12 research outputs found

    A variational Bayes model for count data learning and classification

    Get PDF
    Several machine learning and knowledge discovery approaches have been proposed for count data modeling and classification. In particular, latent Dirichlet allocation (LDA) (Blei et al., 2003a) has received a lot of attention and has been shown to be extremely useful in several applications. Although the LDA is generally accepted to be one of the most powerful generative models, it is based on the Dirichlet assumption which has some drawbacks as we shall see in this paper. Thus, our goal is to enhance the LDA by considering the generalized Dirichlet distribution as a prior. The resulting generative model is named latent generalized Dirichlet allocation (LGDA) to maintain consistency with the original model. The LGDA is learned using variational Bayes which provides computationally tractable posterior distributions over the model׳s hidden variables and its parameters. To evaluate the practicality and merits of our approach, we consider two challenging applications namely text classification and visual scene categorization

    Mixture-Based Clustering for High-Dimensional Count Data Using Minorization-Maximization Approaches

    Get PDF
    The Multinomial distribution has been widely used to model count data. To increase clustering efficiency, we use an approximation of the Fisher Scoring as a learning algorithm, which is more robust to the choice of the initial parameter values. Moreover, we consider the generalization of the multinomial model obtained by introducing the Dirichlet as prior, which is called the Dirichlet Compound Multinomial (DCM). Even though DCM can address the burstiness phenomenon of count data, the presence of Gamma function in its density function usually leads to undesired complications. In this thesis, we use two alternative representations of DCM distribution to perform clustering based on finite mixture models, where the mixture parameters are estimated using minorization-maximization algorithm. Moreover, we propose an online learning technique for unsupervised clustering based on a mixture of Neerchal- Morel distributions. While, the novel mixture model is able to capture overdispersion due to a weight parameter assigned to each feature in each cluster, online learning is able to overcome the drawbacks of batch learning in such a way that the mixture’s parameters can be updated instantly for any new data instances. Finally, by implementing a minimum message length model selection criterion, the weights of irrelevant mixture components are driven towards zero, which resolves the problem of knowing the number of clusters beforehand. To evaluate and compare the performance of our proposed models, we have considered five challenging real-world applications that involve high-dimensional count vectors, namely, sentiment analysis, topic detection, facial expression recognition, human action recognition and medical diagnosis. The results show that the proposed algorithms increase the clustering efficiency remarkably as compared to other benchmarks, and the best results are achieved by the models able to accommodate over-dispersed count data

    Variational-Based Latent Generalized Dirichlet Allocation Model in the Collapsed Space and Applications

    Get PDF
    In topic modeling framework, many Dirichlet-based models performances have been hindered by the limitations of the conjugate prior. It led to models with more flexible priors, such as the generalized Dirichlet distribution, that tend to capture semantic relationships between topics (topic correlation). Now these extensions also suffer from incomplete generative processes that complicate performances in traditional inferences such as VB (Variational Bayes) and CGS (Collaspsed Gibbs Sampling). As a result, the new approach, the CVB-LGDA (Collapsed Variational Bayesian inference for the Latent Generalized Dirichlet Allocation) presents a scheme that integrates a complete generative process to a robust inference technique for topic correlation and codebook analysis. Its performance in image classification, facial expression recognition, 3D objects categorization, and action recognition in videos shows its merits

    Approximate Bayesian Inference for Count Data Modeling

    Get PDF
    Bayesian inference allows to make conclusions based on some antecedents that depend on prior knowledge. It additionally allows to quantify uncertainty, which is important in Machine Learning in order to make better predictions and model interpretability. However, in real applications, we often deal with complicated models for which is unfeasible to perform full Bayesian inference. This thesis explores the use of approximate Bayesian inference for count data modeling using Expectation Propagation and Stochastic Expectation Propagation. In Chapter 2, we develop an expectation propagation approach to learn an EDCM finite mixture model. The EDCM distribution is an exponential approximation to the widely used Dirichlet Compound distribution and has shown to offer excellent modeling capabilities in the case of sparse count data. Chapter 3 develops an efficient generative mixture model of EMSD distributions. We use Stochastic Expectation Propagation, which reduces memory consumption, important characteristic when making inference in large datasets. Finally, Chapter 4 develops a probabilistic topic model using the generalized Dirichlet distribution (LGDA) in order to capture topic correlation while maintaining conjugacy. We make use of Expectation Propagation to approximate the posterior, resulting in a model that achieves more accurate inference compared to variational inference. We show that latent topics can be used as a proxy for improving supervised tasks

    Intents-based Service Discovery and Integration

    Get PDF
    With the proliferation of Web services, when developing a new application, it makes sense to seek and leverage existing Web services rather than implementing the corresponding components from scratch. Therefore, significant research efforts have been devoted to the techniques for service discovery and integration. However, most of the existing techniques are based on the ternary participant classification of the Web service architecture which only takes into consideration the involvement of service providers, service brokers, and application developers. The activities of application end users are usually ignored. This thesis presents an Intents-based service discovery and integration approach at the conceptual level inspired by two industrial protocols: Android Intents and Web Intents. The proposed approach is characterized by allowing application end users to participate in the process of service seeking. Instead of directly binding with remote services, application developers can set an intent which semantically represents their service goal. An Intents user agent can resolve the intent and generate a list of candidate services. Then application end users can choose a service as the ultimate working service. This thesis classifies intents into explicit intents, authoritative intents, and naïve intents, and examines in depth the issue of naïve intent resolution analytically and empirically. Based on the empirical analysis, an adaptive intent resolution approach is devised. This thesis also presents a design for the Intents user agent and demonstrates its proof-of-concept prototype. Finally, Intents and the Intents user agent are applied to integrate Web applications and native applications on mobile devices

    Image annotation and retrieval based on multi-modal feature clustering and similarity propagation.

    Get PDF
    The performance of content-based image retrieval systems has proved to be inherently constrained by the used low level features, and cannot give satisfactory results when the user\u27s high level concepts cannot be expressed by low level features. In an attempt to bridge this semantic gap, recent approaches started integrating both low level-visual features and high-level textual keywords. Unfortunately, manual image annotation is a tedious process and may not be possible for large image databases. In this thesis we propose a system for image retrieval that has three mains components. The first component of our system consists of a novel possibilistic clustering and feature weighting algorithm based on robust modeling of the Generalized Dirichlet (GD) finite mixture. Robust estimation of the mixture model parameters is achieved by incorporating two complementary types of membership degrees. The first one is a posterior probability that indicates the degree to which a point fits the estimated distribution. The second membership represents the degree of typicality and is used to indentify and discard noise points. Robustness to noisy and irrelevant features is achieved by transforming the data to make the features independent and follow Beta distribution, and learning optimal relevance weight for each feature subset within each cluster. We extend our algorithm to find the optimal number of clusters in an unsupervised and efficient way by exploiting some properties of the possibilistic membership function. We also outline a semi-supervised version of the proposed algorithm. In the second component of our system consists of a novel approach to unsupervised image annotation. Our approach is based on: (i) the proposed semi-supervised possibilistic clustering; (ii) a greedy selection and joining algorithm (GSJ); (iii) Bayes rule; and (iv) a probabilistic model that is based on possibilistic memebership degrees to annotate an image. The third component of the proposed system consists of an image retrieval framework based on multi-modal similarity propagation. The proposed framework is designed to deal with two data modalities: low-level visual features and high-level textual keywords generated by our proposed image annotation algorithm. The multi-modal similarity propagation system exploits the mutual reinforcement of relational data and results in a nonlinear combination of the different modalities. Specifically, it is used to learn the semantic similarities between images by leveraging the relationships between features from the different modalities. The proposed image annotation and retrieval approaches are implemented and tested with a standard benchmark dataset. We show the effectiveness of our clustering algorithm to handle high dimensional and noisy data. We compare our proposed image annotation approach to three state-of-the-art methods and demonstrate the effectiveness of the proposed image retrieval system

    Trust and Reputation Management: a Probabilistic Approach

    Get PDF
    Software architectures of large-scale systems are perceptibly shifting towards employing open and distributed computing. Web services emerged as autonomous and self-contained business applications that are published, found, and used over the web. These web services thus exist in an environment in which they interact among each other to achieve their goals. Two challenging tasks that govern the agents interactions have gained the attention of a large research community; web service selection and composition. The explosion of the number of published web services contributed to the growth of large pools of similarly functional services. While this is vital for a competitive and healthy marketplace, it complicates the aforementioned tasks. Service consumers resort to non-functional characteristics of available service providers to decide which service to interact with. Therefore, to optimize both tasks and maximize the gain of all involved agents, it is essential to build the capability of modeling and predicting the quality of these agents. In this thesis, we propose various trust and reputation models based on probabilistic approaches to address the web service selection and composition problems. These approaches consider the trustworthiness of a web service to be strongly tied to the outcomes of various quality of service metrics such as response time, throughput, and reliability. We represent these outcomes by a multinomial distribution whose parameters are learned using Bayesian inference which, given a likelihood function and a prior probability, derives the posterior probability. Since the likelihood, in this case, is a multinomial, a commonly used prior is the Dirichlet distribution. We propose, to overcome several limitations of the Dirichlet, by applying two alternative priors such as the generalized Dirichlet, and Beta-Liouville. Using these distributions, the learned parameters represent the probabilities of a web service to belong to each of the considered quality classes. These probabilities are consequently used to compute the trustworthiness of the evaluated web services and thus assisting consumers in the service selection process. Furthermore, after exploring the correlations among various quality metrics using real data sets, we introduce a hybrid trust model that captures these correlations using both Dirichlet and generalized Dirichlet distributions. Given their covariance structures, the former performs better when modeling negative correlations while the latter yields better modeling of positive correlations. To handle composite services, we propose various trust approaches using Bayesian networks and mixture models of three different distributions; the multinomial Dirichlet, the multinomial generalized Dirichlet, and the multinomial Beta-Liouville. Specifically, we employ a Bayesian network classifier with a Beta- Liouville prior to enable the classification of the QoS of composite services given the QoS of its constituents. In addition, we extend the previous models to function in online settings. Therefore, we present a generalized-Dirichlet power steady model that predicts compositional time series. We similarly extend the Bayesian networks model by using the Voting EM algorithm. This extension enables the estimation of the networks parameters after each interaction with a composite web service. Furthermore, we propose an algorithm to estimate the reputation of web services. We extend this algorithm by leveraging the capabilities of various clustering and outlier detection techniques to deal with malicious feedback and various strategic behavior commonly performed by web services. Alternatively, we suggest two data fusion methods for reputation feedback aggregation, namely, the covariance intersection and ellipsoidal intersection. These methods handle the dependency between the information that propagates through networks of interacting agents. They also avoid over confident estimates caused by redundant information. Finally, we present a reputation model for agent-based web services grouped into communities of homogeneous functionalities. We exploit various clustering and anomaly detection techniques to analyze and identify the quality trends provided by each service. This model enables the master of each community to allocate the requests it receives to the web service that best fulfill the quality requirements of the service consumers. We evaluate the effectiveness of the proposed approaches using both simulated and real data
    corecore