check whether, according to what has been seen
of the system’s behaviour until now, i.e. the finite word read by the monitor until now, it
makes sense to continue running the monitor. This leads to the following definition of
monitorability [PZ06; FFM09; Bau10].

Definition 4.4 (Monitorability). Let φ be a propositional LTL-formula over P, and let u be

a finite word over ΣP . We say that φ is u-monitorable if there is a finite word v ∈ Σ∗ such

that mφ(uv) 6= ?. Moreover, we call φ monitorable if it is u-monitorable for every finite word

u ∈ Σ∗
P

. ♦

Given a monitor M for φ, one can easily decide monitorability through reachability tests
in M. We call a state in M good if one can reach from it a state whose output is different
to ?. Then

• φ is u-monitorable iff the state reached from the initial state with input u is good; and

• φ is monitorable iff every state reachable from the initial state is good.

This shows that monitorability can be decided in time doubly exponential in the size of the
input formula. More precisely, one can obtain an upper bound of EXPSPACE by constructing
the relevant parts of the monitor on-the-fly while performing the reachability test.2 To the
best of our knowledge, it is an open problem whether this upper bound of EXPSPACE is tight.
The only known lower bound is one of PSPACE, which can be obtained using a reduction from

1The case where T ′ \ T is non-empty can be treated symmetrically.
2This is the same idea underlying the automata-based PSPACE satisfiability check for propositional LTL [SC85;

LPZ85] mentioned in Section 2.2.2.

4.2 Büchi-Automata for SHOQ-LTL-Formulas 61

the satisfiability problem.3 Interestingly, the same is true for the related but simpler-looking
problem of liveness [AS85].

Definition 4.5 (Liveness). Let φ be a propositional LTL-formula over P. We say that φ

expresses a liveness property if every finite word u ∈ Σ∗
P

has an extension to an ω-word that

satisfies φ. ♦

Using the monitoring function, liveness of φ can thus be expressed as follows: φ expresses
a liveness property iff mφ(u) 6= ⊥ for every u ∈ Σ∗

P
. Consequently, given a monitor for φ,

liveness of φ can again be tested by checking reachability in the monitor, which yields an
upper bound of EXPSPACE. Again, it is open whether this upper bound is tight. The only
known lower bound is again one of PSPACE, which can again be obtained using a reduction
from satisfiability.4

In the next sections, we show how to extend the notions of this section to obtain monitors
for SHOQ-LTL-formulas.

4.2 Büchi-Automata for SHOQ-LTL-Formulas

The decision procedures in Section 3.2 for the satisfiability problem in SHOQ-LTL are not
based on Büchi-automata. We show in this section, however, that the ideas underlying
these decision procedures can be used to obtain automata-based decision procedures. The
Büchi-automata constructed in this section will be the building blocks of our monitors.

In the following, let R be an RBox, and let φ be a SHOQ-LTL-formula w.r.t. R. In principle,
we want to construct a Büchi-automaton Nφ,R that accepts exactly the models of φ w.r.t. R.
This is very similar to what is done for propositional LTL; see Definition 2.20. Since there
are infinitely many interpretations, we would end up with an infinite alphabet for this Büchi-
automaton. For this reason, we abstract from specific interpretations and consider only the
axioms in φ that they satisfy.

For a given interpretation I, we denote by τφ(I) the set of all axioms in Ax(φ) that I is a
model of, i.e.

τφ(I) := {α ∈ Ax(φ) | I |= α}.
Note that if I |=R, we have that I is a model of the Boolean knowledge base

� ∧

α∈τφ(I)
α∧
∧

α∈Ax(φ)\τφ(I)
¬α, R

�
.

This motivates the following definition.

Definition 4.6 (Axiom type). The set of axioms T is an axiom type for φ w.r.t. R if the

following two properties are satisfied:

• T ⊆ Ax(φ); and

3Note that the proof of an upper bound of PSPACE given in [Bau10] actually does not go through.
4Note that the proof of an upper bound of PSPACE sketched in [UW01] actually does not go through.

62 Chapter 4. Runtime Verification Using SHOQ-LTL

• the Boolean knowledge base

BT :=

�∧

α∈T

α∧
∧

α∈Ax(φ)\T
¬α, R

�

is consistent. ♦

We denote the set of all axiom types for φ w.r.t. R with Tφ,R. The following lemma is an
easy consequence of this definition.

Lemma 4.7. Let I be an interpretation, and let T be a set of axioms.

1. If I is a model of R, then τφ(I) is an axiom type for φ w.r.t. R.

2. If T is any axiom type for φ w.r.t. R, then there is a model J of R such that T = τφ(J).

Proof. For Part 1 of the lemma, assume that I is a model of R. We have τφ(I) ⊆ Ax(φ) by
definition, and as argued above that I |= Bτφ(I).

For Part 2 of the lemma, assume that T is an axiom type for φ w.r.t. R. Hence, BT is
consistent. Let J be a model of BT . Note that we have J |=R. Furthermore, it is easy to see
that, by construction of BT , we have that T = τφ(J). �

In the following, for I |=R, we call τφ(I) the axiom type of I. This notion can be further
extended to DL-LTL-structures. For a given DL-LTL-structure I= (Ii)i≥0, we define

τφ(I) := τφ(I0)τφ(I1)τφ(I2) . . . ,

and, for I |=R, we call τφ(I) the axiom type of I. Note that the axiom type of I is anω-word
over the alphabet Tφ,R.

Whether a given DL-LTL-structure I with I |=R is a model of φ w.r.t. R only depends on
its axiom type. This is stated formally in the following lemma.

Lemma 4.8. Let I and J be DL-LTL-structures such that I |=R, J |=R, and τφ(I) = τφ(J).

Then, I is a model of φ w.r.t. R iff J is a model of φ w.r.t. R.

Proof. Let I = (Ii)i≥0 and J = (Ji)i≥0 be DL-LTL-structures such that I |= R, J |= R, and
τφ(I) = τφ(J). It is enough to prove that I, i |= φ iff J, i |= φ for every i ≥ 0, which we
show by induction on the structure of φ.

For the case where φ is an axiom, we have for every i ≥ 0 that I, i |= φ iff Ii |= φ iff

φ ∈ τφ(Ii) iff φ ∈ τφ(Ji) iff Ji |= φ iff J, i |= φ.
If φ is of the form ¬φ1, we have for every i ≥ 0 that I, i |= ¬φ1 iff I, i 6|= φ1 iff J, i 6|= φ1

iff J, i |= ¬φ1.
If φ is of the form φ1 ∧φ2, we have for every i ≥ 0 that I, i |= φ1 ∧φ2 iff I, i |= φ1 and

I, i |= φ2 iff J, i |= φ1 and J, i |= φ2 iff J, i |= φ1 ∧φ2.
If φ is of the form Xφ1, we have for every i ≥ 0 that I, i |= Xφ1 iff I, i + 1 |= φ1 iff

J, i + 1 |= φ1 iff J, i |= Xφ1.
Ifφ is of the form X−φ1, we have for every i ≥ 0 that I, i |= X−φ1 iff i > 0 and I, i−1 |= φ1

iff i > 0 and J, i − 1 |= φ1 iff J, i |= X−φ1.

4.2 Büchi-Automata for SHOQ-LTL-Formulas 63

If φ is of the form φ1 Uφ2, we have for every i ≥ 0 that I, i |= φ1 Uφ2 iff there is some
k ≥ i such that I, k |= φ2, and I, j |= φ1 for every j, i ≤ j < k iff there is some k ≥ i such
that J, k |= φ2, and J, j |= φ1 for every j, i ≤ j < k iff J, i |= φ1 Uφ2.

Finally, if φ is of the form φ1 Sφ2, we have for every i ≥ 0 that I, i |= φ1 Sφ2 iff there is
some k, 0≤ k ≤ i, such that I, k |= φ2, and I, j |= φ1 for every j, k < j ≤ i iff there is some
k, 0≤ k ≤ i, such that J, k |= φ2, and J, j |= φ1 for every j, k < j ≤ i iff J, i |= φ1 Sφ2. �

This lemma justifies considering Büchi-automata that receive axiom types of DL-LTL-structures
as input rather than the DL-LTL-structures themselves. The next definition is very similar to
the one for propositional LTL; see Definition 2.20.

Definition 4.9 (Büchi-automaton for SHOQ-LTL-formula). Let R be an RBox, let φ be a

SHOQ-LTL-formula w.r.t. R, and let N be a Büchi-automaton working on the alphabet Tφ,R.

We define

Lω(φ, R) :=
�
τφ(I) ∈ Tωφ,R | I= (Ii)i≥0 is a model of φ w.r.t. R

	
,

and say that N is a Büchi-automaton for φ w.r.t. R if Lω(N) = Lω(φ, R). ♦

Instead of constructing such Büchi-automata directly for SHOQ-LTL-formulas, we build their
propositional abstractions and then reuse the known construction for the propositional case.5

For that, we reuse also the results shown in Chapter 3. In the following, let p: Ax(φ)→ Pφ
be a bijection. It turns out that it is convenient to define the notion of r-satisfiability (see
Definition 3.10) on the level of axiom types.

Definition 4.10 (R-consistency). Let T = {T1, . . . , Tk} ⊆ Tφ,R. We call T r-consistent if

there exist interpretations I1 = (∆, ·I1), . . . , Ik = (∆, ·Ik) such that

• aIi = aI j holds for every a ∈ NI and all i, j, 1≤ i < j ≤ k;

• AIi = AI j holds for every A∈ NRC and all i, j, 1≤ i < j ≤ k;

• rIi = rI j holds for every r ∈ NRR and all i, j, 1≤ i < j ≤ k; and

• Ii |=R and τφ(Ii) = Ti holds for every i, 1≤ i ≤ k. ♦

Note that any subset of an r-consistent set of axiom types for φ w.r.t. R is again r-consistent.
In particular, the empty set is always r-consistent.

We denote the set of all r-consistent sets of axiom types for φ w.r.t. R with Cφ,R. Moreover,
we denote by p(T), for T ⊆ Ax(φ), the following subset of Pφ:

p(T) :=
�

p(α) | α ∈ T
	
.

Conversely, we denote by p−1(w), for w ⊆ Pφ , the following subset of Ax(φ):

p−1(w) :=
�

p−1(p) | p ∈ w
	
.

5One could also define the Büchi-automata directly as done in [BBL09; Lip09], but the approach developed below
is more modular and also easier to implement. In fact, the approach does not depend on a specific algorithm
for generating Büchi-automata for propositional LTL-formulas. Thus, any existing tool for transforming a
propositional LTL-formula into a Büchi-automaton can be used.

64 Chapter 4. Runtime Verification Using SHOQ-LTL

It is easy to see that for any DL-LTL-structure I= (Ii)i≥0, we have that Ip = (p(τφ(Ii)))i≥0.
Moreover, we obtain the following relationship between r-satisfiability and r-consistency.

Lemma 4.11. Let T= {T1, . . . , Tk} ⊆ Tφ,R, and let W = {X1, . . . , Xk} ⊆ 2Pφ .

1. If T is r-consistent, then
�

p(T1), . . . , p(Tk)
	

is r-satisfiable w.r.t. R.

2. If W is r-satisfiable w.r.t. R, then
�

p−1(X1), . . . , p−1(Xk)
	

is r-consistent.

Proof. For Part 1 of the lemma, assume that T = {T1, . . . , Tk} ⊆ Tφ,R is r-consistent. Then
there are interpretations I1 = (∆, ·I1), . . . , Ik = (∆, ·Ik) such that the conditions of Defini-
tion 4.10 are satisfied. Note that the first three conditions coincide with the ones of Defin-
ition 3.10. Thus, to show that

�
p(T1), . . . , p(Tk)

	
is r-satisfiable w.r.t. R, it only remains

to show that every Ii, 1 ≤ i ≤ k, is a model of the Boolean knowledge base Bp(Ti)
, which

is defined as in Definition 3.10. This is satisfied, since for every i, 1 ≤ i ≤ k, we have by
Definition 4.10 and the arguments above that Ii is a model of

Bp(Ti)
:=

� ∧

p∈p(Ti)

p−1(p)∧
∧

p∈Pφ\p(Ti)

¬p−1(p), R

�
=

� ∧

α∈τφ(Ii)

α∧
∧

α∈Ax(φ)\τφ(Ii)

¬α, R

�
.

For Part 2 of the lemma, assume that W = {X1, . . . , Xk} ⊆ 2Pφ is r-satisfiable w.r.t. R.
Then there are interpretations I1 = (∆, ·I1), . . . , Ik = (∆, ·Ik) such that the conditions of
Definition 3.10 are satisfied. Note again that the first three conditions coincide with the
ones of Definition 4.10. Thus, to show that

�
p−1(X1), . . . , p−1(Xk)

	
is r-consistent, it only

remains to show that for every i, 1≤ i ≤ k, we have that Ii |=R and τφ(Ii) = p−1(X i). This
is satisfied, since for every i, 1≤ i ≤ k, we have by Definition 3.10 that Ii is a model of

BX i
:=

�∧

p∈X i

p−1(p)∧
∧

p∈Pφ\X i

¬p−1(p), R

�
=

� ∧

α∈p−1(X i)

α∧
∧

α∈Ax(φ)\p−1(X i)

¬α, R

�
,

which yields that Ii |=R and τφ(Ii) = {α ∈ Ax(φ) | Ii |= α}= p−1(X i). �

We are now ready to define Büchi-automata for SHOQ-LTL-formulas. We consider here only
the case without rigid names, i.e. NRC = NRR = ;, and the case with rigid concept and role
names, i.e. NRC 6= ; and NRR 6= ;. These two cases are treated in Sections 4.2.1 and 4.2.2.
The intermediate case where only concept names are allowed to be rigid, i.e. NRC 6= ; and
NRR = ;, is not considered. As we will see below, the corresponding monitors are of size
doubly exponential in the size of the input SHOQ-LTL-formula (and the RBox) irrespective
of the fact whether rigid names are allowed or not.

4.2.1 The Case without Rigid Names

In this section, we consider the case where neither concept names nor role names are allowed
to be rigid, i.e. NRC = NRR = ;. With the lemmas above, we are able to establish the following
result.

4.2 Büchi-Automata for SHOQ-LTL-Formulas 65

Theorem 4.12. Let R be an RBox, letφ a SHOQ-LTL-formula w.r.t. R, and let p: Ax(φ)→ Pφ
be a bijection. If NRC = NRR = ; and Nφp = (Q,ΣPφ

,∆,Q0, F) is a Büchi-automaton for the

propositional abstraction φp of φ, then Nφ,R := (Q,Tφ,R,∆′,Q0, F) with

∆
′ :=
�
(q, T, q′) | (q, p(T), q′) ∈∆ and T ∈ Tφ,R

	

is a Büchi-automaton for φ w.r.t. R.

Proof. We have to show that Lω(Nφ,R) = Lω(φ, R).
For the direction ‘⊆’, assume that T0T1T2 . . . ∈ Lω(Nφ,R). The definition of Nφ,R yields

that p(T0)p(T1)p(T2) . . . ∈ Lω(Nφp). Since Nφp is a Büchi-automaton for φp, we obtain
that W = (p(Ti))i≥0 is a model of φp. We define T := {Ti | i ≥ 0}. Since for every i ≥ 0,
we have Ti ∈ Tφ,R, it follows that T = {T ′1, . . . , T ′

k
} ⊆ Tφ,R. By Lemma 4.7, we have that

for every i, 1 ≤ i ≤ k, there is a model Ji of R such that T ′
i
= τφ(J). We can assume

w.l.o.g. that all of these models have the same domain since we can assume w.l.o.g. that
their domains are countably infinite due to the Löwenheim-Skolem theorem [Löw15; Sko20].
Moreover, we can assume w.l.o.g. that all individual names are interpreted by the same
domain elements in all models. Since NRC = NRR = ;, this yields that T is r-consistent. By
Lemma 4.11, we have that W := {p(T ′1), . . . , p(T ′

k
)}= {p(Ti) | i ≥ 0} is r-satisfiable w.r.t. R.

Then, Lemma 3.12 yields that there is a model I of φ w.r.t. R with Ip =W. Consequently,
τφ(I) = T0T1T2 . . . ∈ Lω(φ, R).

For the direction ‘⊇’, assume that T = T0T1T2 . . . ∈ Lω(φ, R). Then there is a model
I= (Ii)i≥0 of φ w.r.t. R with τφ(I) = T . By Lemma 4.7, for every i ≥ 0, the letter Ti is an
axiom type for φ w.r.t. R, i.e. Ti ∈ Tφ,R. By Lemma 3.12, we have that Ip = (p(Ti))i≥0 is a
model of φp, and thus the ω-word p(T0)p(T1)p(T2) . . . is accepted by Nφp . Consequently,
we have T0T1T2 . . . ∈ Lω(Nφ,R). �

As an immediate consequence of this theorem, the satisfiability problem in SHOQ-LTL (for
the case NRC = NRR = ;) can be reduced to the emptiness problem for Büchi-automata.

Corollary 4.13. If NRC = NRR = ;, the SHOQ-LTL-formula φ is satisfiable w.r.t. the RBox R

iff Lω(Nφ,R) 6= ;.

It remains to analyse the complexity of the decision procedure for the satisfiability problem
obtained by this reduction.

The size of the Büchi-automaton Nφ,R is obviously exponential in the size of φ (and R)
since the Büchi-automaton Nφp for φp is of size exponential in the size of φp (and thus
exponential in the size of φ since the size of φp is linearly bounded by the size of φ) as
discussed in Section 2.2.2. In addition, the Büchi-automaton Nφ,R can be constructed in
exponential time. As shown in Section 2.2.2, a Büchi-automaton for a propositional LTL-
formula can be constructed in time exponential in the size of the input formula. Thus, we
can construct Nφp in time exponential in the size of φp (and thus in time exponential in the
size of φ). To obtain Nφ,R from Nφp , we basically have to remove all transitions labelled
with a letter σ such that p−1(σ) /∈ Tφ,R. For the remaining transitions, we then simply
replace the letter σ with p−1(σ). In order to check whether p−1(σ) belongs to Tφ,R, we
need to check the Boolean knowledge base Bp−1(σ) for consistency. By Corollary 3.34, this
can be done in time exponential in the size of this Boolean knowledge base. Since there are

66 Chapter 4. Runtime Verification Using SHOQ-LTL

exponentially many letters σ, but the size of each Boolean knowledge base Bp−1(σ) is linearly
bounded by the size of φ and R, we need to perform exponentially many checks (where
each needs exponential time), which yields an overall complexity of exponential time for the
construction of Nφ,R.

Since the emptiness problem for Büchi-automata can be solved in time polynomial in the
size of the Büchi-automaton [VW94], this yields an alternative proof of the fact that the
satisfiability problem in SHOQ-LTL is in EXPTIME if NRC = NRR = ; (see Theorem 3.15).

4.2.2 The Case of Rigid Concept and Role Names

In this section, we consider the case where both concept and role names may be rigid,
i.e. NRC 6= ; and NRR 6= ;. If rigid names are allowed, the Büchi-automaton needs to check
whether the set of axiom types seen within a run are r-consistent. This is achieved by using
tuples (q1, q2) as states, where q1 is a state of the Büchi-automaton Nφ,R introduced in
Theorem 4.12, and q2 is an r-consistent set of axiom types for φ w.r.t. R.

Theorem 4.14. Let R be an RBox, letφ a SHOQ-LTL-formula w.r.t. R, and let p: Ax(φ)→ Pφ
be a bijection. If Nφp = (Q,ΣPφ

,∆,Q0, F) is a Büchi-automaton for the propositional abstrac-

tion φp of φ, then N r
φ,R := (Q× Cφ,R,Tφ,R,∆′,Q0 × {;}, F × Cφ,R) with

∆
′ :=
�
((q1, q2), T, (q′1, q′2)) | (q1, p(T), q′1) ∈∆ and q′2 = q2 ∪ {T} ∈ Cφ,R

	

is a Büchi-automaton for φ w.r.t. R.

Proof. We have to show that Lω(N
r
φ,R) = Lω(φ, R).

For the direction ‘⊆’, assume that T = T0T1T2 . . . ∈ Lω(N
r
φ,R), and let

(q
(0)
1 , q

(0)
2)(q

(1)
1 , q

(1)
2)(q

(2)
1 , q

(2)
2) . . .

be an accepting run of N r
φ,R on T . It is easy to see that the projection q

(0)
1 q

(1)
1 q

(2)
1 . . . of

this run to the first component is an accepting run of Nφ,R on T . As argued in the proof
of Theorem 4.12, we have that p(T0)p(T1)p(T2) . . . ∈ Lω(Nφp), and that W = (p(Ti))i≥0

is a model of φp. We define T := {Ti | i ≥ 0}. Since for every i ≥ 0, we have Ti ∈ Tφ,R,
it follows that T = {T ′1, . . . , T ′

k
} ⊆ Tφ,R. It remains to show that T is r-consistent. In fact,

once this is shown, Lemma 4.11 yields that W := {p(T ′1), . . . , p(T ′
k
)} = {p(Ti) | i ≥ 0} is

r-satisfiable w.r.t. R. Then, Lemma 3.12 yields that there is a model I of φ w.r.t. R with
Ip =W. Consequently, τφ(I) = T0T1T2 . . . ∈ Lω(φ, R). To see that T is r-consistent, we

note that the second components q
(j)

2 , j ≥ 0, of the states in the run are r-consistent sets of

axiom types for φ w.r.t. R satisfying q
(j)

2 = {T0, . . . , T j−1}. Since there are only finitely many

axiom types for φ w.r.t. R, there is an index ℓ≥ 1 such that q
(k)

2 = {Ti | i ≥ 0}, and thus this
set is r-consistent.

For the direction ‘⊇’, assume that T0T1T2 . . . ∈ Lω(φ, R). Then there is a model I = (Ii)i≥0

of φ w.r.t. R with τφ(I) = T . Using the arguments in the proof of Lemma 4.12 (direction ‘⊇’),

we obtain that T0T1T2 . . . ∈ Lω(Nφ,R). Let q
(0)
1 q

(1)
1 q

(2)
1 . . . be an accepting run of Nφ,R

on T . Moreover, by Lemma 3.12, we obtain that Ip = (p(Ti))i≥0 is a model of φp and
W = {X1, . . . , Xk} := {p(Ti) | i ≥ 0} is r-satisfiable w.r.t. R. By Lemma 4.11, we obtain that

4.3 Monitoring SHOQ-LTL-Formulas 67

the set {p−1(X1), . . . , p−1(Xk)} = {Ti | i ≥ 0} is r-consistent. If we define q
(j)

2 := {T0, . . . , T j−1}
for every j ≥ 0, then these sets are r-consistent since they are subsets of the r-consistent set
{Ti | i ≥ 0}. Consequently,

(q
(0)
1 , q

(0)
2)(q

(1)
1 , q

(1)
2)(q

(2)
1 , q

(2)
2) . . .

is an accepting run of N r
φ,R on T . �

As an immediate consequence of this theorem, we obtain that the satisfiability problem in
SHOQ-LTL (even for the case where NRC 6= ; and NRR 6= ;) can be reduced to the emptiness
problem for Büchi-automata.

Corollary 4.15. The SHOQ-LTL-formula φ is satisfiable w.r.t. the RBox R iff Lω(N
r
φ,R) 6= ;.

The complexity of the decision procedure for the satisfiability problem obtained by this
reduction is, however, higher than the complexity of the decision procedure for the case
without rigid names.

The size of the Büchi-automaton N r
φ,R is doubly exponential in the size of φ and R. This

is due to the fact that the set Cφ,R of all r-consistent sets of axiom types for φ w.r.t. R may
contain doubly exponentially many elements since these sets are subsets of the exponentially
large set Tφ,R of all axiom types for φ w.r.t. R. Each element of Cφ,R may be of exponential
size.

Next, we show that the Büchi-automaton N r
φ,R can be constructed in doubly exponential

time. In addition to constructing the Büchi-automaton Nφ,R, i.e. the Büchi-automaton
constituting the first component of N r

φ,R, we must also compute the set Cφ,R. For this, we
consider all sets of axiom types for φ w.r.t. R. There are doubly exponentially many such
sets, each of size at most exponential in the size of φ and R. By Lemma 4.11, checking such
a set T = {T1, . . . , Tk} for r-consistency amounts to check the set W :=

�
p(T1), . . . , p(Tk)

	
for

r-satisfiability w.r.t. R. By Lemma 3.16, this amounts to checking the Boolean knowledge
base BW (as defined in Section 3.2.2) for consistency. Since the size of BW is exponential in the
size of φ and R, we obtain by Corollary 3.34 that this can be done in time doubly exponential
in the size of φ and R. Overall, the computation of Cφ,R requires doubly exponentially many
such tests, each requiring doubly exponential time. This shows that Cφ,R, and thus also the
Büchi-automaton N r

φ,R can be constructed in doubly exponential time.
Since the emptiness problem for Büchi-automata can be solved in time polynomial in the

size of the Büchi-automaton [VW94], this yields an alternative proof of the fact that the
satisfiability problem in SHOQ-LTL is in 2EXPTIME (see Theorem 3.17).

4.3 Monitoring SHOQ-LTL-Formulas

In this section, we extend existing definitions and results for runtime verification from
propositional LTL to SHOQ-LTL. We restrict the attention to the case with rigid names since
the complexity of the monitor construction for this more general case is actually the same
(doubly exponential) as for the case without rigid names. Thus, it does not make sense to
treat the restricted case separately. In addition to considering a more expressive logic, our
notion of monitoring extends the one for propositional logic in two directions.

68 Chapter 4. Runtime Verification Using SHOQ-LTL

On the one hand, we do not assume that the monitor has complete knowledge about the
states of the system. In the propositional case, as introduced in Section 4.1, at each point
in time the monitor ‘knows’ which of the propositional variables are true at this point and
which are not. In our setting, SHOQ-axioms take the place of propositional variables, but we
do not assume that we have complete knowledge about their truth value. For some of the
relevant axioms, we may know that they are true, for others that they are false, but it also
may be the case that we have no information regarding the truth status of a certain axiom.

On the other hand, we take background knowledge about the working of the system into
account. This background knowledge could, for example, be a global TBox, i.e. a finite set of
GCIs that are known to hold for every state of the system. In this case, the formula describing
the background knowledge is of the form ψ= �

∧
T , where T is a TBox. The presence of

background knowledge enables the monitor to give more often definite answers (i.e. ⊤ or ⊥)
rather than the answer ?.

4.3.1 Basic Definitions

In the following, we extend the notion of a monitoring function and a monitor, as introduced
in Section 4.1 for propositional LTL-formulas, to the case of SHOQ-LTL-formulas φ w.r.t. an
RBox R. We assume that the background knowledge is described by an additional SHOQ-
LTL-formula ψ w.r.t. R, and that the monitor receives the information about the current
state of the system in the form of a Boolean knowledge base O (observations) that provides
(partial) information about the truth values of certain axioms from a fixed finite set of axioms.
Without loss of generality, we can also assume that the axioms occurring in ψ and O also
occur in φ. This assumption is indeed without loss of generality since for every such axiom α,
which does not occur in φ, we can define φ′ := φ∧ (α∨¬α). Obviously, every model of φ is
also a model of φ′, and vice versa. We make this assumption throughout this section without
explicitly mentioning it.

To simplify the subsequent definitions, we introduce the following notation. A literal of φ

is either an axiom α ∈ Ax(φ) (positive literal) or the negation ¬α of an axiom α ∈ Ax(φ)

(negative literal).

Definition 4.16 (Partial axiom type). A finite conjunction O = L1 ∧ · · · ∧ Lm of literals of φ

is a partial axiom type for φ w.r.t. R if the Boolean knowledge base (O, R) is consistent. ♦

We denote the set of all partial axiom types for φ w.r.t. R by Pφ,R. Note that, up to
equivalence, there are at most exponentially many (in the size of φ and R) partial axiom
types for φ w.r.t. R.

Given an axiom type T for φ w.r.t. R, the first component of the corresponding Boolean
knowledge base BT = (OT , R), i.e.

OT :=
∧

α∈T

α∧
∧

α∈Ax(φ)\T
¬α,

is a partial axiom type for φ w.r.t. R. In this case, every axiom of φ occurs either positively
or negatively in OT . For an arbitrary partial axiom type O for φ w.r.t. R, this need not be
the case. Some axioms of φ may not occur at all in O.

4.3 Monitoring SHOQ-LTL-Formulas 69

Definition 4.17 (Extensions). Let R be an RBox, φ and ψ be SHOQ-LTL-formulas w.r.t. R,

and O= O0O1 . . . Ot be a finite sequence of partial axioms types for φ and R.

1. We say that the DL-LTL-structure I= (Ii)i≥0 extends O w.r.t. ψ and R if I is a model

of ψ w.r.t. R, and Ii |= Oi for every i, 0≤ i ≤ t.

2. We write O,ψ, R |≈∃ φ if there is a DL-LTL-structure I that extends O w.r.t. ψ and R,

and is a model of φ w.r.t. R. If this is not the case, we write O,ψ, R |6≈∃ φ.

3. We write O,ψ, R |≈∀φ if every DL-LTL-structure I extending O w.r.t. ψ and R is a model

of φ w.r.t. R. If this is not the case, we write O,ψ, R |6≈∀ φ. ♦

The notions introduced in Part 2 and Part 3 of this definition are dual to each other in the
following sense:

O,ψ, R |≈∃ φ iff O,ψ, R |6≈∀ ¬φ and O,ψ, R |≈∀ φ iff O,ψ, R |6≈∃ ¬φ.

We assume that our system actually respects rigid names and satisfies the background
knowledge ψ and the RBox R in the sense that any run of the system corresponds to a
DL-LTL-structure that is a model of ψ w.r.t. R. Thus, if the monitor receives information
about the partial axiom types of a finite prefix of such a run, this finite sequence of partial
axiom types can actually be extended to a DL-LTL-structure satisfying ψ w.r.t. R. In this case,
the following lemma holds.

Lemma 4.18. Let R be an RBox, φ and ψ be SHOQ-LTL-formulas w.r.t. R, and O be a finite

sequence of partial axiom types for φ w.r.t. R such that there is a DL-LTL-structure extending O

w.r.t. ψ and R. Then O,ψ, R |≈∀ φ and O,ψ, R |≈∀ ¬φ cannot both be true.

Proof. Let I be a DL-LTL-structure extending O w.r.t. ψ and R. Then we have I, 0 |= φ
or I, 0 |= ¬φ. In the first case, we have O,ψ, R |6≈∀ ¬φ, and in the second one, we have
O,ψ, R |6≈∀ φ. �

The monitoring function receives as input a finite sequence of partial axiom types for φ
w.r.t. R, i.e. a finite word over the alphabet Pφ,R.

Definition 4.19 (Monitoring function). Let R be an RBox, and let φ and ψ be SHOQ-LTL-

formulas w.r.t. R. The monitoring function for φ w.r.t. ψ and R is defined to be the function

mφ,ψ,R : P∗
φ,R→ {⊤,⊥, ?, } with

mφ,ψ,R(O) :=

⊤ if O,ψ, R |≈∀ φ and O,ψ, R |6≈∀ ¬φ;

⊥ if O,ψ, R |6≈∀ φ and O,ψ, R |≈∀ ¬φ;

? if O,ψ, R |6≈∀ φ and O,ψ, R |6≈∀ ¬φ; and

 if O,ψ, R |≈∀ φ and O,ψ, R |≈∀ ¬φ. ♦

Compared to the definition of the monitoring function in the propositional setting, we have
added the fourth possible output in order to have a well-defined value also for sequences
O ∈ P∗

φ,R that have no extension w.r.t. ψ and R. In fact, if there is no DL-LTL-structure
extending O w.r.t. ψ and R, the monitoring function yields the value . In practice, this

70 Chapter 4. Runtime Verification Using SHOQ-LTL

value should not be encountered since we assume that the observed system actually respects
rigid names and satisfies the background knowledge ψ and R. Thus, no finite sequence of
partial axiom types obtained by observing the system can yields this case.6 The monitoring
function returns the value ⊤ if there is at least one extension of O w.r.t. ψ and R (expressed
by O,ψ, R |6≈∀¬φ), and all such extensions satisfy φ (expressed by O,ψ, R |≈∀φ). Similarly,
it returns the value ⊥ if there is at least one extension of O w.r.t. ψ and R, and all such
extensions satisfy ¬φ. Finally, it returns he value ? if there is an extension of O w.r.t. ψ
and R that satisfies φ, and there is another extension of O w.r.t. ψ and R that satisfies ¬φ.

We are interested in constructing a monitor that realises the monitoring function defined
above. As in the propositional case, this monitor is a deterministic Moore-automaton whose
output function is equal to the monitoring function.

Definition 4.20 (Monitor for SHOQ-LTL-formula). Let R be an RBox, and φ,ψ be SHOQ-

LTL-formulas w.r.t. R. The deterministic Moore-automaton M = (S,Pφ,R,δ, s0, {⊤,⊥, ?, },λ)
is a monitor for φ w.r.t. ψ and R if λ∗(O) = mφ,ψ,R(O) holds for every O ∈P∗

φ,R. ♦

Before we construct the monitor, we need an auxiliary automaton that we define next.

4.3.2 An Auxiliary Deterministic Finite Automaton

In this section, we define a deterministic finite automaton that accepts exactly those sequences
of partial axiom typesO ∈P∗

φ,R such thatO,ψ, R|≈∀φ. We know that requiringO,ψ, R|≈∀φ
is the same as requiring O,ψ, R |6≈∃ ¬φ. Thus, the automaton needs to accept all words
O ∈P∗

φ,R that have no extension w.r.t.ψ and R that satisfies¬φ. To construct this automaton,
we take the Büchi-automaton N r

¬φ∧ψ,R for ¬φ ∧ψ w.r.t. R as defined in Theorem 4.14, and
make it deterministic by applying an appropriate modification of the power-set construction
to the first components of the states of N r

¬φ∧ψ,R. The second component of a state of N r
¬φ∧ψ,R

collects the axiom types encountered on the path leading to this state, which enables the
automaton to check whether this collection of axiom types is r-consistent. Instead, our
deterministic automaton collects the partial axiom types encountered on a path, and checks
whether this set is related in an appropriate way to an r-consistent set of axiom types.

Before we can define this relation, we need to introduce some notation. Given a partial
axiom type O = L1 ∧ · · · ∧ Lm, we define Pos(O) := {Li | 1 ≤ i ≤ m, Li is positive} and
Neg(O) := {αi | 1≤ i ≤ m, Li = ¬αi is negative}. Given an axiom type T for φ w.r.t. R and
a partial axiom type O for φ w.r.t. R, we define

O <φ,R T iff Pos(O) ⊆ T and Neg(O)∩ T = ;.

If T = τφ(I) for a model I of R, then we obviously have I |= (O, R) iff O <φ,R T . We now
lift the relation <φ,R from (partial) axiom types to sets of (partial) axiom types.

Definition 4.21 (Realisation). Let T be a set of axiom types for φ w.r.t. R, and let P be a

set of partial axiom types for φ w.r.t. R. We say that T realises P and write P≺φ,R T if the

following property is satisfied: for every O ∈P, there is a T ∈ T such that O <φ,R T. ♦
6If it does, then the modelling of the properties of the system using ψ, R, and the rigididy of symbols was

incorrect, or the sensors that generated the sequence O were faulty.

4.3 Monitoring SHOQ-LTL-Formulas 71

This relation can be used to characterise r-consistency of a set of partial axiom types for φ
w.r.t. R.

Definition 4.22 (R-consistency of partial axiom types). Let P = {O1, . . . , Ok} be a set of

partial axiom types for φ w.r.t. R. We call P r-consistent if there exist interpretations

I1 = (∆, ·I1), . . . , Ik = (∆, ·Ik) such that

• aIi = aI j holds for every a ∈ NI and all i, j, 1≤ i < j ≤ k;

• AIi = AI j holds for every A∈ NRC and all i, j, 1≤ i < j ≤ k;

• rIi = rI j holds for every r ∈ NRR and all i, j, 1≤ i < j ≤ k; and

• Ii |= (Oi , R) holds for every i, 1≤ i ≤ k. ♦

We denote the set of all r-consistent sets of partial axiom types for φ w.r.t. R with C
p
φ,R.

Lemma 4.23. The set P of partial axiom types for φ w.r.t. R is r-consistent iff there is an

r-consistent set T of axiom types for φ w.r.t. R such that P≺φ,R T.

Proof. For the ‘only if’ direction, assume that P= {O1, . . . , Ok} is r-consistent. Then there
are interpretations I1, . . . , Ik that share the same domain, coincide on the individual names
and the rigid concept and role names, and satisfy Ii |= (Oi , R) for every i, 1≤ i ≤ k. If we
define T :=
�
τφ(I1), . . . ,τφ(Ik)

	
, then this set of axiom types is obviously r-consistent, and

we have Oi <
φ,R τφ(Ii) for every i, 1≤ i ≤ k. This shows P≺φ,R T.

Conversely, for the ‘if’ direction, let P= {O1, . . . , Ok} and assume that T = {T1, . . . , Tm}
is an r-consistent set of axiom types for φ w.r.t. R such that P ≺φ,R T. Then there are
interpretations I1, . . . , Im that share the same domain, coincide on the individual names and
the rigid concept and role names, and satisfy Ii |=R and Ti = τφ(Ii) for every i, 1≤ i ≤ m.
In addition, for every j, 1≤ j ≤ k, there is an index ν j, 1≤ ν j ≤ m, such that O j <

φ,R Tν j
.

The interpretations Iν1
, . . . , Iνk

share the same domain, coincide on the individual names
and the rigid concept and role names, and satisfy Iν j

|= (O j , R) for every j, 1≤ j ≤ k. This
shows that P is r-consistent. �

We are now ready to define a deterministic finite automaton that accepts exactly those
sequences of partial axiom types O ∈P∗

φ,R such that O,ψ, R |≈∀ φ. But first, for the sake of
completeness, let us recall the definition of a deterministic finite automaton.

Definition 4.24 (Deterministic finite automaton). A deterministic finite automaton is a

tuple D = (S,Σ,δ, s0, E) consisting of a finite set of states S, a finite input alphabet Σ, a

transition function δ : S ×Σ→ S, an initial state s0 ∈ S, and a set of final states E ⊆ S.

The transition function can be extended to a function δ∗ : S ×Σ∗→ S as follows:

• δ∗(s,ǫ) := s where ǫ denotes the empty word; and

• δ∗(s, uσ) := δ(δ∗(s, u),σ) where u ∈ Σ∗ and σ ∈ Σ.

The language L(D) accepted by D is defined as as

L(D) := {u ∈ Σ∗ | δ∗(s0, u) ∈ E}. ♦

72 Chapter 4. Runtime Verification Using SHOQ-LTL

As mentioned above, the deterministic finite automaton to be defined is based on the
Büchi-automaton N r

¬φ∧ψ,R for the SHOQ-LTL-formula ¬φ ∧ ψ w.r.t. R as introduced in
Theorem 4.14. Recall that, according to our assumption, all the axioms occurring in ψ
already occur in φ. Thus, the alphabet of this Büchi-automaton is actually Tφ,R and the
second components of the states are r-consistent sets of axiom types for φ w.r.t. R, i.e. we
have

N r
¬φ∧ψ,R = (Q× Cφ,R,Tφ,R,∆,Q0 × {;}, F × Cφ,R).

Given a state (q,T) of N r
¬φ∧ψ,R, we denote the Büchi-automaton obtained from this auto-

maton by replacing the set of initial states with {(q,T)} by N r
¬φ∧ψ,R(q,T). The deterministic

finite automaton Dφ,ψ,R = (S,Pφ,R,δ, s0, E) is defined as follows:

• S := 2Q × Cp
φ,R;

• s0 := (Q0,;);
• δ : S ×Pφ,R→ S is defined as follows:

– if P∪ {O} /∈ Cp
φ,R, then δ((P,P), O) := (;,;);

– if P∪ {O} ∈ Cp
φ,R, then δ((P,P), O) := (P ′,P∪ {O}) where

P ′ :=
⋃

q∈P

�
q′ ∈Q | there is ((q,T), T, (q′,T∪ {T})) ∈∆ such that

O <φ,R T, P≺φ,R T, and Lω(N
r
¬φ∧ψ,R(q

′,T∪ {T})) 6= ;
	
;

• E := {;} × Cp
φ,R.

Final states are those whose first component is the empty set. Note that these states reproduce
themselves: states whose first component is the empty set have only successor states for
which this is again the case. There are two possible reasons for reaching such a state with
letter O from a state (P,P) whose first component P is non-empty. Either the set P∪ {O} is
not r-consistent, or there are no states q′ ∈Q satisfying the conditions in the definition of P ′.

The following lemma states that this deterministic finite automaton behaves as intended.

Lemma 4.25. For every finite sequence of partial axiom types O ∈P∗
φ,R, we have O,ψ, R|≈∀φ

iff O ∈ L(Dφ,ψ,R).

Proof. For the ‘if’ direction, assume to the contrary that O = O0O1 . . . Ot ∈ L(Dφ,ψ,R) and
O,ψ, R |6≈∀ φ. Then we have O,ψ, R |≈∃ ¬φ, i.e. there is a DL-LTL-structure I = (Ii)i≥0

that extends O w.r.t. ψ and R, and is a model of ¬φ w.r.t. R. This means that I is a model
of ¬φ ∧ψ w.r.t. R, and Ii |= Oi for every i, 0 ≤ i ≤ t. Thus, τφ(I) ∈ Lω(¬φ ∧ψ, R), and
since N r

¬φ∧ψ,R is a Büchi-automaton for ¬φ∧ψw.r.t. R, we have τφ(I) ∈ Lω(N
r
¬φ∧ψ,R). This

means that there is an accepting run (q0,T0)(q1,T1) . . . of N r
¬φ∧ψ,R on τφ(I). In particular,

this yields Lω(N
r
¬φ∧ψ,R(qi ,Ti)) 6= ; for every i ≥ 0.

Moreover, we have by the construction of N r
¬φ∧ψ,R that Ti = {τφ(I j) | 0 ≤ j < i} for

every i ≥ 0. We define Pi := {O j | 0 ≤ j < i} for every i, 0 ≤ i ≤ t + 1. Note that we have
Oi <

φ,R τφ(Ii) for every i, 0≤ i ≤ t + 1. Hence, Pi ≺φ,R Ti holds for every i, 0≤ i ≤ t + 1.
By the definition of N r

¬φ∧ψ,R, the sets Ti are r-consistent, and thus Lemma 4.23 yields that Pi

is r-consistent for every i, 0≤ i ≤ t + 1. Thus, we have δ∗(s0, O0 . . . Oi) = (Pi+1,Pi+1) with

4.3 Monitoring SHOQ-LTL-Formulas 73

qi+1 ∈ Pi+1 for every i, 0 ≤ i ≤ t. In particular, δ∗(s0,O) = (Pt+1,Pt+1) with qt+1 ∈ Pt+1,
which shows that Pt+1 6= ;. Consequently, (Pt+1,Pt+1) /∈ E, which is a contradiction to the
assumption that O ∈ L(Dφ,ψ,R).

For the ‘only if’ direction, assume to the contrary that O= O0O1 . . . Ot /∈ L(Dφ,ψ,R) and
O,ψ, R |≈∀ φ, i.e. every DL-LTL-structure I = (Ii)i≥0 that extends O w.r.t. ψ and R is a
model of φ w.r.t. R.

The first assumption implies that δ∗(s0,O) /∈ E, i.e. δ∗(s0,O) = (Pt+1,Pt+1) ∈ 2Q × Cp
φ,R

with Pt+1 6= ;. This yields intermediate states (Pi ,Pi) ∈ 2Q × C
p
φ,R, 0 ≤ i ≤ t, such that

P0 = Q0, P0 = ;, and δ∗(s0, O0 . . . Oi) = (Pi+1,Pi+1) ∈ 2Q × C
p
φ,R with Pi+1 = Pi ∪ {Oi}

and Pi+1 6= ; for every i, 0≤ i ≤ t. Moreover, we have that there are for every i, 0≤ i ≤ t,
a state qi ∈ Pi, an axiom type Ti ∈ Tφ,R, and an r-consistent set of axiom types Ti ∈ Cφ,R

such that ((qi ,Ti), Ti , (qi+1,Ti+1)) ∈ ∆, Ti+1 = Ti ∪ {Ti}, Oi <
φ,R Ti, Pi ≺φ,R Ti, and

Lω(N
r
¬φ∧ψ,R(qi+1,Ti+1)) 6= ;. Note that q0 ∈Q0 since q0 ∈ P0 and P0 =Q0.

We define T′
i

:= {T j | 0 ≤ j < i} for every i, 0 ≤ i ≤ t + 1. Obviously, we then have
T′

i
⊆ Ti for every i, 0 ≤ i ≤ t + 1. Since every subset of an r-consistent set of axiom

types is again r-consistent, this shows T′
i
∈ Cφ,R for every i, 0 ≤ i ≤ t + 1. Moreover,

since Pi = {O j | 0 ≤ j < i} for every i, 0 ≤ i ≤ t + 1, the fact that Oi <
φ Ti for every i,

0 ≤ i ≤ t + 1, implies Pi ≺φ,R T′
i

for every i, 0 ≤ i ≤ t + 1. In addition, we have
((qi ,T

′
i
), Ti , (qi+1,T′

i+1)) ∈∆ for every i, 0≤ i ≤ t.
Since Lω(N

r
¬φ∧ψ,R(qt+1,Tt+1)) 6= ;, there is a ω-word T ∈ Tω

φ,R such that there is an
accepting run of N r

¬φ∧ψ,R(qt+1,Tt+1) on T . Using similar arguments as above, we can

transform this run into an accepting run of N r
¬φ∧ψ,R(qt+1,T′t+1) on T . Hence, we have

that T ∈ Lω(N
r
¬φ∧ψ,R(qt+1,T′t+1)). Overall, we obtain that the ω-word T0T1 . . . Tt · T is in

Lω(N
r
¬φ∧ψ,R). Since N r

¬φ∧ψ,R is a Büchi-automaton for ¬φ ∧ψ w.r.t. R, this shows that
there exists a DL-LTL-structure I = (Ii)i≥0 such that τφ(I) = T0T1 . . . Tt · T and I is a model
of ¬φ ∧ψ w.r.t. R.

For every i, 0 ≤ i ≤ t, we have Oi <
φ,R τφ(Ii) since τφ(Ii) = Ti. This yields Ii |= Oi

for every i, 0≤ i ≤ t. Since I is a model of ψ w.r.t. R, we obtain that I extends O w.r.t. ψ
and R. Hence, there is a DL-LTL-structure, namely I, extending O w.r.t. ψ and R that is a
model of ¬φ w.r.t. R, which contradicts our assumption that O,ψ, R |≈∀ φ. �

It remains to analyse the complexity of the construction of the deterministic finite auto-
maton Dφ,ψ,R. The size of Dφ,ψ,R is doubly exponential in the size of φ, ψ, and R. This
is due to the fact that the size of Q may be exponential and the fact that the set Cp

φ,R of
all r-consistent partial axiom types for φ w.r.t. R may contain doubly exponentially many
elements since these sets are subsets of the exponentially large set Pφ,R of all partial axiom
types for φ w.r.t. R. Each element of Cp

φ,R may be of exponential size.
Next, we show that Dφ,ψ,R can be constructed in doubly exponential time. In addition to

constructing the Büchi-automaton N r
¬φ∧ψ,R, we must also compute the set Cp

φ,R. As shown in
Section 4.2.2, the Büchi-automaton N r

¬φ∧ψ,R, and thus also the set Cφ,R, can be constructed

in time doubly exponential in the size of φ,ψ, and R. To compute C
p
φ,R, we use Lemma 4.23,

which yields
C

p
φ,R =
�
P ⊆Pφ,R |P≺φ,R T for some T ∈ Cφ,R

	
.

74 Chapter 4. Runtime Verification Using SHOQ-LTL

We consider all sets of partial axiom types for φ w.r.t. R. There are doubly exponentially
many such sets, each of size at most exponential in the size of φ and R. For each such set
P = {O1, . . . , Ok}, we need to check whether there is a set T = {T1, . . . , Tm} ∈ Cφ,R such that
P≺φ,R T. Since Cφ,R is of doubly exponential size, there are at most doubly exponentially
many such tests for each P. The test P ≺φ,R T itself amounts to checking for each Oi,
1 ≤ i ≤ k, whether there is a T j, 1 ≤ j ≤ m, such that Pos(Oi) ⊆ T j and Neg(Oi)∩ T j = ;,
which can be done in exponential time since both k and m are at most exponential in the
size of φ and R. Overall, we can thus compute C

p
φ,R is doubly exponential time. Using these

arguments, the fact that N r
¬φ∧ψ,R can be constructed in doubly exponential time, and the

fact that the emptiness problem for Büchi-automata can be solved in time polynomial in the
size of the Büchi-automaton [VW94], it is easy to see that the transition function δ and the
set of final states E can be computed in doubly exponential time. Overall, we have shown
that Dφ,ψ,R can be constructed in time doubly exponential in the size of φ, ψ, and R.

4.3.3 The Monitor Construction

Given the construction of the deterministic finite automaton of the previous section, it is now
a simple exercise to construct the monitor for φ w.r.t. ψ and R. Such a monitor is obtained
by first constructing the auxiliary deterministic finite automata Dφ,ψ,R and D¬φ,ψ,R, and
then building the product of these two automata. The output of the monitor is determined
by the final states of the auxiliary automata.

Theorem 4.26. Let R be an RBox, and let φ and ψ be SHOQ-LTL-formulas w.r.t. R. If

Dφ,ψ,R = (S,Pφ,R,δ, s0, E) and D¬φ,ψ,R = (S
′,Pφ,R,δ′, s′0, E′) are the deterministic finite

automata introduced in Section 4.3.2, then Mφ,ψ,R := (S×S′,Pφ,R, bδ, (s0, s′0), {⊤,⊥, ?, },λ)
with bδ((s, s′), O) := (δ(s, O),δ′(s′, O)) and

λ((s, s′)) :=

⊤ if s ∈ E and s′ /∈ E′;

⊥ if s /∈ E and s′ ∈ E′;

? if s /∈ E and s′ /∈ E′; and

 if s ∈ E and s′ ∈ E′.

is a monitor for φ w.r.t. ψ and R.

Proof. We have to prove that for every O ∈P∗
φ,R, we have λ∗(O) =mφ,ψ,R(O). This is an

immediate consequence of the definition of the monitoring function (Definition 4.19) and
the following facts:

• bδ∗((s0, s′0),O) = (δ
∗(s0,O), (δ′)∗(s′0,O)) for every O ∈P∗

φ,R;

• δ∗(s0,O) ∈ E iff O,ψ, R |≈∀ φ for every O ∈P∗
φ,R (by Lemma 4.25); and

• (δ′)∗(s′0,O) ∈ E′ iff O,ψ, R |≈∀ ¬φ for every O ∈P∗
φ,R (by Lemma 4.25).

To show the theorem formally, take any O ∈P∗
φ,R. Using the above facts, we have:

λ∗(O) = ⊤ iff λ(bδ∗((s0, s′0),O)) = ⊤

4.4 The Complexity of Deciding Liveness and Monitorability in SHOQ-LTL 75

iff bδ∗((s0, s′0),O) = (s, s′) with s ∈ E and s′ /∈ E′

iff δ∗(s0,O) ∈ E and (δ′)∗(s′0,O) /∈ E′

iff O ∈ L(Dφ,ψ,R) and O /∈ L(D¬φ,ψ,R)

iff O,ψ, R |≈∀ φ and O,ψ, R |6≈∀ ¬φ
iff mφ,ψ,R(O) = ⊤.

Moreover, we have:

λ∗(O) = ⊥ iff λ(bδ∗((s0, s′0),O)) = ⊥
iff bδ∗((s0, s′0),O) = (s, s′) with s /∈ E and s′ ∈ E′

iff δ∗(s0,O) /∈ E and (δ′)∗(s′0,O) ∈ E′

iff O /∈ L(Dφ,ψ,R) and O ∈ L(D¬φ,ψ,R)

iff O,ψ, R |6≈∀ φ and O,ψ, R |≈∀ ¬φ
iff mφ,ψ,R(O) = ⊥,

and also:

λ∗(O) = ? iff λ(bδ∗((s0, s′0),O)) = ?

iff bδ∗((s0, s′0),O) = (s, s′) with s /∈ E and s′ /∈ E′

iff δ∗(s0,O) /∈ E and (δ′)∗(s′0,O) /∈ E′

iff O /∈ L(Dφ,ψ,R) and O /∈ L(D¬φ,ψ,R)

iff O,ψ, R |6≈∀ φ and O,ψ, R |6≈∀ ¬φ
iff mφ,ψ,R(O) = ?.

This shows that Mφ,ψ,R is indeed a monitor for φ w.r.t. ψ and R. �

It remains to analyse the complexity of the construction. As shown in Section 4.3.2, the size
of the auxiliary deterministic finite automata Dφ,ψ,R and D¬φ,ψ,R is doubly exponential in
the size of φ, ψ, and R. Furthermore, they can be constructed in doubly exponential time.
Hence, the size of Mφ,ψ,R is also doubly exponential in the size of φ, ψ, and R, and it can
be constructed in doubly exponential time.

This doubly exponential blow-up in the construction of the monitor cannot be avoided,
since Theorem 4.3 yields that such a blow-up is unavoidable even for propositional LTL.

4.4 The Complexity of Deciding Liveness and Monitorability in

SHOQ-LTL

In this section, we extend the definitions and results about liveness and monitorability from
propositional LTL to SHOQ-LTL. In Section 4.4.1, we consider the simpler-looking problem
of liveness and in Section 4.4.2, we consider monitorability.

76 Chapter 4. Runtime Verification Using SHOQ-LTL

4.4.1 Deciding Liveness

First, we extend the notion of liveness from propositional LTL (see Definition 4.5) to the
temporalised description logic SHOQ-LTL and the presence of background knowledge.

Definition 4.27 (Liveness). Let R be an RBox, and φ and ψ be SHOQ-LTL-formulas w.r.t. R.

We say that φ expresses a liveness property w.r.t.ψ and R if for every finite sequence of partial

axiom types O ∈P∗
φ,R that has an extension w.r.t. ψ and R, we have O,ψ, R |≈∃ φ. ♦

Note that, in this definition, we restrict ourselves to the finite sequences of partial axiom
types that have an extension w.r.t. ψ and R. In fact, these are the sequences that we expect
to see in practice since we assume that the system satisfies ψ, R, and respects rigid names.

As in the propositional case, liveness of φ w.r.t. ψ and R can be expressed using the
monitoring function.

Lemma 4.28. Let R be an RBox, and φ and ψ be SHOQ-LTL-formulas w.r.t. R. Then φ

expresses a liveness property w.r.t. ψ and R iff mφ,ψ,R(O) 6= ⊥ for every O ∈P∗
φ,R.

Proof. For the ‘only if’ direction, assume that φ expresses a liveness property w.r.t. ψ
and R, and consider O ∈ P∗

φ,R. If O does not have an extension w.r.t. ψ and R, then
mφ,ψ,R(O) = 6= ⊥. Otherwise, the fact that φ expresses a liveness property w.r.t. ψ
and R implies that O,ψ, R |≈∃ φ. Consequently, we have O,ψ, R |6≈∀ ¬φ, which yields
mφ,ψ,R(O) 6= ⊥.

For the ‘if’ direction, assume that mφ,ψ,R(O) 6= ⊥ for every O ∈P∗
φ,R. Consider a finite

sequence of partial axiom types O ∈P∗
φ,R that has an extension w.r.t.ψ and R. The existence

of this extension implies that mφ,ψ,R(O) 6= . Thus, we know that mφ,ψ,R(O) ∈ {⊤, ?}. In
both cases, O,ψ, R |6≈∀ ¬φ holds, which is equivalent to O,ψ, R |≈∃ φ. �

Consequently, given a monitor for φ w.r.t.ψ and R, liveness of φ w.r.t.ψ and R can be tested
by checking reachability in the monitor, which yields an upper bound of 2EXPTIME. The lower
bound can be obtained by a reduction of the unsatisfiability problem in ALC-LTL [BGL12].

Lemma 4.29. The problem of deciding whether a SHOQ-LTL-formula φ expresses a liveness

property w.r.t. a SHOQ-LTL-formula ψ and an RBox R is as hard as the unsatisfiability problem

in ALC-LTL.

Proof. Let ψ be an ALC-LTL-formula (and thus a SHOQ-LTL-formula w.r.t. the empty RBox
R := ;). We prove that ψ is unsatisfiable iff the SHOQ-LTL-formula φ := false expresses a
liveness property w.r.t. ψ and R.

In fact, if ψ is unsatisfiable, then there is no sequence O ∈P∗
φ,R such that O has extension

w.r.t. ψ and R. Consequently, the condition in the definition of liveness quantifies over the
empty set of sequences, and is thus trivially true.

Conversely, if ψ is satisfiable, then there is some O ∈P∗
φ,R (e.g. the empty sequence) that

has an extension w.r.t. ψ and R. But then O,ψ, R |6≈∃ φ since φ is unsatisfiable. Hence, φ
does not express a liveness property w.r.t. ψ and R. �

Due to the complexity results for the satisfiability problem in ALC-LTL (see [BGL12]), we
obtain from these lemmas the following theorem.

4.4 The Complexity of Deciding Liveness and Monitorability in SHOQ-LTL 77

Theorem 4.30. The problem of deciding whether a SHOQ-LTL-formula φ expresses a liveness

property w.r.t. a SHOQ-LTL-formula ψ and an RBox R is

• EXPTIME-hard and in 2EXPTIME if NRC = NRR = ;;
• CO-NEXPTIME-hard and in 2EXPTIME if NRC 6= ; and NRR = ;; and

• 2EXPTIME-complete if NRC 6= ; and NRR 6= ;.

Proof. Regarding the upper bounds, Lemma 4.28 implies that φ expresses a liveness property
w.r.t. ψ and R iff in the monitor Mφ,ψ,R no state with output ⊥ is reachable from the initial
state. Since this monitor is of doubly exponential size and reachability can be decided in
linear time in the size of the automaton, this yields the required upper bounds of 2EXPTIME.

The lower bounds follow immediately from Lemma 4.29 and the complexity results for
the satisfiability problem in ALC-LTL [BGL12]. Indeed, this problem is EXPTIME-complete
if NRC = NRR = ;, NEXPTIME-complete if NRC 6= ; and NRR = ;, and 2EXPTIME-complete if
NRC 6= ; and NRR 6= ;. Since both EXPTIME and 2EXPTIME are closed under complement, we
obtain the complexity lower bounds of our theorem. �

Note that only in the case NRC 6= ; and NRR 6= ;, we have a tight complexity result. Recall,
however, that the exact complexity for this problem is not even known for propositional LTL.

Also, our hardness proof (Lemma 4.29) strongly depends on the presence of background
knowledge. Without background knowledge (i.e. in the case where ψ = true and R = ;),
we can only show an EXPTIME-hardness result by a reduction of the satisfiability problem in
ALC-LTL (without rigid names).

Theorem 4.31. The problem of deciding whether a SHOQ-LTL-formula φ expresses a liveness

property w.r.t. the SHOQ-LTL-formula true and the empty RBox is EXPTIME-hard.

Proof. Consider an ALC-LTL-formula φ and assume NRC = NRR = ;. We prove that φ is
satisfiable iff ◊φ expresses a liveness property w.r.t. true and the empty RBox R := ;. Since
the satisfiability problem in ALC-LTL is EXPTIME-complete if NRC = NRR = ; (see [BGL12]),
this shows EXPTIME-hardness of liveness w.r.t. true and the empty RBox.

If φ is unsatisfiable, then obviously ◊φ is unsatisfiable as well, and thus no sequence of
partial axiom types can be extended to a model of ◊φ. In addition, there is a sequence of
partial axiom types (e.g. the empty sequence) that can be extended to a model of true and R.
Consequently, ◊φ does not express a liveness property w.r.t. true and R.

Conversely, assume that φ is satisfiable, and let O= O0O1 . . . Ot−1 ∈P∗φ,R be a sequence
of partial axiom types. Satisfiability of φ yields a model I= (Ii)i≥0 of φ. In addition, since
partial axiom types are by definition consistent, there are interpretations I′

i
, 0≤ i ≤ t − 1,

such that I′
i
|= Oi . It is easy to see that the DL-LTL-structure

J := (Ji)i≥0 with Ji = I′i , 0≤ i ≤ t − 1, and Ji+t = Ii , i ≥ 0,

is a model of ◊φ that extends O w.r.t. true and R, i.e. O, true, R |≈∃ φ. This shows that ◊φ
expresses a liveness property w.r.t. true and R. �

Unfortunately, the proof of this theorem does not go through in the presence of rigid names.
In fact, the DL-LTL-structure J constructed there need not respect rigid names.

78 Chapter 4. Runtime Verification Using SHOQ-LTL

4.4.2 Deciding Monitorability

We first extend the notion of monitorability from propositional LTL (see Definition 4.4) to
the temporalised description logic SHOQ-LTL and the presence of background knowledge.

Definition 4.32 (Monitorability). Let R be an RBox, let φ and ψ be SHOQ-LTL-formulas

w.r.t. R, and let O ∈P∗
φ,R. We say that φ is O-monitorable w.r.t. ψ and R if there is a finite

word O′ ∈P∗
φ,R such that mφ,ψ,R(O ·O′) ∈ {⊤,⊥}. Moreover, we call φ monitorable w.r.t. ψ

and R if it is O-monitorable for every finite sequence of partial axiom types O ∈P∗
φ,R that has

an extension w.r.t. ψ and R. ♦

Monitorability can thus be expressed using the monitoring function as follows: φ is mon-
itorable w.r.t. ψ and R iff for every finite sequence of partial axiom types O ∈ P∗

φ,R with

mφ,ψ,R(O) 6= , there exists a finite sequence of partial axiom types O′ ∈ P∗
φ,R satisfying

mφ,ψ,R(O ·O′) ∈ {⊤,⊥}. This can again be checked using reachability tests in the monitor.

Lemma 4.33. The problem of deciding monitorability of a SHOQ-LTL-formula φ w.r.t. a

SHOQ-LTL-formula ψ and an RBox R is in 2EXPTIME.

Proof. To decide monitorability of φ w.r.t. ψ and R, we construct the monitor Mφ,ψ,R. In
this monitor, we compute all the states with output different from that are reachable from
the initial state. For each of these states, we then check whether a state with output ⊤ or ⊥
is reachable. If this is the case, then φ is monitorable w.r.t. ψ and R. Otherwise, i.e. if there
is a state reachable from the initial state such that every state reachable from it has output ?
or , then φ is not monitorable w.r.t. ψ and R.

Since the monitor can be constructed in doubly exponential time and each of the doubly
exponentially many reachability tests requires at most doubly exponential time, this yields a
2EXPTIME procedure for deciding monitorability. �

For the lower bound, we again reduce the unsatisfiability problem in ALC-LTL. For monitor-
ability, such a reduction is possible even for the case without background knowledge.

Lemma 4.34. The problem of deciding monitorability of a SHOQ-LTL-formula φ w.r.t. true

and the empty RBox is as hard as the unsatisfiability problem in ALC-LTL.

Proof. Note that the lower bounds of the satisfiability problem in ALC-LTL hold also for
ALC-LTL-formulas without past operators [BGL12]. Thus, let ψ be an ALC-LTL-formula
without past operators. We define the SHOQ-LTL-formula φ as φ := ◊ψ∧�◊A(a) where
the flexible concept name A and the individual name a do not occur in ψ. We prove that ψ
is unsatisfiable iff φ is monitorable w.r.t. true and the empty RBox R := ;.

If ψ is unsatisfiable, we have that φ ≡ ◊false∧�◊A(a)≡ false∧�◊A(a)≡ false, i.e. φ is
also unsatisfiable. Take now any O ∈P∗

φ,ψ that has an extension w.r.t. true and R. Since φ
is unsatisfiable, we have O, true, R |≈∀ ¬φ. Thus, Lemma 4.18 yields O, true, R |6≈∀ φ, which
shows that mφ,true,R(O) = ⊥. Consequently, φ is O-monitorable w.r.t. true and R (take O′

to be the empty word). Since O was an arbitrary element of P∗
φ,R that has an extension

w.r.t. true and R, this shows that φ is monitorable w.r.t. true and R.

4.4 The Complexity of Deciding Liveness and Monitorability in SHOQ-LTL 79

Conversely, if ψ is satisfiable, then there is a model I= (Ii)i≥0 of ψ. We define

Oi :=
∧

α∈τψ(Ii)

α∧
∧

α∈Ax(ψ)\τψ(Ii)

¬α

for every i ≥ 0. Obviously, Ii is a model of Oi and the empty RBox R, and thus Oi is a partial
axiom type, i.e. Oi ∈Pφ,R for every i ≥ 0. Since there only finitely many partial axiom types,
there are finitely many partial axiom types O′1, . . . , O′

k
such that {O′1, . . . , O′

k
}= {Oi | i ≥ 0}.

Then there is a surjective function ν: N→ {1, . . . , k} such that Oi = O′
ν(i)

.

To show that φ is not monitorable w.r.t. true and R, we consider the finite sequence of
partial axiom types O := O′1 . . . O′

k
. Since the function ν is surjective, any partial axiom

type O′
i
in this sequence has at least one of the interpretation I j as model, and since I = (Ii)i≥0

is a DL-LTL-structure, these models of O′1, . . . , O′
k

share the same domain and coincide on
the individual names and the rigid concept and role names. Also, these models satisfy the
empty RBox R. Consequently, the set {O′1, . . . , O′

k
} is r-consistent. Obviously, this implies

that O has an extension w.r.t. true and R.

To disprove monitorability of φ w.r.t. true and R, it is thus sufficient to show that φ
is not O-monitorable w.r.t. true and R. For this purpose, we take any finite sequence
O′ = O′′1 . . . O′′m ∈P∗φ,R and show that mφ,true,R(O ·O′) /∈ {⊤,⊥}.

If O · O′ does not have an extension w.r.t. true and R (which can happen due to the
presence of rigid names), then O ·O′, true, R |≈∀ φ and O ·O′, true, R |≈∀ ¬φ, and thus
mφ,true,R(O ·O′) = /∈ {⊤,⊥} as required.

Otherwise, let J = (Ji)i≥0 be an extension of O ·O′ w.r.t. true and R. We define a new
DL-LTL-structure J′ := (J ′

i
)i≥0 with

J ′i :=

¨
Ji if 0≤ i ≤ k+m− 1; and

Jν(i−k−m) otherwise.

By definition, J′ consists of interpretations occurring in J, and thus is indeed a DL-LTL-
structure, i.e. all interpretations occurring in J′ share the same domain and coincide on
the individual names and the rigid concept and role names. Additionally, by definition J′

coincides with J on the first k+m interpretations, which shows that it extends O·O′ w.r.t. true

and R. Moreover, since every O′
i
, 1≤ i ≤ k, contains complete information about the axioms

in ψ, we have that
τψ(I) = τψ(J

′
k+m
)τψ(J

′
k+m+1)

By Lemma 4.8, this shows that (J ′
k+m+i

)i≥0 is a model of ψ. Since ψ does not contain past
operators, this implies that J′ is a model of ◊ψ. Sinceψ does not contain the concept name A

and the individual name a, this is independent on how A and a are interpreted. In addition,
since A is flexible, changing its interpretation does not change the fact that rigid names are
respected.

Let now JA and J¬A be DL-LTL-structures such that:

1. JA and J¬A coincide for all points in time with J′ on the interpretation domain as
well as on the interpretation of all individual names, role names, and concept names
different from A.

80 Chapter 4. Runtime Verification Using SHOQ-LTL

2. JA and J¬A coincide with J′ for all points in time up to k+m−1 also on the interpretation
of A.

3. In JA, the interpretation of A consists of the individual interpreting a at all points in
time strictly after k+m− 1.

4. In J¬A, the interpretation of A is empty at all points in time strictly after k+m− 1.

Obviously, both JA and J¬A are models of ◊ψ and they extend O · O′ w.r.t. true and R.
However, only JA is also a model of �◊A(a). Thus, JA is an extension of O ·O′ w.r.t. true

and R that satisfies φ, and J¬A is an extension of O ·O′ w.r.t. true and R that satisfies ¬φ.
This shows that we have O · O′, true, R |6≈∀ φ and O · O′, true, R |6≈∀ ¬φ. Consequently,
mφ,true,R(O ·O′) /∈ {⊤,⊥}, which finishes the proof that φ is not monitorable w.r.t. true

and R. �

Putting the previous two lemmas together, we obtain the following theorem.

Theorem 4.35. The problem of deciding monitorability of a SHOQ-LTL-formula φ w.r.t. a

SHOQ-LTL-formula ψ and an RBox R is

• EXPTIME-hard and in 2EXPTIME if NRC = NRR = ;;
• CO-NEXPTIME-hard and in 2EXPTIME if NRC 6= ; and NRR = ;; and

• 2EXPTIME-complete if NRC 6= ; and NRR 6= ;.

The lower bounds hold already for the special case where φ is an ALC-LTL-formula, ψ= true,

and R= ;.

Proof. The upper bounds follow immediately from Lemma 4.33. The lower bounds follow
immediately from Lemma 4.34, the fact that the SHOQ-LTL-formula φ constructed in the
proof of this lemma is actually an ALC-LTL-formula, and the complexity results for the
satisfiability problem in ALC-LTL [BGL12]. Indeed, this problem is EXPTIME-complete if
NRC = NRR = ;, NEXPTIME-complete if NRC 6= ; and NRR = ;, and 2EXPTIME-complete if
NRC 6= ; and NRR 6= ;. Since both EXPTIME and 2EXPTIME are closed under complement, we
obtain the complexity lower bounds of our theorem. �

Note again that only in the case NRC 6= ; and NRR 6= ;, we have a tight complexity result.
Recall, however, that the exact complexity for this problem is not even known for propositional
LTL.

4.5 Summary

In this chapter, we have investigated runtime verification using the temporalised description
logic SHOQ-LTL. More precisely, we have shown how to construct monitors for SHOQ-LTL-
formulas w.r.t. background knowledge that can deal with incomplete knowledge in the form
of partial SHOQ-axiom types. The complexity of the monitor construction is quite high. We
have seen that the size of a monitor is doubly exponential in the size of the input. However,
this cannot be avoided as this doubly exponential blow-up also occurs for propositional LTL,
which we have shown in Section 4.1. It should be noted that the complexity of the monitor

4.5 Summary 81

construction is a worst-case complexity. Minimisation of the intermediate Büchi-automata
and the auxiliary deterministic finite automata may lead to much smaller monitors than the
ones defined above.

Moreover, we have considered the decision problems of liveness and monitorability. For
these problems, we have shown that they are as hard as unsatisfiability in ALC-LTL and in
2EXPTIME. For liveness, the proof of the lower bounds depends on the fact that background
knowledge is available. If this is not the case, we have shown that we obtain a lower bound of
EXPTIME for the liveness problem. For the monitorability problem, we could prove the lower
bounds without using the background knowledge. Overall, we have obtained both liveness
and monitorability are EXPTIME-hard if no rigid names are available, CO-NEXPTIME-hard if
only rigid concept names are allowed, and 2EXPTIME-complete if both concept names and
role names may be rigid. Unfortunately, this leaves gaps for the cases without rigid role
names. However, the precise complexity of those problems is unknown even for propositional
LTL.

Future work will include trying to close those gaps. Note that since the satisfiability
problem in ALC-LTL is harder than in propositional LTL, it may be easier to come up with new
complexity results in the case of ALC-LTL and SHOQ-LTL. Furthermore, an implementation
of the monitor construction and a thorough empirical evaluation of it is an important direction
of future research.

82 Chapter 4. Runtime Verification Using SHOQ-LTL

Chapter 5

Temporalised Query Entailment in the

Description Logic SHQ

Ontology-based data access (OBDA) [DEF+99; PCD+08] generalises query answering in
databases: firstly, the data are not assumed to be complete, i.e. we do not make the closed-
world assumption, and secondly, the interpretation of the predicates occurring in the queries
is constrained by background knowledge encoded in a knowledge base.

In this chapter, we investigate a temporalised version of OBDA and its corresponding de-
cision problem: temporalised query entailment. We show how temporalised query entailment
can be decided in the description logic SHQ, and provide complexity results. Most of the
results contained in this chapter have already been published in [BBL13b; BBL13a].

This chapter is organised as follows. In Section 5.1, we formally introduce the temporal
query language that we investigate in this chapter and discuss similar approaches to tempor-
alising OBDA. After that, in Section 5.2, we show complexity results for temporalised query
entailment in our temporal query language. Finally, in Section 5.3, we give a brief summary
of the results that we have obtained in this chapter.

5.1 The Temporal Query Language

Unless stated otherwise, we assume throughout this chapter that all ABoxes are simple (see
Definition 2.9). Note that, however, every complex ABox can be rewritten to a simple ABox
using a set of GCIs. More precisely, one can rewrite that concept assertion C(a) to A(a) where
A∈ NC is a fresh concept name, and add the GCIs A⊑ C and C ⊑ A to the TBox. However,
this restriction is useful to separate the influence of the ABox and the TBox on the complexity
of reasoning problems.

Our temporal query language is a combination of conjunctive queries [AHV95] and
propositional LTL [Pnu77]. This language is very similar to the temporalised description
logics ALC-LTL [BGL12] and SHOQ-LTL introduced in Section 3.1. The main difference is
that we allow conjunctive queries to occur in place of description logic axioms. Thus, the
results we obtained build on existing results about ALC-LTL and also SHOQ-LTL. Since our
temporal query language generalises ALC-LTL, some of our hardness results for complexity
follow easily from the results in [BGL12]. Moreover, we will use the results obtained in
Section 3.2.4 about the consistency problem for Boolean SHOQ⊓-knowledge bases. For more
information about temporalising description logics, see Section 1.2.

However, most work on temporalised description logics focuses on the satisfiability problem
in such logics rather than query answering. In the following, we describe relevant related

83

84 Chapter 5. Temporalised Query Entailment in SHQ

work in temporalising OBDA. The approaches from the literature have mainly been developed
for light-weight languages of the DL-Lite family [CDL+09].

For instance, in [AKL+07], various light-weight DLs are extended by allowing the tem-
poral operators to interfere with the DL-component. Extending the work of [AKL+07],
in [AKW+13] a temporal extension of DL-Lite is presented, which allows the temporal op-
erators ◊− and ◊ on the left-hand side of GCIs and role-inclusion axioms. In this logic,
first-order rewritability of conjunctive queries w.r.t. DL-Lite-knowledge bases is preserved
from the atemporal case, i.e. answering a query over a knowledge base can be reduced
to answering a rewritten query (in a different language) over a database induced by the
knowledge base. This means that techniques from temporal relational databases can be used
to answer temporal queries that can refer to specific points in time.

An approach to temporal query answering in DL-Lite that is more similar to the one
considered in this chapter is presented in [BLT13b; BLT13a; BLT13c]. There, conjunctive
queries are used as atoms in negation-free temporal formulas. This allows for reuse of results
about atemporal first-order rewritability in DL-Lite. The paper also presents an algorithm
to answer such temporal queries over temporal relational databases, which generalises an
algorithm from [Cho95; CT05]. The main advantage of this algorithm is that it achieves a
so-called bounded-history encoding, i.e. the amount of space needed to answer a temporal
query does not depend on the length of the observed history. Thus, it is enough to keep track
of the relevant data and storing it in the database instead of storing all information from the
past.

A similar approach is pursued in [GK12]. There, the authors propose a generic framework
to combine a generic DL-query component with a linear temporal dimension. To simplify the
decision procedures, both components are decoupled via an autoepistemic modal operator.
This allows to use atemporal query-answering algorithms as a black-box inside a temporal
satisfiability algorithm.

In [Mot12], temporal query answering over temporalised RDF-triples [GHV05] using an
extension of the query language SPARQL is considered.

Furthermore, in [AFW+02], the very expressive temporalised description logic DLRUS is
introduced, which is an extension of DLR that allows temporal operators to occur within
concepts and roles. Moreover, the query-containment problem of non-recursive Datalog
queries under constraints defined in DLRUS is investigated. It turns out that this problem is
in general undecidable, but becomes decidable in the fragment DLR−

US
, where no temporal

operators are allowed to occur within roles. The query-containment problem is then in
2EXPTIME, whereas other reasoning problems such as the satisfiability problem and the
subsumption problem in DLR−

US
are EXPSPACE-complete.

Whilst in principle our temporal query language can be parametrised with any description
logic, we focus in this chapter on the description logics between ALC and SHQ. The relative
expressivity of these DLs is depicted in Figure 5.1.

To summarise, the work described in [AKW+13; BLT13b; AFW+02; GK12] is most closely
related to our approach. Nonetheless, this related work differs from our approach in several
ways:

1. We consider the expressive description logic SHQ instead of inexpressive description
logics such as members of the DL-Lite family [AKW+13; BLT13b].

5.1 The Temporal Query Language 85

SHQ

SQSH ALCHQ

ALCHS ALCQ

ALC

Figure 5.1: The relative expressivity of the DLs between ALC and SHQ

2. We consider a temporal query language instead of temporalising the ontology lan-
guage [AKW+13; AFW+02].

3. In contrast to [GK12], we consider also the case of rigid concept and role names.
In [BLT13b; BLT13a; BLT13c; AKW+13], rigid names are also used, but in the context
of inexpressive DLs.

Since we deal with the expressive description logic SHQ, we take up on the results
about the complexity of atemporal conjunctive-query entailment in expressive description
logics [OCE06; Lut08a; GHL+08]. For the proofs of our results, it is, however, not sufficient to
only apply these results, but we need to adapt the proof methods that were developed in these
papers to show these results. To be more precise, we adapt, for instance, the constructions
involving forest models and equivalence relations over individual names from [GHL+08],
and we use the results about spoilers in SHQ⊓ from [Lut08a]. We make this connection
explicit in later sections of this chapter.

As the temporal component of our query language is propositional LTL, we also use well-
known results from that area of research. As such, we adapt the automata construction for
propositional LTL satisfiability from [WVS83; VW94], which is mentioned in Section 2.2.

For our temporal query language, we investigate both the combined complexity and the
data complexity of the temporalised query-entailment problem in three different settings as
summarised in Table 5.2. These results hold for all description logics between ALC and SHQ.
In fact, we show that the hardness results already hold for ALC, and we prove the complexity
upper bounds for the more expressive description logic SHQ.

Note that in [BBL13a; BBL13b], the complexity results were shown only for ALC. Even
though our complexity results are the same for ALC and SHQ, and in principle the approaches
used below to prove the upper bounds for SHQ are similar to the ones employed in [BBL13a;
BBL13b], the proof details are considerably more complex for SHQ. For the combined
complexity, the complexity results listed in Table 5.2 are actually identical to the ones
for ALC-LTL [BGL12], though the upper bounds are considerably harder to show. The
data complexity results in Settings (i) and (ii) coincide with the ones for atemporal query
entailment, which is CO-NP-complete w.r.t. data complexity. For Setting (iii), we can show that
the temporalised query entailment problem is in EXPTIME w.r.t. data complexity (in contrast
to 2EXPTIME-completeness w.r.t. combined complexity), but we do not have a matching
lower bound.

86 Chapter 5. Temporalised Query Entailment in SHQ

Table 5.2: The complexity of temporalised query entailment for all DLs between ALC

and SHQ in three different settings

Data complexity Combined complexity

Setting (i) CO-NP-complete EXPTIME-complete
(Corollary 5.12 and Theorem 5.21) (Theorems 5.11 and 5.21)

Setting (ii) CO-NP-complete CO-NEXPTIME-complete
(Corollary 5.12 and Theorem 5.26) (Theorems 5.11 and 5.39)

Setting (iii) CO-NP-hard / in EXPTIME 2EXPTIME-complete
(Corollary 5.12 and Theorem 5.23) (Theorems 5.11 and 5.23)

Settings: (i) neither concept names nor role names are allowed to be rigid; (ii) only concept
names may be rigid; and (iii) both concept names and role names may be rigid.

From now on, we consider an arbitrary (but fixed) DL between ALC and SHQ. Before we
formally define our temporal query language in Section 5.1.3, we first introduce conjunctive

queries and related notions in Section 5.1.1, and temporal knowledge bases in Section 5.1.2.

5.1.1 Conjunctive Queries

Our query language is based on conjunctive queries [AHV95], which is a subset of first-
order queries that are well-investigated in database theory. Basically, conjunctive queries
correspond to select-project-join queries in relational algebra, and to select-from-where
queries in SQL.

Definition 5.3 (Syntax of conjunctive queries). Let NV be a set of variables. A conjunctive
query (CQ) is of the form φ = ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV, and ψ is a (possibly

empty) finite conjunction of atoms of the form

• A(z) with A∈ NC and z ∈ NV ∪NI (concept atom); or

• r(z1, z2) with r ∈ NR and z1, z2 ∈ NV ∪NI (role atom).

The empty conjunction is denoted by true.

A union of conjunctive queries (UCQ) is of the form φ1 ∨ · · · ∨ φn with n ≥ 1, where

φ1, . . . ,φn are CQs. ♦

We denote the set of individual names occurring in a (U)CQ φ by Ind(φ), the set of variables
occurring in φ by Var(φ), the set of free variables occurring in φ by FVar(φ), and the set of
atoms occurring in φ by At(φ). We call φ Boolean if FVar(φ) = ;. Moreover, we denote the
set of individual names occurring in a knowledge base K by Ind(K).

Given a (U)CQφ and a knowledge base K, a basic reasoning task is finding so-called certain

answers to φ w.r.t. K, i.e. instantiations of the free variables in φ with individual names from
Ind(K) such that the resulting formula is satisfied in every model of K. Thus, answering
(U)CQs w.r.t. knowledge bases generalises the entailment of ABox-axioms, i.e. deciding
whether K |= α holds for a given knowledge base K and a given ABox-axiom α.

5.1 The Temporal Query Language 87

We now define the semantics of Boolean (U)CQs, using the notion of homomorph-
isms [CM77]. This is then extended to answering arbitrary UCQs.

Definition 5.4 (Homomorphism, entailment, certain answer). Let I = (∆, ·I) be an in-

terpretation and φ be a Boolean CQ. A mapping π: Var(φ)∪ Ind(φ)→∆ is a homomorphism
of φ into I if

• π(a) = aI for every a ∈ Ind(φ);

• π(z) ∈ AI for every concept atom A(z) ∈ At(φ); and

• (π(z1),π(z2)) ∈ rI for every role atom r(z1, z2) ∈ At(φ).

We say that I is a model of φ (written I |= φ) if there is such a homomorphism. Moreover, I

is a model of a Boolean UCQ φ1 ∨ · · · ∨φn if it is a model of φi for some i, 1≤ i ≤ n.

A Boolean UCQ φ is entailed by a knowledge base K (written K |= φ) if every model of K is

also a model of φ.

Given a (not necessarily Boolean) UCQ φ, we call a mapping a: FVar(φ)→ Ind(K) a certain
answer to φ w.r.t. K if K |= a(φ), where a(φ) is the Boolean UCQ obtained from φ by replacing

the free variables according to a. ♦

For a UCQ φ and a knowledge base K, one can compute all certain answers by enumerating
all candidate mappings a: FVar(φ) → Ind(K) and then solving the entailment problem
K |= a(φ) for each a. Since there are |Ind(K)||FVar(φ)| such mappings, we have to solve
exponentially many such entailment problems.

To analyse the complexity of deciding the entailment K |= a(φ), it obviously suffices
to consider the case where the UCQ is Boolean. As discussed in Section 1.4, usually one
considers two kinds of complexity measures: the combined complexity and data complexity.
For the combined complexity, all parts of the input, i.e. the UCQ φ and the knowledge base
K = (A, T , R), are taken into account. For the data complexity, however, φ, T , and R are
assumed to be of constant size, and the complexity is measured only w.r.t. the data, i.e. the
ABox A. For this analysis, we assume in the following that the query does not introduce new
names, i.e. it contains only concept and role names that also occur in the TBox or the RBox.
This is without loss of generality since we can always introduce trivial axioms like A⊑ A or
r ⊑ r into the TBox and RBox without affecting data complexity or combined complexity.

Regarding data complexity, the entailment problem for concept assertions and ALC-know-
ledge bases is already CO-NP-hard [Sch93a; DLN+94], and a matching upper bound has
been established for the entailment problem for UCQs and SHQ-knowledge bases [GHL+08].

The entailment problem for concept assertions and ALC-knowledge bases is EXPTIME-
hard w.r.t. combined complexity [BCM+07], and a matching upper bound is known for the
entailment problem for UCQs and ALCHQ-knowledge bases [Lut08a]. For the description
logic W, the problem is already CO-NEXPTIME-hard, while it becomes 2EXPTIME-hard for the
description logic SH [ELO+09]. In this chapter, we focus on a variant of the UCQ-entailment
problem that is EXPTIME-complete even for SHQ-knowledge bases, namely, we restrict to
simple queries, which are not allowed to use non-simple role names. Note that this is only a
restriction in extensions of W.

Before we are ready to consider the temporalised query-entailment problem, we formally
introduce temporal knowledge bases.

88 Chapter 5. Temporalised Query Entailment in SHQ

5.1.2 Temporal Knowledge Bases

We extend the notion of knowledge bases and models into the temporal setting. The setting
is that there is a global TBox and a global RBox that define the terminology, and several
ABoxes that contain information about the state of the world at the time points we have
observed so far.

Definition 5.5 (Syntax of temporal knowledge bases). A temporal knowledge base (tem-
poral KB) K = ((Ai)0≤i≤n, T , R) consists of a non-empty finite sequence of ABoxes Ai , 0≤ i ≤ n,

of length n+ 1> 0, a TBox T , and an RBox R. ♦

As for atemporal knowledge bases, we denote by Ind(K) the set of all individual names
occurring in a temporal KB K. The semantics of temporal KBs is based on DL-LTL-structures,
which were introduced in Definition 3.3.

Definition 5.6 (Semantics of temporal knowledge bases). We call the DL-LTL-structure

I= (Ii)i≥0 a model of the temporal KB K = ((Ai)0≤i≤n, T , R) (written I |= K) if

• Ii |= Ai for every i, 0≤ i ≤ n; and

• Ii |= T and Ii |=R for every i ≥ 0. ♦

Recall that according to Definition 3.2, we make the constant-domain assumption and the
rigid-individual assumption.

Now we are ready to formally introduce our temporal query language.

5.1.3 Temporal Conjunctive Queries

We combine the notions of conjunctive queries and propositional LTL-formulas into a new
formalism, which we call temporal conjunctive queries.

Definition 5.7 (Syntax of temporal conjunctive queries). The set of temporal conjunctive
queries (TCQs) is the smallest set such that

• every conjunctive query is a TCQ; and

• if φ1 and φ2 are TCQs, then so are: ¬φ1 (negation), φ1∧φ2 (conjunction), Xφ1 (next),

X−φ1 (previous), φ1 Uφ2 (until), and φ1 Sφ2 (since). ♦

As for UCQs, we denote the set of individual names occurring in a TCQ φ by Ind(φ), and the
set of free variables occurring in φ by FVar(φ). Moreover, a Boolean TCQ is a TCQ without
free variables.

As usual in temporal logics, we use again

• φ1 ∨φ2 (disjunction) as an abbreviation for ¬(¬φ1 ∧¬φ2);

• φ1→ φ2 (implication) as an abbreviation for ¬φ1 ∨φ2;

• false as an abbreviation for ¬true;1

1Recall that true denotes the empty conjunction, which is a CQ and thus also a TCQ (see Definition 5.3).

5.1 The Temporal Query Language 89

• ◊φ (diamond, which should be read as ‘eventually’ or ‘some time in the future’) as an
abbreviation for true Uφ;

• �φ (box, which should be read as ‘always’ or ‘always in the future’) as an abbreviation
for ¬◊¬φ;

• ◊−φ (which should be read as ‘once’ or ‘some time in the past’) as an abbreviation for
true Sφ; and

• �−φ (which should be read as ‘historically’ or ‘always in the past’) as an abbreviation
for ¬◊−¬φ.

We denote the set of conjunctive queries occurring in a TCQ φ by CQ(φ). As before, we first
define the semantics for Boolean TCQs, which is a straightforward extension of the semantics
of CQs and propositional LTL-formulas (see Definition 2.16), similar to the semantics of
SHOQ-LTL from Definition 3.3. Also, the notion of certain answers can then be defined
exactly as in the atemporal case.

Definition 5.8 (Semantics of TCQs). For a Boolean TCQ φ, a DL-LTL-structure I = (Ii)i≥0,

and a time point i ≥ 0, validity of φ in I at time i (written I, i |= φ) is defined inductively as

follows:

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= ¬φ1 iff I, i 6|= φ1, i.e. not I, i |= φ1

I, i |= φ1 ∧φ2 iff I, i |= φ1 and I, i |= φ2

I, i |= Xφ1 iff I, i + 1 |= φ1

I, i |= X−φ1 iff i > 0 and I, i − 1 |= φ1

I, i |= φ1 Uφ2 iff there is some k ≥ i such that I, k |= φ2, and

I, j |= φ1 for every j, i ≤ j < k

I, i |= φ1 Sφ2 iff there is some k, 0≤ k ≤ i, such that I, k |= φ2, and

I, j |= φ1 for every j, k < j ≤ i

Given a temporal KB K = ((Ai)0≤i≤n, T , R), we say that I is a model of φ w.r.t. K if I |= K

and I, n |= φ. We call φ satisfiable w.r.t. K if it has a model w.r.t. K, and it is entailed by K

(written K |= φ) if every model I of K satisfies I, n |= φ.

Let L be a description logic. The TCQ-satisfiability problem in L is to decide, given a TCQ φ

and a temporal L-KB K, whether φ is satisfiable w.r.t. K. Moreover, the temporalised query-
entailment problem in L is the problem of deciding, given a TCQ φ and a temporal L-KB K,

whether φ is entailed by K.

Given a (not necessarily Boolean) TCQ φ, we call a mapping a: FVar(φ)→ Ind(K) a certain
answer to φ w.r.t. K if K |= a(φ), where a(φ) is the Boolean TCQ obtained from φ by replacing

the free variables according to a. ♦

Note that in this definition of a model, the point of reference is not the first time point 0,
as in propositional LTL and SHOQ-LTL, but rather the last time point n of a given temporal
knowledge base. Intuitively, this can be seen as the current time point, at which we have
information (e.g. sensor data) about the past, but not yet about the future.

As in the atemporal case, one can compute all certain answers to a TCQ φ w.r.t. a temporal
KB K by enumerating the (exponentially many) mappings a: FVar(φ)→ Ind(K) and then

90 Chapter 5. Temporalised Query Entailment in SHQ

solving the entailment problem K |= a(φ) for each a. We therefore focus on deciding the
entailment problem for the case where φ is Boolean. It turns out to be easier to analyse the
complexity of deciding the temporalised query non-entailment problem K 6|= φ. This problem
has the same complexity as the TCQ-satisfiability problem of φ w.r.t. K. In fact, K 6|= φ iff
¬φ has a model w.r.t. K, and conversely φ has a model w.r.t. K iff K 6|= ¬φ.

Note that, for the data complexity, we have to measure the complexity in the size of the
sequence of ABoxes in the temporal knowledge base, instead of just a single ABox. In the
following, we assume without loss of generality that the query contains only concept and
role names that also occur in the global TBox or the global RBox.

Obviously, the temporalised query-entailment problem includes as a special case the
entailment of CQs by atemporal knowledge bases, which can be seen as temporal knowledge
bases with a sequence of ABoxes of length 1, i.e. having n = 0. Although models of
such temporal knowledge bases are formally infinite sequences of interpretations (DL-LTL-
structures), all but the first interpretation are irrelevant for the semantics of CQs.

On the temporal side, the TCQ-satisfiability problem generalises the satisfiability problem
in ALC-LTL (and SHQ-LTL) since assertions can be seen as simple instances of Boolean
CQs. Although ALC-LTL-formulas may additionally contain GCIs, they can equivalently be
expressed by negated CQs (see the proof of Theorem 5.11 for details). On the other hand,
TCQs are more expressive than SHQ-LTL-formulas since CQs such as ∃y.r(y, y), which says
that there is a loop in the model without naming the individual which has the loop, can
clearly not even be expressed in ALC.

An assumption on TCQs that was made in [BBL13b] is that all Boolean CQs we encounter
are connected in the sense that the variables and individual names are related by roles, as
defined e.g. in [Tes01; RG10].

Definition 5.9 (Connected Boolean CQs). We call a Boolean CQ φ connected if for all

x , y ∈ Var(φ)∪ Ind(φ), there exists a sequence x1, . . . , xn ∈ Var(φ)∪ Ind(φ) such that x1 = x,

xn = y, and for every i, 1 ≤ i < n, there is an r ∈ NR such that either r(x i , x i+1) ∈ At(φ) or

r(x i+1, x i) ∈ At(φ).

A collection of Boolean CQs φ1, . . . ,φn is a partition of φ if

• At(φ) = At(φ1)∪ · · · ∪ At(φn);

• the sets Var(φi)∪ Ind(φi), 1≤ i ≤ n, are pairwise disjoint; and

• each φi , 1≤ i ≤ n, is connected. ♦

Similar to [Tes01; RG10], in [BBL13b], it is assumed without loss of generality that Boolean
TCQs contain only connected CQs. Indeed, if a Boolean TCQ φ contains a CQ ψ that is
not connected, we can replace ψ by the conjunction ψ1 ∧ · · · ∧ψn, where ψ1, . . . ,ψn is a
partition of ψ. This conjunction is of linear size in the size of ψ, and the resulting TCQ
has exactly the same models as φ since every homomorphism of ψ into an interpretation I

can be uniquely represented as a collection of homomorphisms of ψ1, . . . ,ψn into I. Thus,
in [BBL13b] it was always assumed without loss of generality that Boolean TCQs contain
only connected CQs. Even though this assumption is without loss of generality, it turns out
that we can show the results in this chapter also without making this assumption.

Before we investigate the complexity of the temporalised query-entailment problem, we
recall all the assumptions that we have made so far:

5.2 The Complexity of Temporalised Query Entailment 91

• Every at-least restriction contains only simple roles, since otherwise even the problem
of deciding whether a knowledge base is consistent would be undecidable [HST00].

• Every role atom in a query contains only simple roles. We make this restriction since
then the combined complexity of atemporal query entailment is EXPTIME-complete in
all description logics between ALC and SHQ. This enables us to state our complexity
results for all these logics at the same time. Without this restriction, the combined
complexity would increase whenever transitivity axioms are allowed [ELO+09].

• The queries contain only concept and role names that also occur in the TBox or the
RBox. This restriction is without loss of generality.

In the next section, we will investigate the complexity of temporalised query entailment in
our temporal query language. We show how to obtain the results of Table 5.2.

5.2 The Complexity of Temporalised Query Entailment

In this section, we analyse the complexity of the temporalised query-entailment problem in
DLs between ALC and SHQ. As mentioned before, all our complexity results hold for any
DL between ALC and SHQ, i.e. we show the lower bounds for ALC and the upper bounds
for SHQ.

We first take a look at an atemporal special case of the TCQ-satisfiability problem, which
will prove to be useful for analysing the temporalised query-entailment problem for arbitrary
TCQs. A CQ-literal is either a Boolean CQ or a negated Boolean CQ. Note that a conjunction

of CQ-literals φ is a special case of a Boolean TCQ. Since φ does not contain any temporal
operators, for the deciding satisfiability, it suffices to consider a single interpretation instead
of a DL-LTL-structure I= (Ii)i≥0. Extending the notation for UCQs, we often write Ii |= φ
instead of I, i |= φ in this case. Moreover, it is sufficient to consider temporal KBs with only
one ABox, which can be viewed as ‘normal’ knowledge bases. The following theorem states
the complexity of deciding satisfiability in this special case.

Theorem 5.10. Let L be a DL between ALC and SHQ. Deciding whether a conjunction of

CQ-literals is satisfiable w.r.t. an L-knowledge base is

• EXPTIME-complete w.r.t. combined complexity, and

• NP-complete w.r.t. data complexity.

Proof. The problem of deciding the entailment of concept assertions w.r.t. ALC-knowledge
bases is EXPTIME-hard w.r.t. combined complexity [BCM+07] and CO-NP-hard w.r.t. data
complexity [CDL+06; Sch93a; DLN+94]. Note that this entailment problem is a special case
of the complement of our problem.

Let now K = (A, T , R) be an SHQ-knowledge base, and let ζ be a conjunction of CQ-
literals. To check whether there is an interpretation I with I |= K and I |= ζ, we reduce this
problem to a query non-entailment problem of known complexity. Let

ζ = χ1 ∧ · · · ∧χℓ ∧¬ρ1 ∧ · · · ∧ ¬ρm

92 Chapter 5. Temporalised Query Entailment in SHQ

for Boolean CQs χ1, . . . ,χℓ, ρ1, . . . ,ρm. First, we instantiate the non-negated CQs χ1, . . . ,χℓ
by omitting the existential quantifiers and replacing the variables with fresh individual names.
The set A′ of all resulting atoms can thus be viewed as an additional ABox that restricts the
interpretation I.

However, we also have to ensure that the UNA is respected for the newly introduced
individual names. To achieve this, we employ a trick from [GHL+08], which consists in
guessing an equivalence relation ≈ on Ind(A∪A′) (i.e. the set of individual names occurring
in A or A′) that specifies which individual names are allowed to be mapped to the same
domain element, with the additional restriction that each equivalence class can contain
at most one element from Ind(A). For such a relation ≈, we fix a representative for each
equivalence class such that every class that contains an a ∈ Ind(A) has a as its representative.
We denote by A≈ the ABox resulting from A′ by replacing each new individual name by
the representative of its equivalence class. Note that there are exponentially many such
equivalence relations, each of which is of size polynomial in the size of ζ.

We now show that the existence of an interpretation I with I |= K and I |= ζ is equi-
valent to the existence of an equivalence relation ≈ as above and an interpretation I′ with
I′ |= (A∪A≈, T , R) and I′ |= ¬ρ1 ∧ · · · ∧ ¬ρm.

For the ‘if’ direction, assume that ≈ is an equivalence relation on the individual names
and I′ is a model of A, T , R, A≈, and ¬ρ1 ∧ · · · ∧¬ρm. By mapping each variable occurring
in χ1 ∧ · · · ∧ χℓ to the interpretation of the representative of the equivalence class of the
corresponding fresh individual name, we obtain homomorphisms from χi into I′ for each i,
1≤ i ≤ n. This shows that I′ is also a model of ζ.

For the ‘only if’ direction, assume that I |= K and I |= ζ. Thus, there are homomorphisms
from χi into I for every i, 1 ≤ i ≤ n. We define any pair of individual names occurring in
A∪A′ equivalent w.r.t. ≈ iff they are mapped to the same domain element by their respective
homomorphisms or I. The extension of I that maps each representative of its equivalence
class to exactly this domain element is obviously a model of A≈. It still satisfies A, T , R, and
¬ρ1 ∧ · · · ∧ ¬ρm since they do not contain the new individual names, and thus it is of the
required form.

The above problem is thus equivalent to finding an equivalence relation ≈ and an inter-
pretation I with I |= (A ∪A≈, T , R) and I 6|= ρ where ρ := ρ1 ∨ · · · ∨ ρm is the Boolean
UCQ that results from negating the conjunction of all negated CQs in ζ. This is the same as
asking whether (A∪A≈, T , R) does not entail ρ.

For the combined complexity, we can enumerate all equivalence relations ≈ in exponential
time, and check the above non-entailment for the polynomial-size SHQ-knowledge base and
UCQ resulting from each relation ≈, which can be done in EXPTIME [Lut08a]. For the data
complexity, we can guess a relation ≈ in non-deterministic polynomial time, and check the
non-entailment in NP [OCE06]. Hence, we obtain the desired complexity results for the
satisfiability problem of a conjunction of CQ-literals. �

In the remainder of this section, we present several constructions, most of which use the
above theorem, to derive the complexity results shown in Table 5.2 for temporalised query en-
tailment. As mentioned several times, the results depend on which symbols are allowed to be
rigid. It is well-known that one can simulate rigid concept names by rigid role names [BGL12],
which is why there are only three cases to consider.

5.2 The Complexity of Temporalised Query Entailment 93

As argued above, we show the lower bounds for the DL ALC, and the upper bounds for
the DL SHQ. Hence, in Section 5.2.1, we consider the lower bounds for temporalised query
entailment in ALC, whereas in Section 5.2.2, we consider the upper bounds for temporalised
query entailment in SHQ. However, the upper bounds for the most complex case of rigid
concept names are treated separately in Sections 5.2.3 and 5.2.4.

5.2.1 Lower Bounds for Temporalised Query Entailment in ALC

In this section, we investigate the lower bounds for temporalised query entailment of
Table 5.2.

For the combined complexity, we obtain the lower bounds by a simple reduction of the
satisfiability problem of ALC-LTL [BGL12].

Theorem 5.11. With respect to combined complexity, the temporalised query-entailment prob-

lem in ALC is

• EXPTIME-hard if NRC = NRR = ;;
• CO-NEXPTIME-hard if NRC 6= ; and NRR = ;; and

• 2EXPTIME-hard if NRC 6= ; and NRR 6= ;.

Proof. As shown in [BGL12], the satisfiability problem of ALC-LTL is EXPTIME-complete if
NRC = NRR = ;, NEXPTIME-complete if NRC 6= ; and NRR = ;, and 2EXPTIME-complete if
NRC 6= ; and NRR 6= ;.

Let now φ be an ALC-LTL-formula, C1 ⊑ D1, . . . , Cp ⊑ Dp be all GCIs occurring in φ, and
E1(a1), . . . , Em(am) be all concept assertions occurring in φ, where E1, . . . , Em are arbitrary
concepts. We define ψ to be the Boolean TCQ obtained from φ by replacing each Ci ⊑ Di by
¬(∃x .Ai(x)) and each E j by B j , where Ai , B j are concept names that do not occur in φ, for
every i, 1≤ i ≤ p, and every j, 1≤ j ≤ m. Moreover, we define

T := {Ai ≡ Ci ⊓¬Di | 1≤ i ≤ p} ∪ {B j ≡ E j | 1≤ j ≤ m}.

Then φ is satisfiable iff (;, T ,;) 6|= ¬ψ. We have thus reduced the satisfiability problem in
ALC-LTL to the temporalised query non-entailment problem in ALC, which yields the claimed
lower bounds. �

For the data complexity, we obtain the lower bounds directly from Theorem 5.10.

Corollary 5.12. With respect to data complexity, the temporalised query-entailment problem

in ALC is CO-NP-hard.

Proof. Theorem 5.10 states that deciding whether a conjunction of CQ-literals ζ is satisfiable
w.r.t. an atemporal ALC-knowledge base K is NP-complete w.r.t. data complexity. Since ζ is a
special TCQ and rigid names are irrelevant in the atemporal case, we obtain CO-NP-hardness
w.r.t. data complexity for the temporalised query-entailment problem in all the settings listed
in Table 5.2. �

94 Chapter 5. Temporalised Query Entailment in SHQ

Theorem 5.11 and Corollary 5.12 yield the lower bounds for temporalised query entailment
as shown in Table 5.2.

In the following sections, we present the ideas for the upper bounds w.r.t. combined
complexity and data complexity. For the former, we can match all lower bounds that we have
from Theorem 5.11. For the latter, however, we cannot match the lower bound of CO-NP in
the case where both concept names and role names may be rigid. While our constructions
need to deal with CQs and the additional expressivity of SHQ in an appropriate way, the
basic ideas are similar to those presented for SHOQ-LTL in Chapter 3. However, there are
several differences to the constructions of Chapter 3. Firstly, we have to deal with conjunctive
queries instead of axioms, and secondly, we do not allow nominals in this chapter. Thirdly,
in the semantics of TCQs (see Definition 5.8), the point of reference is the last time point n

and a temporal knowledge base has to be taken into account. Hence, although similar, the
constructions in the subsequent sections differ from the ones in Chapter 3.

5.2.2 Upper Bounds for Temporalised Query Entailment in SHQ

Similar to what was done for ALC-LTL in Lemma 4.3 in [BGL12] and also for SHOQ-LTL in
Lemma 3.13, we reduce the TCQ-satisfiability problem in SHQ to two separate satisfiability
problems.

In the following, let K = ((Ai)0≤i≤n, T , R) be a temporal SHQ-KB, and let φ be a Boolean
TCQ, for which we want to decide whether φ has a model w.r.t. K.

We again consider the propositional abstraction of φ. Its definition is very similar to
propositional abstraction of a SHOQ-LTL-formula (see Definition 3.6).

Definition 5.13 (Propositional abstraction). Let φ be a TCQ, and let Pφ be a finite set of

propositional variables such that there is a bijection p: CQ(φ)→ Pφ .

1. The propositional LTL-formula φp is obtained from φ by replacing every occurrence of a

CQ ψ in φ by its p-image p(ψ). We call φp the propositional abstraction of φ w.r.t. p.

2. Given a DL-LTL-structure I = (Ii)i≥0, its propositional abstraction w.r.t. p is the proposi-

tional LTL-structure Ip = (wi)i≥0 with

wi :=
�

p(ψ) |ψ ∈ CQ(φ) and Ii |= α
	

for every i ≥ 0. ♦

In the following, we assume that p: CQ(φ)→ Pφ is a bijection.2 Again for simplicity, for a
sub-TCQ ψ of φ, we denote by ψp the propositional abstraction of ψ w.r.t. the restriction
of p to CQ(ψ). The propositional abstraction φp of φ w.r.t. p is a propositional LTL-formula
that allows us to analyse the temporal structure of φ separately from the CQ-component.
The following lemma is very similar to Lemma 3.8, and its proof is analogous.

Lemma 5.14. Let I be a DL-LTL-structure with I |= K. Then, I is a model of φ w.r.t. K iff Ip

is a model of φp.

2As for SHOQ-LTL-formulas, it is obvious that such a set Pφ and such a bijection p exists for every TCQ.

5.2 The Complexity of Temporalised Query Entailment 95

Proof. Let I= (Ii)i≥0 be a DL-LTL-structure with I |= K, and Ip = (wi)i≥0 its propositional
abstraction w.r.t. p. Moreover, let i ≥ 0. We prove this lemma by showing that I, i |= φ iff
Ip, i |= φp by induction of the structure of φ.

For the base case, let φ be an CQ. Then, we have I, i |= φ iff Ii |= φ iff p(φ) ∈ wi iff

wi |= φp iff Ip, i |= φp.
For the induction steps, we obtain the claim by using the definition of the semantics and

the induction hypothesis. This can be done exactly as we did in the proof of Lemma 3.8. �

Again, the ‘only if’ direction of this lemma yields that satisfiability of φ w.r.t. K implies
satisfiability of φp. Note that, however, the ‘if’ direction does not yield the converse of this
implication as already argued for Lemma 3.8.

We again consider a set W ⊆ 2Pφ , which intuitively specifies the worlds that are allowed to
occur in an LTL-structure satisfyingφp. To express this restriction, we define the propositional
LTL-formula

φ
p

W
:= φp ∧�−�
� ∨

X∈W

�∧

p∈X

p ∧
∧

p∈Pφ\X
¬p

��
.

Note that a propositional LTL-formula �−�ψ is satisfied iff ψ holds at every point in time.3

The next lemma formalises the immediate connection between φ and φp

W
.

Lemma 5.15. If φ is satisfiable w.r.t. K, then there is a set W ⊆ 2Pφ and a propositional

LTL-structure W such that φ
p

W
is valid in W at time n.

Proof. Let I be a DL-LTL-structure that is a model of φ w.r.t. K, and let Ip = (wi)i≥0 be its
propositional abstraction w.r.t. p. We consider the finite set W := {wi | i ≥ 0} induced by I.
Using Lemma 5.14, it is easy to verify that the fact that I |= K and φ is valid in I at time n

implies that φp

W
is valid in Ip at time n. �

As argued above, guessing a set W and then checking whether there is a propositional
LTL-structure W such that the induced propositional LTL-formula φp

W
is valid in W at time n

is not sufficient for checking whether φ has a model w.r.t. K. We must also check whether W

can indeed be induced by some DL-LTL-structure that is a model of K. For that, we extend
the notion of r-satisfiability from Definition 3.10.

Definition 5.16 (R-satisfiability). Let W = {X1, . . . , Xk} ⊆ 2Pφ , and let ι be a mapping from

{0, . . . , n} into {1, . . . , k}. We call W r-satisfiable w.r.t. ι and K if there exist interpretations

J1 = (∆, ·J1), . . . , Jk = (∆, ·Jk), and I0 = (∆, ·I0), . . . , In = (∆, ·In) such that

• aJi = aJ j = aIℓ holds for every a ∈ NI and all i, j,ℓ, 1≤ i < j ≤ k and 0≤ ℓ≤ n;

• AJi = AJ j = AIℓ holds for every A∈ NRC and all i, j,ℓ, 1≤ i < j ≤ k and 0≤ ℓ≤ n;

• rJi = rJ j = rIℓ holds for every r ∈ NRR and all i, j,ℓ, 1≤ i < j ≤ k and 0≤ ℓ≤ n; and

• every Ji , 1≤ i ≤ k, and every I j , 0≤ j ≤ n, is a model of T and R;

3Note also that the propositional LTL-formula φp

W
for a SHOQ-LTL-formula φ as defined in Section 3.2 does

not use the �−-operator. We need this here due to the definition of the semantics where the point of reference
is time point n rather than 0.

96 Chapter 5. Temporalised Query Entailment in SHQ

• every Ji , 1≤ i ≤ k, is a model of the conjunction of CQ-literals

ζX i
:=
∧

p∈X i

p−1(p)∧
∧

p∈Pφ\X i

¬p−1(p); and

• every Ii , 0≤ i ≤ n, is a model of Ai and ζXι(i)
. ♦

The intuition underlying this definition is the following. The existence of the interpreta-
tions Ji, 1 ≤ i ≤ k, ensures that the conjunction ζX i

of the CQ-literals induced by X i is
consistent. In fact, a set W containing a set X i for which this does not hold cannot be
induced by a DL-LTL-structure. The interpretations Ii, 0 ≤ i ≤ n, constitute the first n+ 1
interpretations in such a DL-LTL-structure. In addition to inducing a set Xι(i) ∈W and thus
satisfying the corresponding conjunction ζXι(i)

, the interpretation Ii must also satisfy the
ABox Ai . Moreover, we ensure that the interpretations share the same domain, respect rigid
names, and satisfy the TBox T and the RBox R. Note that we can use Theorem 5.10 to check
whether interpretations satisfying the last three conditions of Definition 5.16 exist. As we
will see below, the difficulty lies in ensuring that the interpretations share the same domain
and respect rigid names.

Satisfaction of the temporal structure of φ by a DL-LTL-structure built this way is ensured
by testing φp

W
for satisfiability w.r.t. a side condition that ensures that the first n worlds are

those chosen by ι. For that, we extend the notion of t-satisfiability from Definition 3.11.

Definition 5.17 (T-satisfiability). Let W = {X1, . . . , Xk} ⊆ 2Pφ , and let ι be a mapping from

{0, . . . , n} into {1, . . . , k}. We call the propositional LTL-formula φp t-satisfiable w.r.t. W and ι
if there exists a propositional LTL-structure W= (wi)i≥0 such that

• W, n |= φp

W
, and

• wi = Xι(i) for every i, 0≤ i ≤ n. ♦

The next lemma shows that these two satisfiability problems, namely, t-satisfiability and
r-satisfiability, can be combined to decidable the TCQ-satisfiability problem in SHQ. The
proof of the lemma is very similar to the proofs of Lemmas 3.12 and 3.13.

Lemma 5.18. The TCQ φ is satisfiable w.r.t. the temporal knowledge base K iff there is a set

W = {X1, . . . , Xk} ⊆ 2Pφ and a mapping ι : {0, . . . , n} → {1, . . . , k} such that

• W is r-satisfiable w.r.t. ι and K, and

• φp is t-satisfiable w.r.t. W and ι.

Proof. For the ‘only if’ direction, assume that there is a DL-LTL-structure I = (Ii)i≥0 that
is a model of φ w.r.t. K, i.e. I |= K and I, n |= φ. Let Ip = (wi)i≥0 be the propositional
abstraction of I w.r.t. p. Recall that we have already seen in the proof of Lemma 5.15 that
I induces a finite set W := {wi | i ≥ 0} = {X1, . . . , Xk} ⊆ 2Pφ such that φp

W
is valid in Ip at

time n. Moreover, we have that for every i ≥ 0, there is an index νi ∈ {1, . . . , k} such that Ii

induces the set Xνi
, i.e.

Xνi
=
�

p(ψ) |ψ ∈ CQ(φ) and Ii |=ψ
	
,

5.2 The Complexity of Temporalised Query Entailment 97

and, conversely, for every ν ∈ {1, . . . , k}, there is an index i ≥ 0 such that ν = νi . We define
the mapping ι as follows: ι(i) = νi for every i, 0 ≤ i ≤ n. By definition of ι, Xνi

and Ip,
we also have wi = Xι(i) for every i, 0 ≤ i ≤ n. Thus, φp is t-satisfiable w.r.t. W and ι. For
every i, 1 ≤ i ≤ k, the interpretation Ji is obtained as follows. Let ℓ1, . . . ,ℓk be such that
νℓ1
= 1, . . . , νℓk

= k. Now, if we set Ji := Iℓi
, then we clearly have that Ji is a model of ζX i

.
It is now easy to see that the interpretations J1, . . . , Jk, and I0, . . . , In satisfy the conditions
for r-satisfiability of W w.r.t. ι and K.

For the ‘if’ direction, assume that there is a set W = {X1, . . . , Xk} ⊆ 2Pφ and a mapping
ι : {0, . . . , n} → {1, . . . , k} such that W is r-satisfiable w.r.t. ι and K and φp is t-satisfiable
w.r.t. W and ι. Hence, there is a propositional LTL-structure W = (wi)i≥0 such that φp

W
is

valid in W at time n and wi = Xι(i) for every i, 0 ≤ i ≤ n, and there are interpretations
J1, . . . , Jk, and I0, . . . , In such that the conditions in Definition 5.16 are satisfied.

By the definition of φp

W
, we have that for every world wi, there is exactly one index

νi ∈ {1, . . . , k} such that wi satisfies
∧

p∈Xνi

p ∧
∧

p∈Pφ\Xνi

¬p.

Since every wi, 0 ≤ i ≤ n, satisfies exactly the propositional variables of Xι(i), we have
ι(i) = νi. We can now define a DL-LTL-structure I := (Ii)i≥0 as follows. We set Ii := Jνi

for i > n. By Definition 5.16, each Ii is a model of ζXνi
, i.e. it satisfies exactly the CQs

specified by the propositional variables in Xνi
. This yields since W, n |= φp

W
, that I, n |= φ.

It also follows directly from Definition 5.16 that I |= K. Hence, we have that φ is satisfiable
w.r.t. K. �

To obtain a decision procedure for the TCQ-satisfiability problem in SHQ, we have to non-
deterministically guess or construct the set W and the mapping ι, and then check the two
conditions of Lemma 5.18. Depending on which symbols are allowed to be rigid, we use
different constructions to achieve that. First, we focus on deciding t-satisfiability w.r.t. a
given set W and a given mapping ι.

Deciding T-satisfiability

From now on, let W = {X1, . . . , Xk} ⊆ 2Pφ , and let ι : {0, . . . , n} → {1, . . . , k} be a mapping
that specifies a set Xι(i) for each of the ABoxes Ai , 0≤ i ≤ n. We proceed similar to the proof
of Lemma 3.14, where we have shown that we can decide t-satisfiability of the propositional
abstraction of a SHOQ-LTL-formula w.r.t. a set of worlds W in time exponential in the size of
the propositional abstraction and linear in the size of W. For that, we constructed a Büchi-
automaton for the propositional abstraction and removed all transitions that are labelled
with a letter that is not contained in W. However, the difference here is that we have to
take care of the second condition of t-satisfiability (see Definition 5.17), and that we have to
ensure that φp is satisfied as time point n rather than 0.

We check this by using the same idea that we employed in Section 2.2.2 when we construc-
ted a Büchi-automaton that ensures that a propositional LTL-formula is satisfied at a given
time point. We attach a counter from {0, . . . , n+ 1} to the states of the Büchi-automaton.
Transitions where the counter is i < n+ 1 check if the current world corresponds to Xι(i) and
increase the counter by 1.

98 Chapter 5. Temporalised Query Entailment in SHQ

In the following, let N = (Q,ΣPφ
,∆,Q0, F) be a Büchi-automaton such that for every

ω-word w= w0w1w2 . . . ∈ Σω
Pφ

, we have that w ∈ Lω(N) iff φp is valid in the propositional

LTL-structure W = (wi)i≥0 at time n. We have shown in Section 2.2.2 how such a Büchi-
automaton can be constructed. Moreover, we have shown in Lemma 2.24 that we can
construct such a Büchi-automaton in time exponential in the size of φp and polynomial in n.

We define the Büchi-automaton N ′ = (Q′,ΣPφ
,∆′,Q′0, F ′) as follows:

• Q′ :=Q× {0, . . . , n+ 1};
• ((q,ℓ), σ, (q′,ℓ′)) ∈ ∆′ iff

– (q,σ, q′) ∈∆,
– σ ∈W,
– ℓ≤ n implies σ = Xι(ℓ), and

– ℓ′ =

¨
ℓ+ 1 if ℓ≤ n, and

ℓ otherwise;

• Q′0 :=Q0 × {0}; and

• F ′ := F × {n+ 1}.
The next lemma shows that this Büchi-automaton is correct.

Lemma 5.19. For every ω-word w= w0w1w2 . . . ∈ Σω
Pφ

, we have w ∈ Lω(N
′) iff φ

p

W
is valid

in the propositional LTL-structure W = (wi)i≥0 at time n, and wi = Xι(i) for every i, 0≤ i ≤ n.

Proof. For the ‘only if’ direction, assume that φp

W
is valid in the propositional LTL-structure

W = (wi)i≥0 at time n, and that we have wi = Xι(i) for every i, 0≤ i ≤ n. Obviously, we have
also W, n |= φp since φp is a conjunct of φp

W
. This yields that w = w0w1w2 . . . ∈ Lω(N).

Thus, there is a run S0S1S2 . . . of N on w. Then,

(S0, 0)(S1, 1) . . . (Sn, n)(Sn+1, n+ 1)(Sn+2, n+ 1) . . .

is a accepting run of N ′ on w due to the following reasons:

• Obviously, we have (Si ,ℓ) ∈Q′ for every i ≥ 0 and every ℓ, 0≤ k ≤ n+ 1.

• We have for every i, 0≤ i ≤ n, that

((Si , i), wi , (Si+1, i + 1)) ∈ ∆′,

and for every i ≥ n+ 1 that

((Si , n+ 1), wi , (Si+1, n+ 1)) ∈ ∆′

since:
– (Si , wi , Si+1) ∈∆ by construction;
– wi ∈W since W is a model of φp

W
;

– i ≤ n implies wi = Xι(i) by construction; and
– the condition for incrementing the second component of a state (until n+ 1 is

reached) is obviously also satisfied.

5.2 The Complexity of Temporalised Query Entailment 99

• Since S0 ∈Q0, we have (S0, 0) ∈Q′0.

• Since S0S1S2 . . . is an accepting run of N on w, there are infinitely many j ≥ 0 such
that S j ∈ F . The definition of F ′ yields now that the above run is accepting.

For the ‘if’ direction, assume that w = w0w1w2 . . . ∈ Lω(N
′), i.e. there is an accepting run

(S0, 0)(S1, 1) . . . (Sn, n)(Sn+1, n+ 1)(Sn+2, n+ 1) . . .

of N ′ on w.
By the definition of ∆′, we have wi = Xι(i) for every i, 0 ≤ i ≤ n. To show that φp

W
is

valid in W := (wi)i≥0 at time n observe that we have wi ∈W for every i ≥ 0 again by the
definition of ∆′. Thus, the conjunct

�−�

� ∨

X∈W

�∧

p∈X

p ∧
∧

p∈Pφ\X
¬p

��

of φp

W
is clearly satisfied by W (at any time point).

Moreover, we have that S0S1S2 . . . is an accepting run of N on w by the definition of Q′0,
∆
′, and F ′. Thus, φp is valid in W at time n. Hence, we obtain that φp

W
is valid in W at

time n. �

This lemma implies that Lω(N
′) 6= ; iff φp is t-satisfiable w.r.t. W and ι. We can thus decide

the latter problem by checking N ′ for emptiness, which yields the following complexity
result.

Lemma 5.20. Deciding whetherφp is t-satisfiable w.r.t. W and ι can be done in time exponential

in the size of φp, linear in the size of W, and polynomial in n.

Proof. As mentioned above the Büchi-automaton N can be constructed in time exponential in
the size of φp and polynomial in n (see Lemma 2.24). Note that the Büchi-automaton N ′ can
be constructed in time linear in the size of N , the size of W, and n, and thus the size of N ′ is
linear in the size of N and n, and thus exponential in the size of φp and polynomial in n.
Since the emptiness problem for Büchi-automata can be solved in polynomial time [VW94],
this yields that t-satisfiability of φp w.r.t. W and ι can be decided in time exponential in the
size of φp, linear in the size of W, and polynomial in n. �

However, due to Lemma 5.18, the complexity of the TCQ-satisfiability problem also depend
on the complexity of deciding whether W is r-satisfiable w.r.t. ι and K. This depends again
on the fact whether there are concept or role names that are allowed to be rigid.

In the following sections, we establish some results as to this complexity in the cases
without rigid names, and with rigid concept and role names. The case without rigid role
names, but with rigid concept names, is considered in Section 5.2.3 for data complexity and
in Section 5.2.4 for combined complexity.

The Case without Rigid Names

In this section, we consider the case where neither concept names nor role names are allowed
to be rigid, i.e. NRC = NRR = ;. We establish the following complexity results.

100 Chapter 5. Temporalised Query Entailment in SHQ

Theorem 5.21. If NRC = NRR = ;, the temporalised query-entailment problem in SHQ is

• in EXPTIME w.r.t. combined complexity and

• in CO-NP w.r.t. data complexity.

Proof. Let φ be a Boolean TCQ, and let K = ((Ai)0≤i≤n, T , R) be a temporal SHQ-knowledge
base. As argued above, the temporalised query non-entailment problem has the same com-
plexity as the TCQ-satisfiability problem. We can decide whether φ is satisfiable w.r.t. K

using Lemma 5.18. For that, let p: CQ(φ)→ Pφ be a bijection.
For combined complexity, we proceed as follows. We define

W := {X ∈ 2Pφ | ζX is satisfiable w.r.t. (;, T , R)},

where ζX is defined as in Definition 5.16. Note that W = {X1, . . . , Xk} can be constructed
in time exponential in the size of φ, T , and R. Indeed, there are exponentially many sets
X ∈ 2Pφ , but each ζX can be constructed in time polynomial in the size of φ, and is thus of
size polynomial in the size of φ. By Theorem 5.10, the problem of checking whether the
conjunction of CQ-literals ζX is satisfiable w.r.t. (;, T , R) is EXPTIME-complete. Thus, we
obtain the set W after exponentially many EXPTIME-tests, i.e. in time exponential in the size
of φ, T , and R. Moreover, we enumerate all possible mappings ι : {0, . . . , n} → {1, . . . , k} in
time exponential in the size of φ and K. For each such ι and every i, 0 ≤ i ≤ n, we check
whether the conjunction of CQ-literals ζXι(i)

is satisfiable w.r.t. (Ai , T , R) in time exponential
in the size of φ and K (using again Theorem 5.10). After that, we check for ever mapping ι
that passes this test, whether φp is t-satisfiable w.r.t. W and ι, which, by Lemma 5.20, can be
done in time exponential in the size of φp (and thus in time exponential in the size of φ),
linear in the size of W, and polynomial in n.

We now show that for every mapping ι that passes the above tests, we have that W is
r-satisfiable w.r.t. ι and K. Since every ζX i

, 1≤ i ≤ k is satisfiable w.r.t. (;, T , R), there are
models J1, . . . , Jk such that every Ji , 1≤ i ≤ k, is a model of ζX i

w.r.t. (;, T , R). Moreover,
since every ζXι(j)

, 0≤ j ≤ n, is satisfiable w.r.t. (A j , T , R), there are models I0, . . . , In such
that every Ii, 0≤ j ≤ n, is a model of ζXι(j)

w.r.t. (;, T , R). We can assume w.l.o.g. that all
of these models have the same domain since we can assume w.l.o.g. that their domains are
countably infinite due to to the Löwenheim-Skolem theorem [Löw15; Sko20]. Furthermore,
we can assume w.l.o.g. that all individual names are interpreted by the same domain elements
in all models. Since NRC = NRR = ;, this yields that W is r-satisfiable w.r.t. ι and K.

Thus, we have by Lemma 5.18 that if such a mapping ι exists, then φ is satisfiable w.r.t. K.
Conversely, again by Lemma 5.18, we have that if φ is satisfiable w.r.t. K, then there is
a set W ′ = {X ′1, . . . , X ′

k′} ⊆ 2Pφ and a mapping ι′ : {0, . . . , n} → {1, . . . , k′} such that W ′ is
r-satisfiable w.r.t. ι′ and K, and φp is t-satisfiable w.r.t. W ′ and ι′. The definition of W above
yields that W ′ ⊆W, and thus k′ ≤ k. We define the mapping ι : {0, . . . , n} → {1, . . . , k} such
that Xι(i) = X ′

ι′(i) for every i, 0≤ i ≤ n. Hence, we have that W is r-satisfiable w.r.t. ι and K.

Moreover, it is easy to see that the t-satisfiability of φp w.r.t. W ′ and ι′ implies that φp is
t-satisfiable w.r.t. W and ι.

Hence, we can check whether φ is satisfiable w.r.t. K using the above decision procedure,
which shows that the TCQ-satisfiability problem in SHQ is in EXPTIME w.r.t. combined
complexity. Since EXPTIME is closed under complement, we obtain that the temporalised
query-entailment problem is in EXPTIME w.r.t. combined complexity.

5.2 The Complexity of Temporalised Query Entailment 101

For data complexity, we non-deterministically guess a set W = {X1, . . . , Xk} ⊆ 2Pφ and
a mapping ι : {0, . . . , n} → {1, . . . , k}. Note that since Pφ does not depend on the ABoxes
in K, we have that W is of constant size w.r.t. the ABoxes and ι is of size linear in n. Thus,
we can perform these guesses in time polynomial in the size of the ABoxes. Moreover, for
checking whether W is r-satisfiable w.r.t. ι and K, all conditions of Definition 5.16 can be
checked in non-deterministic polynomial time w.r.t. data complexity using Theorem 5.10.
By Lemma 5.20, deciding whether φp is t-satisfiable w.r.t. W and ι can be done in time
polynomial in n w.r.t. data complexity. Then, by Lemma 5.18, we obtain that the TCQ-
satisfiability problem in SHQ is in NP w.r.t. data complexity. Thus, we obtain that the
temporalised query-entailment problem in SHQ is in CO-NP w.r.t. data complexity. �

Together with Theorem 5.11 and Corollary 5.12, we obtain that the temporalised query-
entailment problem in SHQ is EXPTIME-complete w.r.t. combined complexity and CO-NP-
complete w.r.t. data complexity if neither concept nor role names are allowed to be rigid.

The Case of Rigid Concept and Role Names

In this section, we consider the case where both concept and role names may be rigid,
i.e. NRC 6= ; and NRR 6= ;.

Let us assume in the following that a set W = {X1, . . . , Xk} ⊆ 2Pφ , and a mapping
ι : {0, . . . , n} → {1, . . . , k} is given. Note that if concept and role names may be rigid, the
satisfiability checks employed in the previous section (see the proof of Theorem 5.21) for
deciding whether W is r-satisfiable w.r.t. ι and K are no longer independent from each other.
To make sure that the models respect the rigid names, we use a renaming technique similar
to the one we used in Section 3.2.2, which was adopted from [BGL12]. The difference here
is that we have to introduce more copies of the flexible symbols.

For every i, 1 ≤ i ≤ k + n+ 1, every flexible concept name A occurring in T , and every
flexible role name r occurring in T or R, we introduce copies A(i) and r(i). We call A(i) the i-th
copy of A, and similarly r(i) the i-th copy of r. The conjunctive query α(i) (the axiom β (i))
is obtained from a conjunctive query α (an axiom β) by replacing every occurrence of a
flexible name by its i-th copy. Similarly, for 1 ≤ ℓ ≤ k, the conjunction of CQ-literals ζ(i)Xℓ

is obtained from ζXℓ
(see Definition 5.16) by replacing each CQ α occurring in ζXℓ

by α(i).
Finally, we define

ζW,ι :=
∧

1≤i≤k

ζ
(i)
X i
∧
∧

0≤i≤n

�
ζ
(k+i+1)
Xι(i)

∧
∧

α∈Ai

α(k+i+1)

�
,

TW,ι :=
�
β (i) | β ∈ T and 1≤ i ≤ k+ n+ 1

	
, and

RW,ι :=
�
γ(i) | γ ∈R and 1≤ i ≤ k+ n+ 1

	
.

Note that in the definition of ζW,ι it is essential that the ABoxes do not contain complex
concepts, otherwise they could not be viewed as sets of conjunctive queries, and hence ζW,ι

would not be a conjunction of CQ-literals.

Lemma 5.22. The set W is r-satisfiable w.r.t. ι and K iff the conjunction of CQ-literals ζW,ι is

satisfiable w.r.t. the knowledge base (TW,ι, RW,ι).

102 Chapter 5. Temporalised Query Entailment in SHQ

Proof. For the ‘only if’ direction, let J1 = (∆, ·J1), . . . , Jk = (∆, ·Jk), and I0 = (∆, ·I0), . . . ,
In = (∆, ·In) be the interpretations required by Definition 5.16 for the r-satisfiability of W

w.r.t. ι and K. We construct the interpretation J = (∆, ·J) as follows:

• every individual name and every rigid name is interpreted as in J1;

• the i-th copy, 1 ≤ i ≤ k, of each flexible name is interpreted like the original name
in Ji; and

• the i-th copy, k+1≤ i ≤ k+ n+1, of each flexible name is interpreted like the original
name in Ii−k−1.

It is easy to verify that J is a model of ζW,ι and (TW,ι, RW,ι).
For the ‘if’ direction, let J be a model of ζW,ι w.r.t. (TW,ι, RW,ι). We obtain the interpreta-

tions J1, . . . , Jk, and I0, . . . , In by the inverse construction to the one above:

• the domain of all these interpretations is the domain of J ;

• every individual name and every rigid name is interpreted by these interpretations as
in J ;

• every flexible name is interpreted in Ji , 1≤ i ≤ k, as its i-th copy is interpreted in J ;
and

• every flexible name is interpreted in Ii , 0≤ i ≤ n, as its (k+ i+1)-st copy is interpreted
in J .

Again, it is easy to verify that these interpretations satisfy the conditions for r-satisfiability
of W w.r.t. ι and K. �

Using this lemma, we can prove the following complexity results.

Theorem 5.23. If NRC 6= ; and NRR 6= ;, the temporalised query-entailment problem in SHQ

is

• in 2EXPTIME w.r.t. combined complexity and

• in EXPTIME w.r.t. data complexity.

Proof. Let φ be a Boolean TCQ, and let K = ((Ai)0≤i≤n, T , R) be a temporal SHQ-knowledge
base. We again consider the TCQ-satisfiability problem, which has the same complexity as
the temporalised query non-entailment problem. We decide whether φ is satisfiable w.r.t. K

using Lemma 5.18. For that, let p: CQ(φ)→ Pφ be a bijection. We first enumerate all sets
W = {X1, . . . , Xk} ⊆ 2Pφ and all mappings ι : {0, . . . , n} → {1, . . . , k}, which can be done in
time doubly exponential in the size of φ and exponential in n.

For every such pair (W, ι), we check t-satisfiability of φp

W
w.r.t. W and ι in time exponential

in the size of φp (and thus in time exponential in the size of φ), linear in the size of W,
and polynomial in n (by Lemma 5.20), and check W for r-satisfiability w.r.t. ι and K. By
Lemma 5.18, φ has a model w.r.t. K iff at least one pair passes both tests.

For the r-satisfiability check, we use Lemma 5.22. We construct the conjunction of CQ-
literals ζW,ι and the knowledge base (TW,ι, RW,ι), which can be done in time exponential
in the size of φ, T , and R, and in time linear in the size of A1, . . . , An. Moreover, the size

5.2 The Complexity of Temporalised Query Entailment 103

of ζW,ι and (TW,ι, RW,ι) is at most exponential in the size of φ, T , and R, and linear in the
size of A1, . . . , An.

By Theorem 5.10 we can check whether ζW,ι is satisfiable w.r.t. (TW,ι, RW,ι) in time doubly

exponential in the size of φ, T , and R, and exponential in the size of A1, . . . , An. Using
this decision procedure, we can check whether φ is satisfiable w.r.t. K. Thus, the TCQ-
satisfiability problem in SHQ is in 2EXPTIME w.r.t. combined complexity and in EXPTIME

w.r.t. data complexity. Since both 2EXPTIME and EXPTIME are closed under complement,
we obtain that the temporalised query-entailment problem is in 2EXPTIME w.r.t. combined
complexity and in EXPTIME w.r.t. data complexity. �

Together with Theorem 5.11 and Corollary 5.12, we obtain that the temporalised query-
entailment problem in SHQ is 2EXPTIME-complete w.r.t. combined complexity, and CO-NP-
hard and in EXPTIME w.r.t. data complexity if both concept and role names may be rigid.

Unfortunately, the above approach does not allow us to match the lower bound for data
complexity, and thus leaves a gap in the data complexity results. As seen in the proof
of Theorem 5.23, the issue is that the size of ζW,ι depends on n. More precisely, recall
that constructing ζW,ι involves copying the type ζXι(i)

assigned to the ABox Ai for every i,
1≤ i ≤ n. Thus, we introduce linearly many negated CQs in ζW,ι, and Theorem 5.10 yields
only an upper bound of EXPTIME for the satisfiability problem. Note that linearly many
non-negated CQs in ζW,ι are not problematic, as they can be instantiated and viewed as part
of the ABox, as detailed in the proof of Theorem 5.10. However, we can match the lower
bound of CO-NP for the data complexity in the following special cases.

Lemma 5.24. If NRC 6= ; and NRR 6= ;, the temporalised query-entailment problem in SHQ is

in CO-NP w.r.t. data complexity if any of the following conditions apply:

1. The number n of the input ABoxes is bounded by a constant.

2. The set of individual names allowed to occur in the input ABoxes is fixed.

Proof. As done in the proof of Theorem 5.21, we decide the TCQ-satisfiability problem as
follows. We first non-deterministically guess a set W = {X1, . . . , Xk} ⊆ 2Pφ and a mapping
ι : {0, . . . , n} → {1, . . . , k} in time polynomial in the size of the input ABoxes. By Lemma 5.20,
deciding whether φp is t-satisfiable w.r.t. W and ι can be done in time polynomial in n w.r.t.
data complexity. Thus, due to Lemma 5.18, is suffices to show that in the above mentioned
special cases r-satisfiability of W w.r.t. ι and K can be checked in non-deterministic polynomial
time w.r.t. data complexity. For that, we use again Lemma 5.22.

1. If n is bounded by a constant, then the number of negated CQs in ζW,ι is constant,
and thus Theorem 5.10 yields the desired upper bound of NP for the TCQ-satisfiability
problem.

2. If the set of individual names is fixed, then the number of possible assertions involving
concept names opccurring in the TBox is constant. Note that the concept names
occurring only in the ABoxes do not affect the entailment of the TCQ, as they can
only occur in positive assertions, and can thus always be satisfied by appropriately
interpreting the new names. This allows us to restrict the formula ζW,ι to contain
at most one copy of ζXι(i)

for each distinct combination of ζXι(i)
and Ai (ignoring

104 Chapter 5. Temporalised Query Entailment in SHQ

assertions about names that do not occur in the TBox). Clearly, the satisfiability of each
combination of an ABox with such a conjunction of CQ-literals need to be checked
only once. Since there are only constantly many such combinations, the modified
TCQ ζ′

W,ι again contains only constantly many negated CQs. As in the previous case,
Theorem 5.10 yields again that the TCQ-satisfiability problem is in NP.

Since the TCQ-satisfiability problem has the same complexity as the temporalised query
non-entailment problem, we obtain the desired complexity results. �

It is still open, however, where any of these conditions is necessary.

5.2.3 Data Complexity for the Case of Rigid Concept Names

In this section, we consider the case where only concept names are allowed to be rigid,
i.e. NRC 6= ; and NRR = ;. We show that, in this case, the temporalised query-entailment
problem is in CO-NP w.r.t. data complexity.

For that, we again first assume that a set W = {X1, . . . , Xk} ⊆ 2Pφ and a mapping
ι : {0, . . . , n} → {1, . . . , k} are given. We first show how to decide r-satisfiability of W w.r.t. ι
and K in non-deterministic polynomial time w.r.t. data complexity.

Similar to what we did in the previous sections, we construct conjunctions of CQ-literals
which we check for satisfiability. The approach is a mixture of those of employed for the case
without rigid names and for the case with rigid concept and role names. More precisely, we
combine several satisfiability checks required for r-satisfiability, but we do not go as far as
compiling all of them into just one conjunction as done to obtain Lemma 5.22. For that we
use the ideas of Section 3.2.3 and of the proof of Lemma 6.3 in [BGL12].

We consider the conjunctions of CQ-literals ξi ∧ ζW , 0≤ i ≤ n, and the knowledge base
(TW , RW), where

ξi :=
∧

α∈Ai

α(ι(i)), ζW :=
∧

1≤i≤k

ζ
(i)
X i

,

TW :=
�
β (i) | β ∈ T and 1≤ i ≤ k

	
, RW :=
�
γ(i) | γ ∈R and 1≤ i ≤ k

	
.

However, for r-satisfiability we have to make sure that rigid consequences of the form A(a)

for a rigid concept name A∈ NRC and an individual name a ∈ NI are shared between all of
these conjunctions ξi ∧ ζW . It suffices to do this for the set RCon(T) of rigid concept names
occurring in T since those occurring only in ABox-assertions cannot affect the entailment of
the TCQ φ.

Let D = (RCon(T), Y) with Y ⊆ 2RCon(T) be arbitrary, and let τ be a mapping from
Ind(φ)∪Ind(K) to Y. Recall that as in Definition 3.18, the idea is that D fixes the combinations
of rigid concept names that are allowed to occur in the models of ξi ∧ ζW , 0≤ i ≤ n. The
mapping τ assigns to each individual name occurring in φ or K one such combination. To
express this formally, we extend the TBox by the axioms in

Tτ :=
�
Aτ(a) ≡ CRCon(T),τ(a) | a ∈ Ind(φ)∪ Ind(K)

	
,

5.2 The Complexity of Temporalised Query Entailment 105

where Aτ(a) are fresh rigid concept names and, for every Y ⊆ RCon(T), the concept CRCon(T),Y

is defined as in Definition 3.18. Correspondingly, we extend the conjunctions ξi ∧ ζW by

ξτ :=
∧

a∈Ind(φ)∪Ind(K)

Aτ(a)

in order to fix the behaviour of the rigid concept names on the named individuals.
The next lemma states how these notions can be used to characterise r-satisfiability of W

w.r.t. ι and K. Its proof is very similar to the proof of Lemma 3.19.

Lemma 5.25. If NRC 6= ; and NRR = ;, then W is r-satisfiable w.r.t. ι and K iff there exist a

pair D = (RCon(T), Y) with Y ⊆ 2RCon(T) and a mapping τ: Ind(φ)∪ Ind(K)→ Y such that for

every i, 0≤ i ≤ n, the conjunction of CQ-literals ξi ∧ζW ∧ξτ has a model w.r.t. (TW ∪Tτ, RW)

that respects D.

Proof. For the ‘if’ direction, assume that Ii, 0≤ i ≤ n, are the models of ξi ∧ ζW ∧ ξτ w.r.t.
(TW ∪ Tτ, RW), respectively, that respect D; see Definition 3.18. Similar to the proof of
Lemma 3.19 (and Lemma 6.3 in [BGL12]), we can assume w.l.o.g. that their domains ∆i

are countably infinite and for each Y ∈ Y there are countably infinitely many elements
d ∈ (CRCon(T),Y)

Ii , where CRCon(T),Y is defined in Definition 3.18. This is a consequence of
the Löwenheim-Skolem theorem [Löw15; Sko20] and the fact that the countably infinite
disjoint union of Ii with itself is again a model of ξi∧ζW ∧ξτ w.r.t. (TW ∪Tτ, RW). The latter
follows from the observation that for every CQ ψ, there is a homomorphism of ψ into Ii

iff there is a homomorphism of ψ into the disjoint union of Ii with itself. One direction is
trivial, while whenever there is a homomorphism of ψ into the disjoint union of Ii with itself,
we can construct a homomorphism of ψ into Ii by replacing the elements in the image of
this homomorphism by the corresponding elements of ∆i . It is easy to see that the resulting
homomorphism still satisfies all atoms of the CQ ψ.

Consequently, we can partition the domains ∆i into the countably infinite sets

∆i(Y) :=
�

d ∈∆i | d ∈ (CRCon(T),Y)
Ii
	

for Y ∈ Y. By the assumptions above and the fact that every Ii satisfies ξτ and Tτ, there are
bijections πi : ∆0→∆i , 1≤ i ≤ n, such that

• πi(∆0(Y)) =∆i(Y) for every Y ∈ Y, and

• πi(a
I0) = aIi for every a ∈ Ind(φ)∪ Ind(K).

Thus, we can assume in the following that the models Ii, 0 ≤ i ≤ n, actually share the
same domain ∆ and interpret the concept names in RCon(T) and the individual names
occurring in φ or K in the same way. We can now construct the interpretations required by
Definition 5.16 by appropriately relating the flexible names and their copies. For every j,
1 ≤ j ≤ k, we define J j = (∆, ·J j) by interpreting the concept names in RCon(T) and the
individual names occurring in φ or K as in I0, and the flexible names as their j-th copies
in I0. Since I0 is a model of ζW and (TW , RW), we have that J j is a model of ζX j

, T , and R.

Similarly, for every i, 0≤ i ≤ n, we define I′
i
= (∆, ·I′i) by interpreting the concept names

in RCon(T) and the individual names occurring in φ or K as in Ii , and the flexible names as
their ι(i)-th copies in Ii. Since Ii is a model of ξi, ζW , and (TW , RW), we obtain that Ii is

106 Chapter 5. Temporalised Query Entailment in SHQ

a model of Ai, ζXι(i)
, T , and R. All these models share the same domain and interpret the

rigid concept names in RCon(T) and the individual names occurring in φ or K in the same
way. Note that the interpretation of the names that occur neither K nor in in φ is irrelevant
and can be fixed arbitrarily, as long as the UNA is satisfied.

Thus, it remains to consider those rigid concept names A occurring in (Ai)0≤i≤n, but not
in T . Since they are not constrained by the TBox, it suffices to interpret them in such a way
that they satisfy all ABox-assertions. But since these assertions can only occur positively in
the ABoxes, the set {aI0 | A(a) ∈ Ai , 0≤ i ≤ n} fulfils this restriction. Thus, the conditions
required for r-satisfiability of W w.r.t. ι and K by Definition 5.16 are satisfied.

For the ‘only if’ direction, assume that J j = (∆, ·J j), 1≤ j ≤ k, and Ii = (∆, ·Ii), 0≤ i ≤ n,
are the interpretations required for r-satisfiability of W w.r.t. ι and K by Definition 5.16. It is
easy to see that for every i, 0≤ i ≤ n, one can combine the interpretations Ii , J1, . . . , Jk to
obtain a model I′

i
of ξi∧ζW w.r.t. (TW , RW) by interpreting the ι(i)-th copy of a flexible name

as the original name in Ii, and the j-th copy of a flexible name as the original name in J j

for each j, 1≤ j ≤ k, with j 6= ι(i). Obviously, the interpretations I′0, . . . , I′n share the same
domain, interpret individual names in the same way, and respect rigid concept names. Thus,
for every Y ⊆ RCon(T), we have that (CRCon(φ),Y)

I′0 = (CRCon(φ),Y)
I′

i for every i, 1 ≤ i ≤ n.
We define D := (RCon(T), Y) with

Y :=
�

Y ⊆ RCon(φ) | there is some d ∈∆ with d ∈ (CRCon(T),Y)
I′0
	
.

By construction of D, we obtain that the interpretations I′
i
, 0≤ i ≤ n, respect D. Moreover,

for every a ∈ Ind(φ)∪ Ind(K), we define τ(a) := Y ⊆ RCon(T) iff a ∈ (CRCon(T),Y)
I′0 , which

ensures that the interpretations I′
i

can be extended to models of ξτ and Tτ by appropriately
interpreting the new concept names Aτ(a). Hence, we obtain models of ξi ∧ ζW ∧ ξτ w.r.t.
(TW ∪ Tτ, RW) that respect D as required. �

Using this lemma, we can prove our complexity result.

Theorem 5.26. If NRC 6= ; and NRR = ;, the temporalised query-entailment problem in SHQ

is in CO-NP w.r.t. data complexity.

Proof. Let φ be a Boolean TCQ, and let K = ((Ai)0≤i≤n, T , R) be a temporal SHQ-knowledge
base. We again consider the TCQ-satisfiability problem, which has the same complexity as the
temporalised query non-entailment problem. We decide whetherφ is satisfiable w.r.t. K using
Lemma 5.18. For that, let p: CQ(φ)→ Pφ be a bijection. We first non-deterministically guess
a set W = {X1, . . . , Xk} ⊆ 2Pφ and a mapping ι : {0, . . . , n} → {1, . . . , k} in time polynomial
in the size of the input ABoxes. By Lemma 5.20, deciding whether φp is t-satisfiable w.r.t. W

and ι can be done in time polynomial in n w.r.t. data complexity.
Thus, due to Lemma 5.18, is suffices to show that r-satisfiability of W w.r.t. ι and K

can be checked in non-deterministic polynomial time w.r.t. data complexity. For that,
we use Lemma 5.25. We non-deterministically guess a set Y ⊆ 2RCon(T) and a mapping
τ: Ind(φ) ∪ Ind(K) → Y, which can be done in time polynomial in the size of the input
ABoxes. Indeed, Y only depends on T , and τ is of size linear in the size of the input ABoxes.
We define D := (RCon(T), Y). Next, we construct for every i, 0 ≤ i ≤ n, the conjunction
of CQ-literals ξi ∧ ζW ∧ ξτ and the knowledge base (TW ∪ Tτ, RW). Note that ξi and ξτ
are of size polynomial in the size of the input ABoxes, and that the sizes of ζW , TW , Tτ,

5.2 The Complexity of Temporalised Query Entailment 107

and RW do not depend on the input ABoxes. Furthermore, only ζW may contain negated
CQs, and thus their size does not depend on the size of the input ABoxes. It remains to
show that we can check the existence of a model of ξi ∧ ζW ∧ ξτ w.r.t. (TW ∪ Tτ, RW) that
respects D in non-deterministic polynomial time w.r.t. data complexity. For that, observe that
the restriction imposed by D can equivalently be expressed as the conjunction of CQ-literals

ζD :=
�
¬∃x .AD(x)
�
∧
∧

Y∈Y

∃x .AY (x),

where AD and AY are fresh concept names that are restricted by adding the following axioms
to the TBox: AY ≡ CRCon(T),Y and CRCon(T),Y ⊑ AY for every Y ∈ Y, and AD ≡

d
Y∈D ¬AY .4

We denote by T ′
W

the resulting extension of the TBox TW ∪ Tτ. Thus, it is enough to check
whether ξi ∧ζW ∧ξτ∧ζD has a model w.r.t. (T ′

W
, RW). Note that neither ζD nor T ′

W
depend

on the input ABoxes. Hence, one can see from the proof of Theorem 5.10 that this satisfiability
problem can be decided in non-deterministic polynomial time w.r.t. data complexity. Thus, we
obtain that the TCQ-satisfiability problem in SHQ is in NP w.r.t. data complexity, which shows
that the temporalised query-entailment problem in SHQ is in CO-NP w.r.t. data complexity.�

Together with Corollary 5.12, this yields that the temporalised query-entailment problem in
SHQ is CO-NP-complete w.r.t. data complexity if only concept names are allowed to be rigid.

5.2.4 Combined Complexity for the Case of Rigid Concept Names

In this section, we again consider the case where only concept names are allowed to be rigid,
i.e. NRC 6= ; and NRR = ;. However, we consider the combined complexity of the temporalised
query-entailment problem. Unfortunately, the approach used in the previous section does
not yield a combined complexity of CO-NEXPTIME. The reason is that the conjunctions of
CQ-literals ζW and ζD are of size exponential in the size of φ, and thus Theorem 5.10 only
yields an upper bound of 2EXPTIME. Therefore, we describe a different approach with a
combined complexity of CO-NEXPTIME.

As a first step, we rewrite the Boolean TCQ φ into a Boolean TCQ ψ of size polynomial in
the size of φ and the temporal KB K such that answering φ at time n w.r.t. K is equivalent
to answering ψ at time 0 w.r.t. a temporal KB containing only a trivial sequence of ABoxes.
This is done by compiling the ABoxes into the query and postponing the query φ using the
X-operator.

Lemma 5.27. Let K = ((Ai)0≤i≤n, T , R) be a temporal KB and φ be a Boolean TCQ. Then

there is a Boolean TCQ ψ of size polynomial in the size of φ and K such that K |= φ iff

(;, T , R) |=ψ.

Proof. We define the Boolean TCQ

ψ := (γ0 ∧ Xγ1 ∧ · · · ∧ Xn γn)→ Xnφ,

4We did not add all the axioms AY ≡ CRCon(T),Y earlier since we reuse Lemma 5.25 in the following section
about combined complexity, and these additional axioms cause an exponential blow-up in the size of the
TBox.

108 Chapter 5. Temporalised Query Entailment in SHQ

where γi :=
∧

Ai for i, 0 ≤ i ≤ n, and X j abbreviates j nested X-operators. Obviously,
the size of ψ is polynomial in the size of φ and K. It remains to prove that K |= φ iff
K′ := (;, T , R) |=ψ. We have:

K |= φ
iff ((Ai)0≤i≤n, T , R) |= φ
iff I, n |= φ for every I with I |= ((Ai)0≤i≤n, T , R)

iff I, n |= φ for every I with I |= (;, T , R) and I, 0 |= γ0; I, 1 |= γ1; . . . ; I, n |= γn

iff I, 0 |= Xnφ for every I with I |= K′ and I, 0 |= γ0; I, 0 |= Xγ1; . . . ; I, 0 |= Xn γn

iff I, 0 |=ψ for every I with I |= K′

iff K′ |=ψ. �

To obtain our complexity result, we can thus focus on deciding whether a Boolean TCQ φ
has a model w.r.t. a temporal KB K = (;, T , R) containing only one empty ABox, i.e. we have
n = 0. Note that this compilation approach does not yield a low data complexity for the
TCQ-satisfiability problem since, after encoding the ABoxes intoφ, the size of the conjunction
of CQ-literals ζW is exponential in the size of the input ABoxes. Moreover, then Lemma 5.20
yields that the t-satisfiability check is exponential in the size of the input ABoxes.

Assume from now on that a set W = {X1, . . . , Xk} ⊆ 2Pφ and a mapping ι : {0} → {1, . . . , k}
are given. We first show how to decide r-satisfiability of W w.r.t. ι and K in non-deterministic
exponential time w.r.t. combined complexity.

For that, we use the idea of Lemma 5.25. Since ξ0 = true, according to this lemma, it
suffices to non-deterministically guess a pair D and a mapping τ such that ζW ∧ ξτ has
a model w.r.t. (TW ∪ Tτ, RW) that respects D. Instead of constructing the conjunction of
CQ-literals ζD, and then applying Theorem 5.10 directly to this problem, which would yield
a complexity of 2EXPTIME, we split the problem into separate sub-problems for each ζX i

.

Lemma 5.28. If NRC 6= ; and NRR = ;, then W is r-satisfiable w.r.t. ι and K = (;, T , R) iff

there exist a pair D = (RCon(T), Y) with Y ⊆ 2RCon(T) and a mapping τ: Ind(φ)→ Y such

that for every i, 1≤ i ≤ k, the conjunction of CQ-literals ζX i
∧ξτ has a model w.r.t. (T ∪ Tτ, R)

that respects D.

Proof. For the ‘if’ direction, assume that Ii, 1 ≤ i ≤ k, are the models of ζX i
∧ ξτ w.r.t.

(T ∪ Tτ, R) that respect D. As in the proof of Lemma 5.25, we can ensure that they share
the same domain and interpret the rigid concept names in RCon(T) and the individual
names in Ind(φ) in the same way. Similar to before, we construct a model J of ζW ∧ ξτ
and (TW ∪ Tτ, RW) over the shared domain of I1, . . . , Ik as follows: interpret the i-th copy
of a flexible name as the original name in Ii, and every rigid name as in I1. Since the
interpretations of the names in RCon(T) are not changed, J also respects D. By Lemma 5.25,
we obtain that W is r-satisfiable w.r.t. ι and K.

For the ‘only if’ direction, assume that W is r-satisfiable w.r.t. ι and K. Lemma 5.25 yields
that there exist a pair D = (RCon(T), Y) with Y ⊆ 2RCon(T) and a mapping τ: Ind(φ)→ Y

such that ζW ∧ξτ has a model J w.r.t. (TW ∪ Tτ, RW) that respects D. As before, for every i,
1 ≤ i ≤ k, we obtain a model Ii of ζX i

∧ ξτ and (T ∪ Tτ, R) over the domain of J by

5.2 The Complexity of Temporalised Query Entailment 109

interpreting the rigid names as in J and the flexible names as their i-th copies in J . Again,
these models still respect D. �

To obtain our complexity result, we show how to decide whether the conjunction of CQ-
literals ζX i

∧ ξτ has a model w.r.t. (T ∪ Tτ, R) that respects D in time exponential in the
size of φ and K. Similar to the proof of Theorem 5.10, we can reduce this problem to
a non-entailment problem for a union of Boolean CQs: there is a model of ζX i

∧ ξτ w.r.t.
(T ∪ Tτ, R) that respects D iff there is a model of Ki := (Ai , T ∪ Tτ, R) that respects D and is
not a model of ρi (written Ki 6|= ρi w.r.t. D), where Ai is an ABox obtained by instantiating
the non-negated CQs of ζX i

∧ ξτ with fresh individual names and ρi is a union of CQs
constructed from the negated CQs of ζX i

∧ ξτ. Since all Ki and ρi are of size polynomial in
the size of φ and K, it thus suffices to show that we can decide the query non-entailment
Ki 6|= ρi w.r.t. D in time exponential in the size of Ki and ρi .

It is known that Ki 6|= ρi iff there is a forest model I of Ki such that I 6|= ρi [GHL+08;
Lut08a]. We define here forest models for the more general case of Boolean SHQ⊓-knowledge

bases since this will be needed later.
As introduced in Chapter 3, the description logic SHQ⊓ extends SHQ with role conjunctions.

Recall that role conjunctions are of the form r1 ⊓ · · · ⊓ rℓ, ℓ≥ 1, where r1, . . . , rℓ are simple

role names. Such role conjunctions are allowed to occur in existential restrictions instead of
a single role, but not in at-least restrictions or role axioms. An interpretation I is extended
to a role conjunction as follows: (r1 ⊓ · · · ⊓ rℓ)

I := rI
1 ∩ · · · ∩ rI

ℓ
.

In the following, we denote by Ind(Ψ) the set of individuals occurring in the Boolean
knowledge base B = (Ψ, R). We are now ready to define forest models over Boolean
knowledge bases (for a similar definition, see [GHL+08]).

Definition 5.29 (Forest model). A tree is a non-empty prefix-closed subset of N∗, where N∗

denotes the set of all finite words over the non-negative integers.

Let I = (∆I , ·I) be an interpretation, and let B = (Ψ, R) be a Boolean knowledge base. We

say that I is a forest base for B if

• ∆I ⊆ Ind(Ψ)×N∗ such that for every a ∈ Ind(Ψ), the set {u | (a, u) ∈∆I} is a tree;

• if ((a, u), (b, v)) ∈ rI , then either u = v = ǫ, or a = b and v = u · c for some c ∈ N, where

· denotes concatenation; and

• for every a ∈ Ind(Ψ), we have aI = (a,ǫ).

We call a model J = (∆J , ·J) of B a forest model of B if there is a forest base I = (∆I , ·I)
for B such that ∆I =∆J , for each A∈ NC, we have AI = AJ , for each a ∈ NI, we have aI = aJ ,

and for each r ∈ NR, we have

rJ = rI ∪
⋃

R|=s⊑r, R|=trans(s)

(sI)+,

where ·+ denotes the transitive closure. ♦

As an example of a forest model, consider Figure 5.30, where a graphical representation
of a forest model is given. It depicts the individual names a, b, and c, which represent the
roots (a,ǫ), (b,ǫ), and (c,ǫ) of three trees. Moreover, s is a simple role name, and r is a

110 Chapter 5. Temporalised Query Entailment in SHQ

r

s

sr

r

r

r
r

a b c

Figure 5.30: An example of a forest model

transitive role name. The solid arrows denote the role connections that are present in the
corresponding forest base, and the dashed arrows denote role connection that are introduced
due to transitivity.

In the following, we call a model J = (∆J , ·J) a forest model of a knowledge base
K = (A, T , R) if J is a forest model of the induced Boolean knowledge base (

∧
A∧
∧

T , R).
We show now that the restriction to forest models when checking for the consistency of a

Boolean SHQ⊓-knowledge base w.r.t. a pair D = (U , Y) is without loss of generality. First,
note that B = (Ψ, R) has a model that respects D iff (Ψ∧A(a), R) has a model that respects D,
where a is a fresh individual name and A is a fresh concept name. In the following, we
thus assume without loss of generality that Ψ contains at least one individual name. This is
necessary to ensure that there is a non-empty forest base for B. The construction in the proof
of the following lemma is very similar to the one in [GHL+08], but we extend the previous
result to Boolean knowledge bases, and take a pair D into account.

Lemma 5.31. Let B be a Boolean SHQ⊓-knowledge base, and let D = (U , Y) be a pair such

that U is a set of concept names occurring in B and Y ⊆ 2U . Then B is consistent w.r.t. D iff it

has a forest model that respects D.

Proof. The ‘if’ direction is trivial. For the ‘only if’ direction, assume that I = (∆I , ·I) is a
model of B = (Φ, R) that respects D. Moreover, we assume that ∆I is countable, which
is without loss of generality due to the downward Löwenheim-Skolem theorem [Löw15;
Sko20]. We can thus assume that ∆I ⊆ N. We define now a forest base J = (∆J , ·J) for B

with domain

∆
J :=
�
(a, d1 . . . dm) | a ∈ Ind(Ψ), m≥ 0, d1, . . . , dm ∈∆I , and

there is no b ∈ Ind(Ψ) with d1 = bI
	

as follows:

• aJ := (a,ǫ) for every a ∈ Ind(Ψ);

• bJ for each b ∈ NI \ Ind(Ψ) can be fixed arbitrarily, as long as the UNA is satisfied;

• AJ := {(a,ǫ) | aI ∈ AI} ∪ {(a, d1 . . . dm) | dm ∈ AI}; and

• rJ := {((a,ǫ), (b,ǫ)) | (aI , bI) ∈ rI} ∪
{((a,ǫ), (a, d)) | (aI , d) ∈ rI} ∪
{((a, d1 . . . dm), (a, d1 . . . dmdm+1)) | m> 0, (dm, dm+1) ∈ rI}.

5.2 The Complexity of Temporalised Query Entailment 111

Obviously, J satisfies the conditions of a forest base for B. We construct now a forest model
J ′ = (∆J ′ , ·J ′) for B. For that, we define ∆J ′ :=∆J , for each A∈ NC, AJ ′ := AJ for each
a ∈ NI, aJ ′ := aJ , and for each r ∈ NR:

rJ ′ := rJ ∪
⋃

R|=s⊑r, R|=trans(s)

(sJ)+.

To prove that J ′ is indeed a forest model for B, we first show the following claim by structural
induction.

Claim 5.32. For every (a, d1 . . . dm) ∈∆J ′ and every concept C, we have (a, d1 . . . dm) ∈ CJ ′

iff either m= 0 and aI ∈ CI , or dm ∈ CI .

For the base case, where C is a concept name, the claim is directly implied by the definition
of J ′.

For the case where C is of the form ¬D, we have:

(a, d1 . . . dm) ∈ (¬D)J
′

iff (a, d1 . . . dm) /∈ DJ ′

iff either m= 0 and aI /∈ DI , or dm /∈ DI

iff either m= 0 and aI ∈ (¬D)I , or dm ∈ (¬D)I .

For the case where C is of the form D ⊓ E, we have:

(a, d1 . . . dm) ∈ (D ⊓ E)J
′

iff (a, d1 . . . dm) ∈ DJ ′ and (a, d1 . . . dm) ∈ EJ ′

iff either m= 0 and aI ∈ DI and aI ∈ EI , or dm ∈ DI and dm ∈ EI

iff either m= 0 and aI ∈ (D ⊓ E)I , or dm ∈ (D ⊓ E)I .

For the case where C is of the form ∃(r1 ⊓ · · · ⊓ rℓ).D with ℓ > 1, we have that r1, . . . , rℓ are
simple role names, and thus rJ ′

1 ∩ · · · ∩ rJ ′

ℓ
= rJ

1 ∩ · · · ∩ rJ

ℓ
. This yields:

(a, d1 . . . dm) ∈ (∃(r1 ⊓ · · · ⊓ rℓ).D)
J ′

iff either m= 0 and
– there is a (b,ǫ) ∈ DJ ′ such that ((a,ǫ), (b,ǫ)) ∈ rJ

1 ∩ · · · ∩ rJ

ℓ
, or

– there is a (a, d) ∈ DJ ′ such that ((a,ǫ), (a, d)) ∈ rJ

1 ∩ · · · ∩ rJ

ℓ
;

or there is a (a, d1 . . . dmdm+1) ∈ DJ ′ such that ((a, d1 . . . dm), (a, d1 . . . dmdm+1)) is in
rJ

1 ∩ · · · ∩ rJ

ℓ

iff either m = 0 and there is a d ∈ DI such that (aI , d) ∈ rI
1 ∩· · ·∩ rI

ℓ
, or there is a d ∈ DI

such that (dm, d) ∈ rI
1 ∩ · · · ∩ rI

ℓ

iff either m= 0 and aI ∈ (∃(r1 ⊓ · · · ⊓ rℓ).D)
I , or dm ∈ (∃(r1 ⊓ · · · ⊓ rℓ).D)

I .

For the case where C is of the form ∃r.D, we have

(a, d1 . . . dm) ∈ (∃r.D)J
′

112 Chapter 5. Temporalised Query Entailment in SHQ

iff there is an x ∈ DJ ′ with either ((a, d1 . . . dm), x) ∈ rJ or there is an s ∈ NR with
R |= s ⊑ r, R |= trans(s), and ((a, d1 . . . dm), x) ∈ (sJ)+

iff either m= 0 and
– there is a (b,ǫ) ∈ DJ ′ with ((a,ǫ), (b,ǫ)) ∈ rJ ,
– there is a (a, d) ∈ DJ ′ with ((a,ǫ), (a, d)) ∈ rJ , or
– there is an s ∈ NR with I |= s ⊑ r and I |= trans(s), and a sequence (a0,ǫ),
(a1,ǫ), . . . , (an,ǫ), (an, e1), . . . , (an, e1 . . . ek) of elements of ∆J ′ such that a0 = a,
(an, e1 . . . ek) ∈ DJ ′ , and each two consecutive elements of this sequence are
connected via sJ ;

or there is a sequence (a, d1 . . . dm), (a, d1 . . . dm+1), . . . , (a, d1 . . . dm+n) of elements of
∆

J ′ such that n≥ 1, (a, d1 . . . dm+n) ∈ DJ ′ , and each two consecutive elements of this
sequence are connected via sJ , where s is a role name such that either n = 1 and s = r,
or I |= s ⊑ r and I |= trans(s)

iff either m= 0 and
– there is a d ∈ DI such that (aI , d) ∈ rI , or
– there is an s ∈ NR with I |= s ⊑ r and I |= trans(s), and an ek ∈ ∆I such that
(aI , ek) ∈ sI ⊆ rI and ek ∈ DI;

or there is a d ∈ DI such that (dm, d) ∈ sI ⊆ rI , where s is a role name such that either
s = r, or I |= s ⊑ r and I |= trans(s)

iff either m= 0 and aI ∈ (∃r.D)I , or dm ∈ (∃r.D)I .

For the case where C is of the form ≥n r.D for a simple role name r, we again have rJ ′ = rJ ,
and thus

(a, d1 . . . dm) ∈ (≥n r.D)J
′

iff there is a subset X ⊆ DJ ′ with |X |= n such that ((a,ǫ), x) ∈ rJ for every x ∈ X , and
either

– m= 0 and every x ∈ X is either of the form (b,ǫ) or (a, d), or
– every x ∈ X is of the form (a, d1 . . . dmdm+1)

iff there is a subset Y ⊆ DI with |Y | = n such that m = 0 and (aI , y) ∈ rI for every y ∈ Y ,
or (dm, y) ∈ rI for every y ∈ Y

iff either m= 0 and aI ∈ (≥n r.D)I , or dm ∈ (≥n r.D)I .

The second equivalence holds since each rI -successor of a named domain element aI ∈∆I

is represented by exactly one rJ ′ -successor of (a,ǫ) ∈∆J ′ , which holds due the fact that ∆J ′

does not contain domain elements of the form (a, bI) for b ∈ Ind(Ψ). This finishes the proof
of Claim 5.32.

It remains only to be shown that J ′ is indeed a model of B that respects D. For this, we
prove first the following claim by structural induction.

Claim 5.33. For every ψ ∈ Clf(Ψ), we have J ′ |=ψ iff I |=ψ.

For the first base case, assume that ψ is of the form A(a) for some A ∈ NC and a ∈ NI. We
have aI ∈ AI iff aJ ′ = aJ = (a,ǫ) ∈ AJ = AJ ′ by definition.

5.2 The Complexity of Temporalised Query Entailment 113

For the second base case, assume thatψ is of the form r(a, b) for some r ∈ NR and a, b ∈ NI.
If I |= r(a, b), then (aI , bI) ∈ rI , and thus

(aJ ′ , bJ ′) = (aJ , bJ) = ((a,ǫ), (b,ǫ)) ∈ rJ ⊆ rJ ′ .

Conversely, if ((a,ǫ), (b,ǫ)) ∈ rJ ′ , then there is an s ∈ NR and a sequence (a0,ǫ), . . . , (an,ǫ)
of elements of∆J ′ with n≥ 1 such that a0 = a, an = b, each two consecutive elements of this
sequence are connected via sJ , and either n= 1 and s = r, or R |= s ⊑ r and R |= trans(s).
By the definition of sJ , the properties of s, and since I |=R, we can infer that (aI , bI) ∈ rI ,
and thus I |= r(a, b).

For the third base case, assume that ψ is of the form C ⊑ D. For the ‘if’ direction, assume
that I |= C ⊑ D and thus CI ⊆ DI . Suppose that there is a (a, d1 . . . dm) ∈ CJ ′ with
(a, d1 . . . dm) /∈ DJ ′ . By Claim 5.32, either m = 0 and we have aI ∈ CI and aI /∈ DI , or
dm ∈ CI and dm /∈ DI , which contradicts our assumption that CI ⊆ DI .

For the ‘only if’ direction, assume that CJ ′ ⊆ DJ ′ . Suppose that there is a d ∈ CI with
d /∈ DI . By the definition of ∆J ′ , we have (a, d ′d) ∈ ∆J ′ for any a ∈ Ind(Ψ) and d ′ ∈ ∆I

such that there is no b ∈ Ind(Ψ) with d ′ = bI . By Claim 5.32, we obtain (a, d ′d) ∈ CJ ′ and
(a, d ′d) /∈ DJ ′ , which again yields a contradiction.

For the induction step, assume first that ψ is of the form ¬ψ′. We have that J ′ |= ¬ψ′
iff J ′ 6|= ψ′ iff I 6|= ψ′ iff I |= ¬ψ′. Assume now that ψ is of the form ψ1 ∧ψ2. We have
that J ′ |=ψ1 ∧ψ2 iff J ′ |=ψ1 and J ′ |=ψ2 iff I |=ψ1 and I |=ψ2 iff I |=ψ1 ∧ψ2. This
finishes the proof of Claim 5.33.

Since Ψ ∈ Clf(Ψ), this shows that J ′ is indeed a model of Ψ. We show that J ′ is also a
model of R in the following claim.

Claim 5.34. For every α ∈R, we have J ′ |= α.

Assume first that α is of the form r ⊑ s. Since I |=R, we have I |= r ⊑ s and thus rI ⊆ sI .
We first show that rJ ⊆ sJ . For this, take (x , y) ∈ rJ . There are three cases to consider:

• If x = (a,ǫ) and y = (b,ǫ) with a, b ∈ Ind(Ψ), we have (aI , bI) ∈ rI and thus
(aI , bI) ∈ sI . Hence, the definition of sJ yields that (x , y) ∈ sJ .

• If x = (a,ǫ) and y = (a, d) with a ∈ Ind(Ψ) and d ∈∆I , we have (aI , d) ∈ rI and thus
(aI , d) ∈ sI . Again, the definition of sJ yields that (x , y) ∈ sJ .

• If we have x = (a, d1 . . . dm) and y = (a, d1 . . . dmdm+1) with a ∈ Ind(Ψ), m > 0, and
d1, . . . , dm+1 ∈∆I , we have also (dm, dm+1) ∈ rI and thus (dm, dm+1) ∈ sI . Again, the
definition of sJ yields that (x , y) ∈ sJ .

To show that rJ ′ ⊆ sJ ′ , take (x , y) ∈ rJ ′ . If (x , y) ∈ rJ , we have (x , y) ∈ sJ and thus
(x , y) ∈ sJ ′ . Otherwise, we have that (x , y) ∈ (tJ)+ with R |= t ⊑ r and R |= trans(t).
Since r ⊑ s ∈R, we have obviously R |= r ⊑ s. It is easy to see that this implies R |= t ⊑ s.
Then the definition of sJ ′ yields that (tJ)+ ⊆ sJ ′ . Hence (x , y) ∈ sJ ′ .

Assume now that ψ is of the form trans(r). Since I |=R, we have I |= trans(r) and thus
rI ◦ rI ⊆ rI . By the same arguments as above, we have for every t ∈ NR with tI ⊆ rI , that
tJ ⊆ rJ , and thus (tJ)+ ⊆ (rJ)+ since the transitive closure is monotonic. Since rI ⊆ rI ,
we have also I |= r ⊑ r. The definition of rJ ′ yields now that rJ ′ = (rJ)+, and hence J ′ is
a model of trans(r). This finishes the proof of Claim 5.34.

114 Chapter 5. Temporalised Query Entailment in SHQ

Claim 5.33, the fact that Ψ ∈ Clf(Ψ), and Claim 5.34 yield that J ′ is indeed a model of
B = (Ψ, R). Finally, we show that J ′ respects D = (U , Y). Since I respects D, we have

Y =
�

Y ⊆ U | there is a d ∈∆I with d ∈ (CU ,Y)
I
	
,

where CU ,Y is defined as in Definition 3.18. We now set D′ := (U , Y ′) where

Y ′ :=
�

Y ⊆ U | there is an x ∈∆J ′ with x ∈ (CU ,Y)
J ′
	
,

and show that D = D′. Since J ′ respects D′, this implies that J ′ respects D.
For the direction (⊆), assume that Y ∈ Y, and thus there is a d ∈ (CU ,Y)

I . By Claim 5.32

and the definition of ∆J ′ , there is a (a, d ′d) ∈ (CU ,Y)
J ′ , and hence Y ∈ Y ′. Conversely, for

the direction (⊇), assume that Y ∈ Y ′, i.e. there is a (a, d1 . . . dm) ∈ (CU ,Y)
J ′ . By Claim 5.32

and the definition of ∆J ′ , there is a d ∈ (CU ,Y)
I , where for m= 0, we can set d := aI , and

for m> 0, we can take d := dm. Hence, we have that Y ∈ Y. �

Moreover, we can extend the aforementioned result about the non-entailment problem for
UCQs from [GHL+08; Lut08a] to our setting. In the following, we assume that the UCQ ρ
contains only individual names that also occur in the ABox (or Boolean axiom formula). This
is without loss of generality, because for any individual name a not occurring in the ABox
(or Boolean axiom formula), we can simply add the assertion A(a) to the ABox, where A is a
fresh concept name.

Lemma 5.35. Let K := (A, T , R) be a knowledge base, let ρ be a union of Boolean CQs, and

let D = (U , Y) be a pair such that U is a set of concept names and Y ⊆ 2U . Then, we have

K 6|= ρ w.r.t. D iff there is a forest model J of K that respects D with J 6|= ρ.

Proof. The ‘if’ direction is trivial. For the ‘only if’ direction, assume that there is a model
I = (∆I , ·I) of K that respects D such that I 6|= ρ. As shown in the proof of Lemma 5.31,
the model I can be transformed into a forest model J ′ = (∆J ′ , ·J ′) of K that respects D.
Assume that J and J ′ are the forest base and the forest model, respectively, obtained from I

as in the proof of Lemma 5.31.
It is left to be shown that J ′ 6|= ρ. Assume to the contrary that J ′ |= ρ. Then, there is

a Boolean CQ ρi in the UCQ ρ such that there is a homomorphism π from ρi into J ′. We
define a homomorphism π′ from ρi into I as follows:

• π′(a) := aI for every individual name a ∈ Ind(A); and

• for every v ∈ Var(ρi), we define

π′(v) :=

¨
aI if π(v) = (a,ǫ) with a ∈ Ind(A), and

dm if π(v) = (a, d1 . . . dm) with m> 0.

We now show that π′ is indeed a homomorphism from ρi into I.
Consider first a concept atom A(a) ∈ At(ρi) with a ∈ Ind(A). Since π is a homomorphism

from ρi into J ′, we have π(a) = aJ ′ = (a,ǫ) ∈ AJ ′ . By Claim 5.32, we obtain aI ∈ AI , and
thus π′(a) ∈ AI .

5.2 The Complexity of Temporalised Query Entailment 115

Similarly, for a concept atom A(v) ∈ At(ρi) with v ∈ Var(ρi), we have π(v) ∈ AJ ′ , and thus
π′(v) ∈ AI again by Claim 5.32.

For a role atom r(a, b) ∈ At(ρi), we can show (π′(a),π′(b)) = (aI , bI) ∈ rI using the
same arguments as in the proof of Claim 5.33: Since π is a homomorphism from ρi into J ′,
we have (π(a),π(b)) = (aJ ′ , bJ ′) = ((a,ǫ), (b,ǫ)) ∈ rJ ′ , and thus that there is an s ∈ NR

and a sequence (a0,ǫ), . . . , (an,ǫ) of elements of ∆J ′ with n≥ 1 such that a0 = a, an = b,
each two consecutive elements of this sequence are connected via sJ , and either n= 1 and
s = r, or R |= s ⊑ r and R |= trans(s). By the definition of sJ , the properties of s, and since
I |=R, we can infer that (aI , bI) ∈ rI .

If there is a role atom of the form r(a, v) ∈ At(ρi) with a ∈ Ind(A) and v ∈ Var(ρi), we
have (π(a),π(v)) = (aJ ′ ,π(v)) = ((a,ǫ),π(v)) ∈ rJ ′ . If π(v) = (b,ǫ) with b ∈ Ind(A),
we can argue as in the previous case that (aI , bI) = (π′(a),π′(b)) ∈ rI . Otherwise there
are again two cases to consider. First, if we have ((a,ǫ),π(v)) ∈ rJ , then we have also
(aI ,π′(v)) = (π′(a),π′(v)) ∈ rI by the definitions of J and π′. Otherwise, there must be a
role name s ∈ NR such that R |= s ⊑ r, R |= trans(s), and ((a,ǫ),π(v)) ∈ (sJ)+. This yields
that there is a sequence (a0,ǫ), (a1,ǫ), . . . , (an,ǫ), (an, e1), . . . , (an, e1 . . . ek) of elements
of∆J ′ with n≥ 1 and k ≥ 1 such that a0 = a, π(v) = (an, e1 . . . ek), and each two consecutive
elements of this sequence are connected via sJ . By the definitions of sJ and π′, we obtain
(aI ,π′(v)) ∈ sI , and thus since sI ⊆ rI , also (π′(a),π′(v)) ∈ rI .

For any role atom r(v, a) ∈ At(ρi) with v ∈ Var(ρi) and a ∈ Ind(A), we have that
(π(v),π(a)) = (π(v), aJ ′) = (π(v), (a,ǫ)) ∈ rJ ′ . By the definition of rJ ′ , this implies
that there is a sequence (a0,ǫ), . . . , (an,ǫ) of elements of ∆J ′ with n≥ 1 such that an = a,
π(v) = (a0,ǫ), and each two consecutive elements of this sequence are connected via sJ ,
where s is a role name such that either n = 1 and s = r, or R |= s ⊑ r and R |= trans(s).
By the definitions of sJ and π′, the properties of s, and since I |= R, this yields that
(π′(v),π′(a)) = (π′(v), aI) = (aI

0 , aI
n) ∈ rI .

Finally, consider a role atom r(v, v′) ∈ At(ρi) with v, v′ ∈ Var(ρi). Again, since π is a
homomorphism from ρi into J ′, we have (π(v),π(v′)) ∈ rJ ′ . If π(v) = (a,ǫ) for some
a ∈ Ind(A), we can show as in second-last case that (π′(v),π′(v′)) = (aI ,π′(v′)) ∈ rI .
Otherwise, we haveπ(v) = (a, d1 . . . dm)with m> 0 and that there is a sequence (a, d1 . . . dm),
(a, d1 . . . dm+1), . . . , (a, d1 . . . dm+n) of elements of the domain ∆J ′ such that we have that
n ≥ 1, π(v′) = (a, d1 . . . dm+n), and each two consecutive elements of this sequence are
connected via sJ , where s is a role name such that either n = 1 and s = r, or R |= s ⊑ r and
R |= trans(s). Thus, we obtain (π′(v),π′(v′)) = (dm, dm+n) ∈ sI ⊆ rI by similar arguments
as before.

Hence, π′ is a homomorphism from ρi into I, and thus I |= ρi . But this yields that I |= ρ,
which contradicts our assumption that I 6|= ρ. �

Recall that we want to decide the existence of such a forest model in time exponential in
the size of K = (A, T , R), and ρ. To achieve this, we further reduce this decision problem
following an idea from [Lut08a]. There, the notion of a spoiler is introduced. According
to [Lut08a], a spoiler for K and ρ is an SHQ⊓-knowledge base K′ = (A′, T ′,;) that states
properties that must be satisfied such that ρ is not entailed by K. Note that the ABox A′

of such a spoiler may also contain negated assertions. Furthermore, a spoiler may contain
role conjunctions. Thus, according to our notation, K′ is a Boolean SHQ⊓-knowledge base,
i.e. K′ = (
∧

A′ ∧
∧

T ′,;). The following proposition is shown in [Lut08a].

116 Chapter 5. Temporalised Query Entailment in SHQ

Proposition 5.36. Let K := (A, T , R) be a SHQ-knowledge base, and let ρ be a union of

Boolean CQs. Then, we have K 6|= ρ iff there is a spoiler K′ = (
∧

A′ ∧
∧

T ′,;) for K and ρ

such that (
∧

A∧
∧

A′ ∧
∧

T ∧
∧

T ′, R) is consistent. ♦

In addition, it is shown in [Lut08a] that all spoilers for K and ρ can be computed in time
exponential in the size of K and ρ, and that each spoiler is of polynomial size. In the proof
of these results, one only has to deal with forest models, which furthermore do not need to
be modified. More formally, for any forest model I of (A, T , R) that does not satisfy ρ there
is a spoiler (
∧

A′ ∧
∧

T ′,;) that also has I as a model and, conversely, every forest model of
the knowledge base (A, T , R) that also satisfies a spoiler (

∧
A′ ∧
∧

T ′,;) does not satisfy ρ
(see the proof of Lemma 3 in [Lut08b]). This yields the following more general result that
also takes into account the pair D.

Proposition 5.37. Let K := (A, T , R) be a SHQ-knowledge base, let ρ be a union of Boolean

CQs, and let D = (U , Y) be a pair such that U is a set of concept names and Y ⊆ 2U . Then, we

have K 6|= ρ w.r.t. D iff there is a spoiler K′ = (
∧

A′ ∧
∧

T ′,;) for K and ρ such that there is a

model of (
∧

A∧
∧

A′ ∧
∧

T ∧
∧

T ′, R) that respects D. ♦

It remains to show that the existence of such a model can be checked in time exponential
in the size of (
∧

A∧
∧

A′ ∧
∧

T ∧
∧

T ′, R). But this follows directly from Theorem 3.33,
where it is shown that consistency of Boolean SHOQ⊓-knowledge base B w.r.t. a pair D can
be decided in time exponential in the size of B. Thus, we obtain the following theorem.

Theorem 5.38. Let K := (A, T , R) be a SHQ-knowledge base, let ρ be a union of Boolean

CQs, and let D = (U , Y) be a pair such that U is a set of concept names and Y ⊆ 2U . Then, we

can decide whether K 6|= ρ w.r.t. D in time exponential in the size of K and ρ.

Combining this with the reductions in Lemmas 5.27 and 5.28, we obtain the desired com-
plexity result.

Theorem 5.39. If NRC 6= ; and NRR = ;, the temporalised query-entailment problem in SHQ

is in CO-NEXPTIME w.r.t. combined complexity.

Proof. Let φ be a Boolean TCQ, and let K = ((Ai)0≤i≤n, T , R) be a temporal SHQ-knowledge
base. By Lemma 5.27, we can construct a Boolean TCQ ψ polynomial in the size of φ and K

such that K |= φ iff K′ := (;, T , R) |=ψ. We again consider the TCQ-satisfiability problem,
which has the same complexity as the temporalised query non-entailment problem. We
decide whether ψ is satisfiable w.r.t. K′ using Lemma 5.18. For that, let p: CQ(ψ)→ Pψ be
a bijection. We first non-deterministically guess a set W = {X1, . . . , Xk} ⊆ 2Pψ and a mapping
ι : {0} → {1, . . . , k} in time exponential in the size of ψ and K′. By Lemma 5.20, deciding
whether ψp is t-satisfiable w.r.t. W and ι can be done in time exponential in the size of ψp

(and thus also in time exponential in the size of ψ), linear in the size of W, and polynomial
in n.

Thus, due to Lemma 5.18, is suffices to show that r-satisfiability of W w.r.t. ι and K′

can be checked in non-deterministic exponential time w.r.t. combined complexity. For that,
we use Lemma 5.28. We non-deterministically guess a set Y ⊆ 2RCon(T) and a mapping
τ: Ind(ψ) → Y, which can be done in time exponential in the size of ψ and K′ since Y

is of size exponential in T and τ is of size polynomial in the size of ψ and T . We define

5.3 Summary 117

D := (RCon(T), Y). Next, we construct for every i, 1≤ i ≤ k, the conjunction of CQ-literals
ζX i
∧ ξτ, the knowledge base Ki and the Boolean union of CQs ρi. Note that the size of

each ζX i
∧ ξτ, Ki, and ρi is polynomial in the size of ψ and K′ and the number k of these

conjunctions is exponential in the size of ψ. Thus, it remains to show that we can decide
every query non-entailment Ki 6|= ρi w.r.t. D in time exponential in the size of Ki and ρi , and
thus in time exponential in the size of ψ and K′, which we obtain by Theorem 5.38.

Hence, we can check whether φ is satisfiable w.r.t. K using the above decision procedure,
which shows that the TCQ-satisfiability problem in SHQ is in NEXPTIME w.r.t. combined com-
plexity. Thus, we obtain that the temporalised query-entailment problem is in CO-NEXPTIME

w.r.t. combined complexity. �

Together with Theorem 5.11, we obtain that the temporalised query-entailment problem
in SHQ is CO-NEXPTIME-complete w.r.t. combined complexity if only concept names are
allowed to be rigid.

5.3 Summary

In this chapter, we have shown all the complexity results that are summarised in Table 5.2
for the proposed temporal query language. More precisely, we considered both the combined
complexity and the data complexity of temporalised query entailment for all description
logics between ALC and SHQ in the settings where (i) neither concept names nor role names
are allowed to be rigid, (ii) only concept names may be rigid, and (iii) both concept names
and role names may be rigid. It turned out that in Setting (i), the temporalised query-
entailment problem is as hard as entailment of conjunctive queries w.r.t. atemporal ALC-
and SHQ-knowledge bases, namely CO-NP-complete w.r.t. data complexity and EXPTIME-
complete w.r.t. combined complexity. However, if we allow rigid concept names (but no rigid
role names), the picture changes. Whilst the data complexity remains the same as in the
atemporal case, the combined complexity of the temporalised query-entailment problem
increases to CO-NEXPTIME, i.e. the temporalised query non-entailment problem is as hard
as the satisfiability problem in the temporalised description logic ALC-LTL. If we further
allow rigid role names, the combined complexity of the temporalised query (non-)entailment
problem again increases in accordance with the complexity of the satisfiability problem in
ALC-LTL. In fact, all three problems are 2EXPTIME-complete. For the data complexity, it is
still open whether adding rigid role names results in an increase of the complexity. We have
shown an upper bound of EXPTIME—which is one exponential better than the combined
complexity—, but the only lower bound we have is the trivial one of CO-NP.

Further work will include trying to close this gap. Moreover, it would be interesting to
find out what effect the addition of inverse roles has on the complexity of query entailment
in the temporal case. Given the results for ALCI and SHIQ in the atemporal case, where
the query entailment problem is 2EXPTIME-complete w.r.t. combined complexity [Lut08a]
and CO-NP-complete w.r.t. data complexity [OCE06], there is the possibility that also in the
temporal case, the query entailment problem remains CO-NP-complete w.r.t. data complexity
and 2EXPTIME-complete w.r.t. combined complexity for all three settings considered in this
chapter. But showing this will require considerable extensions of the proof techniques
employed until now since the presence of inverse roles creates additional problems. We

118 Chapter 5. Temporalised Query Entailment in SHQ

have also left open the complexity of the temporalised query entailment problem for the
case where non-simple roles are allowed to occur in the queries. This problem is, however,
already 2EXPTIME-hard w.r.t. combined complexity for the description logic SH [ELO+09]
in the atemporal case.

Chapter 6

Verification in Action Formalisms Based on

ALCQIO

Action programming languages are successfully applied to modelling the behaviour of autarkic
systems, which are often called agents. In this area, it is of keen interest to reason about
the behaviour of non-terminating action programs as one expects that the agents perform
open-ended tasks, which are not supposed to terminate. Since most action programming
languages are based on action formalisms that encompass full first-order logic, the problem
of verifying properties for such action programs is in general undecidable.

In this chapter, we restrict the setting in two directions to regain decidability. Firstly, we
consider action formalisms based on DLs, for which important inference problems become de-
cidable, and secondly, we verify properties of action sequences generated by Büchi-automata
instead of considering full-fledged high-level action programming languages.

A first step was done in [BLM10], where the authors show that the problem of verifying
properties formulated in a restricted version of the temporalised description logic ALCO-LTL
is decidable for the DL-based action formalism introduced in [BLM+05a]. However, the
authors consider only acyclic TBoxes instead of general ones. In this chapter, we overcome
this problem by enriching the DL-based action formalism with so-called causal relationships.
Most of the results of this chapter have already been published in [BLL10b; BLL10a; YLL+12].

This chapter is organised as follows. In Section 6.1, we formally define a DL-based action
formalism with causal relationships. In Sections 6.2 and 6.3, we then show that important
inference problems such as the consistency problem and the projection problem are decidable
in this formalism. Then, in Section 6.4, we show how to verify temporal properties in this
more expressive action formalism. Lastly, in Section 6.5, we briefly summarise the results of
this chapter.

6.1 DL-Based Action Formalisms and Causal Relationships

The situation calculus [Rei01] and the fluent calculus [Thi05b] are popular many-sorted
languages for representing action theories. However, for action theories represented in those
languages, important inference problems are in general undecidable, since these languages
encompass full first-order logic. One possibility to restrict these languages to avoid this
source of undecidability is to use a decidable fragment of first-order logic instead of full
first-order logic as underlying base logic. Description logics are well-suited for this purpose
since their expressive power goes far beyond propositional logic, whilst reasoning in DLs is
still decidable.

119

120 Chapter 6. Verification in Action Formalisms Based on ALCQIO

Basically, an action theory consists of three components: (i) a description of the initial state,
(ii) a description of the possible actions, and (iii) a description of the domain constraints. For
each action, it is specified what the pre-conditions are, which need to be satisfied for an action
to be applicable, and it is specified what the post-conditions are, i.e. the changes to the current
state that the execution of the action causes. The domain constraints formulate general
knowledge about the functioning of the domain, in which the actions are executed, and thus
restrict the possible states. This is realised in a DL-based action formalism as follows. The
initial state is described by an ABox. This description is incomplete due to the open-world
assumption. The pre-conditions are ABox assertions that must hold, post-conditions are
ABox assertions that are added or removed, and domain constraints are specified using TBox
axioms.

The projection problem [Rei01] is one of the most basic reasoning problems for action
formalisms. Intuitively, it deals with the question whether after applying a sequence of
actions to an initial state a certain property holds. In expressive action formalisms such as
the situation calculus, this property is specified with a formula of first-order logic, whereas
in the case of DL-based action formalisms this property is specified with an ABox assertion.

The first action formalism based on DLs was introduced in [BLM+05a], and the authors
have shown that the projection problem and other important inference problems become
decidable in this restricted formalism. This action formalism has been further examined and
extended in the last years [LLM+06; BLM10; BLL10b; BZ13]. Recently, an action formalism
that is based on a DL and the situation calculus was proposed [GS10; SY12]. Both action
formalisms, an extension of the one in [BLM+05a] and the one in [GS10; SY12], have been
evaluated by implementing their respective approaches to solving the projection problem,
and comparing the running times on random testing data for several realistic application
domains [YLL+12]. This evaluation is, however, beyond the scope of this thesis.

Before we introduce our DL-based action formalism formally, we recall an important
problem, namely the ramification problem, which has to be solved by the action formalism.

6.1.1 The Ramification Problem

The interaction of post-conditions of an action and domain constraints can cause so-called
ramifications. More precisely, when an action is applied to a state, it might not be enough to
make only those changes to the current state that are explicitly stated in the post-conditions
of the action that is applied, since it is possible that the resulting state does not satisfy the
domain constraints. We call the changes required by the post-conditions of an action direct

effects, whereas we call the additional changes that one needs to make such that the resulting
state after applying the action satisfies also the domain constraints indirect effects. The
ramification problem deals now with the question how to characterise both the direct and
the indirect effects while still solving the frame problem, i.e. do not characterise the complete
resulting state but only the ‘necessary’ changes to the current state, which are required by
the applied action and the domain constraints [MH69; Rei01].

Example 6.1. Take a hiring action, which has the direct effect that the person that is hired

becomes an employee. Moreover, we have a domain constraint that says that every employee

must have a health insurance. If John, for instance, does not have health insurance, then just

6.1 DL-Based Action Formalisms and Causal Relationships 121

applying the hiring action for John, i.e. hiring John, would result in a state where John is an

employee without a health insurance, which violates the domain constraint. ♦

One approach to solving the ramification problem is to define a semantics for action theories
that automatically deals with such indirect effects. This semantics should describe additional
changes to the state in order to satisfy the domain constraints, whilst taking care that only
‘necessary’ changes are made. An example of such an attempt is the possible-models approach
(PMA) [Win88; Her96]. Without additional restrictions, however, the PMA and all the other
approaches in this direction can lead to unintuitive results. It is not clear how to construct a
general semantics that does not suffer from this problem. Consider again Example 6.1, and
assume that there are only two insurance companies that offer health insurance: AOK and
TK. To satisfy the health-insurance domain constraint, John must get insured by one of them.
However, it is unclear how to design a general semantic framework, which is able to decide
which one to pick.

A second approach is avoiding the issues raised by the ramification problem rather than
solving them. This is actually what is done in [BLM+05a]. There, the domain constraints
are given by an acyclic TBox and the post-conditions of the actions are restricted such that
only primitive concepts and roles can be changed. Recall the definition of the syntax and
semantics of acyclic TBoxes; see Definitions 2.5 and 2.6. One can observe that w.r.t. an
acyclic TBox, the interpretations of the primitive concepts and roles uniquely determine the
interpretations of the defined concepts. Thus, in this restricted action formalism, it is clear
what indirect effects changing a primitive concept or role has. The semantics obtained in this
way can be seen as an instance of the PMA. It is shown in [BLM+05a] that the use of the
PMA in a less restrictive setting, i.e. using general TBoxes to describe the domain constraints
or allowing defined concepts to occur in post-conditions, can lead to unintuitive results.

A third approach is letting the user rather than a general semantic machinery decide
which the indirect effects of an action are. To resolve the ramifications in Example 6.1, we
assume that employers actually are required to enrol new employees with AOK in case they
do not already have a health insurance. However, one needs to extend the action formalism
such that it allows the user to add such information to the action theory. For DL-based
action formalisms, this approach was first employed in [LLM+06], where the formalism for
describing the actions is enriched such that the user can make complex statements about
the changes to the interpretations of concepts and roles that can be caused by applying a
given action. The authors show that important inference problems such as the projection
problem stay decidable in this setting, but another important inference problem for action
formalisms, namely the consistency problem,1 becomes undecidable. Basically, an action is
consistent if, whenever it is applicable to a state, there is a well-defined successor state that
can be obtained after applying it.

In this chapter, we realise this third approach in a different way, namely by adapting
a method for addressing the ramification problem that has already been employed in the
reasoning about actions community [Lin95; Thi97; BDT98; DTB98; LS11; ST13]. Instead
of changing the formalism for defining actions directly, we introduce so-called causal re-

lationships as an additional component of action theories. In Example 6.1, such a causal
relationship would state that, whenever someone becomes a new employee, this person is
then insured by AOK, unless this person already had a health insurance.

1In [LLM+06], this is actually called strong consistency.

122 Chapter 6. Verification in Action Formalisms Based on ALCQIO

ALCQIO

ALCQIALCIO ALCQO

ALCOALCI ALCQ

ALC

Figure 6.2: The relative expressivity of the DLs between ALC and ALCQIO

In Section 6.1.2, we formally introduce a DL-based action formalism with causal relation-
ships. This new action formalism has two advantages over the one introduced in [LLM+06].
Firstly, the action formalism in [LLM+06] requires of the user to deal with the ramification
problem within every single action description. In our action formalism, however, causal
relationships are defined independently of a specific action, as they state general facts about
causation. The formal semantics takes then care of how these relationships are translated
into the indirect effects of the actions. A second advantage is that the consistency problem
in our action formalism is decidable. This advantage is crucial since in the context of the
third approach, the user is supposed to deal with the ramification problem, which mean in
our action formalism that the user needs to define appropriate causal relationships. Testing
the consistency of actions might help the user with this task, because it enables the user to
check whether all relevant causal relationships have been stated correctly. Coming back to
Example 6.1, it is clear that if the user does not specify any causal relationships, the hiring
action is inconsistent since its application may result in a state that does not satisfy the
health-insurance domain constraint, and thus is not well-defined. If the user, however, adds
the causal relationship mentioned above, then the action becomes consistent. We show that
in our action formalism the consistency problem is decidable in Section 6.2. After that, in
Section 6.3, we show that also the projection problem is decidable in action theories stated
in our action formalism.

6.1.2 A DL-Based Action Formalism with Causal Relationships

In principle, the action formalism can be parameterised with any DL. In this chapter, we
focus on DLs between ALC and ALCQIO. The relative expressivity of these DLs is depicted
in Figure 6.2. Since most of the notions in this chapter do not depend on the specific DL
chosen, we again omit the prefix in the formal definitions and write e.g. ABox instead of
ALCQIO-ABox.

For defining the action formalism, we need besides atomic assertions also negated atomic
assertions, i.e. ABox-literals. The semantics of ABox-literals extends the one of assertions in
Definition 2.10 in a straightforward manner.

6.1 DL-Based Action Formalisms and Causal Relationships 123

Definition 6.3 (ABox-literal). An ABox-literal is either an atomic concept assertion A(a), an

atomic role assertion r(a, b), a negated atomic concept assertion ¬A(a), or a negated atomic

role assertion ¬r(a, b), where A∈ NC, r ∈ NR, and a, b ∈ NI.

A generalised ABox-literal is either an ABox-literal, a concept assertion C(a), or a negated

concept assertion ¬C(a), where C is a concept, and a ∈ NI.

The interpretation I is a model of a (generalised) ABox-literal of the form ¬α (written

I |= ¬α) if I 6|= α, where I |= α is defined as in Definition 2.10. ♦

We call the non-negated assertions positive, and the negated assertions negative. Given a
(generalised) ABox-literal α, we denote its negation by ¬α. For the ease of presentation,
we identify in the following ¬¬β and β for every (generalised) ABox-literal β . Note that
finite sets of (generalised) ABox-literals are in general no ABoxes, because of the presence of
negative assertions. To close this gap, we introduce the notion of a generalised ABox.

Definition 6.4 (Generalised ABox). A generalised ABox is a finite set of generalised ABox-

literals. The interpretation I is a model of the generalised ABox A (written I |= A) if it is a

model of each generalised ABox-literal in A. We call A consistent if it has a model. ♦

It is now obvious how to define knowledge bases that contain generalised ABoxes instead of
classical ones. Recall that in this chapter we consider only DLs between ALC and ALCQIO,
and thus there is no RBox.

Definition 6.5 (Generalised knowledge base). A generalised knowledge base is a pair

K = (A, T) where A is a generalised ABox and T is a TBox.

The interpretation I is a model of K (written I |= K) if it is a model of A and T . We call K

consistent if it has a model.

We say that K entails a generalised ABox-literal α (written K |= α) if all models of K are also

models of α. ♦

We are now ready to recall the notion of a DL-action without occlusions,2 which has first been
introduced in [BLM+05a]. In this chapter, we do not allow occlusions in our framework since
it is not yet clear how to handle them algorithmically in the presence of causal relationships.

Definition 6.6 (Syntax of DL-actions). A DL-action is a pair a = (pre, post) where

• pre is a finite set of generalised ABox-literals called pre-conditions, and

• post is a finite set of conditional post-conditions of the form α/β and unconditional
post-conditions of the form β , where α is a generalised ABox-literal and β is an ABox-
literal.

A DL-action is called unconditional if all its post-conditions are unconditional. ♦

Basically, a DL-action is applicable in an interpretation if all its pre-conditions are satisfied,
and the conditional post-condition α/β requires that β must hold after applying the action if
α was satisfied before the application. We can now express the hiring action of Example 6.1
formally.

2Occlusions describe which parts of the domain can change arbitrarily when an action is applied. Details about
occlusions can be found in [BLM+05a].

124 Chapter 6. Verification in Action Formalisms Based on ALCQIO

Example 6.7. A DL-action for hiring John would be formalised as

HireJohn := (;, {Employee(John)}).

This action has no pre-conditions and a single unconditional post-condition. Additionally, the

domain constraints are described in the following TBox:

T :=
�
{AOK} ⊔ {TK} ⊑ HealthInsuranceCompany,

Employee⊑ ∃insuredBy.HealthInsuranceCompany
	
,

where the first GCI states that AOK and TK are health-insurance companies, and the second GCI

states that every employee needs to be insured by a health-insurance company. ♦
As sketched in Section 6.1.1, this example can be used to show that just considering the
direct effects of the actions is not adequate if the domain constraints are given by a general
TBox containing arbitrary GCIs rather than an acyclic TBox as it is done in [BLM+05a]. To
be more precise, take a model I of the TBox T such that we have I 6|= Employee(John) and
I 6|= (∃insuredBy.HealthInsuranceCompany)(John). It should be clear that such a model exists.
According to the semantics of DL-actions defined in [BLM+05a], after applying the DL-action
HireJohn to I, nothing should change that is not explicitly required to be changed by some
post-condition. Hence, if we apply HireJohn to I using that semantics, I is transformed
into an interpretation I′ such that the only difference to I is that I′ |= Employee(John),
i.e. John is now an employee. Since nothing else is allowed to change, we still have
I′ 6|= (∃insuredBy.HealthInsuranceCompany)(John). This a counterexample to the second
GCI of T , and thus I′ is not a model of T . Consequently, even though the DL-action HireJohn

is applicable to I—since the empty set of pre-conditions does not impose any applicabil-
ity condition—, its application does not result in an interpretation satisfying the domain
constraints in T . We call a DL-action where this kind of problem can occur an inconsist-

ent DL-action. To achieve consistency of the DL-action HireJohn, we can complement the
DL-action with an appropriate causal relationship.

Definition 6.8 (Causal relationship). A causal relationship is of the form A1→B A2 where

A1, A2 are finite sets of ABox-literals, and B is a generalised ABox. ♦
A causal relationship can be read as ‘A1 causes A2 if B holds’. To be more precise, it means
the following: if B is satisfied before the application of a DL-action a, and A1 is newly satisfied
by its application—i.e. it was not satisfied before, but is satisfied after the application of a—,
then A2 must also be satisfied after the application of a.3 Therefore, we often call A1 the
trigger, A2 the consequence set, and B the condition of a causal relationship.

Example 6.9. Consider the causal relationship

{Employee(John)} →B {insuredBy(John, AOK)}

with B := {¬(∃insuredBy.HealthInsuranceCompany)(John)}. This causal relationship indeed

adds the appropriate indirect effects to the direct effect of the DL-action HireJohn. It states that

3Actually, there are different ways of defining the meaning of causal relationships. We follow here the approach
used in [BDT98; DTB98] rather than the one employed by [Lin95; Thi97]. The meaning of causal relationships
in [Lin95; Thi97] requires that B is satisfied after the application of a instead of before.

6.1 DL-Based Action Formalisms and Causal Relationships 125

if John becomes newly employed—i.e. he was not an employee before—, and he did not have a

health insurance before the application of the DL-action, then he is newly insured with AOK

after its application. If on the other hand, John becomes newly employed, but already has a

health insurance, then he keeps his old health insurance and is not newly insured with AOK. In

both cases, the domain constraints stated in the TBox T of Example 6.7 stay satisfied. ♦

To define the semantics of DL-actions in the presence of causal relationships formally, we need
some more notions. DL-actions and causal relationships as they are introduced above can
only cause changes to named individuals, i.e. state that a named individual does (not) belong
to an atomic concept, and similarly that pairs of named individuals are (not) connected
via a specific role. Consequently, such effects can be described in an obvious way using
ABox-literals. Therefore, we sometimes call a finite set of ABox-literals a set of effects.

We define the set of direct effects using the definition of the semantics of DL-actions
introduced in [BLM+05a].

Definition 6.10 (Direct effects). For a DL-action a = (pre, post), and an interpretation I,

the set of direct effects of a on I is defined as

Dir(a, I) := {β | β ∈ post} ∪ {β | α/β ∈ post and I |= α}. ♦

Direct effects of a DL-action might cause indirect effects specified by causal relationships.
Whether a specific causal relationship is applicable depends both on the interpretation to
which the DL-action is applied, and a set of effects computed so far.

Definition 6.11 (Indirect effects). The causal relationship A1 →B A2 in the finite set of

causal relationships CR is applicable to an interpretation I and a set of effects E if

1. I |= B,

2. I 6|= A1, and

3. for every α ∈ A1, either α ∈ E , or I |= α and ¬α /∈ E .

The set of indirect effects of CR on I and E is defined as

Indir(CR, I, E) := {β | β ∈ A2 for some A1→B A2 ∈ CR applicable to I and E}. ♦

According to this definition, the causal relationship A1 →B A2 ∈ CR is applicable if the
condition B is satisfied in I, i.e. before applying the DL-action, (Condition 1), and the trigger
A1 is newly satisfied, i.e. A1 is not satisfied in I (Condition 2), but it is satisfied according to
the effect set E , i.e. every generalised ABox-literal α ∈ A1 is either an effect, or it is satisfied
in I, which is not changed by an effect (Condition 3).

Obviously, the indirect effects caused by a causal relationship may again cause causal
relationships to be applicable, which cause again indirect effects. Thus, the overall effects of
an action are obtained by iteratively adding indirect effects to the direct ones until no new
indirect effects can be added.

Definition 6.12 (Effects). For a DL-action a = (pre, post), a finite set of causal relationships

CR, and an interpretation I, the set of effects of a on I w.r.t. CR is defined as

Eff(a, I, CR) :=
⋃

i≥0

Effi(a, I, CR)

126 Chapter 6. Verification in Action Formalisms Based on ALCQIO

where Effi(a, I, CR) is defined inductively as follows:

• Eff0(a, I, CR) := Dir(a, I); and

• Effi+1(a, I, CR) := Effi(a, I, CR)∪ Indir(CR, I, Effi(a, I, CR)). ♦

Moreover, the set Eff(a, I, CR) can effectively be computed due to the following arguments.
Firstly, we have by definition that

Eff0(a, I, CR) ⊆ Eff1(a, I, CR) ⊆ Eff2(a, I, CR) ⊆ . . . ,

and secondly, since we add only ABox-literals that belong to the consequence set of a causal
relationship, and the set CR is moreover finite, there must exist an n≥ 0 such that

Effn(a, I, CR) = Effn+1(a, I, CR) = Effn+2(a, I, CR) =

Thus, Eff(a, I, CR) = Effn(a, I, CR), i.e. we obtain Eff(a, I, CR) after n iterative steps, where
n is polynomially bounded by the size of CR.

Note, however, that it could happen that the set Eff(a, I, CR) is contradictory, i.e. that
there is an ABox-literal α such that {α,¬α} ⊆ Eff(a, I, CR). Then it can, of course, not lead
to a well-defined successor interpretation.

We are now ready to formally define the semantics of DL-actions in the presence of causal
relationships.

Definition 6.13 (Semantics of DL-actions). Let a = (pre, post) be a DL-action, CR a finite

set of causal relationships, T a TBox, and I = (∆I , ·I) and I′ = (∆I′ , ·I′) two interpretations.

We say that a is applicable to I w.r.t. T if I |= T and I |= pre. Moreover, a transforms I into
I′ w.r.t. T and CR (written I ⇒T ,CR

a I′) if

1. a is applicable to I w.r.t. T ;

2. ∆I =∆I′ and aI = aI′ for every a ∈ NI;

3. I′ |= T ;

4. Eff(a, I, CR) is not contradictory;

5. for every A∈ NC, we have AI′ = (AI ∪ A+) \ A− where

A+ := {aI | A(a) ∈ Eff(a, I, CR)}, and

A− := {aI | ¬A(a) ∈ Eff(a, I, CR)}; and

6. for every r ∈ NR, we have rI′ = (rI ∪ r+) \ r− where

r+ := {(aI , bI) | r(a, b) ∈ Eff(a, I, CR)}, and

r− := {(aI , bI) | ¬r(a, b) ∈ Eff(a, I, CR)}.

The finite sequence of DL-actions a1, . . . , an transforms I into I′ w.r.t. T and CR (writ-

ten I ⇒T ,CR
a1,...,an

I′) if there are interpretations I0, . . . , In such that I0 = I, In = I′, and

Ii−1⇒T ,CR
ai

Ii for every i, 1≤ i ≤ n. ♦

6.1 DL-Based Action Formalisms and Causal Relationships 127

Note that if T and CR are empty, then this semantics is very similar with the one of DL-
actions without occlusions given in [BLM+05a]. However, Condition 1 is not demanded
in [BLM+05a], which we do here for convenience. The following lemma is an immediate
consequence of this definition.

Lemma 6.14. Let a be a DL-action, CR a finite set of causal relationships, T a TBox, and I

and I′ two interpretations. If we have I ⇒T ,CR
a I′, then I′ |= Eff(a, I, CR).

Proof. Assume that I ⇒T ,CR
a I′. Then, by Definition 6.13, we have that Eff(a, I, CR) is not

contradictory. Thus, we have that A+ ∩ A− = ; and r+ ∩ r− = ;, where A+, A−, r+, and r−

are defined as in Definition 6.13. We prove that for every α ∈ Eff(a, I, CR), we have I′ |= α
by a case distinction.

If α is of the form A(a) for A∈ NC and a ∈ NI, we have that aI ∈ A+. Thus, Definition 6.13
yields that aI′ = aI ∈ (AI ∪ A+) \ A− = AI′ . If α is of the form ¬A(a) for A∈ NC and a ∈ NI,
we have that aI ∈ A−. Again by Definition 6.13, we have that aI′ = aI /∈ (AI ∪A+)\A− = AI′ .
If α is of the form r(a, b) for r ∈ NR and a, b ∈ NI, we have that (aI , bI) ∈ r+. Thus,
Definition 6.13 yields that (aI′ , bI′) = (aI , bI) ∈ (rI ∪ r+) \ r− = rI′ . Finally, if α is of the
form ¬r(a, b) for r ∈ NR and a, b ∈ NI, we have that (aI , bI) ∈ r−. Again, Definition 6.13
yields that (aI′ , bI′) = (aI , bI) /∈ (rI ∪ r+) \ r− = rI′ . �

It is also important to note that the DL-actions defined here are deterministic in the following
sense: for every model I of T , there exists at most one interpretation I′ such that I ⇒T ,CR

a I′.
There are several reasons why such an interpretation I′ might not exist. Firstly, this is the case
if Condition 1 is violated, i.e. a is not applicable to I w.r.t. T . A second reason is that even
if Condition 1 is satisfied, Condition 4 is violated, i.e. the set Eff(a, I, CR) is contradictory.
Lastly, it might be the case that Conditions 1 and 4 are satisfied, but the new interpretation
induced by Eff(a, I, CR) is not a model of T . If such an I′ does not exist, even if Condition 1
is satisfied, this indicates a modelling error. In fact, the correct modelling of an action theory
should ensure that for every applicable DL-action, there is a well-defined successor state.

Definition 6.15 (Consistency problem). The DL-action a = (pre, post) is consistent w.r.t.

the TBox T and the finite set CR of causal relationships if for every interpretation I such that a

is applicable to I w.r.t. T , there exists an interpretation I′ such that I ⇒T ,CR
a I′.

The consistency problem is then to decide whether a is consistent w.r.t. T and CR. ♦

As argued above, the DL-action HireJohn of Example 6.7 is not consistent w.r.t. the TBox T

defined there and the empty set of causal relationships. However, it becomes consistent if
we add the causal relationship of Example 6.9.

We are now ready to define the projection problem formally. Recall that it deals with the
question whether for a given (possible incomplete) description of the initial state, a certain
property is guaranteed to hold after the execution of a sequence of DL-actions. Our formal
definition of this problem is very similar to the one from [BLM+05a], with the difference
that we use the ‘transforms’ relation (⇒T ,CR

a) introduced in Definition 6.13, which takes a
general TBox and a set of causal relationships into account, instead of the one employed
in [BLM+05a].

Definition 6.16 (Projection problem). Let A be a generalised ABox, T be a TBox, CR be a

finite set of causal relationships, α be a generalised ABox-literal, and a1, . . . , an be a sequence

128 Chapter 6. Verification in Action Formalisms Based on ALCQIO

of DL-actions such that the DL-action ai is consistent w.r.t. T and CR for every i, 1≤ i ≤ n. We

say that α is a consequence of applying a1, . . . , an to A w.r.t. T and CR if for every I and I′

with I |= A and I ⇒T ,CR
a1,...,an

I′, we have I′ |= α.

The projection problem is then to decide whether α is a consequence of applying a1, . . . , an

to A w.r.t. T and CR. ♦

Note that in this definition, we consider only DL-actions that are consistent w.r.t. T and CR. As
argued above, if any DL-action is inconsistent w.r.t. T and CR, then this indicates a modelling
error in the action theory, and this issue should be addressed before starting to ask projection
questions. However, it could also happen that not all pre-conditions are guaranteed to be
satisfied during the execution of a sequence of DL-actions. The executability problem [Rei01],
another interesting inference problem for action theories, deals with this question.

Definition 6.17 (Executability problem). Let A be a generalised ABox, T be a TBox, CR be

a finite set of causal relationships, and a1, . . . , an be a sequence of DL-actions such that the

DL-action ai = (prei , posti) is consistent w.r.t. T and CR for every i, 1 ≤ i ≤ n. We say that

a1, . . . , an is executable in A w.r.t. T and CR if for every model I of A and T , we have:

• I |= pre1, and

• for every i, 1≤ i < n, and all interpretations I′ with I ⇒T ,CR
a1,...,ai

I′, we have I′ |= prei+1.

The executability problem is then to decide whether a1, . . . , an is executable in A w.r.t. T

and CR. ♦

Usually, before one asks for projection questions, one checks whether the sequence of
DL-actions is indeed executable. However, Lemma 4 in [BLM+05a] states that for the
action formalism defined there, the projection and the executability problem can be reduced
to each other in polynomial time. The actual proof is shown in [BLM+05b]; there it is
Lemma 11. The arguments can also be used to show that for the action formalism defined
here, each executability problem can be reduced to polynomially many projection problems in
polynomial time.4 We repeat these arguments from [BLM+05b] for the sake of completeness.

Theorem 6.18. The executability problem as introduced in Definition 6.17 can be reduced to

polynomially many projection problems as introduced in Definition 6.16 in polynomial time.

Proof. Take a generalised ABox A, a TBox T , a finite set of causal relationships CR, a
generalised ABox-literal α, and a sequence of DL-actions a1, . . . , an such that the DL-action
ai = (prei , posti) is consistent w.r.t. T and CR for every i, 1≤ i ≤ n. We have that a1, . . . , an

is executable in A w.r.t. T and CR iff

1. for every β ∈ pre1, we have that β is a consequence of applying (;,;) to A w.r.t. T

and CR; and

2. for every i, 1 ≤ i < n, and every β ∈ prei+1, we have that β is a consequence of
applying a1, . . . , ai to A w.r.t. T and CR.

4The converse direction, i.e. that the projection problem can be reduced to the executability problem in
polynomial time, does not follow from the arguments in [BLM+05b], because we take the pre-condition into
account when defining the ‘transforms’ relation (⇒T ,CR

a
).

6.2 Deciding the Consistency Problem 129

It is easy to see that these are polynomially many projection problems, where each can be
constructed in polynomial time. �

For this reason, we can restrict our attention to the consistency and the projection problem
for showing decidability and complexity results. We first consider the consistency problem
in Section 6.2, and then the projection problem in Section 6.3. Finally, in Section 6.4, we
consider the problem of verifying temporal properties.

6.2 Deciding the Consistency Problem

In this section, we first consider the case where the TBox is empty, and develop a solution
for this restricted case. After that, we show how this solution can be extended to deal with
the general case.

6.2.1 Deciding the Consistency Problem w.r.t. the Empty TBox

In this section, we show that testing consistency of a DL-action w.r.t. the empty TBox and
a finite set of causal relationships is decidable and has the same complexity as checking
inconsistency of a generalised ABox.

Given a DL-action a and a finite set of causal relationships CR, we basically consider
all possible situations that a could encounter when it is applied to an interpretation. The
relevant information is kept in a so-called action type.5 For this, we define for a DL-action
a = (pre, post) and a finite set of causal relationships CR, the set Cond(a, CR) as the closure
under negation (¬) of the set

{α | α/β ∈ post} ∪ {α | α ∈ A1 ∪B for some A1→B A2 ∈ CR}.

Definition 6.19 (Action type). An action type for a DL-action a and a finite set of causal
relationships CR is a generalised ABox T ⊆ Cond(a, CR) such that

• ¬α ∈ T iff α /∈ T for every ¬α ∈ Cond(a, CR); and

• T is consistent. ♦

We denote the set of all action types for a DL-action a and a finite set of causal relationships
CR by T(a, CR). Moreover, for a given interpretation I, there is exactly one action type
T ∈ T(a, CR) such that I |= T .

Lemma 6.20. Let a be a DL-action, and CR a finite set of causal relationships. For a given

interpretation I, there is one unique action type T ∈ T(a, CR) such that I |= T.

Proof. Given an interpretation I, we define T := {α ∈ Cond(a, CR) | I |= α}. We have
obviously that T ∈ T(a, CR) and I |= T . It is left to be shown that T is unique. Assume to the
contrary that there is a T ′ ∈ T(a, CR) with I |= T ′ and T 6= T ′. Since T and T ′ are non-equal
action types for a and CR, there is a generalised ABox-literal α with α ∈ T and α /∈ T ′, and
thus ¬α ∈ T ′. Since I |= T and I |= T ′, we have that I |= α and I |= ¬α, i.e. I 6|= α, which
is a contradiction. �

5In [BLL10b], this is called a diagram.

130 Chapter 6. Verification in Action Formalisms Based on ALCQIO

We now continue by defining for an action type T ∈ T(a, CR), a set Eff(a, T, CR), which
describes the set of effects that a has on T w.r.t. CR. We can show that for every interpreta-
tion I with I |= T , we have Eff(a, T, CR) = Eff(a, I, CR), and thus it is sufficient to know the
unique action type T ∈ T(a, CR) with I |= T to determine the direct and indirect effects of
applying a to I w.r.t. CR.

The definition of the set of direct effects on T is very similar to Definition 6.10.

Definition 6.21 (Direct effects on action type). For a DL-action a = (pre, post), a finite set

of causal relationships CR, and an action type T ∈ T(a, CR), the set of direct effects of a on T

is defined as
Dir(a, T) := {β | β ∈ post} ∪ {β | α/β ∈ post and α ∈ T}. ♦

The definition of the set of indirect effects on T is very similar to Definition 6.11.

Definition 6.22 (Indirect effects on action type). The causal relationship A1→B A2 in the

finite set of causal relationships CR is applicable to an action type T and a set of effects E iff

1. B ⊆ T,

2. A1 6⊆ T, and

3. for every α ∈ A1, either α ∈ E , or α ∈ T and ¬α /∈ E .

The set of indirect effects of CR on T and E is defined as

Indir(CR, T, E) := {β | β ∈ A2 for some A1→B A2 ∈ CR applicable to T and E}. ♦

Finally, the set of effects on T can be defined similar to what was done for Definition 6.12.

Definition 6.23 (Effects on action type). For a DL-action a = (pre, post), a finite set of

causal relationships CR, and an action type T ∈ T(a, CR), the set of effects of a on T w.r.t. CR

is defined as Eff(a, T, CR) :=
⋃

i≥0 Effi(a, T, CR) where Effi(a, T, CR) is defined inductively as

follows:

• Eff0(a, T, CR) := Dir(a, T); and

• Effi+1(a, T, CR) := Effi(a, T, CR)∪ Indir(CR, T, Effi(a, T, CR)). ♦

Again, the set Eff(a, T, CR) can effectively be computed due to the same arguments that we
used above to show that Eff(a, I, CR) can be computed effectively. Moreover, it is not hard
to see that the set Eff(a, T, CR) can be computed in time polynomial in the size of a, T , and
CR. Similar to before, we say that Eff(a, T, CR) is contradictory if there is an ABox-literal α
such that {α,¬α} ⊆ Eff(a, T, CR).

Lemma 6.24. Let a be a DL-action, CR be a finite set of causal relationships, and T be

an action type for a and CR. Then, for every interpretation I with I |= T, we have that

Eff(a, I, CR) = Eff(a, T, CR).

Proof. Take any interpretation I with I |= T . We first show the following claim.

Claim 6.25. Let α ∈ Cond(a, CR), and A ⊆ Cond(a, CR). Then, we have

6.2 Deciding the Consistency Problem 131

1. I |= α iff α ∈ T,

2. I |= A iff A ⊆ T,

3. Dir(a, I) = Dir(a, T), and

4. Indir(CR, I, E) = Indir(CR, T, E) for every set of effects E .

The ‘if’ direction of Part 1 of the claim is trivial since I |= T . To prove the ‘only if’ direction,
assume that I |= α, but α /∈ T . Since T ∈ T(a, CR) and α ∈ Cond(a, CR), we have ¬α ∈ T .
Then I |= T yields I |= ¬α, i.e. I 6|= α, which is a contradiction.

To prove Part 2 of the claim, take any β ∈ A. Since β ∈ Cond(a, CR), we have now by
Part 1 of the claim that I |= β iff β ∈ T , which finishes this part of the claim.

For Part 3 of the claim, let a = (pre, post). We have:

Dir(a, I) = {β | β ∈ post} ∪ {β | α/β ∈ post and I |= α} (by Definition 6.10)

= {β | β ∈ post} ∪ {β | α/β ∈ post and α ∈ T} (by Part 1 of the claim)

= Dir(a, T) (by Definition 6.21)

Finally, to prove Part 4, take any causal relationship A1 →B A2 ∈ CR, and any set of
effects E . We have:

A1→B A2 is applicable to I and E

iff I |= B, I 6|= A1, and for every α ∈ A1, either α ∈ E , or I |= α and ¬α /∈ E

(by Definition 6.11)

iff B ⊆ T , A1 6⊆ T , and for every α ∈ A1, either α ∈ E , or α ∈ T and ¬α /∈ E

(by Parts 1 and 2 of the claim)

iff A1→B A2 is applicable to T and E

(by Definition 6.22).

This yields using Definitions 6.11 and 6.22:

Indir(CR, I, E) = {β | β ∈ A2 for some A1→B A2 ∈ CR applicable to I and E}
= {β | β ∈ A2 for some A1→B A2 ∈ CR applicable to T and E}
= Indir(CR, T, E).

This finishes the proof the Claim 6.25.

To prove Eff(a, I, CR) = Eff(a, T, CR), it is enough to prove by induction that we have
Effi(a, I, CR) = Effi(a, T, CR) for every i ≥ 0. For i = 0, we have by Definitions 6.12 and 6.23,
and Part 3 of Claim 6.25:

Eff0(a, I, CR) = Dir(a, I) = Dir(a, T) = Eff0(a, T, CR).

132 Chapter 6. Verification in Action Formalisms Based on ALCQIO

For i > 0, we have again by Definitions 6.12 and 6.23, Part 4 of Claim 6.25, and the induction
hypothesis:

Effi(a, I, CR) = Effi−1(a, I, CR)∪ Indir(CR, I, Effi−1(a, I, CR))

= Effi−1(a, T, CR)∪ Indir(CR, I, Effi−1(a, T, CR))

= Effi−1(a, T, CR)∪ Indir(CR, T, Effi−1(a, T, CR))

= Effi(a, T, CR). �

Using this lemma, we can show that checking which of the sets of effects Eff(a, T, CR),
with T ∈ T(a, CR), are contradictory is sufficient for deciding whether the DL-action a is
consistent w.r.t. the empty TBox and a finite set of causal relationships CR. In fact, there are
only two reasons for an interpretation I that there does not exist an interpretation I′ such
that I ⇒;,CR

a I′ if the TBox is assumed to be empty: either a is not applicable to I, or the
set Eff(a, I, CR) is contradictory. Since for a being consistent, we require the existence of I′

only for interpretations I such that a is applicable to I, it is enough to consider the action
types T that are consistent with the pre-condition of a.

Lemma 6.26. The DL-action a = (pre, post) is consistent w.r.t. the empty TBox and a finite

set of causal relationships CR iff the set of effects Eff(a, T, CR) is not contradictory for each

T ∈ T(a, CR) for which T ∪ pre is consistent.

Proof. For the ‘only if’ direction, assume to the contrary that there exists an action type
T ∈ T(a, CR) such that T ∪ pre is consistent, but Eff(a, T, CR) is contradictory. Then, there
is an interpretation I such that I |= T ∪ pre, and thus also that I |= T and I |= pre. This
yields that a is applicable to I w.r.t. the empty TBox. However, since I |= T , we have
by Lemma 6.24 that Eff(a, I, CR) = Eff(a, T, CR). Hence, the set of effects Eff(a, I, CR) is
contradictory. But then, by Definition 6.13, we have that there is no interpretation I′ such
that I ⇒;,CR

a I′, which is a contradiction to a being consistent w.r.t. the empty TBox and CR.
For the ‘if’ direction, assume to the contrary that a is not consistent w.r.t. the empty TBox

and CR. Then there exists an interpretation I with the following two properties: a is applic-
able to I w.r.t. the empty TBox, and there is no interpretation I′ with I ⇒;,CR

a I′. By Defini-
tion 6.13, we have that Eff(a, I, CR) is contradictory. By Lemma 6.20, there is one unique ac-
tion type T ∈ T(a, CR) such that I |= T . Lemma 6.24 yields that Eff(a, T, CR) = Eff(a, I, CR),
and thus we have that Eff(a, T, CR) is contradictory. Moreover, since a is applicable to I w.r.t.
the empty TBox, we have I |= pre, and thus, together with I |= T , that T ∪ pre is consistent,
which yields a contradiction. �

We use this lemma to design a decision procedure for deciding whether a DL-action is
consistent w.r.t. the empty TBox and a finite set of causal relationships. The complexity of
this problem depends on the DL used.

Theorem 6.27. The problem of deciding whether a DL-action is consistent w.r.t. the empty

TBox and a finite set of causal relationships is

1. PSPACE-complete for DLs between ALC and ALCQO;

2. PSPACE-complete for DLs between ALC and ALCQI;

6.2 Deciding the Consistency Problem 133

3. EXPTIME-complete for ALCIO; and

4. CO-NEXPTIME-complete for ALCQIO.

Proof. We first prove the lower bounds. We reduce the ABox-inconsistency problem, i.e. the
problem of deciding whether a given ABox is inconsistent, to our DL-action consistency
problem. Take any ABox A. It is easy to see that A is inconsistent iff the DL-action
(A, {A(a),¬A(a)}) is consistent w.r.t. the empty TBox and the empty set of causal relationships,
where A∈ NC and a ∈ NI are arbitrary.

We have PSPACE-hardness for Parts 1 and 2 of the theorem, since the ABox-consistency prob-
lem is PSPACE-complete for the description logics ALC [SS91], ALCQO [Sch94; BLM+05b],
and ALCQI [Tob01], and PSPACE is closed under complement.6 We obtain EXPTIME-
hardness for Part 3 of the theorem, because the ABox-consistency problem for ALCIO

is EXPTIME-complete [ABM99], and the class EXPTIME is closed under complement. Finally,
CO-NEXPTIME-hardness for Part 4 of the theorem is obtained, because the ABox-consistency
problem for ALCQIO is NEXPTIME-complete [Sch94; Tob00; Pra05].7

To prove the upper bounds for Parts 1 and 2 of the theorem, we give an NPSPACE-decision
procedure for deciding whether a DL-action is inconsistent w.r.t. the empty TBox and a
finite set of causal relationships.8 Given a DL-action a = (pre, post) and a finite set of causal
relationships CR, the decision procedure consists of three steps.

1. Non-deterministically guess an action type T ∈ T(a, CR).

2. Check whether the generalised ABox T ∪ pre is consistent.

3. If Step 2 was successful, compute the set Eff(a, T, CR), and check whether it is contra-
dictory.

If in Step 3, we obtain a contradictory set of effects, we know by Lemma 6.26 that a is not

consistent w.r.t. the empty TBox and CR. Otherwise, a is consistent w.r.t. the empty TBox
and CR.

Step 1 can be done in PSPACE, because the set T(a, CR) is of size exponential in the size
of a and CR, but each action type T ∈ T(a, CR) is only of polynomial size.

The consistency test in Step 2 can polynomially be reduced to the consistency problem
of classical ABoxes [BLM+05b]. Indeed, a generalised ABox A can be transformed into a
classical ABox A′ such that A is consistent iff A′ is consistent as follows. Obviously, every
negative concept assertion ¬α(a) in A can be replaced by (¬α)(a) without affecting the
consistency of A. Every negative role assertion ¬r(a, b) in A can be replaced by the two
concept assertions (¬∃r.Ab)(a) and Ab(b), where Ab is a concept name not occurring in A.

6Note that in [BLM+05b], PSPACE-completeness of the ABox-consistency problem for ALCQO is proved only for
the case of unary coding of the numbers in the at-least and at-most restrictions. It is conjectured in [BLM+05b],
however, that with similar arguments, one obtains PSPACE-completeness also for the case of binary coding.
For ALCQI, it is proved explicitly that the ABox-consistency problem is PSPACE-complete even if the numbers
are coded in binary [Tob01].

7This is even the case if the number in the at-least and at-most restrictions are coded in binary, because one
can reduce the ABox-consistency problem for ALCQIO to the satisfiability problem for C2 with counting
quantifiers [BLM+05b], which is NEXPTIME-complete even if the numbers are coded in binary [Pra05].

8Recall that Savitch’s theorem [Sav70] implies that NPSPACE and PSPACE coincide, and that PSPACE is closed
under complement.

134 Chapter 6. Verification in Action Formalisms Based on ALCQIO

It is not hard to verify that A is consistent iff A′ is consistent. As noted above, the ABox-
consistency problem is PSPACE-complete for ALCQO and ALCQI. Thus, the check whether
T ∪ pre is consistent can be done in PSPACE for the DLs ALCQO and ALCQI.

Step 3 can also be done in PSPACE, because computing the set Eff(a, T, CR) can be realised
by performing the iteration used in the definition of Eff(a, T, CR). As argued above, this can
be done in time polynomial in the size of a, T , and CR. Checking whether this set of effects
is contradictory is obviously also possible in polynomial time.

To prove Part 4 of the theorem, we proceed similarly. We employ the same decision
procedure as above for checking whether the DL-action a is inconsistent w.r.t. the empty
TBox and the finite set of causal relationships CR. Since now the underlying DL is ALCQIO

with the arguments above, this can be done in NEXPTIME. Hence, we obtain that the
complement of this problem is in CO-NEXPTIME.

Finally, for Part 3 of the theorem, in order to check whether the DL-action a = (pre, post)

is consistent w.r.t. the empty TBox and the finite set of causal relationships CR, we compute
the set T(a, CR) explicitly. Now, we check for each T ∈ T(a, CR), whether T ∪ pre is
consistent. Then, we compute the set Eff(a, T, CR), and check whether it is contradictory. If
no contradictory set of effects is found, we know that a is consistent w.r.t. the empty TBox
and CR. Otherwise, a is inconsistent w.r.t. the empty TBox and CR. Using the arguments
from above, this yields an EXPTIME-decision procedure. �

In the next section, we consider the consistency problem for the case where the TBox is
general, i.e. a finite set of GCIs.

6.2.2 Deciding the Consistency Problem w.r.t. a General TBox

If the TBox is not assumed to be empty, the picture changes. We can no longer obtain an easy
characterisation of consistent DL-actions as for the case where the TBox is assumed to be
empty. In this case, the criterion for a DL-action to be consistent w.r.t. the empty TBox and
a finite set of causal relationships stated in Lemma 6.26 is a necessary but not a sufficient
condition. In fact, it could happen that a not contradictory set of effects induces a successor
interpretation that is not a model of the TBox. This is an additional possible reason for a
DL-action a to be inconsistent w.r.t. a TBox T and a finite set of causal relationships CR.
Thus, one needs to check additionally for each action type T ∈ T(a, CR), whether for any
model I of T and T that satisfies the preconditions of a, the interpretation I′ obtained
from I by applying the effects in Eff(a, T, CR) (see Definition 6.13) is a model of T . For this
purpose, we define an unconditional DL-action ba,T,CR that has the same effects as a and CR

if applied to a model of T . Then, we adapt the approach to solving the projection problem
introduced in [BLM+05a] in order to decide whether ba,T,CR transforms models of T into
models of T .

Definition 6.28. Let a = (pre, post) be a DL-action, CR a finite set of causal relationships, and

T ∈ T(a, CR). The unconditional DL-action ba,T,CR is defined as follows:

ba,T,CR := (pre∪ T, Eff(a, T, CR)). ♦

The following lemma is a direct consequence of the definition of the set of effects Eff(a, T, CR)

(see Definition 6.23), the semantics of DL-actions (see Definition 6.13), and Lemma 6.26.

6.2 Deciding the Consistency Problem 135

Lemma 6.29. For every T ∈ T(a, CR), every model I of T , and every interpretation I′, we

have I ⇒;,CR
a I′ iff I ⇒;,;

ba,T,CR
I′.

Proof. Take any action type T ∈ T(a, CR), and any interpretation I with I |= T . We have
by the construction of ba,T,CR that Dir(ba,T,CR, T) = Eff(a, T, CR). Thus, we have also that
Eff(ba,T,CR, T,;) = Eff(a, T, CR). By Lemma 6.26, this yields Eff(ba,T,CR, I,;) = Eff(a, I, CR).

Finally, together with Definition 6.13, we obtain I ⇒;,CR
a I′ iff I ⇒;,;

ba,T,CR
I′. �

The approach to solving the projection problem introduced in [BLM+05a] considers a finite
sequence of DL-actions b1, . . . , bn. In this section, however, we are only interested in the
special case where n = 1. Since we will adopt the same approach also in Section 6.3, where
we consider the case n≥ 1 to solve the projection problem, we still recall here the relevant
notions and results for the general case.

The procedure to solving the projection problem introduced in [BLM+05a] works basically
as follows. Firstly, time-stamped copies A(i), 0≤ i ≤ n, of all relevant concept names in the
input, r(i), 0≤ i ≤ n, of all relevant role names in the input, and new time-stamped concept
names T

(i)

C
, 0 ≤ i ≤ n, for every relevant concept C in the input are introduced. Whereas

in [BLM+05a], not all concept names occurring in the input are relevant, in our setting, the
relevant role names, concept names, and concepts are precisely the ones occurring in the
input of the consistency (or projection) problem.9 For every generalised ABox-literal α built
using a relevant concept C or a relevant role name r (called relevant generalised ABox-literal

in the following) and every i, 0≤ i ≤ n, we can then define a time-stamped variant α(i) as
follows:

(C(a))(i) := T
(i)

C
(a), (r(a, b))(i) := r(i)(a, b),

(¬C(a))(i) := ¬T
(i)

C
(a), (¬r(a, b))(i) := ¬r(i)(a, b).

Given a generalised ABox A, where each α ∈ A is a relevant generalised ABox-literal, we
define its time-stamped copy A(i) as

A(i) :=
�
α(i) | α ∈ A
	
.

Similarly, given a finite set of GCIs T built from relevant concepts, we define its time-stamped
copy T (i) as

T (i) :=
�

T
(i)

C
⊑ T

(i)
D | C ⊑ D ∈ T
	
.

Intuitively, given an initial interpretation I0, the application of b1 to I0 yields a successor
interpretation I1, the application of b2 to I1 yields a successor interpretation I2, and so forth.
We can encode the sequence of interpretations I0, I1, . . . , In into a single interpretation J

using the time-stamped copies introduced above such that the relevant generalised ABox-
literal α holds in Ii iff its time-stamped copy α(i) holds in J .

9Recall that in [BLM+05a] only acyclic TBoxes are considered. Additionally, the action formalism there is limited
such that for each DL-action a, we have that defined concept names must not occur in any unconditional
post-condition of a or in β for any conditional post-condition α/β of a. Intuitively, this is the reason why
in [BLM+05a], defined concept names are not relevant, i.e. there is no need to introduce time-stamped
copies A(i) for any defined concept name A.

136 Chapter 6. Verification in Action Formalisms Based on ALCQIO

To enforce that J indeed encodes a sequence of interpretations induced by the application
of the sequence of DL-actions b1, . . . , bn, we require it to be a model of the (acyclic) TBox Tred

and the generalised ABox Ared. The construction of Tred and Ared is very similar to the one
introduced in [BLM+05b] with the difference that we use here a different notion of ‘relevant’
as explained above. Also, compared to the original construction of Ared and Tred, the present
construction is simpler since we deal only with unconditional DL-actions. Additionally, since
we do not consider acyclic TBoxes as domain constraints, we can simplify the construction.

In the following, let R denote a set of relevant concept names, role names, and concepts,
and let Obj denote the set of individual names occurring in the input of the consistency
problem. We describe the construction for the case of ALCQIO. The TBox Tred consists of
two parts: a TBox TN and a TBox Tsub, i.e. Tred := TN ∪ Tsub. As in [BLM+05b], the TBox TN

introduces a concept name N to capture all named individuals:

TN :=
�

N ≡
⊔

a∈Obj

{a}
	
.

Note that we make use of nominals here. The TBox Tsub consists of a concept definition of
T
(i)

C
for every concept C ∈R and every i, 0≤ i ≤ n. The concept definition of T

(i)

C
is defined

inductively on the structure of C as follows:

• T
(i)
A ≡ (N ⊓ A(i))⊔ (¬N ⊓ A(0)) if A∈ NC;

• T
(i)

{a} ≡ {a};

• T
(i)

¬C1
≡ ¬T

(i)

C1
;

• T
(i)

C1⊓C2
≡ T

(i)

C1
⊓ T

(i)

C2
;

• T
(i)

∃r.C1
≡
�
N ⊓
�
(∃r(0).(¬N ⊓ T

(i)

C1
))⊔ (∃r(i).(N ⊓ T

(i)

C1
))
��
⊔ (¬N ⊓ ∃r(0).T (i)

C1
)); and

• T
(i)

≥m r.C1
≡
�
N ⊓
⊔

0≤ j≤m

�
≥ j r(i).(N ⊓ T

(i)

C1
)⊓≥(m− j) r(0).(¬N ⊓ T

(i)

C1
)
��
⊔

(¬N ⊓≥m r(0).T (i)
C1
).

The generalised ABox Ared also consists of several parts. Let prei be the set of pre-conditions
of bi for each i, 1≤ i ≤ n. The following generalised ABoxes capture the pre-conditions:

A(i)
pre

:=
�
α(i−1) | α ∈ prei

	
.

Note that we take α(i−1) since the pre-conditions have to be satisfied before the DL-action is
applied.

Moreover, let posti be the set of post-conditions of bi for each i, 1≤ i ≤ n. Since all bi are
unconditional, we can define generalised ABoxes capturing the post-conditions as follows:

A
(i)
post :=
�
α(i) | α ∈ posti

	
.

The ABoxes A
(i)
min

ensure a minimisation of changes to the named individuals. For every i,

1≤ i ≤ n, the ABox A
(i)
min

consists of

6.2 Deciding the Consistency Problem 137

1. the following assertions for every a ∈ Obj and every A∈ NC occurring in the input:

¨
(A(i−1)→ A(i))(a) if ¬A(a) /∈ posti , and

(¬A(i−1)→¬A(i))(a) if A(a) /∈ posti; and

2. the following assertions for every a, b ∈ Obj and every r ∈ NR occurring in the input:

¨
(∃r(i−1).{b} → ∃r(i).{b})(a) if ¬r(a, b) /∈ posti , and

(¬∃r(i−1).{b} → ¬∃r(i).{b})(a) if r(a, b) /∈ posti .

Finally, we can construct the generalised ABox Ared using the above defined ABoxes and
the pre-conditions of the DL-actions:

Ared :=
n⋃

i=1

A(i)
pre
∪

n⋃

i=1

A
(i)
post ∪

n⋃

i=1

A
(i)
min

.

We now recall the pertinent properties of Tred and Ared in the next lemma, whose proof is
very similar to the one of Theorem 14 and Lemma 15 in [BLM+05b]. We still present the
full proof for the sake of completeness.

Lemma 6.30. Let L be a DL between ALC and ALCQIO and LO the DL which extends L with

nominals. Let b1, . . . , bn be a sequence of DL-actions formulated in L, and R be a set of relevant

concept names, role names, and concepts such that R contains all the concept names, role names,

and concepts occurring in b1, . . . , bn.

Then, there are a generalised LO-ABox Ared and an (acyclic) LO-TBox Tred of size polynomial

in the size of b1, . . . , bn, and R, such that the following properties hold:

1. For every sequence of interpretations I0, . . . , In with Ii ⇒;,;bi+1
Ii+1 for each i, 0≤ i < n,

there exists an interpretation J such that J |= Ared, J |= Tred, and

a) for every i, 0≤ i ≤ n, and every relevant generalised ABox-literal α, we have Ii |= α
iff J |= α(i); and

b) for every i, 0≤ i ≤ n, and every relevant concept C, we have CIi = (T
(i)

C
)J .

2. For every interpretation J with J |= Ared and J |= Tred, there exist interpretations

I0, . . . , In such that Ii ⇒;,;bi+1
Ii+1 for every i, 0≤ i < n, and

a) for every i, 0≤ i ≤ n, and every relevant generalised ABox-literal α, we have Ii |= α
iff J |= α(i); and

b) for every i, 0≤ i ≤ n, and every relevant concept C, we have CIi = (T
(i)

C
)J .

Proof. Let Ared and Tred be defined as above. It is easy to see that Ared and Tred are of
size polynomial in the size of b1, . . . , bn, and R. We first prove Property (1). For that,
let I0 = (∆

I0 , ·I0), . . . , In = (∆
In , ·In) be a sequence of interpretations with Ii ⇒;,;bi

Ii+1

for every i, 0 ≤ i < n. Then, Definition 6.13 yields that ∆I0 = ∆I1 = · · · = ∆In , and
aI0 = aI1 = · · · = aIn for every a ∈ NI. We define the interpretation J = (∆J , ·J) as follows:

• ∆J :=∆I0;

• aJ := aI0 for every a ∈ NI;

138 Chapter 6. Verification in Action Formalisms Based on ALCQIO

• NJ := {aJ | a ∈ Obj};
• (A(i))J := AIi for every A∈R∩NC and every i, 0≤ i ≤ n;

• (r(i))J := rIi for every r ∈R∩NR and every i, 0≤ i ≤ n; and

• (T (i)
C
)J := CIi for every concept C ∈R and every i, 0≤ i ≤ n.

We first prove Property (1a). For that, take any i with 0≤ i ≤ n, and any relevant generalised
ABox-literal α. We prove the property by case distinction. Assume that α is of the form
C(a) where C is a concept and a ∈ NI. We have: Ii |= α iff aIi ∈ CIi iff aJ ∈ (T (i)

C
)J iff

J |= T
(i)

C
(a) iff J |= α(i).

Assume now that α is of the form ¬C(a) where C is a concept and a ∈ NI. By similar
arguments, we have: Ii |= α iff a /∈ CIi iff aJ /∈ (T (i)

C
)J iff J 6|= T

(i)

C
(a) iff J |= ¬T

(i)

C
(a) iff

J |= α(i).
For the case that α is of the form r(a, b) where r ∈ NR and a, b ∈ NI, we have: Ii |= α iff

(aIi , bIi) ∈ rIi iff (aJ , bJ) ∈ (r(i))J iff J |= r(i)(a, b) iff J |= α(i).
Finally, assume that α is of the form ¬r(a, b) where r ∈ NR and a, b ∈ NI. We have: Ii |= α

iff (aIi , bIi) /∈ rIi iff (aJ , bJ) /∈ (r(i))J iff J 6|= r(i)(a, b) iff J |= ¬r(i)(a, b) iff J |= α(i). This
finishes the proof of Property (1a).

Property (1b) follows directly from the definition of J . Thus, it is only left to be proved
that J is a model of Ared and Tred.

We start proving that J is a model of Ared. Definition 6.13 yields that bi is applicable
to Ii−1 w.r.t. the empty TBox, i.e. Ii−1 |= prei, for every i, 1 ≤ i ≤ n. Since prei consists of
relevant generalised ABox-literals, we have by Property (1a) that J |= pre

(i−1)
i

, i.e. J |= A(i)
pre

,
for every i, 1≤ i ≤ n.

Since the set of causal relationships is empty and all DL-actions are unconditional, we have
that Eff(bi , Ii−1,;) = posti for every i, 1≤ i ≤ n. We have by Definition 6.13 that posti is not
contradictory for every i, 1≤ i ≤ n. It is easy to see from Definition 6.13 that Ii |= posti for
every i, 1≤ i ≤ n. Again, since posti consists of relevant generalised ABox-literals, we have
by Property (1a) that J |= post

(i)

i
, i.e. J |= A

(i)
post, for every i, 1≤ i ≤ n.

To show that J is a model of A
(i)
min

for every i, 1 ≤ i ≤ n, take any i, 1 ≤ i ≤ n, any
a, b ∈ Obj, any relevant A ∈ NC, and any relevant r ∈ NR. Assume first that ¬A(a) /∈ posti.
By the arguments above, we have that ¬A(a) /∈ Eff(bi , Ii−1,;). By Definition 6.13, we
have that aIi−1 /∈ A−, and thus that aIi−1 ∈ AIi−1 implies that aIi−1 = aIi ∈ AIi . Hence,
aJ ∈ (A(i−1))J implies that aJ ∈ (A(i))J . This is equivalent to aJ ∈ (A(i−1)→ A(i))J . Thus,
J |= (A(i−1)→ A(i))(a).

Assume now that A(a) /∈ posti. By similar arguments, we obtain that aIi−1 /∈ A+, and
thus that aIi−1 /∈ AIi−1 implies that aIi−1 /∈ AIi . Hence, we have that aJ /∈ (A(i−1))J im-
plies that aJ /∈ (A(i))J . This is equivalent to aJ ∈ (¬A(i−1) → ¬A(i))J . Thus, we have
J |= (¬A(i−1)→¬A(i))(a).

For the case where ¬r(a, b) /∈ posti , we have again by similar arguments as in the previous
cases that (aIi−1 , bIi−1) /∈ r−, and thus that (aIi−1 , bIi−1) ∈ rIi−1 implies that (aIi−1 , bIi−1) ∈ rIi .
Hence, (aJ , bJ) ∈ (r(i−1))J implies that (aJ , bJ) ∈ (r(i))J . It is easy to see that this
is equivalent to aJ ∈ (∃r(i−1).{b} → ∃r(i).{b})J , which yields that we have also that
J |= (∃r(i−1).{b} → ∃r(i).{b})(a).

6.2 Deciding the Consistency Problem 139

Finally, assume that r(a, b) /∈ posti. By similar arguments, we have (aIi−1 , bIi−1) /∈ r+,
and thus we have that (aIi−1 , bIi−1) /∈ rIi−1 implies (aIi−1 , bIi−1) /∈ rIi . This yields that
(aJ , bJ) /∈ (r(i−1))J implies that (aJ , bJ) /∈ (r(i))J . Again, it is easy to see that this is
equivalent to aJ ∈ (¬∃r(i−1).{b} → ¬∃r(i).{b})J . Thus, we have also that J is a model of
(¬∃r(i−1).{b} → ¬∃r(i).{b})(a).

This finishes the proof that J |= A
(i)
min

for every i, 1 ≤ i ≤ n. Thus, we have shown that
J |= Ared. We show now that J is also a model of Tred. The definition of NJ yields that
J |= TN . Before we show that J |= Tsub, we show the following claim.

Claim 6.31. For every A∈ NC, and every i, 0≤ i ≤ n, we have that AI0 \ NJ = AIi \ NJ .

We show this claim by induction on i. For that, take any A ∈ NC. For i = 0, the claim
is trivially satisfied. Assume now that the claim holds for i, i.e. AI0 \ NJ = AIi \ NJ .
Thus, it is enough to show AIi \ NJ = AIi+1 \ NJ . Since Ii ⇒;,;bi+1

Ii+1, we have by

Definition 6.13 that AIi+1 = (AIi ∪ A+) \ A−, where A+ = {aI | A(a) ∈ Eff(bi+1, Ii ,;)} and
A− = {aI | ¬A(a) ∈ Eff(bi+1, Ii ,;)}. Thus, AIi+1 \ NJ =

�
(AIi ∪ A+) \ A−
�
\ NJ . Obviously,

A+ ⊆ NJ and A− ⊆ NJ , and thus AIi+1 \NJ = AIi \NJ . This finishes the proof of Claim 6.31.
Very similar arguments can be used to show a similar claim for role names.

Claim 6.32. For every r ∈ NR, and every i, 0≤ i ≤ n, we have that

rI0 \ (NJ × NJ) = rIi \ (NJ × NJ).

To show that J |= Tsub, we show that for every concept C ∈ R and every i, 0 ≤ i ≤ n, the
concept definition of T

(i)

C
is satisfied. We prove this by a case distinction.

For the case where C = A ∈ NC, we have that (T (i)A)
J = AIi by definition. Obviously,

AIi = (NJ ∩ AIi) ∪ (AIi \ NJ). Claim 6.31 yields AIi = (NJ ∩ AIi) ∪ (AI0 \ NJ). Thus, we
have AIi = (NJ ∩ AIi)∪

�
(∆J \ NJ)∩ AI0

�
. Hence, we obtain together with the definition

of J that (T (i)A)
J = (NJ ∩ (A(i))J)∪

�
(∆J \ NJ)∩ (A(0))J

�
, which yields that J is a model

of T
(i)
A ≡ (N ⊓ A(i))⊔ (¬N ⊓ A(0)).

For the case where C is of the form {a} with a ∈ Obj, we have by definition that

(T
(i)

{a})
J = {a}Ii = {aIi}= {aJ }= {a}J ,

and thus that J is a model of T
(i)

{a} ≡ {a}.
For the case where C is of the form ¬C1, we have again by definition that

(T
(i)

¬C1
)J = (¬C1)

Ii =∆Ii \ C
Ii

1 =∆
J \ (T (i)

C1
)J = (¬T

(i)

C1
)J ,

which yields that J is a model of T
(i)

¬C1
≡ ¬T

(i)

C1
.

For the case where C is of the form C1 ⊓ C2, we have analogously that

(T
(i)

C1⊓C2
)J = (C1 ⊓ C2)

Ii = C
Ii

1 ∩ C
Ii

2 = (T
(i)

C1
)J ∩ (T (i)

C2
)J = (T

(i)

C1
⊓ T

(i)

C2
)J ,

which yields that J is a model of T
(i)

C1⊓C2
≡ T

(i)

C1
⊓ T

(i)

C2
.

140 Chapter 6. Verification in Action Formalisms Based on ALCQIO

For the case where C is of the form ∃r.C1, we have

(T
(i)

∃r.C1
)J = (∃r.C1)

Ii

= {d ∈∆Ii | there is an e ∈∆Ii with (d, e) ∈ rIi and e ∈ C
Ii

1 }
= {d ∈ NJ | there is an e ∈∆Ii with (d, e) ∈ rIi and e ∈ C

Ii

1 } ∪
{d ∈∆Ii \ NJ | there is an e ∈∆Ii with (d, e) ∈ rIi and e ∈ C

Ii

1 }
= {d ∈ NJ | there is an e ∈∆Ii \ NJ with (d, e) ∈ rIi and e ∈ C

Ii

1 } ∪
{d ∈ NJ | there is an e ∈ NJ with (d, e) ∈ rIi and e ∈ C

Ii

1 } ∪
{d ∈∆Ii \ NJ | there is an e ∈∆Ii with (d, e) ∈ rIi and e ∈ C

Ii

1 }
∗
= {d ∈ NJ | there is an e ∈∆Ii \ NJ with (d, e) ∈ rI0 and e ∈ C

Ii

1 } ∪
{d ∈ NJ | there is an e ∈ NJ with (d, e) ∈ rIi and e ∈ C

Ii

1 } ∪
{d ∈∆Ii \ NJ | there is an e ∈∆Ii with (d, e) ∈ rI0 and e ∈ C

Ii

1 }
=
�
NJ ∩
�
{d ∈∆J | there is an e ∈∆J with (d, e) ∈ (r(0))J and e ∈ (¬N ⊓ T

(i)

C1
)J } ∪

{d ∈∆J | there is an e ∈∆J with (d, e) ∈ (r(i))J and e ∈ (N ⊓ T
(i)

C1
)J }
��
∪

�
(¬N)J ∩
{d ∈∆J | there is an e ∈∆J with (d, e) ∈ (r(0))J and e ∈ (T (i)

C1
)J }
�

=
��

N ⊓
�
(∃r(0).(¬N ⊓ T

(i)

C1
))⊔ (∃r(i).(N ⊓ T

(i)

C1
))
��
⊔ (¬N ⊓ ∃r(0).T (i)

C1
)
�J

.

The starred equality
∗
= holds due to Claim 6.32. This shows that J is a model of the concept

definition of T
(i)

∃r.C1
.

For the case where C is of the form ≥m r.C1, we have by similar arguments that

(T
(i)

≥m r.C1
)J = (≥m r.C1)

Ii

=
�

d ∈∆Ii | |{e ∈∆Ii | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ m
	

=
�

d ∈ NJ | |{e ∈∆Ii | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ m
	
∪

�
d ∈∆Ii \ NJ | |{e ∈∆Ii | (d, e) ∈ rIi and e ∈ C

Ii

1 }| ≥ m
	
.

We have for every d ∈ NJ that

d ∈ (T (i)≥m r.C1
)J

iff |{e ∈∆Ii | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ m

iff there is a j, 0 ≤ j ≤ m, such that |{e ∈ NJ | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ j and

|{e ∈∆Ii \ NJ | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ m− j

iff there is a j, 0 ≤ j ≤ m, such that |{e ∈ NJ | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ j and

|{e ∈∆Ii \ NJ | (d, e) ∈ rI0 and e ∈ C
Ii

1 }| ≥ m− j by Claim 6.32

6.2 Deciding the Consistency Problem 141

iff there is a j, 0 ≤ j ≤ m, such that |{e ∈ NJ | (d, e) ∈ (r(i))J and e ∈ (T (i)
C1
)J }| ≥ j and

|{e ∈∆Ii \ NJ | (d, e) ∈ (r(0))J and e ∈ (T (i)
C1
)J }| ≥ m− j

iff there is a j, 0 ≤ j ≤ m, such that we have that d ∈ (≥ j r(i).(N ⊓ T
(i)

C1
))J and

d ∈ (≥(m− j) r(0).(¬N ⊓ T
(i)

C1
))J

iff d ∈
�
N ⊓
⊔

0≤ j≤m

�
≥ j r(i).(N ⊓ T

(i)

C1
)⊓≥(m− j) r(0).(¬N ⊓ T

(i)

C1
)
��J

.

Moreover, we have for every d ∈∆J \ NJ that

d ∈ (T (i)≥m r.C1
)J

iff |{e ∈∆Ii | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ m

iff |{e ∈∆Ii | (d, e) ∈ rI0 and e ∈ C
Ii

1 }| ≥ m by Claim 6.32

iff |{e ∈∆J | (d, e) ∈ (r(i))J and e ∈ (T (i)
C1
)J }| ≥ m

iff d ∈ (¬N ⊓≥m r(0).T (i)
C1
)J .

Hence, we obtain that J is a model of the concept definition of T
(i)

≥m r.C1
.

This finishes the proof that J |= Tsub, and thus we have J |= Tred, which finishes the proof
of Property (1).

To prove Property (2), let J = (∆J , ·J) be an interpretation with J |= Ared and J |= Tred.
We define the interpretations I0 = (∆

I0 , ·I0), . . . , In = (∆
In , ·In) as follows:

• ∆Ii :=∆J for every i, 0≤ i ≤ n;

• aIi := aJ for every a ∈ NI and every i, 0≤ i ≤ n;

• AIi := (T (i)A)
J for every A∈R∩NC and every i, 0≤ i ≤ n; and

• rIi :=
�
(r(i))J ∩ (NJ ×NJ)

�
∪
�
(r(0))J ∩
��
∆

J × (¬N)J
�
∪
�
(¬N)J ×∆J
���

for every

r ∈R∩NR and every i, 0≤ i ≤ n.

The interpretation of concept names and role names that are not contained in R is irrelevant.
We assume in the following without loss of generality that the interpretation of all such
names in empty in all interpretations Ii , 0≤ i ≤ n.

We first show Property (2b). To prove this property, take any i, 0≤ i ≤ n. We proceed by
induction on the structure of C , where we use that J |= Tred. For the case where C = A∈ NC,
we have the claim by definition.

For the case where C is of the form {a} with a ∈ Obj, we have

{a}Ii = {aIi}= {aJ }= {a}J = (T (i){a})
J .

For the case where C is of the form ¬C1, we have

(¬C1)
Ii =∆Ii \ C

Ii

1 =∆
J \ (T (i)

C1
)J = (¬T

(i)

C1
)J = (T

(i)

¬C1
)J .

142 Chapter 6. Verification in Action Formalisms Based on ALCQIO

For the case where C is of the form C1 ⊓ C2, we have

(C1 ⊓ C2)
Ii = C

Ii

1 ∩ C
Ii

2 = (T
(i)

C1
)J ∩ (T (i)

C2
)J = (T

(i)

C1
⊓ T

(i)

C2
)J = (T

(i)

C1⊓C2
)J .

For the case where C is of the form ∃r.C1, we have

d ∈ (∃r.C1)
Ii

iff d ∈∆Ii and there is an e ∈∆Ii with (d, e) ∈ rIi and e ∈ C
Ii

1

iff either d ∈ NJ and there is an e ∈ ∆J with (d, e) ∈ rIi and e ∈ C
Ii

1 , or d ∈ ∆J \ NJ

and there is an e ∈∆J with (d, e) ∈ rIi and e ∈ C
Ii

1

iff either d ∈ NJ and there is an e ∈ ∆J \ NJ with (d, e) ∈ rIi and e ∈ C
Ii

1 , or d ∈ NJ

and there is an e ∈ NJ with (d, e) ∈ rIi and e ∈ C
Ii

1 , or d ∈∆J \ NJ and there is an

e ∈∆J with (d, e) ∈ rIi and e ∈ C
Ii

1

iff either d ∈ NJ and there is an e ∈ ∆J \ NJ with (d, e) ∈ (r(0))J and e ∈ (T (i)
C1
)J , or

d ∈ NJ and there is an e ∈ NJ with (d, e) ∈ (r(i))J and e ∈ (T (i)
C1
)J , or d ∈∆J \ NJ

and there is an e ∈ ∆J with (d, e) ∈ (r(0))J and e ∈ (T (i)
C1
)J (by the definition of rIi

and the induction hypothesis)

iff d ∈
��

N ⊓
�
(∃r(0).(¬N ⊓ T

(i)

C1
))⊔ (∃r(i).(N ⊓ T

(i)

C1
))
��
⊔ (¬N ⊓ ∃r(0).T (i)

C1
)
�J

iff d ∈ (T (i)∃r.C1
)J (since J |= Tred).

For the case where C is of the form ≥m r.C1, we have by similar arguments as in the previous
case that

d ∈ (≥m r.C1)
Ii

iff d ∈∆Ii and |{e ∈∆Ii | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ m

iff either d ∈ NJ and there is a j, 0≤ j ≤ m, such that

|{e ∈ NJ | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ j

and
|{e ∈∆Ii \ NJ | (d, e) ∈ rIi and e ∈ C

Ii

1 }| ≥ m− j,

or we have d ∈∆J \ NJ and |{e ∈∆Ii | (d, e) ∈ rIi and e ∈ C
Ii

1 }| ≥ m

iff either d ∈ NJ and there is a j, 0≤ j ≤ m, such that

|{e ∈ NJ | (d, e) ∈ (r(i))J and e ∈ (T (i)
C1
)J }| ≥ j

and
|{e ∈∆J \ NJ | (d, e) ∈ (r(0))J and e ∈ (T (i)

C1
)J }| ≥ m− j,

or we have d ∈∆J \ NJ and |{e ∈∆J | (d, e) ∈ (r(0))J and e ∈ (T (i)
C1
)J }| ≥ m

(by the definition of rIi and the induction hypothesis)

6.2 Deciding the Consistency Problem 143

iff either d ∈ NJ and there is a j, 0 ≤ j ≤ m, such that d ∈ (≥ j r(i).(N ⊓ T
(i)

C1
))J and

d ∈ (≥(m− j) r(0).(¬N ⊓ T
(i)

C1
))J , or we have d ∈∆J \ NJ and d ∈ (≥m r(0).T (i)

C1
)J

iff either d ∈
�
N ⊓
⊔

0≤ j≤m

�
≥ j r(i).(N ⊓ T

(i)

C1
)⊓≥(m− j) r(0).(¬N ⊓ T

(i)

C1
)
��J

or d ∈ (¬N ⊓≥m r(0).T (i)
C1
)J

iff d ∈ (T (i)≥m r.C1
)J (since J |= Tred).

This finishes the proof of Property (2b).

We now prove Property (2a). For that, take any i with 0 ≤ i ≤ n, and any relevant
generalised ABox-literal α. We prove the property using again a case distinction. Assume
that α is of the form C(a) where C is a concept and a ∈ NI. We have: Ii |= α iff aIi ∈ CIi iff
aJ ∈ (T (i)

C
)J (by Property (2b)) iff J |= α(i).

Assume now that α is of the form ¬C(a) where C is a concept and a ∈ NI. By similar
arguments and Property (2b), we have: Ii |= α iff a /∈ CIi iff aJ /∈ (T (i)

C
)J iff J 6|= T

(i)

C
(a) iff

J |= ¬T
(i)

C
(a) iff J |= α(i).

For the case that α is of the form r(a, b) where r ∈ NR and a, b ∈ NI, we have: Ii |= α iff
(aIi , bIi) ∈ rIi iff (aJ , bJ) ∈ (r(i))J (by the definition of rIi) iff J |= r(i)(a, b) iff J |= α(i).

Finally, assume that α is of the form ¬r(a, b) where r ∈ NR and a, b ∈ NI. We have: Ii |= α
iff (aIi , bIi) /∈ rIi iff (aJ , bJ) /∈ (r(i))J (again by the definition of rIi) iff J 6|= r(i)(a, b) iff
J |= ¬r(i)(a, b) iff J |= α(i). This finishes the proof of Property (2a).

Thus, it is only left to be shown that we have also Ii ⇒;,;bi+1
Ii+1 for every i, 0≤ i < n. For

that, take any i, 0≤ i < n. We show that the conditions in Definition 6.13 are satisfied.

We start showing that bi+1 is applicable to Ii w.r.t. the empty TBox, i.e. that Ii |= prei+1.
Since J |= Ared, we have that J |= A(i+1)

pre
, i.e. J |= α(i) for every α ∈ prei+1. Since all such

α ∈ prei+1 are relevant generalised ABox-literals, we have by Property (2a) that Ii |= prei+1.

Moreover, we have by definition that ∆Ii = ∆J = ∆Ii+1 and aIi = aJ = aIi+1 for every
a ∈ NI.

We show next that Eff(bi+1, Ii ,;) is not contradictory. Since the set of causal relationships
is empty and bi+1 is unconditional, we have that Eff(bi+1, Ii ,;) = posti+1. Since J |= Ared,
we have that J |= A

(i+1)
post , i.e. J |= α(i+1) for every α ∈ posti+1. Since all ABox-literals in

posti+1 are relevant, we have by Property (2a) that Ii+1 |= posti+1. Hence, Eff(bi+1, Ii ,;)
cannot be contradictory.

Let A ∈ NC ∩R, let A+ := {aIi | A(a) ∈ Eff(bi+1, Ii ,;)} = {aIi | A(a) ∈ posti+1}, and let
A− := {aIi | ¬A(a) ∈ Eff(bi+1, Ii ,;)} = {aIi | ¬A(a) ∈ posti+1}. Since Eff(bi+1, Ii ,;) is not

144 Chapter 6. Verification in Action Formalisms Based on ALCQIO

contradictory, we have that A+ ∩ A− = ;. Moreover, we have by definition that A+ ⊆ NJ and
A− ⊆ NJ . We first show that AIi+1 \ NJ = AIi \ NJ . Since J |= Tsub, we have

AIi+1 \ NJ = (T
(i+1)
A)J \ NJ

=
�
(NJ ∩ (A(i+1))J)∪ ((∆J \ NJ)∩ (A(0)))J

�
\ NJ

= ((∆J \ NJ)∩ (A(0)))J \ NJ

=
�
(NJ ∩ (A(i))J)∪ ((∆J \ NJ)∩ (A(0)))J

�
\ NJ

= (T
(i)
A)

J \ NJ

= AIi \ NJ

Hence, we have for every d ∈∆J \ NJ that d ∈ AIi+1 iff d ∈ (AIi ∪ A+) \ A−.
Next, we show the following claim.

Claim 6.33. For every aJ ∈ NJ , and every j, 0≤ j ≤ n, we have aJ ∈ AI j iff aJ ∈ (A(j))J .

Take any aJ ∈ NJ and any j, 0≤ j ≤ n. We have

aJ ∈ AI j

iff aJ ∈ (T (j)A)
J

iff aJ ∈ NJ ∩ (A(j))J or aJ ∈ (∆J \ NJ)∩ (A(0))J since J |= Tsub

iff aJ ∈ (A(j))J since aJ ∈ NJ .

This finishes the proof of Claim 6.33.
We prove that for every aJ ∈ NJ , we have aJ ∈ AIi+1 iff aJ ∈ (AIi ∪ A+) \ A− by a case

distinction. For the ‘if’ direction, it is obvious that we have aJ /∈ A−. Now, consider first the
case where aJ ∈ A+. Then, the definition of A+ yields that A(a) ∈ posti+1. Hence, we have
aJ ∈ (T (i+1)

A)J since J |= A
(i+1)
post . By the definition of AIi+1 , we have aJ ∈ AIi+1 .

Consider now the case where aJ /∈ A+, i.e. aJ ∈ AIi \ A−. Since aJ ∈ AIi , we have by
Claim 6.33 that aJ ∈ (A(i))J . Moreover, we have ¬A(a) /∈ posti+1 by the definition of A−

since aJ /∈ A−. Since J |= A
(i+1)
min

, we have also that J |= (A(i)→ A(i+1))(a), i.e. aJ ∈ (A(i))J
implies aJ ∈ (A(i+1))J . Since aJ ∈ (A(i))J , we have aJ ∈ (A(i+1))J , which yields aJ ∈ AIi+1

by Claim 6.33.
For the ‘only if’ direction, assume to the contrary that aJ ∈ AIi+1 , aJ /∈ A+, and aJ /∈ AIi\A−.

There are again two cases to consider: either aJ ∈ A− or aJ /∈ A−. If aJ ∈ A−, then
¬A(a) ∈ posti+1 by the definition of A−. Since J |= A

(i+1)
post , we have that J |= (T (i+1)

¬A)(a),

i.e. aJ ∈ (T (i+1)
¬A)J . Since J |= Tsub, this yields aJ ∈ (¬T

(i+1)
A)J , i.e. aJ /∈ (T (i+1)

A)J . The
definition of AIi+1 yields that aJ /∈ AIi+1 , which is a contradiction.

Otherwise, if aJ /∈ A−, we have aJ /∈ AIi , and thus aJ /∈ (A(i))J by Claim 6.33. Since
aJ /∈ A+, we have A(a) /∈ posti+1 by the definition of A+. Since J |= A

(i+1)
min

, we have also
that J |= (¬A(i) → ¬A(i+1))(a), i.e. aJ /∈ (A(i))J implies aJ /∈ (A(i+1))J . Since we have
aJ /∈ (A(i))J , this yields aJ /∈ (A(i+1))J . Thus, by Claim 6.33, we have aJ /∈ AIi+1 , which
again is a contradiction.

6.2 Deciding the Consistency Problem 145

Thus, we have shown that AIi+1 = (AIi ∪ A+) \ A−. Finally, let r ∈ NR ∩R, let

r+ := {(aIi , bIi) | r(a, b) ∈ Eff(bi+1, Ii ,;)}= {(aIi , bIi) | r(a, b) ∈ posti+1},

and let

r− := {(aIi , bIi) | ¬r(a, b) ∈ Eff(bi+1, Ii ,;)}= {(aIi , bIi) | ¬r(a, b) ∈ posti+1}.

Since Eff(bi+1, Ii ,;) is not contradictory, we have that r+ ∩ r− = ;. Moreover, we have by
definition that r+ ⊆ NJ × NJ and r− ⊆ NJ × NJ . Similar to before, we first show that
rIi+1 \ (NJ × NJ) = rIi \ (NJ × NJ). By the definitions of rIi+1 and rIi , we have

rIi+1 \ (NJ × NJ) =
�
(r(0))J ∩ ((∆J × (¬N)J)∪ ((¬N)J ×∆J))

�
\ (NJ × NJ)

= rIi \ (NJ × NJ).

Hence, we have for all d, e ∈∆J \ NJ that (d, e) ∈ rIi+1 iff (d, e) ∈ (rIi ∪ r+) \ r−.
The following claim is also an immediate consequence of the definition of rIi .

Claim 6.34. For every (aJ , bJ) ∈ NJ × NJ , and every j, 0≤ j ≤ n, we have (aJ , bJ) ∈ rI j

iff (aJ , bJ) ∈ (r(j))J .

Again by a case distinction, we prove that for every (aJ , bJ) ∈ NJ × NJ , we have that
(aJ , bJ) ∈ rIi+1 iff (aJ , bJ) ∈ (rIi ∪ r+) \ r−. For the ‘if’ direction, it is obvious that we
have (aJ , bJ) /∈ r−. Now, consider first the case where (aJ , bJ) ∈ r+. Then, the definition
of r+ yields that r(a, b) ∈ posti+1. Hence, we have (aJ , bJ) ∈ (r(i+1))J since J |= A

(i+1)
post .

By Claim 6.34, we have (aJ , bJ) ∈ rIi+1 .
Consider now the case where (aJ , bJ) /∈ r+, i.e. (aJ , bJ) ∈ rIi \ r−. Since we have

(aJ , bJ) ∈ rIi , we have by Claim 6.34 also that (aJ , bJ) ∈ (r(i))J . This yields that
aJ ∈ (∃r(i).{b})J . Moreover, we have ¬r(a, b) /∈ posti+1 by the definition of r− since
(aJ , bJ) /∈ r−. Since J |= A

(i+1)
min

, we have also that J |= (∃r(i).{b} → ∃r(i+1).{b})(a),
i.e. aJ ∈ (∃r(i).{b})J implies aJ ∈ (∃r(i+1).{b})J . Since aJ ∈ (∃r(i).{b})J , we have
aJ ∈ (∃r(i+1).{b})J , which yields (aJ , bJ) ∈ (r(i+1))J . By Claim 6.34, we have thus
(aJ , bJ) ∈ rIi+1 .

For the ‘only if’ direction, assume to the contrary that (aJ , bJ) ∈ rIi+1 , (aJ , bJ) /∈ r+,
and (aJ , bJ) /∈ rIi \ r−. There are again two cases to consider: either (aJ , bJ) ∈ r− or
(aJ , bJ) /∈ r−. If (aJ , bJ) ∈ r−, then ¬r(a, b) ∈ posti+1 by the definition of r−. Since
J |= A

(i+1)
post , we have that J |= ¬r(i+1)(a, b), i.e. (aJ , bJ) /∈ (r(i+1))J . By Claim 6.34, we

obtain (aJ , bJ) /∈ rIi+1 , which is a contradiction.
Otherwise, if (aJ , bJ) /∈ r−, we have (aJ , bJ) /∈ rIi , and thus (aJ , bJ) /∈ (r(i))J by

Claim 6.34. This yields that aJ /∈ (∃r(i).{b})J . Since (aJ , bJ) /∈ r+, we have by the
definition of r+ also that r(a, b) /∈ posti+1. Moreover, since J |= A

(i+1)
min

, we have also that
J |= (¬∃r(i).{b} → ¬∃r(i+1).{b})(a), i.e. aJ /∈ (∃r(i).{b})J implies aJ /∈ (∃r(i+1).{b})J .
Since we have aJ /∈ (∃r(i).{b})J , this yields aJ /∈ (∃r(i+1).{b})J . Thus, we have that
(aJ , bJ) /∈ (r(i+1))J . Hence, by Claim 6.34, we obtain (aJ , bJ) /∈ rIi+1 , which again is a
contradiction.

146 Chapter 6. Verification in Action Formalisms Based on ALCQIO

We have thus shown that rIi+1 = (rIi ∪ r+) \ r−. Since we have shown that all conditions
in Definition 6.13 are satisfied, this finishes the proof that we have Ii ⇒;,;bi+1

Ii+1 for every i,
0≤ i < n. Thus, we have shown Property (2). �

Now, we can come back to the consistency problem for DL-actions. Let a = (pre, post) be a
DL-action, CR a finite set of causal relationships, and T a general TBox. The set R of relevant
concept names, role names, and concepts consists of the ones occurring in a, CR, or T . Given
an action type T ∈ T(a, CR), we can compute the set Eff(a, T, CR), and check whether this
set is not contradictory. If this is the case, then we consider the DL-action ba,T,CR, and check
whether an application of this DL-action transforms models of T satisfying pre and T into
models of T . This check can be realised using the generalised ABox Ared and the (acyclic)
TBox Tred of Lemma 6.30.

Lemma 6.35. The DL-action a = (pre, post) is consistent w.r.t. T and CR iff the following

holds for every T ∈ T(a, CR): if T ∪ pre is consistent w.r.t. T , then

• Eff(a, T, CR) is not contradictory, and

• every model of Ared, Tred, T (0), and T (0) is also a model of T (1), where Ared and Tred are

constructed using ba,T,CR and R.

Proof. For the ‘only if’ direction, let T ∈ T(a, CR) be an action type such that T ∪ pre is
consistent w.r.t. T . Then there exists an interpretation I such that I |= pre, I |= T , and
I |= T . Thus, a is applicable to I w.r.t. T . Since a is consistent w.r.t. T and CR, there exists
an interpretation I′ such that I ⇒T ,CR

a I′. Hence, Eff(a, I, CR) is not contradictory, and since
I |= T , we have by Lemma 6.24 that Eff(a, I, CR) = Eff(a, T, CR), and thus Eff(a, T, CR) is
also not contradictory.

Let J be a model of Ared, Tred, T (0), and T (0). We need to show that J |= T (1). By (2)
of Lemma 6.30, there exist interpretations I0 and I1 such that I0 ⇒;,;ba,T,CR

I1. Since J is

a model of Ared, we have in particular that J |= pre(0), and thus we obtain again by (2)
of Lemma 6.30 that I0 |= T ∪ pre, and I0 |= T . By Lemma 6.29, I0 ⇒;,;ba,T,CR

I1 implies

I0⇒;,CR
a I1. Assume that I1 6|= T . Since the DL-action a is deterministic, we can conclude

that there is no interpretation I′ with I0⇒T ,CR
a I′, which is a contradiction to the assumption

that a is consistent w.r.t. T and CR. Thus, we have I1 |= T , which together with (2) of
Lemma 6.30 yields that J |= T (1).

For the ‘if’ direction, let I be any interpretation such that a is applicable to I w.r.t. T .
Then, we have that I |= pre and I |= T . By Lemma 6.20, there is one unique action type
T ∈ T(a, CR) such that I |= T , and thus that T ∪pre is consistent w.r.t. T . Then, Eff(a, T, CR)

is not contradictory, which yields that there exists an interpretation I′ such that I ⇒;,;
ba,T,CR

I′.

Thus, by Lemma 6.29, we have I ⇒;,CR
a I′. Moreover, by (1) of Lemma 6.30, there exists an

interpretation J such that J |= Ared, J |= Tred, J |= T (0), and J |= T (0). Hence, we have
also that J |= T (1). Again by (1) of Lemma 6.30, we have that I′ |= T , which, together with
I ⇒;,CR

a I′ and I |= T , yields that I ⇒T ,CR
a I′. Thus, a is consistent w.r.t. T and CR. �

This lemma can be used to design a decision procedure for deciding whether a DL-action is
consistent w.r.t. a TBox and finite set of causal relationships. Again, the complexity of this
problem depends on the DL used.

6.2 Deciding the Consistency Problem 147

Theorem 6.36. The problem of deciding whether a DL-action is consistent w.r.t. a TBox and a

finite set of causal relationships is

1. EXPTIME-complete for the following DLs: ALC, ALCO, ALCQ, ALCI, ALCQO, and

ALCIO;

2. EXPTIME-hard and in CO-NEXPTIME for ALCQI; and

3. CO-NEXPTIME-hard and in PNEXPTIME for ALCQIO.

Proof. We first prove the lower bounds of the theorem. As in the case where the TBox
was assumed to be empty, we reduce the ABox-inconsistency problem, i.e. the problem of
deciding whether a given ABox is inconsistent, to our DL-action consistency problem. Take
any ABox A and any general TBox T . It is not hard to see that A is inconsistent w.r.t. T

iff (A, {A(a),¬A(a)}) is consistent w.r.t. T and the empty set of causal relationships, where
A∈ NC and a ∈ NI are arbitrary.

Since the ABox-consistency problem w.r.t. a general TBox is EXPTIME-hard for ALC [Sch91],
and EXPTIME is closed under complement, we have EXPTIME-hardness for Parts 1 and 2 of the
theorem. Moreover, CO-NEXPTIME-hardness for Part 3 of the theorem is obtained, because
the ABox-consistency problem w.r.t. a general TBox is NEXPTIME-complete [Sch94; Tob00;
Pra05].10

To prove the upper bounds for Part 1 of the theorem, we give an EXPTIME-decision
procedure. Given a DL-action a = (pre, post), a general TBox T , and a finite set of causal
relationships CR, do the following for every action type T ∈ T(a, CR):

1. Check whether the generalised ABox T ∪ pre is consistent w.r.t. T ;

2. If Step 1 was successful, compute the set Eff(a, T, CR), and check whether it is contra-
dictory.

3. If Step 1 and Step 2 were successful, compute the DL-action ba,T,CR and the set of
relevant symbols R. Using those, compute the generalised ABox Ared, the TBox Tred,
T (0), T (0), and T (1), and check whether every model of Ared, Tred, T (0), and T (0) is also
a model of T (1).

If for every such action type either Step 1 is not successful or Step 3 is successful, we know
by Lemma 6.35 that a is consistent w.r.t. T and CR. Otherwise, a is not consistent w.r.t. T

and CR.
First recall that the set T(a, CR) is of size exponential in the size of a and CR, but each

action type T ∈ T(a, CR) is only of polynomial size. Thus, it is enough to show that Steps 1–3
can be performed in exponential time. Using the arguments in the proof of Theorem 6.27,
the consistency check in Step 1 can be polynomially reduced to the consistency problem of
classical ABoxes [BLM+05b]. Since for ALCIO and ALCQO, the ABox consistency problem
w.r.t. general TBoxes can be decided in EXPTIME [Sch94; Hla04; HS01], Step 1 can be done
in exponential time. As argued above, Step 2 can be done in time polynomial in the size of a,
T , and CR. For Step 3, note that computing ba,T,CR, R, Ared, Tred, T (0), T (0), and T (1) can be
done in time polynomial in the size of a, T , CR, and T . The check in Step 3 can be reduced

10As noted in the proof of Theorem 6.27, this is even the case if the number in the at-least and at-most restrictions
are coded in binary.

148 Chapter 6. Verification in Action Formalisms Based on ALCQIO

to an ABox-inconsistency problem w.r.t. a general TBox. Indeed, T (1) can be transformed to
an ABox AT (1) as follows: for every GCI C ⊑ D ∈ T (1), we add (C ⊓¬D)(a) to AT (1) , where
a ∈ NI does not occur in the input. It is not hard to see that the check in Step 3 is equivalent
to checking whether the generalised ABox Ared ∪ T (0) ∪AT (1) is inconsistent w.r.t. T (0) ∪ Tred.
As shown above, the complement of this problem can be decided in EXPTIME, and since
EXPTIME is closed under complement, Step 3 can also be performed in exponential time.
Thus, overall, we obtain an EXPTIME-decision procedure.

For the upper bound of Part 2 of the theorem, we employ the same decision procedure.
In this case, Step 1 can be done in EXPTIME, since the ABox-consistency problem w.r.t. a
general TBox is EXPTIME-complete [Tob01]. In Step 3, however, we deal with the generalised
ABox Ared, which contains nominals. Hence, we obtain with the above reduction, an ABox-
inconsistency problem w.r.t. a general TBox in ALCQIO, which can be done in CO-NEXPTIME

as argued above. Since Step 2 can still be done in polynomial time, we obtain overall a
CO-NEXPTIME-decision procedure.

For the upper bound of Part 3 of the theorem, we proceed similarly. We first non-
deterministically guess an action type T ∈ T(a, CR), and then perform Steps 1–3 of the
above decision procedure to decide whether a is inconsistent w.r.t. T and CR. As argued
above, Step 2 employs a NEXPTIME-check, and Step 3 employs a CO-NEXPTIME-check. Thus,
overall, we obtain that deciding whether a is inconsistent w.r.t. T and CR can be done
in NPNEXPTIME, i.e. in NP using a NEXPTIME-oracle. Thus deciding whether a is consistent
w.r.t. T and CR can be done in CO-NPNEXPTIME. It follows from a result in [Hem87] that
CO-NPNEXPTIME = NPNEXPTIME = PNEXPTIME, and thus we obtain Part 3 of the theorem. �

Note, however, that is is still open whether the upper bounds for ALCQI and ALCQIO are
optimal. In the next section, we consider the projection problem for our DL-based action
formalism.

6.3 Deciding the Projection Problem

According to Definition 6.16, the input of the projection problem is a finite sequence of
DL-actions a1, . . . , an, together with a TBox T , a finite set of causal relationships CR, an
initial generalised ABox A, and a generalised ABox-literal α such that every DL-action ai

(1 ≤ i ≤ n) is consistent w.r.t. T and CR. By definition, α is a consequence of applying
a1, . . . , an to A w.r.t. T and CR iff for all interpretations I0, . . . , In the following holds: if
I0 |= A and I0⇒T ,CR

a1
I1, . . . , In−1⇒T ,CR

an
In, then In |= α.

Our solution of the projection problem w.r.t. T and CR uses the same ideas as the solution
of the consistency sketched in Section 6.2. Firstly, instead of considering interpretations
I0, . . . , In−1, we consider action types T0, . . . , Tn−1, where Ti ∈ T(ai+1, CR) for 0≤ i < n.11

Secondly, we use the original sequence of DL-actions a1, . . . , an, the set of causal relation-
ships CR, and the action types T0, . . . , Tn−1 to construct the corresponding sequence of
DL-actions ba1,T0,CR, . . . , ban,Tn−1,CR. Lemma 6.29 then tells us that for every i, 0 ≤ i < n,

and every model I of Ti , and every interpretation I′, we have I ⇒;,CR
ai+1

I′ iff I ⇒;,;
bai+1,Ti ,CR

I′.

Thirdly, we use the sequence of DL-actions ba1,T0,CR, . . . , ban,Tn−1,CR, and the set of relevant

11Note that it is enough to consider the action types T0, . . . , Tn−1 for I0, . . . , In−1 since no DL-action is applied
to In.

6.3 Deciding the Projection Problem 149

concept names, role names, and concepts R to construct a generalised ABox Ared and an
(acyclic) TBox Tred such that the properties (1) and (2) of Lemma 6.30 hold. In this set-
ting, the set R consists of the concept names, role names, and concepts occurring in A, T ,
a1, . . . , an, CR, and α. The properties of Ared and Tred can be used to express that the initial
interpretation I0 must be a model of A and that we only consider successor interpretations Ii

that are models of T . In addition, we can then check, whether all this implies that the final
interpretation In is a model of α. To be more precise, we can show that the characterisation
of the projection problem stated in the next lemma holds.

Lemma 6.37. The generalised ABox-literal α is a consequence of applying the finite sequence

of DL-actions a1, . . . , an to a generalised ABox A w.r.t. a TBox T and a finite set of causal

relationships CR iff we have the following for all action types T0, . . . , Tn−1 with Ti ∈ T(ai+1, CR)

for every i, 0≤ i < n: every model of
⋃n−1

i=0 T
(i)

i
,
⋃n

i=0 T (i), A(0), Ared, and Tred is also a model

of α(n), where Ared and Tred are constructed from ba1,T0,CR, . . . , ban,Tn−1,CR and R.

Proof. For the ‘if’ direction, consider action types T0, . . . , Tn−1 with Ti ∈ T(ai+1, CR) for every
i, 0 ≤ i < n, and let J be a model of

⋃n−1
i=0 T

(i)

i
,
⋃n

i=0 T (i), A(0), Ared, and Tred. By (2) of

Lemma 6.30, there are interpretations I0, . . . , In such that Ii ⇒;,;bai+1,Ti ,CR
Ii+1 for every i,

0≤ i < n. Additionally, we have by the same lemma that Ii |= Ti for every i, 0≤ i < n, and
I0 |= A. Using Lemma 6.29, we obtain Ii ⇒;,CR

ai+1
Ii+1 for every i, 0 ≤ i < n. Since (2) of

Lemma 6.30 yields that Ii |= T for every i, 0 ≤ i ≤ n, we have furthermore Ii ⇒T ,CR
ai+1

Ii+1.
Since α is a consequence of applying a1, . . . , an to A w.r.t. T and CR, we have that In |= α,
which implies again by (2) of Lemma 6.30 that J |= α(n).

For the ‘only if’ direction, let I0, . . . , In be interpretations such that we have I0 |= A and
Ii ⇒T ,CR

ai+1
Ii+1 for every i, 0≤ i < n. It is enough to show that In |= α. We have obviously that

Ii ⇒;,CR
ai+1

Ii+1 for every i, 0≤ i < n, and that Ii |= T for every i, 0≤ i ≤ n. By Lemma 6.20,
there are unique action types Ti ∈ T(ai+1, CR) such that Ii |= Ti for every i, 0 ≤ i < n.
Then, by Lemma 6.29, we have Ii ⇒;,;bai+1,Ti ,CR

Ii+1 for every i, 0 ≤ i < n. Thus, by (1) of

Lemma 6.30, there exists an interpretation J such that J is a model of Ared, Tred,
⋃n−1

i=0 T
(i)

i
,⋃n

i=0 T (i), and A(0). Thus, we have also J |= α(n), which implies again by (1) of Lemma 6.30
that In |= α. �

It is easy to see that this lemma directly yields a decision procedure for the projection problem.
Again, the exact complexity of this problem depends on the DL used, and the fact whether
the TBox is assumed to be acyclic (or empty) or not.

Theorem 6.38. The projection problem for our action formalism is

1. EXPTIME-complete for the DLs ALC, ALCO, ALCI, ALCIO, ALCQ, and ALCQO; and

2. CO-NEXPTIME-complete for the DLs ALCQI and ALCQIO.

Moreover, if the TBox is assumed to be acyclic (or empty), the projection problem is

3. PSPACE-complete for the DLs ALC, ALCO, ALCQ, and ALCQO;

4. EXPTIME-complete for the DLs ALCI and ALCIO; and

150 Chapter 6. Verification in Action Formalisms Based on ALCQIO

5. CO-NEXPTIME-complete for the DLs ALCQI and ALCQIO.

Proof. We first prove the lower bounds of Part 1 of the theorem by reducing the unsatisfiability
problem, i.e. the problem of deciding whether a given concept is unsatisfiable, to the projec-
tion problem. It is not hard to see that a concept C is unsatisfiable w.r.t. a TBox T iff ¬C(a)

is a consequence of applying the DL-action (;,;) to the ABox ; w.r.t. T and the empty set of
causal relationships, where a ∈ NI does not occur in C or T . Satisfiability of a concept w.r.t.
a general TBox is EXPTIME-complete in ALC [Sch91], and since EXPTIME is closed under
complement, we obtain the lower bounds of Part 1 of the theorem.

For the remaining lower bounds, we reduce the projection problem of [BLM+05a] to our
projection problem. In the case where the TBox is assumed to be empty, there is only one
difference between the ‘transforms’ relation from Definition 6.13 and the one in [BLM+05a]:
we demand here that the DL-action is applicable to the interpretation, i.e. a model of the pre-
conditions of the DL-action. Therefore, we have the following: The generalised ABox-literal α
is a consequence of applying the DL-action (pre, post) to a generalised ABox A w.r.t. the
empty TBox (as defined in [BLM+05a]) iff α is a consequence of applying (;, post) to A w.r.t.
the empty TBox and the empty set of causal relationships. The projection problem defined
in [BLM+05a] is PSPACE-complete for ALC, EXPTIME-complete for ALCI, and CO-NEXPTIME-
complete for ALCQI, even if the TBox is assumed to be empty and we deal with only one
DL-action [BLM+05a]. Thus, we obtain the remaining lower bounds of our theorem.12

For the upper bounds of Parts 1 and 4 of the theorem, we give an EXPTIME-decision
procedure. Given a generalised ABox-literal α, a finite sequence of DL-actions a1, . . . , an, a
generalised ABox A, a TBox T and a finite set of causal relationships CR, we do the following
for all action types T0, . . . , Tn−1 with Ti ∈ T(ai+1, CR) for every i, 0≤ i < n:

1. Construct ba1,T0,CR, . . . , ban,Tn−1,CR, R,
⋃n−1

i=0 T
(i)

i
,
⋃n

i=0 T (i), A(0), Ared, Tred, and α(n),
where Ared and Tred are constructed from ba1,T0,CR, . . . , ban,Tn−1,CR and R.

2. Check whether every model of
⋃n−1

i=0 T
(i)

i
,
⋃n

i=0 T (i), A(0), Ared, and Tred is also a model
of α(n).

If Step 2 is successful, then we know by Lemma 6.37 that α is a consequence of applying
a1, . . . , an to A w.r.t. T and CR. Note that there are exponentially many sequences of action
types to consider. Also, observe that Step 1 can be done in polynomial time, and thus the input
to the reasoning problem of Step 2 is of polynomial size. Using the arguments in the proof of
Theorem 6.36, we can reduce this reasoning problem to an ABox-inconsistency problem. Since
the ABox-consistency problem w.r.t. a general TBox is EXPTIME-complete in ALCIO [Sch94;
Hla04] and ALCQO [Sch94; HS01], and EXPTIME is closed under complement, we obtain
the upper bounds of Parts 1 and 4 of the theorem.

For the upper bounds of Parts 2 and 5 of the theorem, we consider the complement of
the projection problem. For that, we first non-deterministically guess a sequence of action
types T0, . . . , Tn−1, perform Step 1 of the above decision procedure, and then perform the
complement of Step 2 of the above decision procedure, i.e. we check whether there is a model

12We could obtain most of the lower bounds also by a reduction of the unsatisfiability problem as for Part 1 of the
theorem. However, we would not get the lower bounds for ALCI (in the case where the TBox is assumed to be
empty) and ALCQI as the satisfiability problem in ALCQI w.r.t. the empty TBox is PSPACE-complete [Tob01],
and the satisfiability problem in ALCQI w.r.t. a general TBox is EXPTIME-complete [Tob01].

6.4 Verification of DL-Actions 151

of
⋃n−1

i=0 T
(i)

i
,
⋃n

i=0 T (i), A(0), Ared, Tred, and ¬α(n), which is clearly an ABox-consistency
problem. Since the ABox-consistency problem w.r.t. a general TBox is NEXPTIME-complete
for ALCQIO [Sch94; Tob00; Pra05], we obtain a NEXPTIME-decision procedure for the
complement of the projection problem, and thus a CO-NEXPTIME-decision procedure for the
projection problem, which proves the upper bounds of Parts 2 and 5 of the theorem.

It is left to show the upper bounds of Part 3 of the theorem. For that, it suffices to give
an NPSPACE-decision procedure for the complement of the projection problem for the case
of ALCQO w.r.t. an acyclic TBox.13 We use the same decision procedure as for the upper
bounds of Parts 2 and 5 of the theorem. Note that the ABox-consistency problem of Step 2
of the above decision procedure does not contain any GCIs, as Tred is acyclic. Since the ABox-
consistency problem w.r.t. acyclic TBoxes is PSPACE-complete for ALCQO [Sch94; BLM+05b],
we obtain an NPSPACE-decision procedure for the complement of the projection problem,
and thus we obtain the upper bounds of Part 3 of the theorem. �

This finishes the section on the projection problem, and in the next section, we use the results
obtained so far for verifying properties of infinite sequences of DL-actions.

6.4 Verification of DL-Actions

In this section, we show how to verify temporal properties in the DL-based action formalism
described in Section 6.1. For that, we follow the approach in [BLM10]. The principle idea
is that a Büchi-automaton defines infinite sequences of DL-actions that characterise which
DL-actions an agent may execute. Then, we verify whether a temporal property is satisfied.
This temporal property is encoded in a restricted L-LTL-formula where L is a DL between
ALC and ALCQIO.14 The L-LTL-formulas considered in this section are restricted in the
following sense: whereas for SHOQ-LTL, formulas could contain GCIs, we do not allow this
here (see Chapter 3). This restriction is in accordance with [BLM10], where it was also made.
In principle, we do not need this restriction here, but from an application point of view, it
makes sense to encode the domain knowledge in a global TBox and assume that it does not
change as done in the previous sections for the projection problem.

Moreover, the L-LTL-formulas in this section contain only assertions, whereas in [BLM10]
they contain arbitrary generalised ABox-literals. This is, however, not a restriction since
the generalised ABox-literal ¬α can be equivalently expressed by the L-LTL-formula ¬(α).
In spite of these restrictions, we refer to the formulas considered in this section as L-LTL-
formulas for simplicity. We are now ready to introduce the problems that we consider in this
section.

Definition 6.39 (Verification problem). Let L be a DL between ALC and ALCQIO. Further-

more, let A be a generalised L-ABox, T be an L-TBox, CR be a finite set of causal relationships,

A be a finite set of DL-actions, N = (Q, A,∆,Q0, F) be a Büchi-automaton, and φ be an

L-LTL-formula.

13Recall again that Savitch’s theorem [Sav70] implies that NPSPACE and PSPACE coincide, and that PSPACE is
closed under complement.

14Note that in Chapter 3, we introduced SHOQ-LTL and its fragments. So far we have not considered inverse

roles. It is, however, quite clear how the syntax and semantics of L-LTL is defined for L being a DL between
ALC and ALCQIO that involves inverse roles. Therefore, we use the notation from Chapter 3 such as the
propositional abstraction etc. also here.

152 Chapter 6. Verification in Action Formalisms Based on ALCQIO

We say that φ is valid w.r.t. A, T , CR, and N if for every infinite DL-action sequence

a1a2 . . . ∈ Lω(N), and every DL-LTL-structure I = (Ii)i≥0 with I0 |= A and Ii ⇒T ,CR
ai+1

Ii+1 for

each i ≥ 0, we have I, 0 |= φ.

Moreover, we say that φ is satisfiable w.r.t. A, T , CR, and N if there is an infinite DL-action

sequence a1a2 . . . ∈ Lω(N), and a DL-LTL-structure I = (Ii)i≥0 with I0 |= A and Ii ⇒T ,CR
ai+1

Ii+1

for each i ≥ 0 such that we have I, 0 |= φ.

The verification problem (satisfiability problem) is then to decide whether φ is valid (satis-

fiable) w.r.t. A, T , CR, and N . ♦

It is easy to see that φ is valid w.r.t. A, T , CR, and N iff ¬φ is unsatisfiable w.r.t. A, T , CR,
and N . Conversely, φ is satisfiable w.r.t. A, T , CR, and N iff ¬φ is not valid w.r.t. A, T ,
CR, and N . Hence, the verification problem and the unsatisfiability problem have the same
complexity. The complexity of these problems is investigated in [BLM10] for the case where
the TBox is assumed to be acyclic and no causal relationships are available. These complexity
results depend on the DL used. The following result is proved in [BLM10; BLM09].

Proposition 6.40. If the TBox is assumed to be acyclic and the set of causal relationships CR

is assumed to be empty, the verification problem is

1. in EXPSPACE for the DLs ALC, ALCO, ALCQ, and ALCQO;

2. in 2EXPTIME for the DLs ALCI and ALCIO; and

3. in CO-2NEXPTIME for the DLs ALCQI and ALCQIO. ♦

Unfortunately, no tight lower bounds of this problem are known. Using similar ideas, we show
now the upper bounds of the verification problem in the case where the TBox is arbitrary
and a finite set of causal relationships is present.

From now on, let L be a description logic between ALC and ALCQIO, let A be a generalised
L-ABox, let T be an L-TBox, let CR be a finite set of causal relationships, let A = {a1, . . . , an}
be a finite set of DL-actions, let N = (Q, A,∆,Q0, F) be a Büchi-automaton, and let φ be
an L-LTL-formula. First observe that we can assume without loss of generality that A is
empty by using an argument similar to the one used in the proof of Lemma 5.27, namely, we
compile A into φ. More precisely, it is easy to verify that we have that φ is valid (satisfiable)
w.r.t. A, T , CR, and N iff φ ∧

∧
A is valid (satisfiable) w.r.t. ;, T , CR, and N .

We furthermore assume without loss of generality that every axiom occurring in a DL-
action of A or a causal relationship of CR also occurs in φ. Moreover, we assume without
loss of generality that for every A∈ NC, r ∈ NR, a, b ∈ NI occurring in φ, T , a DL-action of A,
or a causal relationship of CR, we have that the assertions A(a) and r(a, b) also occur in φ.
These two assumptions are indeed without loss of generality since for every such axiom α,
which does not occur in φ, we can define φ′ := φ ∧ (α∨¬α). Obviously, every model of φ
is also a model of φ′, and vice versa.

To solve the satisfiability problem, we combine the approach of Chapter 3 with the one
of Sections 6.2 and 6.3. We again split the problem in two sub-problems. First note that
Lemma 3.13 also holds for the restricted L-LTL-formulas that we consider in this section.
Let p: Ax(φ) → Pφ be a bijection. Hence, we know that φ is satisfiable iff there is a set
W ⊆ 2Pφ such that W is r-satisfiable (see Definition 3.10) and φp is t-satisfiable w.r.t. W

(see Definition 3.11). However, we need to adapt both sub-problems due to the semantics of
DL-actions.

6.4 Verification of DL-Actions 153

We first consider how to decide t-satisfiability w.r.t. a given set W. For that, we assume
from now on that W = {X1, . . . , Xk} ⊆ 2Pφ is given. By Lemma 3.14, we can decide whether
φp is t-satisfiable w.r.t. W in time exponential in the size of φp and linear in the size of W.
In the proof of Lemma 3.14, a Büchi-automaton for φp

W
is constructed. Let Nφp

W

be that
Büchi-automaton.

However, Nφp

W

may accept a sequence of worlds that does not correspond to a sequence
of DL-actions defined by N . Thus, we need to intersect the ω-language accepted by Nφp

W

with the one ‘generated’ by the ω-language accepted by N . For that, we construct a Büchi-
automaton ÒN by considering the effects of the DL-actions occurring in an accepting run of N .
In order to be able to enforce that the semantics of DL-actions is respected, it is essential
that the worlds contain information about all a, b ∈ NI, A∈ NC, and r ∈ NR occurring in the
input whether A(a) (r(a, b)) holds or not.

To be able to specify the effects of a DL-action in ÒN , we need to keep track of the action
type associated with a world. For that, we define for σ ∈ ΣPφ

, the generalised ABox
Tσ,a,CR ⊆ Cond(a, CR) as follows:

• for every positive generalised ABox-literal α ∈ Cond(a, CR), we have α ∈ Tσ,a,CR iff
p(α) ∈ σ; and

• for every negative generalised ABox-literal ¬α ∈ Cond(a, CR), we have ¬α ∈ Tσ,a,CR

iff p(α) /∈ σ.

We can now define the Büchi-automaton

ÒN := (Q× A×ΣPφ
, ΣPφ

, Ò∆, Q0 × A×ΣPφ
, F × A×ΣPφ

),

where we have ((q, a,σ), σ′′, (q′, a′,σ′)) ∈ Ò∆ iff

• (q, a, q′) ∈∆;

• σ = σ′′;
• for every positive generalised ABox-literal α ∈ pre, we have p(α) ∈ σ, and for every

negative generalised ABox-literal ¬α ∈ pre, we have p(α) /∈ σ, where a = (pre, post);

• Tσ,a,CR is an action type for a and CR;

• for every positive ABox-literal β ∈ Eff(a, Tσ,a,CR, CR), we have p(β) ∈ σ′, and for every
negative ABox-literal ¬β ∈ Eff(a, Tσ,a,CR, CR), we have p(β) /∈ σ′; and

• for every ABox-literal γ ∈ Ax(φ), we have:
– if p(γ) ∈ σ and ¬γ /∈ Eff(a, Tσ,a,CR, CR), we have p(γ) ∈ σ′, and
– if p(γ) /∈ σ and γ /∈ Eff(a, Tσ,a,CR, CR), we have p(γ) /∈ σ′.

Let ÒNφp

W

denote the Büchi-automaton that accepts the intersection of theω-language accepted
by the Büchi-automaton Nφp

W

and the ω-language accepted by the Büchi-automaton ÒN .
Such a Büchi-automaton can be obtained using the standard product construction in time
polynomial in the size of the input Büchi-automata, see e.g. [BK08; Tho90].

In order to be sure that ω-words accepted by ÒNφp

W

can indeed be ‘lifted’ to DL-LTL-
structures, we need to check whether W is r-satisfiable. However, to make sure that the

154 Chapter 6. Verification in Action Formalisms Based on ALCQIO

semantics of the DL-actions is satisfied, we need to intertwine this check with another one.
Indeed, so far we only dealt with the named part of the interpretations in a DL-LTL-structure.
Additionally, we need to ensure that the unnamed part of the interpretations in a DL-LTL-
structure remains unchanged. Recall that the TBox Tred defined in Section 6.2 was designed
to take care of this matter. We use a very similar TBox Tred also here.

In the following, let again R denote a set of relevant concept names, role names, and
concepts such that R contains all concept names, role names, and concepts occurring in φ.
Moreover, let Obj denote the set of individual names occurring in φ.

We introduce time-stamped copies A(i) (r(i)), 0≤ i ≤ k, of all concept names A∈R (role
names r ∈R), and new time-stamped concept names T

(i)

C
, 1≤ i ≤ k, of all concepts C ∈R.

Now, the TBox Tred again consists of two parts, i.e. Tred := TN ∪ Tsub. The TBox TN is defined
as in Section 6.2, and the TBox Tsub consists of a concept definition of T

(i)

C
for every concept

C ∈R and every i, 0≤ i ≤ k, where the concept definition of T
(i)

C
is defined inductively as

in Section 6.2.
Moreover, we define the generalised ABox AW as follows:

AW :=
k⋃

i=1

��
(p−1(p))(i) | p ∈ X i

	
∪
�
(¬p−1(p))(i) | p ∈ Pφ \ X i

	�
,

where the time-stamped variant α(i) of an axiom α ∈ Ax(φ) is defined as in Section 6.2.
Additionally, we need to ensure that the TBox T is respected. For that, we construct

copies T (i), 1≤ i ≤ k. Now, the following lemma states how the Büchi-automaton ÒNφp

W

, the
ABox AW , the TBoxes T (i), 1≤ i ≤ k, and the TBox Tred can be used to solve the satisfiability
problem.

Lemma 6.41. The L-LTL-formula φ is satisfiable w.r.t. ;, T , CR, and N iff there is a set

W = {X1, . . . , Xk} ⊆ 2Pφ such that

• Lω(ÒNφp

W

) 6= ;, and

• AW has a model w.r.t. Tred ∪
⋃k

i=1 T (i).

Proof. For the ‘only if’ direction, assume that there is an infinite sequence of DL-actions
a1a2 . . . ∈ Lω(N), and a DL-LTL-structure I = (Ii)i≥0 with Ii ⇒T ,CR

ai+1
Ii+1 for each i ≥ 0

such that we have I, 0 |= φ. Let Ip = (wi)i≥0 be the propositional abstraction of I w.r.t. p,
and let W := {wi | i ≥ 0} = {X1, . . . , Xk} ⊆ 2Pφ . By Lemma 3.12, we have that Ip is a
model of φp. By construction of W, we have also that Ip is a model of φp

W
. Since Nφp

W

is a

Büchi-automaton for φp

W
(which is the one constructed in the proof of Lemma 3.14), we

have that w := w0w1 . . . ∈ Lω(Nφp

W

).
To show that w ∈ Lω(ÒNφp

W

), it remains to prove that w ∈ Lω(ÒN) as ÒNφp

W

accepts the
intersection of the ω-language accepted by Nφp

W

and the ω-language accepted by ÒN . Since
a1a2 . . . ∈ Lω(N), there is an accepting run q0q1 . . . of N on a1a2 Then,

(q0, a1, w0)(q1, a2, w1)(q2, a3, w2) . . .

is an accepting run of ÒN on w due to the following reasons:

• Obviously, we have that for every i ≥ 0 that (qi , ai+1, wi) is a state of ÒN .

6.4 Verification of DL-Actions 155

• We have for every i ≥ 0 that ((qi , ai+1, wi), wi , (qi+1, ai+2, wi+1)) ∈ Ò∆ since the
following holds:

– We have (qi , ai+1, qi+1) ∈∆ by construction.
– The condition that wi is the last component of the tuple (qi , ai+1, wi) is also

satisfied.
– Since Ii ⇒T ,CR

ai+1
Ii+1, we have that ai+1 = (prei+1, posti+1) is applicable to Ii

w.r.t. T . Thus, Ii |= prei+1. Since we assumed that all axioms occurring in prei+1
also occur in φ, for every positive generalised ABox-literal α ∈ prei+1, we have
that p(α) ∈ wi . Likewise, for every negative generalised ABox-literal ¬α ∈ prei+1,
we have p(α) /∈ wi .

– Since we assumed that all axioms occurring in ai+1 and CR also occur in φ,
we have, by the definition of Twi ,ai+1,CR, for every negative generalised ABox-
literal ¬α ∈ Cond(ai+1, CR), that ¬α ∈ Twi ,ai+1,CR iff p(α) /∈ wi iff α /∈ Twi ,ai+1,CR.
Moreover, we have Ii |= Twi ,ai+1,CR, and hence Twi ,ai+1,CR is an action type for ai+1

and CR.
– Since Ii ⇒T ,CR

ai+1
Ii+1, we have by Lemma 6.14 that Ii+1 |= Eff(ai+1, Ii , CR). By

Lemma 6.24, we obtain further that Eff(ai+1, Ii , CR) = Eff(ai+1, Twi ,ai+1,CR, CR).
Thus, we have that Ii+1 |= Eff(ai+1, Twi ,ai+1,CR, CR). Since we assumed that all
axioms occurring in ai+1 and CR also occur in φ, for every positive ABox-literal
β ∈ Eff(ai+1, Twi ,ai+1,CR, CR), we have that p(β) ∈ wi+1. Likewise, for every
negative ABox-literal ¬β ∈ Eff(ai+1, Twi ,ai+1,CR, CR), we have p(β) /∈ wi+1.

– For the last condition, take first any ABox-literal γ ∈ Ax(φ) with p(γ) ∈ wi

and ¬γ /∈ Eff(ai+1, Twi ,ai+1,CR, CR). Thus, Ii |= γ. We prove Ii+1 |= γ by a case
distinction. If γ is of the form A(a) for A ∈ NC and a ∈ NI, we have aIi ∈ AIi .
Since Ii ⇒T ,CR

ai+1
Ii+1, this yields aIi ∈ AIi+1 , and thus Ii+1 |= A(a). Otherwise, if

γ is of the form r(a, b) for r ∈ NR and a, b ∈ NI, we have (aIi , bIi) ∈ rIi . Since
Ii ⇒T ,CR

ai+1
Ii+1, this yields (aIi , bIi) ∈ rIi+1 , and thus Ii+1 |= r(a, b). Overall, we

obtain p(γ) ∈ wi+1.
For the second case, take any ABox-literal γ ∈ Ax(φ) with p(γ) /∈ wi and
γ /∈ Eff(ai+1, Twi ,ai+1,CR, CR). Thus, Ii 6|= γ. We prove Ii+1 6|= γ again by a
case distinction. If γ is of the form A(a) for A∈ NC and a ∈ NI, we have aIi /∈ AIi .
Since Ii ⇒T ,CR

ai+1
Ii+1, this yields aIi /∈ AIi+1 , and thus Ii+1 6|= A(a). Otherwise, if

γ is of the form r(a, b) for r ∈ NR and a, b ∈ NI, we have (aIi , bIi) /∈ rIi . Since
Ii ⇒T ,CR

ai+1
Ii+1, this yields (aIi , bIi) /∈ rIi+1 , and thus Ii+1 6|= r(a, b). Overall, we

obtain p(γ) /∈ wi+1.

• Since q0 ∈Q0, we have that (q0, a1, w0) is an initial state of ÒN .

• Since q0q1 . . . is an accepting run of N on a1a2 . . . , there are infinitely many j ≥ 0
such that q j ∈ F . The definition of the final states of ÒN yields now that the above run
is accepting.

It is left to be shown that AW has a model w.r.t. Tred ∪
⋃k

i=1 T (i). We have for every i ≥ 0
that there is an index νi ∈ {1, . . . , k} such that Ii induces the set Xνi

, i.e.

Xνi
=
�

p(α) | α ∈ Ax(φ) and Ii |= α
	
,

156 Chapter 6. Verification in Action Formalisms Based on ALCQIO

and, conversely, for every ν ∈ {1, . . . , k}, there is an index i ≥ 0 such that ν = νi . Let ℓ1, . . . ,ℓk

be such that νℓ1
= 1, . . . , νℓk

= k. Note that Definition 6.13 yields that the domain ∆I0 of I0

is equal to the domain ∆Ii of Ii for every i ≥ 0. Moreover, aI0 = aIi for every a ∈ NI and
every i ≥ 0. Now, we define the interpretation J = (∆J , ·J) as follows:

• ∆J :=∆I0;

• aJ := aI0 for every a ∈ NI;

• NJ := {aJ | a ∈ Obj};
• (A(0))J := AI0 for every A∈R∩NC;

• (A(i))J := AIℓi for every A∈R∩NC and every i, 1≤ i ≤ k;

• (r(0))J := rI0 for every r ∈R∩NR;

• (r(i))J := rIℓi for every r ∈R∩NR and every i, 1≤ i ≤ k; and

• (T (i)
C
)J := CIℓi for every concept C ∈R and every i, 1≤ i ≤ k.

The definition of NJ yields that J |= TN . Moreover, we have that J |= Tsub, which can
be shown using arguments that are very similar to the ones used to prove Property (1) of
Lemma 6.30. Hence, J |= Tred. Moreover, since Ii ⇒T ,CR

ai+1
Ii+1 for every i ≥ 0, Definition 6.13

yields that Ii |= T for every i ≥ 0. Thus, we have Iℓi
|= T for every i, 1 ≤ i ≤ k. Take any

C ⊑ D ∈ T and any i, 1≤ i ≤ k. We have Iℓi
|= C ⊑ D, and thus by the definition of J that

J |= T
(i)

C
⊑ T

(i)
D . Hence, J |= T (i). Overall, we obtain that J |= Tred ∪

⋃k
i=1 T (i).

It is only left to show that J |= AW . Note that we have for every relevant generalised
ABox-literal α and every i, 1 ≤ i ≤ k, that Iℓi

|= α iff J |= α(i). This can be shown using
arguments that are very similar to the ones used to prove Property (1a) of Lemma 6.30.
Since we have for i, 1≤ i ≤ k, that

X i =
�

p(α) | α ∈ Ax(φ) and Iℓi
|= α
	
,

this yields that J is a model of the generalised ABox

�
(p−1(p))(i) | p ∈ X i

	
∪
�
(¬p−1(p))(i) | p ∈ Pφ \ X i

	

for every i, 1≤ i ≤ k. Hence, we have that J |= AW .
For the ‘if’ direction, assume that there is a set W = {X1, . . . , Xk} ⊆ 2Pφ such that

Lω(ÒNφp

W

) 6= ; and AW has a model w.r.t. Tred ∪
⋃k

i=1 T (i). Hence, there is an ω-word

w= w0w1 . . . ∈ Lω(ÒNφp

W

) and a model J = (∆J , ·J) of AW and Tred ∪
⋃k

i=1 T (i).
We define interpretations Ji = (∆

Ji , ·Ji), 1≤ i ≤ k, as follows:

• ∆Ji :=∆J ;

• aJi := aJ for every a ∈ NI;

• AJi := (T (i)A)
J for every A∈R∩NC;

• rJi :=
�
(r(i))J ∩ (NJ ×NJ)

�
∪
�
(r(0))J ∩
��
∆

J × (¬N)J
�
∪
�
(¬N)J ×∆J
���

for every

r ∈R∩NR.

6.4 Verification of DL-Actions 157

The interpretation of concept names and role names that are not contained in R is irrelevant.
We assume in the following without loss of generality that the interpretation of all such
names in empty in all interpretations Ji , 1≤ i ≤ k.

One can show that for every relevant generalised ABox-literal α and every i, 1 ≤ i ≤ k,
we have Ji |= α iff J |= α(i). Moreover, one can show that for every relevant concept C and
every i, 1≤ i ≤ k, we have CJi = (T

(i)

C
)J . These two claims can be shown using arguments

very similar to the ones used to prove Properties (2a) and (2b) of Lemma 6.30. Since
J |= AW , this yields that every Ji, 1 ≤ i ≤ k, satisfies exactly the axioms specified by the
propositional variables in X i . Moreover, since J |=

⋃k
i=1 T (i), we have that J |= T

(i)

C
⊑ T

(i)
D

for every C ⊑ D ∈ T and every i, 1≤ i ≤ k. Thus, every Ji , 1≤ i ≤ k, is a model of T .

Since ÒNφp

W

is defined to accept the intersection of the ω-language accepted by Nφp

W

and
theω-language accepted by ÒN , we have that w ∈ Lω(Nφp

W

) and w ∈ Lω(ÒN). Moreover, since

Nφp

W

is a Büchi-automaton for φp

W
(which is the one constructed in the proof of Lemma 3.14),

we have that the propositional LTL-structure W := (wi)i≥0 is a model ofφp

W
. By the definition

of φp

W
, we have that for every world wi , there is exactly one index νi ∈ {1, . . . , k} such that

wi satisfies ∧

p∈Xνi

p ∧
∧

p∈Pφ\Xνi

¬p.

We now define a DL-LTL-structure I := (Ii)i≥0 as follows. We set Ii := Jνi
for i ≥ 0. With

the above arguments, we have that every Ii satisfies exactly the axioms specified by the
propositional variables in Xνi

. Thus, we obtain that for every i ≥ 0 and every α ∈ Ax(φ), we
have Ii |= α iff p(α) ∈ Xνi

iff p(α) ∈ wi . Moreover, since W is a model of φp

W
, we obtain that

I is a model of φ.

Since w ∈ Lω(ÒN), there is an accepting run of ÒN on w. The definition of ÒN yields that
this run is of the form

(q0, a1, w0)(q1, a2, w1)(q2, a3, w2)

The definition of ÒN yields moreover that q0q1q2 . . . is an accepting run of N on a1a2
Thus, a1a2 . . . ∈ Lω(N).

It is only left to show that for every i ≥ 0, we have that Ii ⇒T ,CR
ai+1

Ii+1. For that, let i ≥ 0
be arbitrary, and let ai+1 = (prei+1, posti+1). First note that by the definition of Ii and the
arguments above, we have that Ii |= T and Ii+1 |= T . The definition of Ò∆ yields that for
every positive generalised ABox-literal α ∈ prei+1, we have p(α) ∈ wi, and thus Ii |= α.
Moreover, we have for every negative generalised ABox-literal ¬α ∈ prei+1 that p(α) /∈ wi,
and thus Ii |= ¬α. Thus, Ii |= prei+1, and hence ai+1 is applicable to Ii w.r.t. T .

Furthermore, we have that the domains of Ii and Ii+1 coincide by definition, and we have
aIi = aIi+1 for every a ∈ NI, again by definition.

We show now that Eff(ai+1, Ii , CR) = Eff(ai+1, Twi ,ai+1,CR, CR). Take the action type
T := {α ∈ Cond(ai+1, CR) | Ii |= α}. Obviously, T is an action type for ai+1 and CR with
Ii |= T . By Lemma 6.24, we obtain Eff(ai+1, Ii , CR) = Eff(ai+1, T, CR). Thus, it is enough to
show that Twi ,ai+1,CR = T . For every positive generalised ABox-literal α ∈ Cond(ai+1, CR),
we have α ∈ Twi ,ai+1,CR iff p(α) ∈ wi iff Ii |= α iff α ∈ T . For every negative generalised
ABox-literal ¬α ∈ Cond(ai+1, CR), we have ¬α ∈ Twi ,ai+1,CR iff p(α) /∈ wi iff Ii 6|= α iff
Ii |= ¬α iff ¬α ∈ T .

158 Chapter 6. Verification in Action Formalisms Based on ALCQIO

Moreover, Eff(ai+1, Twi ,ai+1,CR, CR) is not contradictory due to the following arguments.
Suppose we have {β ,¬β} ⊆ Eff(ai+1, Twi ,ai+1,CR, CR) for some positive ABox-literal β . The
definition of Ò∆ yields that p(β) ∈ wi and p(β) /∈ wi , which is a contradiction.

Let A∈ NC ∩R, let

A+ := {aIi | A(a) ∈ Eff(ai+1, Twi ,ai+1,CR, CR)},

and let
A− := {aIi | ¬A(a) ∈ Eff(ai+1, Twi ,ai+1,CR, CR)}.

Since Eff(ai+1, Twi ,ai+1,CR, CR) is not contradictory, we have that A+ ∩ A− = ;. Moreover, we
have by definition that A+ ⊆ NJ and A− ⊆ NJ . We first show that AIi+1 \ NJ = AIi \ NJ .
Since J |= Tsub, we have

AIi+1 \ NJ = (T
(νi+1)

A)J \ NJ

=
�
(NJ ∩ (A(νi+1))J)∪ ((∆J \ NJ)∩ (A(0)))J

�
\ NJ

= ((∆J \ NJ)∩ (A(0)))J \ NJ

=
�
(NJ ∩ (A(νi))J)∪ ((∆J \ NJ)∩ (A(0)))J

�
\ NJ

= (T
(νi)

A)J \ NJ

= AIi \ NJ

Hence, we have for every d ∈∆J \ NJ that d ∈ AIi+1 iff d ∈ (AIi ∪ A+) \ A−. We prove that
for every aJ ∈ NJ , we have aJ ∈ AIi+1 iff aJ ∈ (AIi ∪ A+) \ A− by a case distinction. For the
‘if’ direction, it is obvious that we have aJ /∈ A−. We consider first the case where aJ ∈ A+,
and thus A(a) ∈ Eff(ai+1, Twi ,ai+1,CR, CR). The definition of Ò∆ yields that p(A(a)) ∈ wi+1, and
thus Ii+1 |= A(a), i.e. aJ ∈ AIi+1 .

Consider now the case where aJ /∈ A+, i.e. aJ ∈ AIi \ A−. Since aJ ∈ AIi , we have
Ii |= A(a), and thus p(A(a)) ∈ wi . Moreover, we have ¬A(a) /∈ Eff(ai+1, Twi ,ai+1,CR, CR) by the
definition of A−. Again, the definition of Ò∆ yields that p(A(a)) ∈ wi+1, and thus Ii+1 |= A(a),
i.e. aJ ∈ AIi+1 .

For the ‘only if’ direction, assume to the contrary that aJ ∈ AIi+1 , aJ /∈ A+, and aJ /∈ AIi\A−.
There are again two cases to consider: either aJ ∈ A− or aJ /∈ A−. If aJ ∈ A−, then
¬A(a) ∈ Eff(ai+1, Twi ,ai+1,CR, CR). Again, the definition of Ò∆ yields that p(A(a)) /∈ wi+1, and
thus Ii+1 6|= A(a), i.e. we have aJ /∈ AIi+1 , which is a contradiction.

Otherwise, if aJ /∈ A−, we have aJ /∈ AIi , and thus Ii 6|= A(a), which yields p(A(a)) /∈ wi.
Since aJ /∈ A+, we have by the definition of A+ that A(a) /∈ Eff(ai+1, Twi ,ai+1,CR, CR). Again,
the definition of Ò∆ yields that p(A(a)) /∈ wi+1, and thus Ii+1 6|= A(a), i.e. we have aJ /∈ AIi+1 ,
which is again a contradiction.

Thus, we have shown that AIi+1 = (AIi ∪ A+) \ A−. Finally, let r ∈ NR ∩R, let

r+ := {(aIi , bIi) | r(a, b) ∈ Eff(ai+1, Twi ,ai+1,CR, CR)},

and let
r− := {(aIi , bIi) | ¬r(a, b) ∈ Eff(ai+1, Twi ,ai+1,CR, CR)}.

6.4 Verification of DL-Actions 159

Since Eff(ai+1, Twi ,ai+1,CR, CR) is not contradictory, we have that r+ ∩ r− = ;. Moreover, we
have by definition that r+ ⊆ NJ × NJ and r− ⊆ NJ × NJ . Similar to before, we first show
that rIi+1 \ (NJ × NJ) = rIi \ (NJ × NJ). By the definitions of rIi+1 and rIi , we have

rIi+1 \ (NJ × NJ) =
�
(r(0))J ∩ ((∆J × (¬N)J)∪ ((¬N)J ×∆J))

�
\ (NJ × NJ)

= rIi \ (NJ × NJ).

Hence, we have for all d, e ∈ ∆J \ NJ that (d, e) ∈ rIi+1 iff (d, e) ∈ (rIi ∪ r+) \ r−. Us-
ing very similar arguments as above, we prove that for every (aJ , bJ) ∈ NJ × NJ , we
have (aJ , bJ) ∈ rIi+1 iff (aJ , bJ) ∈ (rIi ∪ r+) \ r−. For the ‘if’ direction, it is obvious
that we have (aJ , bJ) /∈ r−. We consider first the case where (aJ , bJ) ∈ r+, and thus
r(a, b) ∈ Eff(ai+1, Twi ,ai+1,CR, CR). The definition of Ò∆ yields that p(r(a, b)) ∈ wi+1, and thus
Ii+1 |= r(a, b), i.e. we have (aJ , bJ) ∈ AIi+1 .

Consider now the case where (aJ , bJ) /∈ r+, i.e. (aJ , bJ) ∈ rIi \ r−. Since (aJ , bJ) ∈ rIi ,
we have Ii |= r(a, b), and thus p(r(a, b)) ∈ wi . Moreover, we have by the definition of r− that
¬r(a, b) /∈ Eff(ai+1, Twi ,ai+1,CR, CR). Again, the definition of Ò∆ yields that p(r(a, b)) ∈ wi+1,
and thus Ii+1 |= r(a, b), i.e. we have (aJ , bJ) ∈ rIi+1 .

For the ‘only if’ direction, assume to the contrary that (aJ , bJ) ∈ rIi+1 , (aJ , bJ) /∈ r+,
and (aJ , bJ) /∈ rIi \ r−. There are again two cases to consider: either (aJ , bJ) ∈ r− or
(aJ , bJ) /∈ r−. If (aJ , bJ) ∈ r−, then ¬r(a, b) ∈ Eff(ai+1, Twi ,ai+1,CR, CR). Again, the defini-
tion of Ò∆ yields that p(r(a, b)) /∈ wi+1, and thus Ii+1 6|= r(a, b), i.e. we have (aJ , bJ) /∈ rIi+1 ,
which is a contradiction.

Otherwise, if (aJ , bJ) /∈ r−, we have (aJ , bJ) /∈ rIi , and thus Ii 6|= r(a, b), which
yields p(r(a, b)) /∈ wi. Since (aJ , bJ) /∈ r+, we have r(a, b) /∈ Eff(ai+1, Twi ,ai+1,CR, CR) by
the definition of r+. Again, the definition of Ò∆ yields that p(r(a, b)) /∈ wi+1, and thus
Ii+1 6|= r(a, b), i.e. we have (aJ , bJ) /∈ rIi+1 , which is again a contradiction.

We have thus shown that rIi+1 = (rIi ∪ r+) \ r−. Since we have shown that all conditions
in Definition 6.13 are satisfied, this finishes the proof that we have Ii ⇒T ,CR

ai+1
Ii+1 for every

i ≥ 0. �

Using this lemma, we can prove our complexity result.

Theorem 6.42. The verification problem for our action formalism is

1. in 2EXPTIME for the DLs ALC, ALCO, ALCI, ALCIO, ALCQ, and ALCQO; and

2. in CO-2NEXPTIME for the DLs ALCQI and ALCQIO.

Moreover, if the TBox is assumed to be acyclic (or empty), the verification problem is

3. in EXPSPACE for the DLs ALC, ALCO, ALCQ, and ALCQO;

4. in 2EXPTIME for the DLs ALCI and ALCIO; and

5. in CO-2NEXPTIME for the DLs ALCQI and ALCQIO.

Proof. Let L be a DL between ALC and ALCQIO. Furthermore, let A be a generalised L-
ABox, T be an L-TBox, CR be a finite set of causal relationships, A be a finite set of DL-actions,
N = (Q, A,∆,Q0, F) be a Büchi-automaton, φ be an L-LTL-formula, and p: Ax(φ)→ Pφ be
a bijection. As argued above, the following assumptions are without loss of generality:

160 Chapter 6. Verification in Action Formalisms Based on ALCQIO

• A is empty;

• every axiom occurring in a DL-action of A or a causal relationship of CR also occurs
in φ; and

• for every A ∈ NC, r ∈ NR, a, b ∈ NI occurring in φ, T , a DL-action of A, or a causal
relationship of CR, we have that the assertions A(a) and r(a, b) also occur in φ.

Moreover, we have argued that the verification problem and the unsatisfiability problem
have the same complexity.

The satisfiability problem can be decided using the characterisation of Lemma 6.41.
Consider the following decision procedure. For every set W ⊆ 2Pφ , do the following:

1. Construct the Büchi-automaton ÒNφp

W

, and check it for non-emptiness.

2. Construct the generalised ABox AW , the TBox Tred, and the TBox
⋃|W|

i=1 T (i), and check

whether AW has a model w.r.t. Tred ∪
⋃|W|

i=1 T (i).

If both steps are successful for any set W ⊆ 2Pφ , i.e. we have Lω(ÒNφp

W

) 6= ; and AW has a
model w.r.t. Tred ∪

⋃|W|
i=1 T (i), we know by Lemma 6.41 that φ is satisfiable w.r.t. A, T , CR,

and N . Otherwise, φ is unsatisfiable w.r.t. A, T , CR, and N .
First note that there are doubly exponentially many sets W ⊆ 2Pφ , and each of these sets is

of size exponential in the size of φ. Thus, all sets W can be enumerated in exponential space
(and doubly exponential time). We first show that Step 1 can be performed in exponential
space (and doubly exponential time).

In the proof of Lemma 3.14, we have seen that the Büchi-automaton Nφp

W

can be construc-
ted in time exponential in the size of φp (and thus in time exponential in the size of φ) and
linear in the size of W. Moreover, the Büchi-automaton ÒN is clearly of size exponential in the
size ofφ, since ΣPφ

is of size exponential in the size ofφ. Furthermore, ÒN can be constructed
in time doubly exponential in the size of φ, A, and CR. Indeed, for every σ ∈ ΣPφ

and a ∈ A,
the generalised ABox Tσ,a,CR is of polynomial size, and can be constructed in polynomial
time. Checking whether Tσ,a,CR is an action type for a and CR involves checking the two
conditions of Definition 6.19. The first condition is obviously satisfied by construction, and
the second condition is satisfied if Tσ,a,CR is consistent. Since the ABox-consistency problem
for ALCQIO is NEXPTIME-complete [Sch94; Tob00; Pra05],15 we can perform this check in
doubly exponential time. Overall, ÒN can be constructed in exponential space (and doubly
exponential time).

As noted above, the Büchi-automaton ÒNφp

W

, which accepts the intersection of the ω-
language accepted by Nφp

W

and the ω-language accepted by ÒN , can be obtained using the
standard product construction in time polynomial in the size of the input Büchi-automata,
see e.g. [BK08; Tho90]. Thus, ÒNφp

W

is of size exponential in the size of φ, A, and CR. Since
the emptiness problem for Büchi-automata can be solved in time polynomial in the size of
the Büchi-automaton [VW94], we obtain that Step 1 above can be performed in exponential
space (and doubly exponential time) for each DL between ALC and ALCQIO.

For Step 2, note that the ABox AW , the TBox Tred, and the TBox
⋃|W|

i=1 T (i) can be con-
structed in exponential time, and is of size exponential in the size of the input. Since for

15As noted in the proof of Theorem 6.27, this is even the case if the number in the at-least and at-most restrictions
are coded in binary.

6.5 Summary 161

ALCIO and ALCQO, the ABox-consistency problem (w.r.t. general TBoxes) can be decided
in EXPTIME [Sch94; Hla04; HS01], Step 2 can be performed in doubly exponential time for
all DLs that are fragments of ALCIO or ALCQO. Since EXPTIME is closed under complement,
we obtain overall Parts 1 and 4 of the theorem.

For Parts 2 and 5 of the theorem, note since Tred contains nominals, and for ALCQIO,
the ABox-consistency problem (w.r.t. general TBoxes) is NEXPTIME-complete [Sch94; Tob00;
Pra05], we obtain that the satisfiability problem for the DLs ALCQI and ALCQIO is in
2NEXPTIME. Hence, we obtain that the verification problem is in CO-2NEXPTIME for those
DLs.

Finally, for Part 3 of the theorem, note that the TBox Tred ∪
⋃|W|

i=1 T (i) is acyclic. Since
for ALCQO, the ABox-consistency problem w.r.t. acyclic TBoxes is PSPACE-complete [Sch94;
BLM+05b], we obtain that Step 2 can be performed in exponential space for any fragment
of ALCQO. Since EXPSPACE is closed under complement, we obtain overall Part 3 of the
theorem. �

If we compare these complexity results with the ones of [BLM10] (see Proposition 6.40) where
only acyclic TBoxes and no causal relationships were considered, we observe the following.
Allowing general TBoxes and causal relationships does not result in an increase of the
complexity upper bounds for the verification problem for the description logics ALCI, ALCIO,
ALCQI, and ALCQIO. For ALC, ALCO, ALCQ, and ALCQO, however, the complexity upper
bound increases from EXPSPACE to 2EXPTIME if general TBoxes are allowed. The main reason
for that is that the ABox-consistency problem in those DLs is harder if general TBoxes are
considered. Unfortunately, we do not know for any of these shown upper bounds of the
verification problem whether they are tight.

6.5 Summary

We will now sum up the main results of this chapter. In this chapter, we have proposed to use
causal relationships to deal with the ramification problem for DL-based action formalisms.
In Sections 6.2 and 6.3, we have shown, for our more expressive action formalism, that
important inference problems for action formalisms such as the consistency problema and
the projection problem are decidable in the setting with and without domain knowledge,
which is described with a general TBox instead of only an acylcic one, for the DLs considered
in [BLM+05a]. Moreover, we have derived complexity results from the decision procedures.
What differs from DL to DL is the complexity of the basic inference problems in the respective
DL (extended with nominals). Except for two cases, we obtain the matching hardness results
by a reduction from such a basic inference problem. Finally, in Section 6.4, we considered
the verification problem for our more expressive action formalism. There, a Büchi-automaton
defines infinite sequences of DL-actions that an agent may execute. We have shown how
to verify whether temporal properties are satisfied for all such sequences, and again we
have derived complexity results. The complexity results obtained in this chapter are listed in
Table 6.43.

Regarding future work, one interesting question is whether our approaches to deciding the
consistency, projection, and verification problem can be extended to DL-actions with so-called
occlusions [BLM+05a]. Basically, occlusions are sets of axioms that are allowed to change

162 Chapter 6. Verification in Action Formalisms Based on ALCQIO

Table 6.43: The complexity of the inference problems considered in this chapter for all DLs
between ALC and ALCQIO

DL GCIs? Consistency problem Projection problem Verification problem

(Theorems 6.27, 6.36) (Theorem 6.38) (Theorem 6.42)

ALC[Q][O]
✗ PSPACE-c. PSPACE-c. in EXPSPACE

✓ EXPTIME-c. EXPTIME-c. in 2EXPTIME

ALCI
✗ PSPACE-c. EXPTIME-c. in 2EXPTIME

✓ EXPTIME-c. EXPTIME-c. in 2EXPTIME

ALCIO
✗ EXPTIME-c. EXPTIME-c. in 2EXPTIME

✓ EXPTIME-c. EXPTIME-c. in 2EXPTIME

ALCQI
✗ PSPACE-c. CO-NEXPTIME-c. in CO-2NEXPTIME

✓ EXPTIME-hard / CO-NEXPTIME-c. in CO-2NEXPTIME

in CO-NEXPTIME

ALCQIO
✗ CO-NEXPTIME-c. CO-NEXPTIME-c. in CO-2NEXPTIME

✓ CO-NEXPTIME-hard / CO-NEXPTIME-c. in CO-2NEXPTIME

in PNEXPTIME

ALC[Q][O] is short for any DL between ALC and ALCQO, and ‘c.’ is short for ‘complete’.

arbitrarily. Thus, occlusions allow the user to specify statements about the possible changes
to the interpretations of concepts and roles that can be caused by applying a given DL-action.
Note that such DL-actions are non-deterministic, i.e. their application to an interpretation
may yield several possible successor interpretations. Consequently, such a DL-action may
still be consistent although some of the successors interpretations are not models of the
TBox (see the proof of Lemma 6.35). Thus, consistency can no longer be characterised by an
analog of Lemma 6.35.

When defining our semantics for DL-actions in the presence of causal relationships, we
followed the approach used in [BDT98; DTB98] rather than the one employed by [Lin95;
Thi97]. In our health insurance example (see Examples 6.7 and 6.9), this was actually the
appropriate semantics, but there may also be examples where it would be better to use the
other semantics. Thus, it would be interesting to see whether our approach for deciding the
consistency, the projection, and the verification problem can be adapted to deal with the
semantics of [Lin95; Thi97].

Instead of trying to decide the projection problem directly, one can also follow the pro-
gression approach: given a DL-action and a (possibly incomplete) description of the current
state, this approach tries to compute a description of the possible successor states. Projection
then boils down to computing consequences of this successor description. For DL-based
action theories, progression has been investigated in [LLM+11]. It would be interesting to
see whether the results obtained there can be extended to the DL-based action theories with
causal relationships considered in the present chapter.

6.5 Summary 163

In this chapter, we followed the approach for obtaining decidability results for action
theories introduced in [BLM+05a], which is based on the idea of restricting the base logic
to a decidable DL. In the literature, other ways of restricting the base logic to achieve this
goal have been considered. For example, in [LL09] the authors consider so-called local
effect actions16 and restrict the base logic to so-called ‘proper+ knowledge bases’ [LL05].
They show that, in this setting, progression is efficiently computable, which implies that the
projection problem is efficiently decidable. It would be interesting to see whether this result
can be extended to actions theories with causal relationships.

Moreover, it is interesting to see whether the results of this chapter can be used to verifying
properties of action sequences ‘generated’ by restricted forms of high-level action program-
ming languages such as GOLOG [LRL+97] and FLUX [Thi05a]. A first step in that direction
has been done in [BZ13].

16Note that our DL-based actions are local effect actions.

164 Chapter 6. Verification in Action Formalisms Based on ALCQIO

Chapter 7

Conclusions

In this chapter, we first provide a brief summary in Section 7.1 about what was achieved in
the present thesis. Then, in Section 7.2, we mention some future work.

7.1 Main Results

In this thesis, we have shown how to verify properties of dynamical systems whose behaviour
can be partially observed. Whereas we assumed that we do not have a complete description
of neither the system itself nor the current state of the system, we assumed that we have
access to some background knowledge that encodes basic knowledge about the functioning
of the observed system. Moreover, since the systems’ states may have a complex internal
structure, the expressive power of the formalism for representing the observations should go
beyond propositional logic. We used description logics and extensions of them as one way to
address these requirements.

After introducing the temporalised description logic SHOQ-LTL in Chapter 3, which extends
propositional LTL by allowing SHOQ-axioms to occur in place of propositional variables, we
have shown complexity results for the satisfiability problem in that temporalised DL. We
have considered the problem in three different settings:

(i) neither concept names nor role names are allowed to be rigid,

(ii) only concept names are allowed to be rigid, and

(iii) both concept and role names are allowed to be rigid.

We have shown that the complexity is the same as in the less expressive temporalised
description logic ALC-LTL [BGL12], namely EXPTIME-complete in Setting (i), NEXPTIME-
complete in Setting (ii), and 2EXPTIME-complete in Setting (iii). Table 3.4 mentions the
respective theorems that state those results. Moreover, we have shown in this chapter that
the consistency problem for (an extension of) Boolean SHOQ-knowledge bases (w.r.t. some
side condition) can be decided in exponential time.

Using these results, we considered in the following three different contexts. Firstly, in
Chapter 4, we have shown how to perform runtime verification using SHOQ-LTL. In this
chapter, we provided a construction for monitors that runs in doubly exponential time, and
produces monitors of doubly exponential size, even in the most complex case where both
rigid concept names and rigid role names are allowed, i.e. in Setting (iii). For that we
have shown how to construct Büchi-automata for SHOQ-LTL-formulas using results from
Chapter 3. Moreover, we have shown that this doubly exponential blow-up in the construction
of the monitor cannot be avoided as it already occurs for propositional LTL. Finally, we have

165

166 Chapter 7. Conclusions

considered the related decision problems of liveness and monitorability and have shown
some complexity results for them. Our results are only tight in Setting (iii). In this setting,
both problems are 2EXPTIME-complete. For the other cases, a gap remains: both problems
are EXPTIME-hard and in 2EXPTIME in Setting (i), and CO-NEXPTIME-hard and in 2EXPTIME

in Setting (ii). However, the exact complexity of these problems are not even known for
propositional LTL.

Secondly, in Chapter 5, we have considered a temporal version of ontology-based data
access. More precisely, we proved complexity results for query entailment in a temporal
query language that extends propositional LTL by allowing conjunctive queries in place
of propositional variables. Moreover, background knowledge is encoded in a TBox that is
formulated in a description logic between ALC and SHQ. We considered both the data
complexity and the combined complexity for this problem for the three settings above. In
Setting (i), temporalised query entailment is CO-NP-complete w.r.t. data complexity and
EXPTIME-complete w.r.t. combined complexity. In Setting (ii), the problem is CO-NP-complete
w.r.t. data complexity and CO-NEXPTIME-complete w.r.t. combined complexity. Finally, in
Setting (iii), the problem is CO-NP-hard and in EXPTIME w.r.t. data complexity and 2EXPTIME-
complete w.r.t. combined complexity. For showing these results, some results of Chapter 3 are
used. The obtained results are summarised in Table 5.2, where also the respective theorems
and corollaries that state these results are listed.

Thirdly, in Chapter 6, we have considered an action formalism based on any description
logic between ALC and ALCQIO that is capable of treating ramifications that arise naturally
if domain constraints are encoded in general TBoxes. For this, we have extended the DL-based
action formalism introduced in [BLM+05a] (which could deal only with acyclic TBoxes)
with causal relationships. We have shown that important inference problems such as the
consistency problem and the projection problem are decidable in our new formalism, and
continue the work of [BLM10] by generalising the verification problem. We have derived
a number of complexity results from the obtained decision procedures. Depending on the
base DL, the complexity results range from PSPACE-complete to CO-NEXPTIME-hard and in
PNEXPTIME for the consistency problem, and from PSPACE-complete to CO-NEXPTIME-complete
for the projection problem. For the verification problem, the complexity ranges from in
EXPSPACE to in CO-2NEXPTIME, and it is unknown whether these bounds are tight. The
obtained results are summarised in Table 6.43.

7.2 Future Work

Some more technical directions for future work have been already mentioned at the end
of each chapter. These include tightening some complexity bounds and considering slight
extensions of the approaches introduced.

We now give some more general remarks on future research. Throughout the thesis, we
have considered extensions of propositional LTL for specifying temporal properties. It would
be interesting to consider also different temporal formalisms. Especially in the area of DL-
based action formalisms, it is worthwile to examine the verification problem for extensions of
the temporal logic CTL [CE82] and its extension CTL∗ [EH86] that encompasses propositional
LTL. Furthermore, it might make sense to consider real-time extensions of temporal logics;
see e.g. [Koy90; AH93; AFH96; RS99].

7.2 Future Work 167

With respect to temporal query languages, it is interesting to consider light-weight de-
scription logics such as members of the DL-Lite-family [CDL+05; ACK+09; CDL+09] in our
context since they allow first-order rewritability, i.e. query answering can be reduced to
classical database reasoning. It is interesting to see whether the approaches considered in the
present thesis work also for DL-Lite. First steps in that direction have been done in [BLT13b;
BLT13a; BLT13c].

Additionally, it makes sense to consider extensions of the presented approaches that are
capable of dealing with faulty sensor information. For instance, temporal extensions of
(decidable) probabilistic description logics [Luk08; LS10] and (decidable) fuzzy description

logics [Str01; BS09; BDG+12; BP13; BP14] may be useful. Moreover, one may want to
deal with concrete numerical values, and thus it is interesting to consider also temporal
extensions of description logics with concrete domains [BH91; Lut02; BS03; Lut04; LAH+05;
LM07]. Concrete domains allow to use concrete values such as numbers or strings within
concepts. Description logics with concrete domains allow furthermore to use predicates on
such concrete values. Thus, one can, for instance, compare concrete values.

Moreover, it would be interesting to combine some of the above mentioned extensions. It
is very challenging, however, to find a useful combination that remains decidable.

168 Chapter 7. Conclusions

Bibliography

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu: Foundations of Databases.
Addison-Wesley, 1995 (cited on pages 7, 8, 83, 86).

[AS85] Bowen Alpern and Fred B. Schneider: ‘Defining Liveness’. In Information

Processing Letters 21(4): 1985, pages 181–185 (cited on page 61).

[AFH96] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger: ‘The Benefits of Relaxing
Punctuality’. In Journal of the ACM 43(1): 1996, pages 116–146 (cited on
page 166).

[AH93] Rajeev Alur and Thomas A. Henzinger: ‘Real-Time Logics: Complexity and
Expressiveness’. In Information and Computation 104(1): 1993, pages 35–77
(cited on page 166).

[ABM99] Carlos Areces, Patrick Blackburn, and Maarten Marx: ‘A Road-Map on Com-
plexity for Hybrid Logics’. In Proc. of the 13th Int. Workshop on Computer

Science Logic (CSL 1999) and the 8th Annual Conf. of the EACSL, Madrid, Spain.
Edited by Jörg Flum and Mario Rodríguez-Artalejo. Volume 1683. Lecture
Notes in Computer Science. Springer-Verlag, Sept. 1999, pages 307–321 (cited
on page 133).

[ACK+09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev: ‘The DL-Lite Family and Relations’. In Journal of Artificial Intelli-

gence Research 36: 2009, pages 1–69 (cited on pages 2, 167).

[AF00] Alessandro Artale and Enrico Franconi: ‘A survey of temporal extensions of
description logics’. In Annals of Mathematics and Artificial Intelligence 30(1–4):
2000, pages 171–210 (cited on page 3).

[AF05] Alessandro Artale and Enrico Franconi: ‘Temporal Description Logics’. In Hand-

book of Temporal Reasoning in Artificial Intelligence. Edited by Michael Fischer,
Dov M. Gabbay, and Lluís Vila. Elsevier, 2005. Chapter 12, pages 375–388
(cited on page 3).

[AFW+02] Alessandro Artale, Enrico Franconi, Frank Wolter, and Michael Zakharyaschev:
‘A Temporal Description Logic for Reasoning over Conceptual Schemas and
Queries’. In Proc. of the 8th European Conf. on Logics in Artificial Intelligence

(JELIA 2002), Cosenza, Italy. Edited by Sergio Felsca, Sergio Greco, Nicola
Leone, and Giovambattista Ianni. Volume 2424. Lecture Notes in Computer
Science. Springer-Verlag, Sept. 2002, pages 98–110 (cited on pages 84, 85).

[AKL+07] Alessandro Artale, Roman Kontchakov, Carsten Lutz, Frank Wolter, and Mi-
chael Zakharyaschev: ‘Temporalising Tractable Description Logics’. In Proc. of

the 14th Int. Symp. on Temporal Representation and Reasoning (TIME 2007),
Alicante, Spain. Edited by Valentin Goranko and X. Sean Wang. IEEE Press,
June 2007, pages 11–22 (cited on pages 5, 84).

169

170 Bibliography

[AKR+10] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Za-
kharyaschev: ‘Past and Future of DL-Lite’. In Proc. of the 24th AAAI Conf. on

Artificial Intelligence (AAAI 2010), Atlanta, GA, USA. Edited by Maria Fox and
David Poole. AAAI Press, July 2010, pages 243–248 (cited on page 5).

[AKW+13] Alessandro Artale, Roman Kontchakov, Frank Wolter, and Michael Za-
kharyaschev: ‘Temporal Description Logic for Ontology-Based Data Access’. In
Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI 2013), Beijing,
China. Edited by Francesca Rossi. AAAI Press, Aug. 2013, pages 711–717 (cited
on pages 84, 85).

[Baa03] Franz Baader: ‘Terminological Cycles in a Description Logic with Existential
Restrictions’. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI

2003), Acapulco, Mexico. Edited by Georg Gottlob and Toby Walsh. Morgan
Kaufmann, Los Altos, Aug. 2003, pages 325–330 (cited on page 2).

[BBB+09] Franz Baader, Andreas Bauer, Peter Baumgartner, Anne Cregan, Alfredo Gabal-
don, Krystian Ji, Kevin Lee, David Rajaratnam, and Rolf Schwitter: ‘A Novel
Architecture for Situation Awareness Systems’. In Proc. of the 18th Int. Conf. on

Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX

2009), Oslo, Norway. Edited by Martin Giese and Arild Waaler. Volume 5607.
Lecture Notes in Computer Science. Springer-Verlag, July 2009, pages 77–92
(cited on page 1).

[BBL09] Franz Baader, Andreas Bauer, and Marcel Lippmann: ‘Runtime Verification
Using a Temporal Description Logic’. In Proc. of the 7th Int. Symp. on Frontiers

of Combining Systems (FroCoS 2009), Trento, Italy. Edited by Silvio Ghilardi
and Roberto Sebastiani. Volume 5749. Lecture Notes in Computer Science.
Springer-Verlag, Sept. 2009, pages 149–164 (cited on pages 6, 7, 11, 63).

[BBL13a] Franz Baader, Stefan Borgwardt, and Marcel Lippmann: ‘On the Complexity
of Temporal Query Answering’. LTCS-Report 13-01. Chair of Automata Theory,
Institute of Theoretical Computer Science, Technische Universität Dresden, Mar.
2013. URL: http://lat.inf.tu-dresden.de/research/reports.html

(cited on pages 10, 11, 41, 83, 85).

[BBL13b] Franz Baader, Stefan Borgwardt, and Marcel Lippmann: ‘Temporalizing
Ontology-Based Data Access’. In Proc. of the 24th Int. Conf. on Automated

Deduction (CADE-24), Lake Placid, NY, USA. Edited by Maria Paola Bonacina.
Volume 7898. Lecture Notes in Artificial Intelligence. Springer-Verlag, June
2013, pages 330–344 (cited on pages 10, 11, 41, 83, 85, 90).

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz: ‘Pushing the EL Envelope’.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
Edinburgh, Scotland, UK. Edited by Leslie Pack Kaelbling and Alessandro
Saffiotti. Morgan Kaufmann, Los Altos, Aug. 2005, pages 364–369 (cited on
page 2).

http://lat.inf.tu-dresden.de/research/reports.html

Bibliography 171

[BBL08] Franz Baader, Sebastian Brandt, and Carsten Lutz: ‘Pushing the EL Envelope
Further’. In Proc. of the 5th Workshop on OWL: Experiences and Directions

(OWLED 2008), Washington, DC, USA. Edited by Kendall Clark and Peter F.
Patel-Schneider. Volume 496. CEUR Workshop Proceedings. CEUR-WS.org,
Apr. 2008 (cited on page 2).

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors: The Description Logic Handbook: Theory, Im-

plementation, and Applications. 2nd edition. Cambridge University Press, 2007
(cited on pages 1, 2, 13, 87, 91).

[BGL08] Franz Baader, Silvio Ghilardi, and Carsten Lutz: ‘LTL Over Description Logic
Axioms’. In Proc. of the 11th Int. Conf. on Principles of Knowledge Representation

and Reasoning (KR 2008), Sydney, Australia. Edited by Gerhard Brewka and
Jérôme Lang. AAAI Press, Sept. 2008, pages 684–694 (cited on page 171).

[BGL12] Franz Baader, Silvio Ghilardi, and Carsten Lutz: ‘LTL Over Description Logic
Axioms’. In ACM Transactions on Computational Logic 13(3): 2012. This is an
extended version of [BGL08] (cited on pages 5–7, 10, 29, 31, 32, 34, 36, 37,
39, 41, 76–78, 80, 83, 85, 92–94, 101, 104, 105, 165).

[BH91] Franz Baader and Philipp Hanschke: ‘A Scheme for Integrating Concrete Do-
mains into Concept Languages’. In Proc. of the 12th Int. Joint Conf. on Artificial

Intelligence (IJCAI 1991), Sydney, Australia. Edited by John Mylopoulos and
Raymond Reiter. Morgan Kaufmann, Aug. 1991, pages 452–457 (cited on
page 167).

[BL14] Franz Baader and Marcel Lippmann: ‘Runtime Verification Using a Temporal
Description Logic Revisited’. LTCS-Report 14-01. Chair of Automata Theory,
Institute of Theoretical Computer Science, Technische Universität Dresden, Mar.
2014. URL: http://lat.inf.tu-dresden.de/research/reports.html

(cited on pages 11, 29, 57).

[BLL10a] Franz Baader, Marcel Lippmann, and Hongkai Liu: ‘Adding Causal Relation-
ships to DL-based Action Formalisms’. LTCS-Report 10-01. Chair of Automata
Theory, Institute of Theoretical Computer Science, Technische Universität
Dresden, Feb. 2010. URL: http://lat.inf.tu-dresden.de/research/

reports.html (cited on pages 12, 119).

[BLL10b] Franz Baader, Marcel Lippmann, and Hongkai Liu: ‘Using Causal Relation-
ships to Deal with the Ramification Problem in Action Formalisms Based on
Description Logics’. In Proc. of the 17th Int. Conf. on Logic for Programming,

Artificial Intelligence, and Reasoning (LPAR-17), Yogyakarta, Indonesia. Edited
by Christian G. Fermüller and Andrei Voronkov. Volume 6397. Lecture Notes in
Computer Science. Springer-Verlag, Oct. 2010, pages 82–96 (cited on pages 12,
119, 120, 129).

CEUR-WS.org
http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

172 Bibliography

[BLM09] Franz Baader, Hongkai Liu, and Anees ul Mehdi: ‘Integrate Action Formal-
isms into Linear Temporal Description Logics’. LTCS-Report 09-03. Chair of
Automata Theory, Institute of Theoretical Computer Science, Technische Uni-
versität Dresden, 2009. URL: http://lat.inf.tu-dresden.de/research/

reports.html (cited on page 152).

[BLM10] Franz Baader, Hongkai Liu, and Anees ul Mehdi: ‘Verifying Properties of Infinite
Sequences of Description Logic Actions’. In Proc. of the 19th European Conf. on

Artificial Intelligence (ECAI 2010), Lisbon, Portugal. Edited by Helder Coelho,
Rudi Studer, and Michael Wooldridge. Volume 215. Frontiers in Artificial
Intelligence and Applications. IOS Press, Aug. 2010, pages 53–58 (cited on
pages 10, 12, 119, 120, 151, 152, 161, 166).

[BLM+05a] Franz Baader, Carsten Lutz, Maja Miličić, Ulrike Sattler, and Frank Wolter:
‘Integrating Description Logics and Action Formalisms: First Results’. In Proc. of

the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005) and the 17th Innovative

Applications of Artificial Intelligence Conference (IAAI 2005), Pittsburgh, PA, USA.
Edited by Manuela M. Veloso and Subbarao Kambhampati. AAAI Press/The
MIT Press, July 2005, pages 572–577 (cited on pages 10, 11, 119–121, 123–
125, 127, 128, 134, 135, 150, 161, 163, 166).

[BLM+05b] Franz Baader, Carsten Lutz, Maja Miličić, Ulrike Sattler, and Frank Wolter:
‘Integrating Description Logics and Action Formalisms for Reasoning about
Web Services’. LTCS-Report 05-02. Chair of Automata Theory, Institute of
Theoretical Computer Science, Technische Universität Dresden, 2005. URL:
http://lat.inf.tu-dresden.de/research/reports.html (cited on
pages 128, 133, 136, 137, 147, 151, 161).

[BS03] Franz Baader and Ulrike Sattler: ‘Description Logics with Aggregates and
Concrete Domains’. In Information Systems 28(8): 2003, pages 979–1004
(cited on page 167).

[BZ13] Franz Baader and Benjamin Zarrieß: ‘Verification of Golog Programs over De-
scription Logic Actions’. In Proc. of the 9th Int. Symp. on Frontiers of Combining

Systems (FroCoS 2013), Nancy, France. Edited by Pascal Fontaine, Christophe
Ringeissen, and Renate A. Schmidt. Volume 8152. Lecture Notes in Computer
Science. Springer-Verlag, Sept. 2013, pages 181–196 (cited on pages 120,
163).

[BK08] Christel Baier and Joost-Pieter Katoen: Principles of Model Checking. Cambridge,
MA, USA: The MIT Press, 2008 (cited on pages 1, 4, 22, 26, 153, 160).

[BGH+04] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen: ‘Program
Monitoring with LTL in EAGLE’. In Proc. of the 18th Int. Parallel and Distributed

Processing Symp. (IPDPS 2004), Santa Fe, NM, USA. IEEE Computer Society,
Apr. 2004 (cited on page 6).

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

Bibliography 173

[BRH07] Howard Barringer, David E. Rydeheard, and Klaus Havelund: ‘Rule Systems
for Run-Time Monitoring: From EAGLE to RULER’. In Revised Selected Papers

of the 7th Int. Workshop on Runtime Verification (RV 2007), Vancouver, Canada.
Edited by Oleg Sokolsky and Serdar Tasiran. Volume 4839. Lecture Notes
in Computer Science. Springer-Verlag, Mar. 2007, pages 111–125 (cited on
page 6).

[Bau10] Andreas Bauer: ‘Monitorability ofω-regular languages’. In Computing Research

Repository abs/1006.3638: 2010. URL: http://arxiv.org/abs/1006.3638

(cited on pages 60, 61).

[BLS06] Andreas Bauer, Martin Leucker, and Christian Schallhart: ‘Monitoring of Real-
Time Properties’. In Proc. of the 26th Int. Conf. on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS 2006), Kolkata, India.
Edited by S. Arun-Kumar and Naveen Garg. Volume 4337. Lecture Notes
in Computer Science. Springer-Verlag, Dec. 2006, pages 260–272 (cited on
page 173).

[BLS10] Andreas Bauer, Martin Leucker, and Christian Schallhart: ‘Comparing LTL
Semantics for Runtime Verification’. In Journal of Logic and Computation 20(3):
2010, pages 651–674 (cited on pages 6, 57).

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart: ‘Runtime Verific-
ation for LTL and TLTL’. In ACM Transactions on Software Engineering and

Methodology 20(4): 2011. This is an extended version of [BLS06], 14:1–14:64
(cited on pages 6, 57, 58).

[BHW+04] Sebastian Bauer, Ian M. Hodkinson, Frank Wolter, and Michael Zakharyaschev:
‘On Non-local Propositional and Weak Monodic Quantified CTL’. In Journal of

Logic and Computation 14(1): 2004, pages 3–22 (cited on page 4).

[BDT98] Kristof van Belleghem, Marc Denecker, and Daniele Theseider-Dupré: ‘A Con-
structive Approach to the Ramification Problem’. In Proc. of the ESSLLI 1998

Workshop on Reasoning about Actions: Foundations and Applications, Saar-
brücken, Germany. Edited by Guiseppe De Giacomo and Daniele Nardi. 1998,
pages 1–17 (cited on pages 121, 124, 162).

[BBW07] Patrick Blackburn, Johann van Benthem, and Frank Wolter, editors: Handbook

of Modal Logic. Volume 3. Studies in Logic and Practical Reasoning. Elsevier,
2007 (cited on page 3).

[BDG+12] Fernando Bobillo, Miguel Delgado, Juan Gómez-Romero, and Umberto Strac-
cia: ‘Joining Gödel and Zadeh Fuzzy Logics in Fuzzy Description Logics’. In
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

20(4): 2012, pages 475–508 (cited on page 167).

[BS09] Fernando Bobillo and Umberto Straccia: ‘Fuzzy description logics with general
t-norms and datatypes’. In Fuzzy Sets and Systems 160(23): 2009, pages 3382–
3402 (cited on page 167).

http://arxiv.org/abs/1006.3638

174 Bibliography

[BLT13a] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost: ‘Temporal Query
Answering in DL-Lite’. In Proc. of the 26th Int. Workshop on Description Logics

(DL 2013), Ulm, Germany. Edited by Thomas Eiter, Birte Glimm, Yevgeny
Kazakov, and Markus Krötzsch. Volume 1014. CEUR Workshop Proceedings.
CEUR-WS.org, July 2013 (cited on pages 84, 85, 167).

[BLT13b] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost: ‘Temporal Query
Answering in the Description Logic DL-Lite’. In Proc. of the 9th Int. Symp. on

Frontiers of Combining Systems (FroCoS 2013), Nancy, France. Edited by Pascal
Fontaine, Christophe Ringeissen, and Renate A. Schmidt. Volume 8152. Lecture
Notes in Computer Science. Springer-Verlag, Sept. 2013, pages 165–180 (cited
on pages 84, 85, 167).

[BLT13c] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost: ‘Temporal Query
Answering w.r.t. DL-Lite-Ontologies’. LTCS-Report 13-05. Chair of Automata
Theory, Institute of Theoretical Computer Science, Technische Universität
Dresden, Apr. 2013. URL: http://lat.inf.tu-dresden.de/research/

reports.html (cited on pages 84, 85, 167).

[BP13] Stefan Borgwardt and Rafael Peñaloza: ‘The Complexity of Lattice-Based Fuzzy
Description Logics’. In Journal on Data Semantics 2(1): 2013, pages 1–19 (cited
on page 167).

[BP14] Stefan Borgwardt and Rafael Peñaloza: ‘Consistency Reasoning in Lattice-Based
Fuzzy Description Logics’. In International Journal of Approximate Reasoning:
2014. In press (cited on page 167).

[Bra04] Sebastian Brandt: ‘Polynomial Time Reasoning in a Description Logic with
Existential Restrictions, GCI Axioms, and—What Else?’ In Proc. of the 16th

European Conf. on Artificial Intelligence (ECAI 2004), Valencia, Spain. Edited
by Ramón López de Mántaras and Lorenza Saitta. IOS Press, Aug. 2004,
pages 298–302 (cited on page 2).

[Büc62] Julius Richard Büchi: ‘On a Decision Method in Restricted Second Order
Arithmetic’. In International Congress on Logic, Methodology and Philosophy of

Science. Stanford University Press, 1962, pages 1–11 (cited on page 21).

[CDL+09] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati: ‘Ontologies
and Databases: The DL-Lite Approach’. In Reasoning Web: Semantic Technolo-

gies for Information Systems, 5th Int. Summer School 2009. Edited by Sergio
Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutierrez, Siegfried Hand-
schuh, Marie-Christine Rousset, and Renate A. Schmidt. Volume 5689. Lecture
Notes in Computer Science. Springer-Verlag, Aug. 2009, pages 255–356 (cited
on pages 2, 9, 84, 167).

CEUR-WS.org
http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

Bibliography 175

[CDL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati: ‘DL-Lite: Tractable Description Logics for Ontologies’.
In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005) and the

17th Innovative Applications of Artificial Intelligence Conference (IAAI 2005),
Pittsburgh, PA, USA. Edited by Manuela M. Veloso and Subbarao Kambhampati.
AAAI Press/The MIT Press, July 2005, pages 602–607 (cited on pages 2, 167).

[CDL+06] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati: ‘Data Complexity of Query Answering in Description
Logics’. In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation

and Reasoning (KR 2006), Lake District, UK. Edited by Patrick Doherty, John
Mylopoulos, and Christopher A. Welty. AAAI Press, June 2006, pages 260–270
(cited on pages 8, 91).

[CDL98] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini: ‘On the
Decidability of Query Containment under Constraints’. In Proc. of the 17th

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (PODS

1998), Seattle, WA, USA. Edited by Alberto O. Mendelzon and Jan Paredaens.
ACM Press, June 1998, pages 149–158 (cited on page 8).

[CM77] Ashok K. Chandra and Philip M. Merlin: ‘Optimal Implementation of Conjunct-
ive Queries in Relational Data Bases’. In Proc. of the 9th Annual ACM Symp.

on Theory of Computing (STOC 1977), Boulder, CO, USA. Edited by John E.
Hopcroft, Emily P. Friedman, and Michael A. Harrison. ACM Press, May 1977,
pages 77–90 (cited on pages 8, 87).

[Cho95] Jan Chomicki: ‘Efficient Checking of Temporal Integrity Constraints Using
Bounded History Encoding’. In ACM Transactions on Database Systems 20(2):
1995, pages 148–186 (cited on page 84).

[CT05] Jan Chomicki and David Toman: ‘Temporal Databases’. In Handbook of Tem-

poral Reasoning in Artificial Intelligence. Edited by Michael Fischer, Dov M.
Gabbay, and Lluís Vila. Elsevier, 2005. Chapter 14, pages 429–467 (cited on
page 84).

[CE82] Edmund M. Clarke and E. Allen Emerson: ‘Design and Synthesis of Synchroniz-
ation Skeletons Using Branching-Time Temporal Logic’. In Proc. of the Workshop

on Logic of Programs (LP 1981), Yorktown Heights, NY, USA. Edited by Dexter
Kozen. Volume 131. Lecture Notes in Computer Science. Springer-Verlag, 1982,
pages 52–71 (cited on pages 4, 166).

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled: Model Checking.
Cambridge, MA, USA: The MIT Press, 1999 (cited on page 1).

[CM04] Séverine Colin and Leonardo Mariani: ‘Run-Time Verification’. In Model-Based

Testing of Reactive Systems, Advanced Lectures. Edited by Manfred Broy, Bengt
Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner.
Volume 3472. Lecture Notes in Computer Science. Springer-Verlag, 2004,
pages 525–555 (cited on page 6).

176 Bibliography

[dR05] Marcelo d’Amorim and Grigore Roşu: ‘Efficient Monitoring of ω-Languages’.
In Proc. of the 17th Int. Conf. on Computer Aided Verification (CAV 2005),
Edinburgh, Scotland, UK. Edited by Kousha Etessami and Sriram K. Rajamani.
Volume 3576. Lecture Notes in Computer Science. Springer-Verlag, July 2005,
pages 364–378 (cited on page 6).

[Dan84] Ryszard Danecki: ‘Nondeterministic Propositional Dynamic Logic with Inter-
section is Decidable’. In Proc. of the 5th Symp. on Computation Theory (SCT

1984), Zaborów, Poland. Edited by Andrzej Skowron. Volume 208. Lecture
Notes in Computer Science. Springer-Verlag, Dec. 1984, pages 34–53 (cited
on page 41).

[DM00] Giuseppe De Giacomo and Fabio Massacci: ‘Combining Deduction and Model
Checking into Tableaux and Algorithms for Converse-PDL’. In Information and

Computation 162(1–2): 2000, pages 117–137 (cited on page 41).

[DEF+99] Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer: ‘Ontobroker:
Ontology Based Access to Distributed and Semi-Structured Information’. In
Proc. of the 8th Working Conf. on Database Semantics (DS-8), Rotorua, New Zeal-
and. Edited by Robert Meersman, Zahir Tari, and Scott M. Stevens. Volume 138.
IFIP Conference Proceedings. Kluwer, Jan. 1999, pages 351–369 (cited on
pages 7, 83).

[DTB98] Marc Denecker, Daniele Theseider-Dupré, and Kristof van Belleghem: ‘An
inductive definition approach to ramifications’. In Linkoping Electronic Articles

in Computer and Information Science 3(7): Jan. 1998, pages 1–43 (cited on
pages 121, 124, 162).

[DLN+94] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf:
‘Deduction in Concept Languages: From Subsumption to Instance Checking’.
In Journal of Logic and Computation 4(4): 1994, pages 423–452 (cited on
pages 87, 91).

[ELO+09] Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Šimkus: ‘Query
Answering in Description Logics with Transitive Roles’. In Proc. of the 21st Int.

Joint Conf. on Artificial Intelligence (IJCAI 2009), Pasadena, CA, USA. Edited
by Craig Boutilier. AAAI Press, July 2009, pages 759–764 (cited on pages 87,
91, 118).

[Eme90] E. Allen Emerson: ‘Temporal and Modal Logic’. In Handbook of Theoretical

Computer Science, Volume B: Formal Models and Semantics. Edited by Jan van
Leeuwen. Elsevier/The MIT Press, 1990, pages 995–1072 (cited on page 4).

[EH86] E. Allen Emerson and Joseph Y. Halpern: ‘“Sometimes” and “Not Never” Revis-
ited: On Branching versus Linear Time Temporal Logic’. In Journal of the ACM

33(1): 1986, pages 151–178 (cited on pages 4, 166).

[End95] Mica R. Endsley: ‘Toward a Theory of Situation Awareness in Dynamic Systems’.
In Human Factors 37(1): 1995, pages 32–64 (cited on page 1).

Bibliography 177

[FFM09] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier: ‘Runtime Verific-
ation of Safety-Progress Properties’. In Selected Papers of the 9th Int. Workshop

on Runtime Verification (RV 2009), Grenoble, France. Edited by Saddek Bens-
alem and Doron A. Peled. Volume 5779. Lecture Notes in Computer Science.
Springer-Verlag, June 2009, pages 40–59 (cited on page 60).

[FT03] Enrico Franconi and David Toman: ‘Fixpoint Extensions of Temporal Descrip-
tion Logics’. In Proc. of the 16th Int. Workshop on Description Logics (DL 2003),
Rome, Italy. Edited by Diego Calvanese, Giuseppe De Giacomo, and Enrico
Franconi. Volume 81. CEUR Workshop Proceedings. CEUR-WS.org, Sept. 2003
(cited on page 4).

[FT11] Enrico Franconi and David Toman: ‘Fixpoints in Temporal Description Logics’.
In Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011),
Barcelona, Spain. Edited by Toby Walsh. AAAI Press, July 2011, pages 875–
880 (cited on page 4).

[Gab89] Dov M. Gabbay: ‘The Declarative Past and Imperative Future: Executable
Temporal Logic for Interactive Systems’. In Proc. of the 1987 Coll. on Temporal

Logic in Specification. Edited by Behnam Banieqbal, Howard Barringer, and
Amir Pnueli. Volume 398. Lecture Notes in Computer Science. Springer-Verlag,
1989, pages 409–448 (cited on page 21).

[GHR94] Dov M. Gabbay, Ian M. Hodkinson, and Mark Reynolds: Temporal Logic: Math-

ematical Foundations and Computational Aspects. Volume 1. Clarendon Press,
Oxford, 1994 (cited on page 4).

[GKW+03] Dov M. Gabbay, Ágnes Kurucz, Frank Wolter, and Michael Zakharyaschev:
Many-Dimensional Modal Logics: Theory and Applications. Elsevier Science,
2003 (cited on pages 3–6, 19, 41).

[GPS+80] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi: ‘On the
Temporal Analysis of Fairness’. In Proc. of the 7th ACM Symp. on Principles

of Programming Languages (POPL 1980). ACM Press, 1980, pages 163–173
(cited on page 21).

[GO01] Paul Gastin and Denis Oddoux: ‘Fast LTL to Büchi Automata Translation’. In
Proc. of the 13th Int. Conf. on Computer Aided Verification (CAV 2001), Paris,
France. Edited by Gérard Berry, Hubert Comon, and Alain Finkel. Volume 2102.
Lecture Notes in Computer Science. Springer-Verlag, 2001, pages 53–65 (cited
on page 26).

[GO03] Paul Gastin and Denis Oddoux: ‘LTL with Past and Two-Way Very-Weak Altern-
ating Automata’. In Proc. of the 28th Int. Symp. on Mathematical Foundations

of Computer Science (MFCS 2003), Bratislava, Slovakia. Edited by Branislav
Rovan and Peter Vojtás. Volume 2747. Lecture Notes in Computer Science.
Springer-Verlag, 2003, pages 439–448 (cited on page 26).

CEUR-WS.org

178 Bibliography

[GPV+96] Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper: ‘Simple On-
the-fly Automatic Verification of Linear Temporal Logic’. In Proc. of the 15th

IFIP WG6.1 Int. Symp. on Protocol Specification, Testing and Verification XV

(PSTV 1995), Warsaw, Poland. Edited by Piotr Dembinski and Marek Sredniawa.
Volume 38. IFIP Conference Proceedings. Chapman & Hall, Ltd., 1996, pages 3–
18 (cited on pages 22, 26).

[Gli07] Birte Glimm: ‘Querying Description Logic Knowledge Bases’. PhD thesis.
Manchester, UK: The University of Manchester, 2007 (cited on page 41).

[GHL+08] Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler: ‘Conjunctive Query
Answering for the Description Logic SHIQ’. In Journal of Artificial Intelligence

Research 31: 2008, pages 157–204 (cited on pages 85, 87, 92, 109, 110, 114).

[GHS08] Birte Glimm, Ian Horrocks, and Ulrike Sattler: ‘Unions of Conjunctive Queries
in SHOQ’. In Proc. of the 11th Int. Conf. on Principles of Knowledge Representation

and Reasoning (KR 2008), Sydney, Australia. Edited by Gerhard Brewka and
Jérôme Lang. AAAI Press, Sept. 2008, pages 252–262 (cited on page 41).

[GK08] Birte Glimm and Yevgeny Kazakov: ‘Role Conjunctions in Expressive Descrip-
tion Logics’. In Proc. of the 15th Int. Conf. on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR-15), Doha, Qatar. Edited by Iliano Cervesato,
Helmut Veith, and Andrei Voronkov. Volume 5330. Lecture Notes in Computer
Science. Springer-Verlag, Nov. 2008, pages 391–405 (cited on page 41).

[GS10] Yilan Gu and Mikhail Soutchanski: ‘A Description Logic Based Situation Calcu-
lus’. In Annals of Mathematics and Artificial Intelligence 58(1-2): 2010, pages 3–
83 (cited on page 120).

[GHV05] Claudio Gutiérrez, Carlos A. Hurtado, and Alejandro A. Vaisman: ‘Temporal
RDF’. In Proc. of the 2nd European Semantic Web Conference (ESWC 2005).
Edited by Asunción Gómez-Pérez and Jérôme Euzenat. Volume 3532. Lecture
Notes in Computer Science. Springer-Verlag, 2005, pages 93–107 (cited on
page 84).

[GJL12] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Carsten Lutz: ‘Complex-
ity of Branching Temporal Description Logics’. In Proc. of the 20th European

Conf. on Artificial Intelligence (ECAI 2012), Montpellier, France. Edited by Luc
De Raedt, Christian Bessiére, Didier Dubois, Patrick Doherty, Paolo Frasconi,
Fredrik Heintz, and Peter J. F. Lucas. Volume 242. Frontiers in Artificial In-
telligence and Applications. IOS Press, Aug. 2012, pages 390–395 (cited on
page 4).

[GK12] Víctor Gutiérrez-Basulto and Szymon Klarman: ‘Towards a Unifying Approach
to Representing and Querying Temporal Data in Description Logics’. In Proc. of

the 6th Int. Conf. on Web Reasoning and Rule Systems (RR 2012), Vienna, Austria.
Edited by Markus Krötzsch and Umberto Straccia. Volume 7497. Lecture Notes
in Computer Science. Springer-Verlag, Sept. 2012, pages 90–105 (cited on
pages 84, 85).

Bibliography 179

[HR04] Klaus Havelund and Grigore Roşu: ‘Efficient Monitoring of Safety Properties’.
In International Journal on Software Tools for Technology Transfer 6(2): 2004,
pages 158–173 (cited on page 6).

[Hem87] Lane Adrian Hemachandra: ‘The Strong Exponential Hierarchy Collapses’. In
Proc. of the 19th Annual ACM Symp. on Theory of Computing (STOC 1987), New
York City, NY, USA. ACM Press, May 1987, pages 110–122 (cited on page 148).

[Her96] Andreas Herzig: ‘The PMA Revisited’. In Proc. of the 5th Int. Conf. on Principles

of Knowledge Representation and Reasoning (KR 1996). 1996, pages 40–50
(cited on page 121).

[Hla04] Jan Hladik: ‘A Tableau System for the Description Logic SHIO’. In Contributions

to the Doctoral Programme of the 2nd Int. Joint Conf. on Automated Reasoning

(IJCAR 2004), Cork, Ireland. Edited by Ulrike Sattler. Volume 106. CEUR-

WS.org, July 2004 (cited on pages 147, 150, 161).

[HWZ02] Ian M. Hodkinson, Frank Wolter, and Michael Zakharyaschev: ‘Decidable and
Undecidable Fragments of First-Order Branching Temporal Logics’. In Proc.

of the 17th Annual IEEE Symp. on Logic in Computer Science (LICS 2002),
Copenhagen, Denmark. IEEE Computer Society, July 2002, pages 393–402
(cited on page 4).

[HKS06] Ian Horrocks, Oliver Kurz, and Ulrike Sattler: ‘The Even More Irresistible
SROIQ’. In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation

and Reasoning (KR 2006), Lake District, UK. Edited by Patrick Doherty, John
Mylopoulos, and Christopher A. Welty. AAAI Press, June 2006, pages 57–67
(cited on page 2).

[HPH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen: ‘From SHIQ
and RDF to OWL: The Making of a Web Ontology Language’. In Journal of

Web Semantics 1(1): 2003, pages 7–26 (cited on page 3).

[HS01] Ian Horrocks and Ulrike Sattler: ‘Ontology Reasoning in the SHOQ(D) Descrip-
tion Logic’. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI

2001), Seattle, WA, USA. Edited by Bernhard Nebel. Morgan Kaufmann, Los
Altos, Aug. 2001, pages 199–204 (cited on pages 18, 147, 150, 161).

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies: ‘Practical Reasoning for Very
Expressive Description Logics’. In Journal of the Interest Group in Pure and

Applied Logic 8(3): 2000, pages 239–263 (cited on pages 18, 42, 53, 91).

[Koy90] Ron Koymans: ‘Specifying Real-Time Properties with Metric Temporal Logic’.
In Real-Time Systems 2(4): 1990, pages 255–299 (cited on page 166).

[KR10] Orna Kupferman and Adin Rosenberg: ‘The Blowup in Translating LTL to
Deterministic Automata’. In Revised Selected and Invited Papers of the 6th Int.

Workshop on Model Checking and Artifical Intelligence (MoChArt 2010), Atlanta,
GA, USA. Edited by Ron van der Meyden and Jan-Geory Smaus. Volume 6572.
Lecture Notes in Computer Science. Springer-Verlag, July 2010, pages 85–94
(cited on pages 58, 59).

CEUR-WS.org
CEUR-WS.org

180 Bibliography

[KV01] Orna Kupferman and Moshe Y. Vardi: ‘Model Checking of Safety Properties’.
In Formal Methods in System Design 19(3): 2001, pages 291–314 (cited on
page 58).

[LMS02] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen: ‘Temporal
Logic With Forgettable Past’. In Proc. of the 17th Annual IEEE Symp. on Logic in

Computer Science (LICS 2002), Copenhagen, Denmark. IEEE Computer Society,
July 2002, pages 383–392 (cited on page 21).

[LRL+97] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl: ‘GOLOG: A logic programming language for dynamic do-
mains’. In The Journal of Logic Programming 31(1–3): 1997, pages 59–83
(cited on pages 9, 163).

[LPZ85] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck: ‘The Glory of the Past’.
In Proc. of the Conf. on Logics of Programs. Edited by Rohit Parikh. Volume 193.
Lecture Notes in Computer Science. Springer-Verlag, 1985, pages 196–218
(cited on pages 21, 22, 26, 36, 60).

[Lin95] Fangzhen Lin: ‘Embracing Causality in Specifying the Indirect Effects of Ac-
tions’. In Proc. of the 14th Int. Joint Conf. on Artificial Intelligence (IJCAI 1995).
1995, pages 1985–1993 (cited on pages 121, 124, 162).

[LS11] Fangzhen Lin and Mikhail Soutchanski: ‘Causal Theories of Actions Revisited’.
In Proc. of the 25th AAAI Conf. on Artificial Intelligence (AAAI 2011), San
Francisco, CA, USA. Edited by Wolfram Burgard and Dan Roth. AAAI Press,
Aug. 2011, pages 235–240 (cited on page 121).

[Lip09] Marcel Lippmann: ‘Runtime Verification Using Temporal Description Logics’.
Diploma Thesis. Dresden, Germany: Technische Universität Dresden, Apr. 2009
(cited on page 63).

[LLM+06] Hongkai Liu, Carsten Lutz, Maja Miličić, and Frank Wolter: ‘Reasoning about
Actions using Description Logics with General TBoxes’. In Proc. of the 10th

European Conf. on Logics in Artificial Intelligence (JELIA 2006). Edited by Mi-
chael Fisher, Wiebe van der Hoek, Boris Konev, and Alexei Lisitsa. Volume 4160.
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2006, pages 266–279
(cited on pages 120–122).

[LLM+11] Hongkai Liu, Carsten Lutz, Maja Miličić, and Frank Wolter: ‘Foundations of In-
stance Level Updates in Expressive Description Logics’. In Artificial Intelligence

175(18): 2011, pages 2170–2197 (cited on page 162).

[LL09] Yongmei Liu and Gerhard Lakemeyer: ‘On First-Order Definability and Com-
putability of Progression for Local-Effect Actions and Beyond’. In Proc. of the

21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), Pasadena, CA, USA.
Edited by Craig Boutilier. AAAI Press, July 2009, pages 860–866 (cited on
page 163).

Bibliography 181

[LL05] Yongmei Liu and Hector J. Levesque: ‘Tractable Reasoning in First-Order
Knowledge Bases with Disjunctive Information’. In Proc. of the 20th Nat. Conf.

on Artificial Intelligence (AAAI 2005) and the 17th Innovative Applications of

Artificial Intelligence Conference (IAAI 2005), Pittsburgh, PA, USA. Edited by
Manuela M. Veloso and Subbarao Kambhampati. AAAI Press/The MIT Press,
July 2005, pages 639–644 (cited on page 163).

[Löw15] Leopold Löwenheim: ‘Über Möglichkeiten im Relativkalkül’. In German. In
Mathematische Annalen 76(4): 1915, pages 447–470 (cited on pages 36, 39,
65, 100, 105, 110).

[Luk08] Thomas Lukasiewicz: ‘Expressive probabilistic description logics’. In Artificial

Intelligence 172(6-7): 2008, pages 852–883 (cited on page 167).

[Lut01] Carsten Lutz: ‘Interval-based Temporal Reasoning with General TBoxes’. In
Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), Seattle,
WA, USA. Edited by Bernhard Nebel. Morgan Kaufmann, Los Altos, Aug. 2001,
pages 89–94 (cited on page 4).

[Lut02] Carsten Lutz: ‘Description Logics with Concrete Domains—A Survey’. In Proc.

of the 4th Conf. on Advances in Modal Logic (AiML 2002), Toulouse, France.
Edited by Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael
Zakharyaschev. King’s College Publications, Oct. 2002, pages 265–296 (cited
on page 167).

[Lut04] Carsten Lutz: ‘NExpTime-complete Description Logics with Concrete Domains’.
In ACM Transactions on Computational Logic 5(4): 2004, pages 669–705 (cited
on page 167).

[Lut08a] Carsten Lutz: ‘The Complexity of Conjunctive Query Answering in Expressive
Description Logics’. In Proc. of the 4th Int. Joint Conf. on Automated Reason-

ing (IJCAR 2008), Sydney, Australia. Edited by Alessandro Armando, Peter
Baumgartner, and Gilles Dowek. Volume 5195. Lecture Notes in Computer
Science. Springer-Verlag, Aug. 2008, pages 179–193 (cited on pages 8, 41, 85,
87, 92, 109, 114–117).

[Lut08b] Carsten Lutz: ‘Two Upper Bounds for Conjunctive Query Answering in SHIQ’.
In Proc. of the 21st Int. Workshop on Description Logics (DL 2008), Dresden,
Germany. Edited by Franz Baader, Carsten Lutz, and Boris Motik. Volume 353.
CEUR Workshop Proceedings. CEUR-WS.org, May 2008 (cited on page 116).

[LAH+05] Carsten Lutz, Carlos Areces, Ian Horrocks, and Ulrike Sattler: ‘Keys, Nominals,
and Concrete Domains’. In Journal of Artificial Intelligence Research 23: 2005,
pages 667–726 (cited on page 167).

[LM07] Carsten Lutz and Maja Miličić: ‘A Tableau Algorithm for DLs with Concrete Do-
mains and GCIs’. In Journal of Automated Reasoning 38(1-3): 2007, pages 227–
259 (cited on page 167).

CEUR-WS.org

182 Bibliography

[LS10] Carsten Lutz and Lutz Schröder: ‘Probabilistic Description Logics for Subjective
Uncertainty’. In Proc. of the 12th Int. Conf. on Principles of Knowledge Repres-

entation and Reasoning (KR 2010), Toronto, Canada. Edited by Fangzhen Lin,
Ulrike Sattler, and Miroslaw Truszczynski. AAAI Press, May 2010, pages 393–
403 (cited on page 167).

[LWZ08] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev: ‘Temporal Description
Logics: A Survey’. In Proc. of the 15th Int. Symp. on Temporal Representation

and Reasoning (TIME 2008), Montréal, Canada. Edited by Stéphane Demri
and Christian S. Jensen. IEEE Press, June 2008, pages 3–14 (cited on pages 3,
5).

[Mar04] Nicolas Markey: ‘Past is for free: On the complexity of verifying linear temporal
properties with past’. In Acta Informatica 40(6–7): 2004, pages 431–458 (cited
on page 21).

[Mas01] Fabio Massacci: ‘Decision Procedures for Expressive Description Logics with
Intersection, Composition, Converse of Roles and Role Identity’. In Proc. of

the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), Seattle, WA,
USA. Edited by Bernhard Nebel. Morgan Kaufmann, Los Altos, Aug. 2001,
pages 193–198 (cited on page 41).

[MH69] John McCarthy and Patrick J. Hayes: ‘Some Philosophical Problems from the
Standpoint of Artificial Intelligence’. In Machine Intelligence 4: 1969, pages 463–
502 (cited on page 120).

[Min81] Marvin Minsky: ‘A Framework for Representing Knowledge’. In Mind Design:
1981. Edited by John Haugeland (cited on page 2).

[Mot12] Boris Motik: ‘Representing and Querying Validity Time in RDF and OWL: A
Logic-Based Approach’. In Journal of Web Semantics 12–13: Apr. 2012, pages 3–
21 (cited on page 84).

[Mul63] David E. Muller: ‘Infinite sequences and finite machines’. In Proc. of the 4th

Annual Symp. on Switching Circuit Theory and Logical Design (SWCT 1963).
IEEE Computer Society, 1963, pages 3–16 (cited on page 21).

[NV07] Sumit Nain and Moshe Y. Vardi: ‘Branching vs. Linear Time: Semantical Per-
spective’. In Proc. of the 5th Int. Symp. on Automated Technology for Verification

and Analysis (ATVA 2007), Tokyo, Japan. Edited by Kedar S. Namjoshi, Tomo-
hiro Yoneda, Teruo Higashino, and Yoshio Okamura. Volume 4762. Lecture
Notes in Computer Science. Springer-Verlag, Oct. 2007, pages 19–34 (cited on
page 4).

[OCE06] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter: ‘Characterizing Data
Complexity for Conjunctive Query Answering in Expressive Description Logics’.
In Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006) and the 18th

Innovative Applications of Artificial Intelligence Conference (IAAI 2006), Boston,
MA, USA. AAAI Press, July 2006, pages 275–280 (cited on pages 85, 92, 117).

[Pap81] Christos H. Papadimitriou: ‘On the Complexity of Integer Programming’. In
Journal of the ACM 28(4): 1981, pages 765–768 (cited on pages 44, 54).

Bibliography 183

[Pnu77] Amir Pnueli: ‘The Temporal Logic of Programs’. In Proc. of the 18th Annual

Symp. on Foundations of Computer Science (FOCS 1977), Providence, RI, USA.
IEEE Computer Society Press, 1977, pages 46–57 (cited on pages 4, 6, 19, 21,
83).

[PZ06] Amir Pnueli and Aleksandr Zaks: ‘PSL Model Checking and Run-Time Veri-
fication Via Testers’. In Proc. of the 14th Int. Symp. on Formal Methods (FM

2006), Hamilton, Canada. Edited by Jayadev Misra, Tobias Nipkow, and Emil
Sekerinski. Volume 4085. Lecture Notes in Computer Science. Springer-Verlag,
Aug. 2006, pages 573–586 (cited on page 60).

[PCD+08] Antonella Poggi, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, and Riccardo Rosati: ‘Linking Data to Ontologies’. In
Journal on Data Semantics X: 2008, pages 133–173 (cited on pages 7, 83).

[Pra05] Ian Pratt-Hartmann: ‘Complexity of the Two-Variable Fragment with Count-
ing Quantifiers’. In Journal of Logic, Language and Information 14(3): 2005,
pages 369–395 (cited on pages 18, 133, 147, 151, 160, 161).

[Qui67] M. Ross Quillian: ‘Word concepts: A theory and simulation of some basic
semantic capabilities’. In Behavioral Science 12(5): 1967, pages 410–430 (cited
on page 2).

[Rab69] Michael O. Rabin: ‘Decidability of Second-Order Theories and Automata on
Infinite Trees’. In Transactions of the AMS 141: 1969, pages 1–35 (cited on
page 22).

[RS99] Jean-François Raskin and Pierre-Yves Schobbens: ‘The Logic of Event Clocks –
Decidability, Complexity and Expressiveness’. In Journal of Automata, Lan-

guages and Combinatorics 4(3): 1999, pages 247–286 (cited on page 166).

[Rei01] Raymond Reiter: Knowledge in Action: Logical Foundations for Describing and

Implementing Dynamical Systems. The MIT Press, Bradford Books, 2001 (cited
on pages 9, 119, 120, 128).

[Roş12] Grigore Roşu: ‘On Safety Properties and Their Monitoring’. In Scientific Annals

of Computer Science 22(2): 2012, pages 327–365 (cited on page 6).

[RH05] Grigore Roşu and Klaus Havelund: ‘Rewriting-Based Techniques for Runtime
Verification’. In Automated Software Engineering 12(2): 2005, pages 151–197
(cited on page 6).

[RG10] Sebastian Rudolph and Birte Glimm: ‘Nominals, Inverses, Counting, and Con-
junctive Queries or: Why Infinity is your Friend!’ In Journal of Artificial Intelli-

gence Research 39(1): 2010, pages 429–481 (cited on page 90).

[Sav70] Walter J. Savitch: ‘Relationships between nondeterministic and deterministic
tape complexities’. In Journal of Computer and System Sciences 4(2): 1970,
pages 177–192 (cited on pages 133, 151).

[Sch93a] Andrea Schaerf: ‘On the Complexity of the Instance Checking Problem in
Concept Languages with Existential Quantification’. In Journal of Intelligent

Information Systems 2(3): 1993, pages 265–278 (cited on pages 87, 91).

184 Bibliography

[Sch94] Andrea Schaerf: ‘Reasoning with individuals in concept languages’. In Data &

Knowledge Engineering 13(2): 1994, pages 141–176 (cited on pages 18, 133,
147, 150, 151, 160, 161).

[Sch91] Klaus Schild: ‘A Correspondence Theory for Terminological Logics: Preliminary
Report’. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI

1991), Sydney, Australia. Edited by John Mylopoulos and Raymond Reiter.
Morgan Kaufmann, Aug. 1991, pages 466–471 (cited on pages 18, 147, 150).

[Sch93b] Klaus Schild: ‘Combining Terminological Logics with Tense Logic’. In Proc. of

the 6th Portuguese Conf. on Artificial Intelligence (EPIA 1993), Porto, Portugal.
Edited by Miguel Filgueiras and Luís Damas. Volume 727. Lecture Notes
in Computer Science. Springer-Verlag, Oct. 1993, pages 105–120 (cited on
pages 4, 5).

[SS91] Manfred Schmidt-Schauß and Gert Smolka: ‘Attributive Concept Descriptions
with Complements’. In Artificial Intelligence 48(1): 1991, pages 1–26 (cited
on pages 2, 5, 17, 133).

[SC85] A. Prasad Sistla and Edmund M. Clarke: ‘The Complexity of Proposional Linear
Temporal Logics’. In Journal of the ACM 32(3): 1985, pages 733–749 (cited
on pages 21, 26, 36, 60).

[Sko20] Thoralf Skolem: ‘Logisch-kombinatorische Untersuchungen über die Erfüll-
barkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theorem über
dichte Mengen’. In German. In Videnskapsselskapets skrifter I, Matematisk-

naturvidenskabelig klasse, Videnskabsakademiet i Kristiania 4: 1920, pages 1–
36 (cited on pages 36, 39, 65, 100, 105, 110).

[SY12] Mikhail Soutchanski and Wael Yehia: ‘Towards an Expressive Decidable Logical
Action Theory’. In Proc. of the 25th Int. Workshop on Description Logics (DL

2012), Rome, Italy. Edited by Yevgeny Kazakov, Domenico Lembo, and Frank
Wolter. Volume 846. CEUR Workshop Proceedings. CEUR-WS.org, June 2012
(cited on page 120).

[Str01] Umberto Straccia: ‘Reasoning within Fuzzy Description Logics’. In Journal of

Artificial Intelligence Research 14: 2001, pages 137–166 (cited on page 167).

[ST13] Hannes Straß and Michael Thielscher: ‘A general first-order solution to the
ramification problem with cycles’. In Journal of Applied Logic 11(3): 2013,
pages 289–308 (cited on page 121).

[Str82] Robert S. Streett: ‘Propositional Dynamic Logic of Looping and Converse Is
Elementarily Decidable’. In Information and Control 54(1–2): 1982, pages 121–
141 (cited on page 22).

[SBS+07] Boontawee Suntisrivaraporn, Franz Baader, Stefan Schulz, and Kent Spack-
man: ‘Replacing SEP-Triplets in SNOMED CT using Tractable Description
Logic Operators’. In Proc. of the 11th Conf. on Artificial Intelligence in Medi-

cine (AIME 2007). Edited by Riccardo Bellazzi, Ameen Abu-Hanna, and Jim
Hunter. Volume 4594. Lecture Notes in Computer Science. Springer-Verlag,
2007, pages 287–291 (cited on page 3).

CEUR-WS.org

Bibliography 185

[Tes01] Sergio Tessaris: ‘Questions and Answers: Reasoning and Querying in Descrip-
tion Logic’. PhD thesis. Manchester, UK: The University of Manchester, 2001
(cited on page 90).

[Thi97] Michael Thielscher: ‘Ramification and Causality’. In Artificial Intelligence 89(1–
2): 1997, pages 317–364 (cited on pages 121, 124, 162).

[Thi05a] Michael Thielscher: ‘FLUX: A logic programming method for reasoning agents’.
In Theory and Practice of Logic Programming 5(4–5): 2005, pages 533–565
(cited on pages 9, 163).

[Thi05b] Michael Thielscher: Reasoning Robots: The Art and Science of Programming

Robotic Agents. Volume 33. Applied Logic Series. Springer-Verlag, 2005 (cited
on pages 9, 119).

[Tho90] Wolfgang Thomas: ‘Automata on Infinite Objects’. In Handbook of Theoretical

Computer Science, Volume B: Formal Models and Semantics. Edited by Jan van
Leeuwen. Elsevier/The MIT Press, 1990, pages 133–192 (cited on pages 153,
160).

[Tob00] Stephan Tobies: ‘The Complexity of Reasoning with Cardinality Restrictions and
Nominals in Expressive Description Logics’. In Journal of Artificial Intelligence

Research 12: 2000, pages 199–217 (cited on pages 18, 133, 147, 151, 160,
161).

[Tob01] Stephan Tobies: ‘Complexity Results and Practical Algorithms for Logics in
Knowledge Representation’. PhD thesis. Aachen, Germany: RWTH Aachen,
2001 (cited on pages 18, 41, 133, 148, 150).

[UW01] Ulrich Ultes-Nitsche and Pierre Wolper: ‘Checking Properties within Fairness
and Behavior Abstractions’. In Computing Research Repository cs.LO/0101017:
2001. URL: http://arxiv.org/abs/cs.LO/0101017 (cited on page 61).

[Var01] Moshe Y. Vardi: ‘Branching vs. Linear Time: Final Showdown’. In Proc. of

the 7th Int. Conf. on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS 2001), Genova, Italy. Edited by Tiziana Margaria and Wang Yi.
Volume 2031. Lecture Notes in Computer Science. Springer-Verlag, Apr. 2001,
pages 1–22 (cited on page 4).

[VW94] Moshe Y. Vardi and Pierre Wolper: ‘Reasoning About Infinite Computations’. In
Information and Computation 155(1): 1994, pages 1–37 (cited on pages 22,
36, 66, 67, 74, 85, 99, 160).

[Win88] Marianne Winslett: ‘Reasoning about Action Using a Possible Models Approach’.
In Proc. of the 7th Nat. Conf. on Artificial Intelligence (AAAI 1988). 1988,
pages 89–93 (cited on page 121).

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla: ‘Reasoning About Infinite
Computation Paths’. In Proc. of the 24th Annual Symp. on Foundations of

Computer Science (FOCS 1983), Tucson, AZ, USA. IEEE Computer Society
Press, 1983, pages 185–194 (cited on pages 22, 85).

http://arxiv.org/abs/cs.LO/0101017

186 Bibliography

[WZ00] Frank Wolter and Michael Zakharyaschev: ‘Temporalizing Description Logics’.
In Proc. of the 2nd Int. Workshop on Frontiers of Combining Systems (FroCoS

1998), Amsterdam, The Netherlands. Edited by Dov Gabbay and Maarten
de Rijke. Volume 7. Studies in Logic and Computation. Research Studies
Press/Wiley, 2000, pages 379–402 (cited on page 4).

[YLL+12] Wael Yehia, Hongkai Liu, Marcel Lippmann, Franz Baader, and Mikhail
Soutchanski: ‘Experimental Results on Solving the Projection Problem in Action
Formalisms Based on Description Logics’. In Proc. of the 25th Int. Workshop on

Description Logics (DL 2012), Rome, Italy. Edited by Yevgeny Kazakov, Domen-
ico Lembo, and Frank Wolter. Volume 846. CEUR Workshop Proceedings.
CEUR-WS.org, June 2012 (cited on pages 12, 119, 120).

CEUR-WS.org

	Introduction
	Description Logics
	Temporalised Description Logics
	Runtime Verification
	Temporalised Query Entailment
	Verification in DL-Based Action Formalisms
	Outline and Contributions of the Thesis

	Preliminaries
	Basic Notions of Description Logics
	Description Logic Concepts
	Knowledge Bases
	Specific Description Logics
	Boolean Knowledge Bases

	Propositional Linear-Time Temporal Logic and Omega-Automata
	Syntax and Semantics of Propositional LTL
	Omega-Automata and Their Connection to Propositional LTL

	The Temporalised Description Logic SHOQ-LTL
	Syntax and Semantics of SHOQ-LTL
	The Complexity of Satisfiability in SHOQ-LTL
	Satisfiability in SHOQ-LTL for the Case without Rigid Names
	Satisfiability in SHOQ-LTL for the Case of Rigid Concept Names and Role Names
	Satisfiability in SHOQ-LTL for the Case of Rigid Concept Names
	Consistency of Boolean SHOQ^cap-knowledge bases

	Summary

	Runtime Verification Using SHOQ-LTL
	Runtime Verification Using Propositional LTL
	Büchi-Automata for SHOQ-LTL-Formulas
	The Case without Rigid Names
	The Case of Rigid Concept and Role Names

	Monitoring SHOQ-LTL-Formulas
	Basic Definitions
	An Auxiliary Deterministic Finite Automaton
	The Monitor Construction

	The Complexity of Deciding Liveness and Monitorability in SHOQ-LTL
	Deciding Liveness
	Deciding Monitorability

	Summary

	Temporalised Query Entailment in SHQ
	The Temporal Query Language
	Conjunctive Queries
	Temporal Knowledge Bases
	Temporal Conjunctive Queries

	The Complexity of Temporalised Query Entailment
	Lower Bounds for Temporalised Query Entailment in ALC
	Upper Bounds for Temporalised Query Entailment in SHQ
	Data Complexity for the Case of Rigid Concept Names
	Combined Complexity for the Case of Rigid Concept Names

	Summary

	Verification in Action Formalisms Based on ALCQIO
	DL-Based Action Formalisms and Causal Relationships
	The Ramification Problem
	A DL-Based Action Formalism with Causal Relationships

	Deciding the Consistency Problem
	Deciding the Consistency Problem w.r.t. the Empty TBox
	Deciding the Consistency Problem w.r.t. a General TBox

	Deciding the Projection Problem
	Verification of DL-Actions
	Summary

	Conclusions
	Main Results
	Future Work

	Bibliography

