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Abstract

Mixture-Based Clustering for High-Dimensional Count Data Using

Minorization-Maximization Approaches

Ornela Bregu

The Multinomial distribution has been widely used to model count data. To increase

clustering efficiency, we use an approximation of the Fisher Scoring as a learning al-

gorithm, which is more robust to the choice of the initial parameter values. Moreover,

we consider the generalization of the multinomial model obtained by introducing the

Dirichlet as prior, which is called the Dirichlet Compound Multinomial (DCM). Even

though DCM can address the burstiness phenomenon of count data, the presence of

Gamma function in its density function usually leads to undesired complications. In

this thesis, we use two alternative representations of DCM distribution to perform

clustering based on finite mixture models, where the mixture parameters are esti-

mated using minorization-maximization algorithm. Moreover, we propose an online

learning technique for unsupervised clustering based on a mixture of Neerchal- Morel

distributions. While the novel mixture model is able to capture overdispersion due to

a weight parameter assigned to each feature in each cluster, online learning is able to

overcome the drawbacks of batch learning in such a way that the mixture’s parame-

ters can be updated instantly for any new data instances. Finally, by implementing

a minimum message length model selection criterion, the weights of irrelevant mix-

ture components are driven towards zero, which resolves the problem of knowing the

number of clusters beforehand. To evaluate and compare the performance of our

proposed models, we have considered five challenging real-world applications that

involve high-dimensional count vectors, namely, sentiment analysis, topic detection,

facial expression recognition, human action recognition and medical diagnosis. The

results show that the proposed algorithms increase the clustering efficiency remark-

ably as compared to other benchmarks, and the best results are achieved by the

models able to accommodate over-dispersed count data.
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Chapter 1

Introduction

Encouraged by the recent advances in technology, many companies are developing

solutions to tap into the potential of enormous volumes of data generated daily, in

order to derive real-time business insights. As a matter of fact, extracted knowledge

from data offers a competitive edge and influences the decision making process in

a wide realm of activities from customer classification in marketing research [1] to

disease classification in medical science [2]. Count data is becoming more and more

prevalent in a wide range of applications, with datasets growing both in size and in

dimension[3]. Consider, for instance, collections of text documents, images or videos,

where each object can be represented by a vector of frequencies of words [4], visual

words [5] or visual objects, respectively. In this context, an increasing amount of

research work is dedicated to the construction of statistical models directly accounting

for the discrete nature of the data [6].

Machine learning approaches are widely employed to mine collected data for a better

and cleaner representation, as well as to quickly and automatically build models

for analyzing patterns or predicting future trends in large and complex data sets[7].

Therefore, clustering has been widely used to discover natural structure in data by

organizing observations with similar characteristics in subgroups (aka clusters), in

such a way that the similarity between the observations in a subgroup as well as

the dissimilarity between subgroups is maximized [8]. Nevertheless, it is known to

be a challenging task, especially when dealing with count data mainly because of its

high-dimensionality and sparsity nature [9, 10], burstiness [11, 12] and overdispersion

[13].

1



1.1 Finite Mixture Models

Finite mixture models have been widely used to provide a formal framework for clus-

tering due to their natural capacity to represent heterogeneity and address random

phenomena [14, 15]. Mixture models consider data to arise from two or more un-

derlying groups with common distributional form but different parameters [16]. Due

to their flexibility, mixture models are adopted in many domains, including, but not

limited to, image processing and computer vision [17, 18, 19], social networks [20],

and recommendor systems [21]. However, mixture modeling also faces some essential

issues, including the choice of statistical distribution and optimal number of com-

ponents that best describes and represents the data [22, 23], the learning algorithm

for the mixture′s parameter estimation [14] and feature selection to extract a better,

more compact representation of original dataset [24, 25, 26]. In our work, we aim to

provide solutions for the above mentioned challenges by building robust models for

efficient clustering of high-dimensional count data.

1.2 Discrete density functions

Multinomial distribution has been extensively used for count data modeling [4]. Al-

though the Multinomial model is widely used in the case of count data, a serious

drawback of it is its Naive Bayes independency assumption, i.e. features are inde-

pendently distributed, equivalent with documents generated by repeatedly drawing

words from a fixed distribution, which is not the case for real texts. Natural texts

systematically exhibit the burstiness phenomenon; if a word appears once in a doc-

ument, it is much more likely to appear again. The tendency of words to appear in

bursts is not limited to text and can also be observed in images with visual words

[27]. Also, it is common for some features (here words or visual words) to occur only

once and many more to not occur at all, resulting in having the variance of the data

exceeding its mean, which is known as the overdispersion phenomenon [13]. Multino-

mial distribution fails to capture any of these phenomena well, as shown in [28, 29].

Consequently, many techniques have been proposed to optimize data representation

for more efficient and accurate clustering [30, 31], such as log-normalizing counts to

reduce the impact of burstiness on the likelihood of a document [32], or proposing

2



other suitable distributions, such as zero-inflated Poisson, Negative Binomial, or Neg-

ative Multinomial distributions [33, 34, 35, 36, 37].

The most successful results, however, were reached by introducing the Dirichlet dis-

tribution as a prior to the multinomial, which is the classic approach to multinomial

estimation. This model is known as the Dirichlet Compound Multinomial (DCM)

[29], which has led to better clustering results that are comparable to the ones ob-

tained with multiple heuristic changes to the multinomial models. The added value

of the DCM model is the additional degree of freedom, compared to the multinomial

distribution, which allows it to capture the burstiness phenomenon well [29]. The

fact that Dirichlet is a natural conjugate to the Multinomial, where is based on the

DCM composition, brings numerous computational advantages [38]. However, Hal-

dane [39] stated that the presence of Gamma function in DCM density function leads

to undesired complications of evaluating the function and its derivatives, which can

be replaced by a series of polynomials. Indeed, replacing ratios of Gamma functions

by rising polynomials considerably simplifies the learning process. Besides, an al-

ternative parametrization of DCM in terms of proportion vector and overdispersion

parameter as suggested by Bailey [40] and used by Griffiths [41], raises means to

better tackle both the burstiness and overdispersion phenomena of count data. In

this thesis, we consider yet another distribution, Neerchal–Morel distribution (NMD),

proposed by [42] and [43], able to capture the burstiness and overdispersion phenom-

ena of count data. Here, each document or image is modeled by different multinomial

mixture models, where a different weight is assigned to each word or visual word in

the vocabulary. Simply put, the motivation behind NMD can be easily supported by

many real world applications where the independency assumption is violated, such as

a medical dataset where correlation might exist between different samples from same

patients. For more detailed explanations please refer to the work of the author in [44].

As a special case of the multinomial distribution, The Neerchal–Morel distribution,

has been widely used in a number of applications including text mining, linguistics,

and clustering, proving its many desirable theoretical and practical properties.

3



1.3 Optimization Approaches

A new Approximated Fisher Scoring Algorithm (AFSA) has been proposed to esti-

mate the parameters of the Multinomial mixture model [42]. Here, the well-known

Fisher Scoring (FS) algorithm is simplified by approximating the Fisher information

matrix with a complete-data information matrix, which can not only mitigate com-

putational complexity but also boosts the clustering performance. AFSA turns out to

perform better than Expectation-Maximization (EM) approach, by showing higher

levels of robustness to initial values and being less affected by poor local maxima.

For the parameter estimates of DCM mixture model, we use a novel Minorization-

Maximization (MM) algorithm framework [45]. There are two versions of the MM

principle, one for iterative minimization and another for iterative maximization, re-

spectively, known as majorization-minimization and minorization-maximization al-

gorithms. Here, we make use of the latter one. In contrast to its special case of

well-known Expectation-Maximization algorithm [46], the construction of an MM

algorithm relies upon recognizing and manipulating inequalities rather than calculat-

ing conditional expectations, turning it into a powerful tool to use when dealing with

nontrivial optimization problems [47]. Several complications arise during the opti-

mization of DCM mixture models due to the non-existence of a closed-form solution,

such as (1) calculating and inverting Hessian matrix, (2) solving a linear system, (3)

intertwined parameters in the gamma function, (4) violation of parameter constraints,

(5) dependence on the choice of initial values, etc. MM algorithms not only can avoid

these complications, but they have proven to be easy to implement, amenable to ac-

celeration and provide remarkable numerical stability [48]. Furthermore, we propose

a learning approach that is robust in terms of initialization and simultaneously deals

with fitting the mixture model to the observed data and selecting the optimal number

of components. The proposed approach starts with a large number of components

and iteratively annihilates the weak components, and redistributes the observations,

where the termination criterion is based on MML criterion.

1.4 Online Learning algorithms

In this thesis, we adapt the Neerchal-Morel distribution to an online scheme. Recently,

online learning has gained increasing interest given the urgent need of making machine
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learning practical for real-world data analytics applications, where data are arriving

at a high velocity and large volume. In contrast to traditional batch machine learning

methods, online machine learning algorithms continuously integrate new information

into already constructed models instead of reconstructing new models from scratch

each time new data become available. Practically, the whole data set is split into

batches and the parameter estimates are updated with a new batch of data points

in each iteration. Consequently, the models are all-time up to date and the costs for

data storage and maintenance are reduced significantly.

1.5 Thesis overview

The rest of the thesis is organized as follows: In Chapter 2, we propose mixture

models for high dimensional count data based on Multinomial and Dirichlet Com-

pound Multinomial distributions, where the mixture’s parameters are to be learned

by Approximated Fisher Scoring and Minorization-Maximization optimization algo-

rithms, respectively. In Chapter 3, we build an online mixture-based model using

Neerchal-Morel distribution, to capture the extra-variation of the count data in real-

time applications. Finally, in Chapter 4 we summarize the experimental results and

our major contributions in this thesis.
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Chapter 2

Mixture-Based Clustering for

Count Data Using Approximated

Fisher Scoring and

Minorization-Maximization

Approaches

In this chapter, we use the Multinomial mixture model and introduce the Approx-

imate Fisher Scoring algorithm for the estimation of mixture’s parameters. Then,

we compare it with the Dirichlet Compound Multinomial mixture model and two

other alternative forms of DCM density function. Here, the learning of the mixture’s

parameters is achieved by using a minorization-maximization framework. Moreover,

we have integrated the minimum message length criterion to our model to select the

optimal number of components. Finally, we demonstrate the experimental results.

2.1 The Multinomial Mixture Model

Let X = {X1, . . . , XN} be a set of N independently and identically distributed docu-

ments or images, where each can be represented as a sparse D dimensional vector of

cell counts Xi = (xi1, . . . , xiD), assumed to follow a Multinomial distribution, given

6



by:

M(Xi|p) =
mi!∏D
d=1 xid!

D∏
d=1

pxidd (1)

where D is the vocabulary size; mi =
∑D

d=1 xid represents the length of the document;

pd is the probability of emitting a word d which is subject to the constraints pd > 0

and
∑D

d=1 pd = 1.

Then, a finite mixture model of K multinomial distributions is denoted as follows:

P(Xi|Θ) =
K∑
k=1

πkM(Xi|pk) (2)

where πk are the mixing weights, which must satisfy the condition
∑K

k=1 πk = 1,

K > 1 is number of components in the mixture, pk are the parameters defining the

kth component; and Θ = {p1, . . . , pK , π1, . . . , πK} is the set of all latent variables.

Finally, we can write the data log-likelihood for the whole dataset X = {X1, . . . , XN}
in the given form:

L(X|Θ) =
N∏
i=1

K∑
k=1

log
(
πkM(Xi|pk)

)
(3)

In order to learn the finite mixture model, we seek to maximize the log-likelihood

function L(X|Θ) with respect to the parameters Θ. However, the inner summation

of the mixture models prevents maximum likelihood (ML) estimates to be obtained

analytically. Hence, different methods, such as Fisher Scoring (FS), Expectation-

Maximization or Minorization-Maximization can be used to obtain the ML estimates

numerically.

To learn the parameters of the multinomial mixture model we use a novel numerical

approach, the approximate Fisher Scoring algorithm [42, 43, 44], which is an approx-

imation of the well-known Fisher Scoring method, as the name indicates. Through

Fisher Scoring method the ML estimates can be found by iteratively computing Eq.

(4) until the convergence criteria |L(X|Θ(t+1)) − L(X|Θ(t))| < ε is met for a given

threshold ε > 0.

Θ(t+1) = Θ(t) + F
(
Θ(t)

)−1
S
(
Θ(t)

)
, t = 1, 2, . . . (4)

where F
(
Θ(t)

)
is the Fisher Information Matrix (FIM), equivalent to the negative

expected Hessian of the log-likelihood and S
(
Θ(t)

)
is the scoring function, equivalent

to the first derivative of the log-likelihood function. The calculation of the exact

7



FIM becomes computationally expensive or even intractable when working with high

dimensional and/or huge vocabulary size data sets. Therefore, we employ the fact[49]

that the FIM can be approximated by the block-diagonal matrix

F̃ (Θ) = Blockdiag(π1F1 + . . .+ πKFK , Fπ) (5)

where Fk = M [D−1
k + p−1

kd11
T ] and Dk = Diag(pk1, . . . , pk,D−1); Fπ = N [D−1

π +

π−1
k 11T ] and Dπ = Diag(π1, . . . , pK−1); 1 stands for the identity matrix and M =∑N
i=1 mi. Since the approximated Fisher Information Matrix (AFIM) is a block-

diagonal matrix, its inverse and determinant can be obtained in closed-form, as:

F̃ (Θ)−1 = Blockdiag
(
π−1

1 F−1
1 , . . . , π−1

K F−1
K , F−1

π

)
(6)

det
(
F̃ (Θ)

)
=

(
K∏
k=1

p−1
kd

D−1∏
d=1

Mπkp
−1
kd

)(
π−1
K

K−1∏
k=1

Nπ−1
k

)
(7)

where F−1
k = M−1

{
Dk − pkpTk

}
for k = 1, . . . , K and F−1

π = N−1
{
Dπ − ππT

}
. The

determinant of the AFIM will be very useful shortly when we integrate model selection

in our mixture model. Moreover, the approximated FIM is equivalent to the exact

FIM of the complete-data log-likelihood, which makes the approach closely related to

the EM and can be used on other finite mixture models and missing data problems.

To conclude, AFSA consists on iteratively computing Eq. (8) until convergence.

Θ(t+1) = Θ(t) + F̃
(
Θ(t)

)−1
S
(
Θ(t)

)
, t = 1, 2, . . . (8)

By separating individual updates and further simplifying (please refer to [49] for

details) we obtain the simple formulas for the weights πk and the multinomial distri-

bution parameter pkd, as:

π
(t+1)
k = π

(t)
k

1

N

N∑
i=1

M(Xi|pk(t))∑K
j=1 π

(t)
j M(Xi|pj(t))

(9)

p
(t+1)
kd =

1

M

N∑
i=1

xid
M(Xi|pk(t))∑K

j=1 π
(t)
j M(Xi|pj(t))

−p(t)
kd

[
1− 1

M

N∑
i=1

mi
M(Xi|pk(t))∑K

j=1 π
(t)
j M(Xi|pj(t))

]
(10)

The simplicity of the new algorithm brings numerous advantages, especially in com-

putation demands, for the unsupervised clustering of high-dimensional count data.

8



However, several limitations and technical problems associated with the multinomial

independency assumption have been discussed in the literature [29, 32], especially

when dealing with datasets prone to burstiness or overdispersion phenomena. An

appropriate and efficient solution to address this issue is the hierarchical Bayesian

modeling approach that introduces the prior information into the construction of the

statistical model.

2.2 The Dirichlet Compound Multinomial (DCM)

Mixture Model

Authors in [29] used the fact that the Dirichlet distribution is a natural conjugate

to the Multinomial distribution to propose the DCM distribution, which can not

only accommodate burstiness phenomenon but shows potential to outperform the

multinomial distribution with all heuristics applied.

2.2.1 DCM Distribution

Relying upon hierarchical Bayesian modeling, the Dirichlet distribution carries prior

information for the multinomial parameter, which is then used to model the document

or image. Consequently, different documents or images in the same class are modeled

by different multinomial distributions, so the words or visual words that appear once

will have a higher probability of appearing again as represented by the multinomial

parameter.

Let X = {X1, . . . , XN} be a set of N independently and identically distributed docu-

ments or images, where each can be represented as a sparse D dimensional vector of

cell counts Xi = (xi1, . . . , xiD), assumed to follow a Dirichlet Compound Multinomial

(DCM) distribution, given by:

DCM(Xi|α) =

∫
p

M(Xi|p)D(p|α)dp

=

∫
p

(
mi!∏D
d=1 xid!

D∏
d=1

pxidd

)Γ
(∑D

d=1 αd

)
∏D

d=1 Γ (αd)

D∏
d=1

pαd−1
d

 dp

=
mi!∏D
d=1 xid!

Γ(|α|)
Γ(mi + |α|)

D∏
d=1

Γ(xid + αd)

Γ(αd)

(11)

9



where M(Xi|p) and D(p|α) are the Multinomial and the Dirichlet distribution, re-

spectively; D is the vocabulary size; pd is the probability of emitting a word d;

mi =
∑D

d=1 xid represents the length of the document; αd is the positive Dirichlet

distribution parameter for each word, and |α| =
∑D

d=1 αd is the sum of parameters.

From a practical point of view, each Dirichlet represents a general topic that com-

pounds a set of documents whether each Multinomial is linked to specific sub-topics

and gives higher probability to some words to appear than others, for a specific doc-

ument. This model can also be interpreted as bag-of-bags-of words or bag-of-scaled

documents [29]. Note that DCM has one extra degree of freedom, as compared to

the multinomial, since its parameters do not bear the unit-sum constraint, which

accommodates burstiness and makes it more practical [28, 32].

2.2.2 Alternative DCM parametrizations

Although the DCM composition has led to better clustering results, Haldane (1941)

[39] stated that the occurrence of Gamma function in DCM density function leads

to undesired complications of evaluating the function and its derivatives which can

be replaced by a series of polynomials. The alternative representation of the density

function is given by:

DCM(Xi|α) =
mi!∏D
d=1 xid!

∏D
d=1 αd(αd + 1) . . . (αd + xid − 1)

|α|(|α|+ 1) . . . (|α|+mi − 1)
(12)

Moreover, an alternative parametrization in terms of proportion vector β = (β1, . . . ,

βD) and overdispersion parameter θ, proposed by Bailey(1957)[40], raises means to

better tackle the burstiness and overdispersion phenomena of count data [41]. It is

given by:

DCM(Xi|β, θ) =
mi!∏D
d=1 xid!

∏D
d=1 βd(βd + θ) . . . [βd + (xid − 1))θ]

(1 + θ) . . . [1 + (mi − 1)θ]
(13)

where βd = αd

|α| ,
∑

d βd = 1 and θ = 1
|α| . Indeed, replacing ratios of Gamma functions

by rising polynomials will considerably simplify the learning process.
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2.2.3 DCM Mixture Learning Approaches

The Expectation Maximization Algorithm

The Expectation Maximization algorithm is one of the most familiar approaches used

to find maximum likelihood solutions for probabilistic models with missing data. A

membership vector Zi = (zi1, . . . , ziK) is assigned to each observation Xi such that

zik = 1 if the object i belongs in the cluster k and all other elements equal to 0.

Therefore, the membership vector is a K-dimensional binary random variable whose

values must satisfy the conditions zik ∈ {0, 1} and
∑K

k=1 zik = 1. The conditional

distribution of latent variable Z, given the mixing coefficients π, can be written as:

P(Z|π) ∼Multi(π) =
N∏
i=1

K∏
k=1

πzikk (14)

Similarly, from Eq.(3) we can write the conditional distribution of data vectors X ,

given the latent variables Z and the component parameters Θ. Thus, we can rewrite

the complete data likelihood in the given form:

P(X ,Z|Θ) =
N∏
i=1

K∏
k=1

(
πkDCM(Xi|αk)

)zik
(15)

Based on Eq.(11) and Eq.(15), the complete data log-likelihood corresponding to a

K-component mixture of DCM distributions is given by:

L(X ,Z|Θ) =
N∑
i=1

K∑
k−1

zik (log πk + logDCM(Xi|αk))

=
N∑
i=1

K∑
k=1

ziklogπk +
N∑
i=1

K∑
k=1

zik (log Γ (|α|)− log Γ (mi + |α|))

+
N∑
i=1

K∑
k=1

zik

D∑
d=1

(log Γ (xid + αd)− log Γ (αd))

(16)

The optimization of the complete-data likelihood function L(X ,Z|Θ) is significantly

easier than the direct optimization of the likelihood function L(X|Θ). In EM, the

learning of the parameters of a mixture model is done by a two-step iteration (Expectation-

step and Maximization-step). In the E-step, the posterior probabilities of the missing

variables P (Z|X ,Θ(t)) are evaluated using the current values of the parameters, as:

ẑ
(t)
ik = P (Z|X ,Θ(t)) =

π
(t)
k DCM

(
Xi|α(t)

k

)
∑K

j=1 π
(t)
j DCM

(
Xi|α(t)

j

) (17)
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Then, in the M-step, the expectation of the complete-data log likelihood with respect

to the missing variables is maximized. The motivation behind this solution relies on

the nonnegativity of the Kullback-Leibler divergence of two conditional probability

densities. The divergence inequality in turn depends on Jensen’s inequality and the

concavity of the function ln x. [50] It can be shown that estimates on each iteration

increase the log-likelihood function on the data [51]. The parameter estimates and

the weights get updated using the posterior probabilities calculated in the previous

step according to :

Θ(t+1) = arg max
Θ
Q
(
Θ|Θ(t)

)
(18)

where

Q
(
Θ|Θ(t)

)
=
∑
Z

L(X ,Z|Θ)P (Z|X ,Θ(t)) (19)

By setting the derivative of the log-likelihood function equal to zero, we obtain:

π
(t+1)
k =

1

N

N∑
i=1

ẑ
(t)
ik (20)

Here, we do not obtain a closed-form solution for the αk parameters since they are

intertwined in the logΓ(|α|) term. We therefore use the Newton-Raphson method,

where the parameter estimates iterate according to:

α
(t+1)
kd = α

(t)
kd −

(
∂2Q

(
Θ|Θ(t)

)
∂αkdαkd

)−1
∂Q
(
Θ|Θ(t)

)
∂αkd

(21)

where:

∂Q
(
Θ|Θ(t)

)
∂αkd

=
∑
i

ẑik

[
Ψ
(
xid + α

(t)
kd

)
−Ψ

(
mi +

∣∣∣α(t)
k

∣∣∣)+ Ψ(|α(t)
k |)−Ψ

(
α

(t)
kd

)]
(22)

∂2Q
(
Θ|Θ(t)

)
∂αkdαkd

=
∑
i

ẑik

[(
Ψ′
(
xid + α

(t)
kd

)
−Ψ′

(
α

(t)
kd

))
1{d=d′}

]
−
[
Ψ′
(
mi +

∣∣∣α(t)
k

∣∣∣)+ Ψ′(|α(t)
k |)
] (23)

where Ψ(z) and Ψ′(z) are the digamma and trigamma functions, respectively. Calcu-

lating and inverting the Hessian matrix at each iteration is computationally expensive.

Moreover, the EM approach has several other drawbacks, such as violation of param-

eter’s constraints and dependence on the choice of initial values. In the next section
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we introduce the MM framework, as a general case of the EM approach which not

only can avoid these complications, but is also easy to implement.

The Minorization-Maximization (MM) Algorithm

The key to the construction of an MM algorithm for calculating MLE of the model

parameters is to carefully choose an appropriate surrogate function minorizing the

log-likelihood function, which must satisfy two properties, mathematically written

as:

L(X ,Z|Θ(t)) = G(Θ(t)|Θ(t)),

L(X ,Z|Θ) > G(Θ|Θ(t)),Θ 6= Θ(t)
(24)

In other words, the surface of the surrogate function lies below the surface of the

objective function and they are tangent at the point Θ = Θ(t), where Θ(t) represents

the current iterate. Given the definition of Θ(t) and Eq.(24), one can prove that if the

surrogate function reaches its maximum value for Θ(t+1), then MM procedure drives

the likelihood uphill. This is also known as the ascent property and is based on the

inequalities:

L(X ,Z|Θ(t+1)) > G(Θ(t+1)|Θ(t)) > G(Θ(t)|Θ(t)) ≡ L(X ,Z|Θ(t)) (25)

The ascent property holds true even if G(Θ|Θ(t)) is increased rather than maximized,

leading to significant levels of numerical stability and proving to be exceptionally ben-

eficial in case the maximum of the surrogate function can not be found. Therefore,

the surrogate function is maximized during the second step of the MM algorithm in

order to produce the next iterate Θt+1.

As we have already emphasized, MM relies on recognizing and manipulating inequal-

ities after close examination of the log-likelihood. In this work, we strategically

minorize parts of the overall objective function while leaving the other parts un-

touched. Thus, to construct an MM algorithm under the parametrization in Eq.(12),

we need to minorize terms such as ln(αkd + l) for l = (0, . . . , xid) and − ln(|αk| + l)

for l = (0, . . . ,mi), making use of Jensen inequality and the supporting hyperplane

property. Similarly, under parametrization in Eq.(13), we minorize terms such as

− ln(1 + kθ) and ln (πj + kθ), once again making use of the previously mentioned

inequalities.
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As previously stated, we aim to minorize only parts of the overall objective function.

Under parametrization in Eq.(12), the complete log-likelihood is written as:

L(X ,Z|Θ) =
N∑
i=1

K∑
k=1

ziklogDCM(Xid|αkd)

=
K∑
k=1

N∑
i=1

zik

D∑
d=1

xid−1∑
l=0

ln(αkd + l)−
K∑
k=1

N∑
i=1

zik

mi−1∑
l=0

(ln(|αk|+ l)

(26)

For computational benefits, we simplify the two terms further using the inequalities

proposed in [52]. By close observation of the function, one can tell that the terms

ln(αkd+ l) and − ln(|αk|+ l) occur in the data log likelihood only when the conditions

xid > l + 1 and mi > l + 1 are satisfied, respectively. Therefore,

K∑
k=1

N∑
i=1

ẑik

D∑
d=1

xid−1∑
l=0

ln(αkd + l) =
K∑
k=1

D∑
d=1

maxi xid−1∑
l=0

ln(αkd + l)
N∑
i=1

ẑik(xid−1>l)

=
K∑
k=1

D∑
d=1

maxi xid−1∑
l=0

Sdlk ln(αkd + l)

(27)

and

−
K∑
k=1

N∑
i=1

ẑik

mi−1∑
l=0

(ln(|αk|+ l) = −
K∑
k=1

maximi−1∑
l=0

ln(|αk|+ l)
N∑
i=1

ẑik(mi−1>l)

= −
K∑
k=1

maximi−1∑
l=0

Nlk ln(|αk|+ l)

(28)

where Nlk =
∑N

i=1 ẑik(mi−1>l) represents the sum of responsibilities the of data points

xid where the batch size is bigger than the variable l. The batch size is the total

number of the frequencies for each document or image. On the other hand, Sdlk =∑N
i=1 ẑik(xid−1>l) is the sum of the responsibilities of data points xid with d-th coord

bigger than the variable l. Applying the Jensen inequality to the ln(αkd + l) terms

ln (αkd + l) ≥ α
(t)
kd

α
(t)
kd + l

ln

(
α

(t)
kd + l

α
(t)
kd

· αkd

)
+

l

α
(t)
kd + l

ln

(
α

(t)
kd + l

l
· l

)

=
α

(t)
kd

α
(t)
kd + l

lnαkd + c(t)

(29)

and the supporting hyperplane inequality to the −ln(|αk|+ l) terms

− ln(|αk|+ l) ≥ −
|αk| −

∣∣αk(t)
∣∣

|αk(t)|+ l
− ln

(∣∣αk(t)
∣∣+ l

)
= − |α|
|αk(t)|+ l

+ c(t) (30)
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yields the surrogate function:

G
(
α|α(t)

)
= −

∑
k

∑
l

Nlk

|αk(t)|+ l
|αk|+

∑
k

∑
d

∑
l

Sdlkα
(t)
dk

α
(t)
dk + l

lnαdk + c(t) (31)

The resulting surrogate function is less than or equal the complete log-likelihood

function and can be solved analytically in the maximization step. By maximizing the

surrogate function, we obtain the update for the αkd parameter:

α
(t+1)
kd =

(∑
l

α
(t)
kdSdlk

α
(t)
kd + l

)
/

(∑
l

Nlk

|α(t)
k |+ l

)
(32)

Under the parametrization in Eq.(13), the complete log-likelihood is written as:

L(X ,Z|Θ) =
N∑
i=1

K∑
k=1

ẑiklogDCM(Xid|βkd, θk)

=
K∑
k=1

N∑
i=1

ẑik

D∑
d=1

xid−1∑
l=0

ln(βkd + lθk)−
K∑
k=1

N∑
i=1

ẑik

mi−1∑
l=0

ln(1 + lθk)

(33)

Following the same approach, we constructed a surrogate function for the second

parametrization. Following the same logic, we simplify the terms:

K∑
k=1

N∑
i=1

ẑik

D∑
d=1

xid−1∑
l=0

ln(βkd + lθk) =
K∑
k=1

D∑
d=1

maxi xid−1∑
l=0

ln(βkd + lθk)
N∑
i=1

ẑik(xid−1>l)

=
K∑
k=1

D∑
d=1

maxi xid−1∑
l=0

Sdlk ln(βkd + lθk)

(34)

and

−
K∑
k=1

N∑
i=1

ẑik

mi−1∑
l=0

ln(1 + lθk) = −
K∑
k=1

maximi−1∑
l=0

ln(1 + lθk)
N∑
i=1

ẑik(mi−1>l)

= −
K∑
k=1

maximi−1∑
l=0

Nlk ln(1 + lθk)

(35)

Then we minorize the terms such as − ln(1 +kθ) and ln (πj + kθ), once again making

use of the Jensen inequality

log (βkd + kθk) ≥
βnkd

βnkd + lθnk
log

(
βnkd + lθnk
βnkd

βkd

)
+

lθnk
βnkd + lθnk

log

(
βnkd + lθnk

lθnk
lθk

)
=

βnkd
βnkd + lθnk

log βkd +
lθnk

βnkd + lθnk
log θk

(36)
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and the supporting hyperplane property

− log(1 + kθk) ≥ − log (1 + lθnk )− 1

1 + lθnk
(lθk − lθnk ) =

lθk
1 + lθnk

(37)

which lead to the surrogate function

−
∑
k

∑
l

Nkl
l

1 + lθnk
θk +

∑
k

∑
d

∑
l

Sdlk

{
βnkd

βnkd + lθnk
log βkd +

lθnk
βnkd + lθnk

log θ

}
(38)

Setting the partial derivatives of the surrogate function (Eq.38) with respect to θk

and βkd equal to 0 yields the MM updates:

θn+1
k =

(∑
d

∑
l

Sdlklθ
n
k

βnkd + lθnk

)
/

(∑
l

Nlkl

1 + lθnk

)
(39)

βn+1
kd =

(∑
l

Sdlkβ
n
kd

βnkd + lθnk

)
/

(∑
j

∑
l

Sjlkβ
n
jk

βnjk + lθnk

)
(40)

where the constraint
∑

d βkd = 1 must be satisfied and therefore finding the proportion

parameter update has been treated as a Langrange multiplier problem.

2.3 Model selection

Previously, we assumed the number of components in the mixture was known be-

forehand, which is not the case in unsupervised learning. Different approaches have

been proposed in the literature to deal with the unknown number of components.

Deterministic approaches such as Minimum Message Length (MML) [14, 53] Akaike’s

Information Criterion (AIC) [54], Minimum Description Length (MDL) [55] or Mix-

ture MDL (MMDL) [14] are widely used since they appear to be less computationally

demanding, as compared to other stochastic approaches [56, 57].

MML has proven to be efficient with mixture models [58, 59]. Therefore, we choose

it to find the optimal number of components that best describe and represent the

data. Minimum Message Length selection criterion consists of evaluating the statis-

tical model’s ability to compress a message containing the data. MML’s philosophy,

based on information theory, states that the best statistical model has the ability to

achieve a high compression of its data [60]. The message includes two parts where

the first part encodes the model using only prior information about the model and no
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information about the data, and the second part encodes only the data. Finally, the

optimal number of clusters K is the candidate value which minimizes the message

length, given by:

Θ̂ = arg min
Θ

{
− log(h(Θ))− log(P (X|Θ)) +

1

2
log |F (Θ)|+ Np

2

(
1 + log

Np

12

)}
(41)

where h(Θ) is the prior probability, P (X|Θ) is the likelihood for the complete data

set, |F (Θ)| is the determinant of the expected Fisher information matrix and Np is

the number of free parameters to be estimated, which is KD − 1 and K(D + 1)− 1

for the Multinomial and DCM mixture models, respectively.

The capability of the MML criterion is directly dependent on the choice of prior

distribution h(Θ) for the parameters of the mixture models. By assuming that the

parameters pd of the different components as a prior are independent from the mixing

probabilities π, and the components of h(pd) are independent as well [61], we get:

h(Θ) = h(π)
K∏
k=1

h (pk) = h(π)
K∏
k=1

D∏
d=1

h (pkd) (42)

Considering that both parameters π, p belong on the the probability simplex: {(π1, . . . ,

πK) :
∑K

k=1 πk = 1, πk > 0 for k = 1, . . . , K} and {(pk1, . . . , pKD) :
∑D

d=1 pkd =

1, pkd > 0 for d = 1, . . . , D}, the Dirichlet distribution becomes a natural choice as a

prior. The choice of a flat Dirichlet distribution (all parameters equal to 1) gives a

uniform prior as follows [22, 23]:

h(π) = Γ(K) = (K − 1)! (43)

h(p) = Γ(D) = (D − 1)! (44)

Thus, substituting (43) and (44) into (42), and taking the log we obtain:

log(h(Θ)) = logΓ(K) +KDlogΓ(D) (45)

As a result of the approximation we introduced in the previous section, we are able

to compute the determinant of the AFIM after the data vectors have been assigned

to their respective clusters, as in Eq (7). Thus, by substituting (45) and (7) into (41),

we obtain the expression of MML for a finite mixture of Multinomial distributions,
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given a candidate value for K.

On the other hand, the information matrix for the DCM model is difficult to obtain

analytically. Even though by using MM algorithms, we solve many of the weaknesses

of the EM algorithm for mixture models, the requirement of knowing the number

of clusters during the initialization step still remains. To overcome this challenge,

we adopt the approach in [24], which is based on the MML criterion [23], where

we avoid the problem that might emerge with running the EM algorithm multiple

times to obtain the whole set of candidates. Instead, with each iteration we will run

the component-wise EM until convergence, where the irrelevant components, with

π̂
(t+1)
k = 0 are annihilated, and the parameters are updated accordingly. Then, the

MML criterion is re-evaluated for non-zero components only.

We perform similar transformations as in [24] (please refer for more details), and gain

the final form:

Θ̂ = arg max
Θ

{
log p(X|Θ)− RD

2

K∑
k=1

log πk −
S

2

D∑
d=1

log (1− ρd) −
RK

2

D∑
d=1

log ρd

}
(46)

where R and S are the number of parameters in the probability densities. Thus,

R = S = 1 for the first DCM parametrization in Eq.(12) and R = S = 2 for the

second one based on Eq.(13).

The model can be initialized with a large value of K, thus surpassing the limitation of

initialization dependency. Starting with a large value of K may lead to several empty

components and there will be no need to estimate, and transmit, their parameters.

Thus, we need to update the component’s weight in the M-step as:

π̂k =
max

(∑
i ẑik −

RD
2
, 0
)∑

j max
(∑

i ẑij −
RD
2
, 0
) (47)

The advantage of the new update formula is its pruning behavior, that when some of

the πk go to zero they will be removed.

2.4 Experimental Results

In this section, we aim to prove the effectiveness of our proposed models via three

real-world applications; sentiment analysis, facial expression recognition, and human

action recognition. The experiments aim to compare the accuracy of the proposed
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mixture models based on two different parameterizations of DCM, to the original

parameterization of DCM as in [29] and to the approximate Fisher Scoring algorithm

[49] with multinomial mixture model serving as a baseline . We evaluate the clustering

performance of the different models across different data sets.

2.4.1 Sentiment Analysis

Sentiment Analysis is the process of determining the attitude of a subject towards a

particular topic by a given text written in natural languages. Typically, it has been

used in the past to classify the opinions in product or movie reviews. Therefore, we

have chosen two widely used datasets in the past, namely IMBD dataset for movie

reviews and the Amazon dataset for product reviews [62].

IMDB movie reviews dataset categorizes the reviews into positive and negative

sentiments. Ratings on IMDB are given as star values ∈ {1, 2, . . . , 10}, Following

previous work on polarity classification, we have considered only highly polarized re-

views where a review is assigned label 0 (negative) if its score is less than 5, and

label 1 (positive) if its score is 6, or greater. Here, we used a mix of the training and

testing sets having around 25,000 samples from each positive/negative group with a

vocabulary size of 76, 340 unique words. The Amazon reviews full score dataset

contains 600,000 training samples and 130,000 testing samples for each review score

from 1 to 5. Similarly to IMDB preprocessing step, they were linearly mapped to

[0, 1] to use as document labels, negative and positive, respectively. Here, we used a

mix of 50,000 sample reviews from the training and testing sets, with a vocabulary

size of 55,383 unique words.

Note that we do not separate the data set into training and testing sets. The Rainbow

package [63] was used to read the text files and perform the feature selection con-

sidering words with the highest average mutual information after removing all rare

words (less than 50 occurrences in our experiments). Since for sentiment analysis,

certain stop words (e.g., negating words such as no, not, and never) are indicative;

traditional stop word removal was not used. Each text file is then represented as a

vector containing the occurrence frequency for each word from the vocabulary.
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Table 1: Average accuracy (in %), and estimated number of components of DCM
algorithms over different runs for sentiment analysis.

MN MN-AFSA DCM DCM1 DCM2 K̂ K
Amazon 50.83 65.28 62.66 68.23 75.76 2.2 2
IMDB 64.18 78.93 82.19 82.35 82.85 2.0 2

Table 2: Average time (in seconds) of algorithms over different runs for IMDB dataset.

MN-AFSA DCM DCM1 DCM2
Average Time 129.608170 1120.387617 105.988919 65.842693

Table (1) presents the results of all the experiments for both datasets. The baseline

method gives an overall accuracy of 50.83% for the Amazon dataset and 64.18% for

IMDB dataset. As shown in the table, the accuracy has been considerably improved

using the approximation to the FIM, by almost 15% for both datasets. Moreover, it

has outperformed the accuracy of DCM mixture model with EM algorithm by 2.5%

for Amazon dataset. However, the best accuracy is achieved in using the other parme-

terizations, for the model DCM1 based on Eq.(12) and DCM2 based on Eq.(13). As

shown in the table, a great improvement is achieved for the second proposed model

DCM2, 75.76% for Amazon dataset and 82.85% for IMDB dataset, owing to the extra

parameter capability of capturing the overdispersion phenomenon which is extremely

problematic in the case of review datasets since the text is usually very short (only a

few sentences) and the vocabulary size is huge.

Even though the improvement for the IMDB dataset seems less significant, by tak-

ing into consideration the huge size of the dataset, there are around 600 and 2500

more reviews classified correctly for DCM2 as compared to DCM1 and MN-AFSA,

respectively. The efficiency of DCM models in sentiment analysis is increased even

more by considering the robustness and the requested time until convergence of the

algorithms. From the experiments, we noticed that the DCM models tend to be more

robust to the random initialization than MN-AFSA. Therefore, we have represented

in the table (1) the average accuracy over 5 different runs. Also, the proposed models

perform 10 times faster than the original model DCM, as shown in table (2). The

gain in simplicity from using the approximation to the FIM makes the multinomial

mixture model perform much faster (10x) and be much more accurate (15%) com-

pared to its baseline model. The confusion matrices for all the models are given in
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Figure 1: Confusion matrices for sentiment analysis in Amazon dataset using different
approaches.

Figure 2: Confusion matrices for sentiment analysis in IMDB dataset using different
approaches.

Figure (1) and Figure (2). We can notice that the accuracy of both classes has been

greatly improved using the second parameterization DCM2.

Since the considered datasets contain an even number of positive and negative re-

views, the improvement from randomly guessing, which yields around 50% accuracy,

is significantly improved, by almost 30%. Our models show superior performance

to the baseline, and perform the best when taking overdispersion into consideration.

Moreover, both proposed frameworks successfully selected the optimal number of

components that agrees with the true number of clusters for both text datasets. As

shown in Table (1) the model selection approach proposed with DCM gives that the

average number of classes are 2.2 and 2.0 for Amazon and IMDB datasets, respec-

tively. Besides, Figure (3) shows the results using the model selection approach based

on the multinomial model with approximated FIM. We can see that the number of

clusters that minimizes the message length is 2 for both datasets.
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Figure 3: Optimal number of clusters from MML criteria for Amazon and IMDB
datasets.

2.4.2 Facial Expression Recognition

Facial expression recognition is one of the most attractive and growing topics nowa-

days in various research areas, such as human-computer interaction, healthcare sys-

tems, and computer graphics. Indeed, using facial expression recognition to under-

stand the emotional state of users can drastically improve the interaction between

users and computers or can allow robots to detect the mental states of users on

healthcare systems. Also, technologies such as virtual reality (VR) and augmented

reality (AR) employ facial expression recognition to deliver a natural and friendly

experience to users. To test our models’ performance, we have chosen two challeng-

ing datasets: MMI [64] and the extended Cohn-Kanade (CK+) [65]. The considered

datasets are split into two parts, where half of the images are used to build the visual

vocabulary, and the other half is for representation and clustering.

The MMI database contains 1,140 images with a size of 720 x 576 pixels, where

each of them belongs in one of 6 basic categories of facial recognition: Anger, Disgust,

Fear, Happiness, Sadness, and Surprise). Sample images from the MMI database with

different facial expressions are shown in Fig.(4). Participants, where 66% are male,

range in age from 19 to 62, having either a European, Asian, or South American

ethnic background. The Extended Cohn-Kanade (CK+) Dataset is one of the

most widely used benchmark databases for testing recognition algorithms due to its

high level of difficulty and challenge it represents. It consists of facial behavior of

210 adults (69% female), from 18 to 50 years old, where 81% Euro-American, 13%

Afro-American, and 6% other groups. The type of emotion states in CK+ are anger,

disgust, fear, happiness, sadness, surprise, as shown in Fig. (5). The duration of
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Table 3: Average accuracy (in %), and estimated number of components of DCM
algorithms over different runs for facial expression recognition.

MN MN-AFSA DCM DCM1 DCM2 K̂ K
MMI 67.74 75.91 76.99 78.28 79.79 6.3 6
CK+ 70.94 75.11 76.45 76.35 76.74 6.3 6

image sequences varies from 10 to 60 frames, beginning at the neutral frame and

ending at the peak expression frame. Image sequences were digitized into either 640

x 490 or 640 x 480-pixel arrays with an 8-bit gray-scale value. We included all posed

expressions that could be labeled as one of the six basic emotion categories, which is

about 4,000 images. The recognition accuracy of the facial expression, obtained by

applying the different approaches to the considered data sets is shown in Table (3).

As observed in Table (3), the model MN-AFSA achieves higher accuracy than its

baseline model and the model DCM2 (DCM with the second parametrization) out-

performs all other models, with an overall average clustering accuracy of 79.79% and

76.74% for MMI and CK+, respectively. The reason behind the excellent performance

of the DCM2 is two-fold: the capability of its parameters to capture the overdisper-

sion and burstiness phenomena of the data and the great simplification granted by the

Minorization-Maximization (MM) framework to our algorithms for high dimensional

data. The simplicity granted by the approximation of the Fisher Information Ma-

trix (FIM) makes MN-AFSA more powerful as compared to the DCM model which

requires the FIM to be computed in each iteration and linear systems to be solved.

Its computation does not only consume time and memory, it also can get intractable

as the vocabulary size increases. Also, in some cases the exact FIM is computation-

ally singular, so its inverse cannot be computed and the conditions for identifiability

are not satisfied. Moreover, the updates in MN-AFSA and DCM usually violate the

parameter constraints, which is perfectly solved by the MM principle as explained

theoretically and proved by our experiments.

Lastly, we can observe from Fig.(6) and (7) that all six facial expressions in the

MMI dataset are overall distinguished with high accuracy. However, happiness, dis-

gust, sadness, and surprise achieve better results than the rest, due to their distinctive

features in eye and mouth parts. On the other hand, expressions of anger and fear
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Figure 4: Different sample frames on facial expressions in MMI database.

Figure 5: Different sample frames on facial expressions in CK+ database.

are easily confused with sadness or disgust. The improvement achieved on CK+ is

not as good as the previous ones, which might be because of the quality of the image

sequences as well as the small number of sample images in some of the classes. It

is worth reminding the performance improvement is not the only added value of our

algorithms. Computation efficiency, simplicity, independence from initialization, etc.

make our proposed models a powerful weapon in the clustering algorithms artillery.

Furthermore, as shown in Table (3) and Figure (8) the proposed approaches based on

DCM and MN successfully selected the optimal number of components, that agrees

with the prespecified one, in both datasets.

2.4.3 Human Action Recognition

Recognizing human activities from video sequences, or images, has been one of the

most challenging problems in computer vision due to several issues, such as occlu-

sion, background clutter, changes in scale, viewpoint, lighting conditions, shadows,

appearance, frame resolution and the enormous volume of data. Moreover, intra-class

dissimilarities and inter-class similarities can increase the challenge. Since different

people have different body movements, based on their habits, then actions between

different classes may be difficult to distinguish as they may be represented by similar
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Figure 6: Class recognition accuracy for MMI database.

Figure 7: Class recognition accuracy for CK+ database.

Figure 8: Optimal number of clusters from MML criteria for MMI and CK+ datasets
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information. Video surveillance and security systems, action-based human-computer

interaction, intelligent robots for human behavior characterization are just a few out

of many more applications where human action recognition plays an essential role. We

have carefully chosen two challenging datasets, namely KTH [66] and Ballet dataset

[67], to test the performance of our models on recognizing multiple high level activi-

ties from video sequences composing several actors performing different movements.

KTH Human Action Dataset contains single-action video sequences of 25 actors

who perform six different types of human actions; walking, jogging, running, boxing,

hand waving, and hand-clapping in 4 different scenarios: outdoors s1, outdoors with

scale variation s2, outdoors with different clothes s3 and indoors s4. Representative

frames are shown in Fig.(9). It contains a total of 2391 sequences, all taken over

homogeneous backgrounds with a static camera with a 25 fps frame rate. The spatial

resolution of the sequences is 160x120 pixels, and their average length is around 4

seconds. This dataset has been used at video level, i.e., each video sequence has been

represented as a histogram using the bag of features approach.

The Ballet Dataset contains multiple actions in a video sequence, so in that case

we perform per-frame classification instead of per-video classification. It consists of

44 labelled video sequences with 8 different ballet dancing activities; standing hand

opening, standing still, turning, left-to-right hand opening, leg swinging, jumping,

hopping, and right-to-left hand opening. The activities are performed by one woman

and two men and only one actor is performing in each video at a particular time. The

example sequences from video of Ballet dataset are shown in Fig.(10). This dataset

has been used at the frame level, i.e., we extracted the frames and treated each frame

as an image.

We can see from Table (4), that our models perform significantly better (more than

15% improvement in the accuracy) as compared to the baseline model. Clearly, the

DCM models outperform the MN-AFSA for both tested datasets. Once more, the

second parametrization proves itself more accurate and efficient compared to the first

parametrization DCM1. However, by closely observing the class accuracy given in

Fig.(11), and Fig. (12) we can further discuss where our algorithms fall short. In-

deed, a lot of the mistakes made by our algorithm make intuitive sense and can also

be generalized for other algorithms. For example, hopping is easily confused with
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Figure 9: Different sample frames on human actions in KTH database.

Figure 10: Different sample frames on human actions in Ballet database.

jumping or standing still and right-to-left hand opening is easily confused with left-

to-right hand opening in the Ballet dataset. Similarly, walking, running and jogging

are similar actions and our algorithm tends to confuse them with each other. This

is represented in the graphs by their lower recognition accuracy as compared to the

other classes. In addition, the performance of our model selection approach based on

DCM was evaluated on both datasets, and the average numbers of clusters found over

the 10 runs were 6.1 and 8.8 for KTH and Ballet datasets, respectively as shown in

Table (4). Moreover, the number of clusters selected by the proposed approach based

on MN agrees with the true ones for the two considered datasets as shown in Figure

(13). Both clustering accuracy and the selected optimal number of components con-

firmed that our proposed frameworks are capable of providing promising results in
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Table 4: Average accuracy (in %), and estimated number of components of DCM
algorithms over different runs for human action recognition.

MN MN-AFSA DCM DCM1 DCM2 K̂ K
KTH 58.17 72.76 73.56 76.28 78.37 6.1 6
Ballet 64.95 78.33 81.23 82.82 85.04 8.8 8

Figure 11: Class recognition accuracy for KTH database.

modeling overdispersed count data.
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Figure 12: Class recognition accuracy for Ballet database .

Figure 13: Optimal number of clusters from MML criteria for KTH and Ballet
datasets
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Chapter 3

Online Mixture-Based Clustering

for High Dimensional Count Data

Using Neerchal-Morel distribution

In this chapter, we introduce the Neerchal-Morel mixture model where the parame-

ters are to be learnt by the minorization-maximization algorithm. Then, we intergrate

the MML criterion to select the optimal number of components in the mixture. In

addition, we propose the concept of online learning and adapt the stochastic gradi-

ent ascent method to estimate the model parameters. Finally, we demonstrate the

experimental results.

3.1 Neerchal-Morel Mixture Model

Finite mixture models offer great flexibility regarding the choice of the statistical dis-

tribution and optimal number of clusters that best represents the data [22, 23] as well

as the learning algorithm for the mixture′s parameter estimation [14]. Yet, it often

remains unclear which of them is suitable for a specific task and how they perform

in comparison to each other. Let X = {X1, . . . , XN} be a set of N independently

and identically distributed documents or images, where each can be represented as a

sparse D dimensional vector of cell counts Xi = (xi1, . . . , xiD), assumed to follow a
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Neerchal-Morel distribution, whose probability density function is given by:

NMD(Xi|π, ρ) =
D∑
d=1

πd

(
mi

xi

)
[(1− ρ)π1]xi1 · · · [(1− ρ)πd + ρ]xid

· · · [(1− ρ)πD]xiD

(48)

where D is the vocabulary size; mi =
∑D

d=1 xid represents the length of the document;

πd is the probability of emitting a word d which is subject to the constraints πd > 0

and
∑D

d=1 πd = 1; and ρ ∈ [0, 1] is the overdispersion parameter. Note that NMD

represents a mixture of D multinomial distributions where πd distributes different

weights to each word of the vocabulary, tackling in this way the rare words challenge

of high dimensional count data. Moreover, the extra parameter ρ counts for the extra

variation found in data which do not adhere to the independency assumption made

by the multinomial distribution. Indeed, when ρ = 0, the Neerchal-Morel distribution

collapses to the latter mentioned.

Then, a finite mixture model of K Neerchal-Morel distributions is denoted as follows:

P(Xi|Θ) =
K∑
k=1

µkNMD(Xi|πk, ρk) (49)

where K > 1 is number of components in the mixture, NMD(Xi|πk, ρk) is the k− th
component of the mixture defined by its own set of parameters Θ = {µ1, . . . , µK , π1, . . . ,

πK , ρ1, . . . , ρK} where µk are the mixing weights, which must satisfy the condition∑K
k=1 µk = 1.

Finally, we can write the data log-likelihood for the whole dataset X = {X1, . . . , XN}
as following:

L(X|Θ) =
N∏
i=1

K∑
k=1

log
(
µkNMD(Xi|πk, ρk)

)
(50)

In order to learn the finite mixture model, we seek to maximize the log-likelihood func-

tion L(X|Θ) with respect to the parameters Θ. However, the inner summation of the

mixture models prevents maximum likelihood (ML) estimates to be obtained analyti-

cally. Hence, different methods, such as Newton-Raphson, Expectation-Maximization

or Maximization-Minorization can be used to obtain the ML estimates numerically.

The EM algorithm is one of the most familiar approaches used to find maximum

likelihood solutions for probabilistic models with missing data [46]. A membership

vector Zi = (zi1, . . . , ziK) is assigned to each observation Xi such that zik = 1 if the
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object i belongs to the cluster k and all other elements equal to 0. Therefore, the

membership vector is a K-dimensional binary random variable whose values must

satisfy the conditions zik ∈ {0, 1} and
∑K

k=1 zik = 1. The conditional distribution of

latent variable Z, given the mixing coefficients π, can be written as:

P(Z|π) ∼Multi(µ) =
N∏
i=1

K∏
k=1

µzikk (51)

Similarly, from Eq.(50) we can write the conditional distribution of data vectors X ,

given the latent variables Z and the component parameters Θ. Thus, we can rewrite

the complete data likelihood as following:

P(X ,Z|Θ) =
N∏
i=1

K∏
k=1

(
µkNMD(Xi|πk, ρk)

)zik
(52)

The optimization of the complete-data log likelihood function L(X ,Z|Θ) is signif-

icantly easier than the direct optimization of the complete-data likelihood function

P(X ,Z|Θ) , therefore we apply the log function and expand the complete data log-

likelihood as follows:

L(X ,Z|Θ) =
N∑
i=1

K∑
k=1

zik ln

{
µk

D∑
d=1

πkd

(
mi

xi

)
[(1− ρk)πk1]xi1 · · ·

[(1− ρk)πkd + ρ]xid · · · [(1− ρk)πkD]xiD

}

=
N∑
i=1

K∑
k=1

zik lnµk +
N∑
i=1

K∑
k=1

zik ln

{
D∑
d=1

πkd

(
mi

xi

)

[(1− ρk)πk1]xi1 · · · [(1− ρk)πkd + ρ]xid · · · [(1− ρk)πkD]xiD

}
(53)

The EM algorithm begins with an initial estimate of the parameters and then al-

ternates between two steps: an ”E-step”, in which the conditional expectation of

the complete data log likelihood given the observed data and the current parameter

estimates is computed, as:

ẑ
(t)
ik = P (Z|X ,Θ(t)) =

µ
(t)
k NMD(Xi|π(t)

k , ρ
(t)
k )∑K

j=1 µ
(t)
j NMD(Xi|π(t)

k , ρ
(t)
k )

(54)

and an ”M-step”, in which parameters that maximize the expected complete-data log

likelihood from the E-step are determined. Mathematically, the M step is written as:
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Θ(t+1) = arg max
Θ
Q
(
Θ|Θ(t)

)
(55)

where

Q
(
Θ|Θ(t)

)
=
∑
Z

L(X ,Z|Θ)P (Z|X ,Θ(t)) (56)

This two-step process always drives the objective function uphill and is iterated until

the log likelihood converges. By setting the derivative of the log-likelihood function

equal to zero, we obtain the update formula for the mixing weights as:

µ
(t+1)
k =

1

N

N∑
i=1

ẑ
(t)
ik (57)

Intuitively, the mixing weights for each cluster are calculated by summing posterior

probabilities (aka responsibilities) of data points in each cluster and dividing by the

total number of observations in the dataset. On the other hand, we cannot obtain a

closed-form solution for the πkd and ρk parameters since they are intertwined in the

summation term of the multinomial admixture. Therefore, to solve the parameter’s

optimization challenge, we apply the Maximization-Minorization (MM) framework

which instead of calculating conditional expectations, relies on recognizing and ma-

nipulating inequalities.

3.1.1 MM learning Approach

MM framework has attracted significant attention due to its potential in efficiently

solving high-dimensional optimization and estimation problems. The key to the con-

struction of an MM algorithm for calculating MLE of the model parameters is to

carefully choose an appropriate surrogate function minorizing the log-likelihood func-

tion, which must satisfy two properties, mathematically written as:

L(X ,Z|Θ(t)) = G(Θ(t)|Θ(t)),

L(X ,Z|Θ) > G(Θ|Θ(t)),Θ 6= Θ(t)
(58)

In other words, the surface of the surrogate function lies below the surface of the

objective function and they are tangent at the point Θ = Θ(t), where Θ(t) represents

the current iterate. Given the definition of Θ(t) and Eq.(58), one can prove that if the

surrogate function reaches its maximum value for Θ(t+1), then MM procedure drives
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the likelihood uphill. This is also known as the ascent property and is based on the

following inequalities:

L(X ,Z|Θ(t+1)) > G(Θ(t+1)|Θ(t)) > G(Θ(t)|Θ(t)) ≡ L(X ,Z|Θ(t)) (59)

The ascent property holds true even if G(Θ|Θ(t)) is increased rather than maximized,

leading to significant levels of numerical stability and proving to be exceptionally ben-

eficial in case the maximum of the surrogate function can not be found. Therefore,

the surrogate function is maximized during the second step of the MM algorithm in

order to produce the next iterate Θt+1.

As we have already emphasized, MM relies on recognizing and manipulating inequal-

ities after close examination of the log-likelihood. Thus, to construct a surrogate

function for the log-likelihood in Eq.(53), two minorizations are needed, based on

the Jensen and supporting hyperplane inequalities [52]. To simplify the calculations

during the first minorization, we define:

Πikd = πkd [(1− ρk)πk1]xi1 · · · [(1− ρk)πkd + ρk]
xid · · · [(1− ρk)πkD]xiD (60)

where Πt
ikd would be the quantity evaluated at the t-th iteration. Following this

notation, we state the first minorization rooted in the Jensen inequality:

ln

(∑
d

Πikd

)
≥
∑
d

wtikd ln

(
Πikd

wtikd

)
=
∑
d

wtikd ln Πikd −
∑
d

wtikd lnwtikd (61)

where

wnikd =
Πn
ikd∑
j Πn

ikj

(62)

and

ln Πikd =mi ln(1− ρk) + ln πkd + xi1 ln πk1 + · · ·+ xid ln (πkd + θk)

+ · · ·+ xiD ln πkD
(63)

for θk = ρk/(1−ρk). Then, we apply the supporting hyperplane inequality to separate

the parameters πkd and θk in the troublesome term ln(πkd + θk). This produces the

second minorization, as follows:

ln (πkd + θk) ≥
πnkd

πnkd + θnk
ln

(
πnkd + θnk
πnkd

πkd

)
+

θnk
πnkd + θnk

ln

(
πnkd + θnk

θnk
θk

)
(64)
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After straightforward mathematical transformations, the surrogate function takes the

form: ∑
i

∑
k zik

∑
dw

n
ikd

[∑
j xij ln πkj +

(
1− xidθ

n
k

πn
kd+θnk

)
ln πkd

]
+
∑

i

∑
k zik

∑
dw

n
ikd

[(
mi −

xidθ
n
k

πn
kd+θnk

)
ln(1− ρk) +

xidθ
n
k

πn
kd+θnk

ln ρk

] (65)

Finally, standard arguments now yield the final updates:

πn+1
kd =

(∑
i zik

∑
j w

n
ikjxid +

∑
i zikw

n
ikd

(
1− xidθ

n
k

πn
kd+θnk

))
/
(∑

l

∑
i zik

∑
j w

n
ikjxil +

∑
l

∑
i zikw

n
ikl

(
1− xilθ

n
k

πn
kl+θ

n
k

)) (66)

ρn+1
k =

(∑
i

zik
∑
d

wnikdxidθ
n

πnkd + θnk

)
/

(∑
i

mi

)
, θn+1

k =
ρn+1
k

1− ρn+1
k

(67)

The updates acquired from the MM algorithm are easy, intuitive, offer numerical sta-

bility, natural adaption to parameter constraints, and scalability to high-dimensions,

turning the MM approach into a powerful weapon in the arsenal of optimization

algorithms.

3.1.2 MML Model Selection Criterion

Even though by using MM algorithms we solve many of the weaknesses of EM algo-

rithm for mixture models, the requirement of knowing the number of clusters during

the initialization step still remains. To overcome this limitation, we adopt the ap-

proach in [24], which is based on the MML criterion [23]. Minimum Message Length

(MML) selection criterion consists of evaluating the statistical model’s ability to com-

press a message containing the data. The basic philosophy of the minimum encoding

methods, summarized by Wallace and Freeman [68], is such that we first estimate

the parameters of the mixture model and under the assumption that these are the

true values, we encode the data. The shorter the code achieved, the better is the

representation of the data by the estimated parameters. In the case of unsupervised

learning, the message includes two parts where the first part encodes the model using

only prior information about the model and no information about the data and the

second part encodes only the data. According to information theory, the optimal

number of clusters K is the candidate value which minimizes the message length [22],

given by:

Θ̂ = arg min
Θ

{
− log(h(Θ))− log(P (X|Θ)) +

1

2
log |F (Θ)|+ D

2

(
1 + log

1

12

)}
(68)
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where h(Θ) is the prior probability, P (X|Θ) is the likelihood for the complete data

set, and |F (Θ)| is the determinant of the expected Fisher information matrix. To use

Eq. (68), we must first choose a prior distribution h(Θ), and derive an expression for

the determinant of the expected Fisher Information matrix |F (Θ)|. Fisher informa-

tion matrix is the determinant of the Hessian matrix of the logarithm of minus the

likelihood of the mixture [69]. The Hessian matrix of a mixture leads to a complicated

analytical form of MML which cannot be easily reproduced. Therefore, we approx-

imate we replace the Fisher Information Matrix F (Θ) by the complete-data Fisher

information matrix Fc(Θ) ≡ −E [∂2
Θ log p(X ,Z | Θ)] which upperbounds F (Θ) [14].

Fc(Θ) has block-diagonal structure as follows:

Fc(Θ) = Nblock-diag
{
µ1F

(1) (Θ1) , . . . , µKF
(1) (ΘK) ,M

}
(69)

where F (1) (Θk) is the Fisher matrix for a single observation known to have been

produced by the k-th component, and M is the Fisher matrix of a multinomial dis-

tribution (where |M| = (µ1µ2 · · ·µK)−1)[70]. The approximation of F (Θ) by Fc (Θ)

becomes exact in the limit of nonoverlapping components. Following the logic in [14]

we adopt a prior expressing lack of knowledge about the mixture parameters. Natu-

rally, we model the parameters of different components as a priori independent and

also independent from the mixing probabilities, as follows:

p(Θ) = p (µ1, . . . , µk)
K∏
k=1

p (Θk) (70)

For each factor p (Θk) and p (µ1, . . . , µk) , we adopt the standard noninformative Jef-

freys’ prior (refer to [71])

p (Θk) ∝
√
|F (1) (Θk)|

p (µ1, . . . , µK) ∝
√
|M| = (µ1µ2 · · ·µK)−1/2

(71)

for 0 ≤ µk ≤ 1 and
∑K

k=1 µk = 1. Finally, the updated MML criterion becomes:

Θ̂ = arg min
Θ

{
D

2

K∑
k=1

log

(
Nµk
12

)
+
K

2
log

N

12
+
K(D + 1)

2
− log p(X | Θ)

}
(72)

where, as usual, − log p(X | Θ) is the code-length of the data; NµK is the expected

number of data points generated by the k th component of the mixture (it can also be
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seen as an effective sample size from which Θk is estimated); (D/2) log (NµK) repre-

sents the ”optimal” (in the MDL sense) code length for each Θk and (K/2) log(N/12)

term is related to the estimation of µks over all N observations. Please note, if µk = 0

the objective function goes to negative infinity. However, we only need to code the pa-

rameters of those components whose probability is nonzero. Finally, from a Bayesian

point of view, Eq.(72) is equivalent, for non-zero-probability distributions, to an a

posteriori density resulting from the adoption of improper Dirichlet-type prior for the

µk parameter , such that:

p (µ1, . . . , µK) ∝ exp

{
−D

2

K∑
k=1

log µK

}
(73)

and a flat prior leading to ML estimates for the mixture parameters Θk. Since Dirich-

let priors are conjugate to multinomial likelihoods [71], the EM algorithm undergoes

a minor modification of the update of the component’s weight in the M-step to:

µ̂k =
max

(∑
i ẑik −

D
2
, 0
)∑

j max
(∑

i ẑij −
D
2
, 0
) (74)

The approach we are using allows the model to be initialized with a large value of K,

thus surpassing the limitation of initialization dependency and the tendency of such

algorithms to get convergence in a local minimum. Starting with a large value of K

may lead to several empty components and there will be no need to estimate, and

transmit, their parameters. The advantage of the new update formula is its pruning

behavior, that when some of the µk go to zero they will be removed, preventing in

such way the algorithm from going to the boundaries of the parameter space.

3.2 Online Neerchal-Morel Mixture Model

As new data become available everyday, the built model should be able to seize the

new information and reflect the changes in the model’s parameter estimates. The

traditional iterative algorithms fail to efficiently address the situation. Indeed, the

traditional batch methods require the model to be retrained from scratch, therefore,

demanding a great deal of computational time and memory usage. Moreover, the

whole dataset must be available in the memory at every iteration. Considering the

volume, velocity and variety in which new data becomes available everyday, the ap-

proach lacks feasibility. On the other hand, online learning algorithms show promise
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to address the batch learning drawbacks and efficiently update the already built mod-

els. The online scheme can be easily adapted to the Neerchal Morel Mixture models

with MM learning approach. The online MM algorithm is essentially a stochastic

approximation procedure and can be considered as the stochastic analog of the deter-

ministic MM algorithms. Therefore, we use the Stochastic Gradient Ascent Learning

method to update the component’s parameters of the mixture model with the new

input vector. Thus, lets consider a dataset represented by K multivariate Neerchal-

Morel distributions with parameters ΘN . Suppose, now, at time t + 1, a new data

vector Xt+1 becomes available, thus, the mixture model parameters need to be up-

dated incrementally considering the new data vector. The problem we aim to solve

is how to update the different mixture models parameters. For this goal, we use the

stochastic ascent gradient parameter updating proposed by [72] , where the model

parameters ΘN+1 will be updated according to:

Θ
(t+1)
N+1 = Θ

(t)
N +

1

N + 1

∂L
(
XN+1, ZN+1|Θ(t)

N

)
∂Θ

(t)
N

(75)

Naturally, to ensure the unity constraint of the mixing proportions µk as well as

the unity constraint of feature proportions πkd we have considered new variables

α1, . . . , αK−1 and βk1, . . . , βk,D−1, respectively, that belong to R by introducing the

Logit transformation:

αk = log
µk
µK

, k = 1, . . . , K − 1 (76)

and

βkd = log
πkd
πkD

, d = 1, . . . , D − 1 (77)

The mixing proportion, in this case, can be updated as follows:

µ
(t+1)
k =

exp
(
α

(t+1)
k

)
1 +

∑K−1
k=1 exp

(
α

(t+1)
k

) , k = 1, . . . , K − 1 (78)

µ
(t+1)
K =

1

1 +
∑K−1

k=1 exp
(
α

(t+1)
k

) (79)

such that,

α
(t+1)
k = α

(t)
k +

1

N + 1

(
z

(t)
N+1,k − µ

(t)
k

)
, k = 1, . . . , K − 1 (80)
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Similarly, the feature weights, in this case, can be updated as follows:

π
(t+1)
kd =

exp
(
β

(t+1)
kd

)
1 +

∑D−1
d=1 exp

(
β

(t+1)
kd

) , d = 1, . . . , D − 1 (81)

π
(t+1)
kD =

1

1 +
∑D−1

d=1 exp
(
β

(t+1)
kd

) (82)

such that,

β
(t+1)
kd = β

(t)
kd +

1

N + 1

(
z

(t)
N+1,k − µ

(t)
k

)
(83)

where z
(t)
N+1,k is the posterior probability of the new coming vector given the old set

of parameters Θ(t). Finally, the update formula for the overdispersion parameter is

given below:

ρ
(t+1)
k = ρ

(t)
k +

z
(t+1)
N+1,k

N + 1

XN+1θ
(t)
k

π
(t)
kd +θ

(t)
k

mN+1

, θn+1
k =

ρn+1
k

1− ρn+1
k

(84)

Note how the learning parameter 1
N+1

decreases when the number of observations

increase. The decreasing property helps the model to overcome catastrophic forget-

ting, that is, the tendency to forget previously learned information upon learning new

information.

3.3 Experimental Results

The importance of online learning in the real-world scenarios, where data are gener-

ated with high velocity, can be demonstrated by many applications in a wide spectrum

of domains. Consider, for example, occupant activity and behavior modeling as key

information for minimizing energy consumption in smart buildings [73]. Moreover,

real-time surveillance has gained a significant value nowadays from traffic monitoring

to prevention of possible threats, such as terrorist attacks, environmental hazards or

disease outbreaks. The most recent threat to global public health has emerged by a

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus

disease 2019 (COVID-19). COVID-19 emerged in late 2019 and caused an ongoing

pandemic, with more than 200 countries affected around the world [74]. Researchers,

policy makers and other interested parties immediately initiated machine learning

projects in order to help solving the big questions related to the outbreak and limit

its impact on our society as much as possible.
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3.3.1 COVID-19-Related Applications

To test the effectiveness of the proposed model and demonstrate the advantages of

online learning in a scenario where a sheer volume of data is generated daily, we use

two challenging datasets concerning COVID-19.

First, given the rapid increase of coronavirus related literature, text and data mining

approaches are needed to provide insights and find answers to high priority scien-

tific questions. To date, the COVID-19 Open Research Dataset (CORD-19) contains

52481 articles in English, divided as follows: 26434 with general information, 10639

related to business, 2601 articles in technology, 506 in the science domain and 12266

finance-related. The amount of the articles increases daily, therefore, we apply the

proposed online algorithm to the dataset in order to test its effectiveness. Here, each

article is represented as a vector of word counts, achieved after performing the Bag-

Of-Words (BOW) approach.

Second, chest x-rays are widely used as a tool for diagnosing COVID-19 to mitigate

the overwhelming demand for tests. Therefore, machine learning and more advanced

methods, such as deep learning, have proven to be highly effective in identifying pat-

terns of the disease found in patient’s lungs. The dataset used contains 67 images

of patients diagnosed with COVID-19, 2 patients diagnosed with pneumonia and 21

patients whose test’s results were negative. We aim to use our proposed models to

efficiently distinguish between healthy patients, COVID-19 patients or pneumonia

patients. Again, each image is represented as a vector of counts (i.e. latent aspects).

The methodology used for the extraction of the features is Scale-Invariant feature

transformation. Then, the extracted features are clustered into visual words using

the K-means algorithm, where each image is represented as a histogram of frequen-

cies. Finally, a Probabilistic Latent Semantic Analysis (pLSA) is applied to transform

the number of visual words to a predetermined D dimension. Sample images form

the COVID-19 chest x-rays dataset are shown in Fig.(14).

The recognition accuracy for both datasets, obtained by applying the different ap-

proaches is shown in Table (5). Here, the accuracy has been considerably improved

using the new proposed mixture model. Specifically, the Neerchal Morel Mixture

Model outperforms the Multinomial and DCM models, with an overall average clus-

tering accuracy of 78.30%, and 83.33% for CORD-19 and COVID-19 datasets, respec-

tively. The justification of the excellent performance of our model is two-fold: the

40



Figure 14: Different sample frames of chest x-rays in COVID-19 database.

capability of its parameters to capture the overdispersion and burstiness phenomena

by fitting the high dimensional data into mixtures of multinomial mixtures, and the

efficiency of the MM principle as an optimization algorithm. Indeed, as shown by the

class accuracies in Fig.(15), the NMD model allows a better representation of the vari-

ance of the data. We can observe from the plot that the model can distinguish better

the classes which have more articles, as represented by a higher clustering accuracy.

Note, for example, the MN and DCM models perform poorly for the science-related

articles, whereas the NMD model perform significantly better, demonstrating once

again that assigning the extra weight parameter for the features captures better the

overdispersion of the data and enhances the clustering accuracy. Moreover, the pro-

posed approach increases the accuracy of the clustering accuracy by almost 20% as

compared to the baseline approach (MN) in the COVID-19 dataset, even though the

dataset is extremely challenging and highly imbalanced. Other than better clustering

accuracy, the proposed model is also more efficient in terms of time and memory us-

age. Additionally, adopting the online learning to the Neerchal-Morel Mixture Model,

turns the model into a powerful weapon when dealing with daily and exponentially

increasing volume of data. The performance of the online learning algorithm is shown

in Fig.(16). After the offline learning of the mixture parameters, the new coming data

vectors are immediately used to update the estimates. In Fig.(16), the accuracy of

the model after batches of 100 new data points is plotted. Here, the accuracy of the

model is not significantly increased after the new data become available, therefore,

the trade-off between performance and time or memory resources depends on the

application and preference of the user. Moreover, as shown in Table (5) the model

selection approach proposed with NMD finds that the average number of classes are

5.4 and 3.1 for CORD-19 and COVID-19 datasets, respectively, in accordance with
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Table 5: Average accuracy (in %), and estimated number of components of NMD
algorithms over different runs for COVID-19 datasets.

MN DCM NMD K̂ K
CORD-19 65.62 70.00 78.30 5.4 5
COVID-19 65.21 67.39 83.33 3.1 3

Figure 15: Class accuracies for CORD-19 dataset.

their true number of clusters.

3.3.2 Human Action Recognition

Recognizing human activities from video sequences, or images, has been one of the

most challenging problems in computer vision in the recent years. The online learning

shows great potential and brings tremendous advantages in applications such as video

surveillance and security systems, action-based human-computer interaction or intel-

ligent robots for human behavior characterization, where immediate decision-making

carries a crucial role. However, alongside to the enormous volume, high dimensional-

ity and heterogeneity nature of datasets in the mentioned domain, several other issues

arise, such as occlusion, background clutter, changes in scale, viewpoint, lighting con-

ditions, shadows, appearance, frame resolution, etc. Therefore, given the increased

difficulty to efficiently represent and model the data, we have carefully chosen two
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Figure 16: Online NDM algorithm accuracies for CORD-19 dataset.

datasets, namely KTH [66] and Ballet dataset [67], to test the performance of our

models on recognizing multiple high level activities from video sequences composing

several actors performing different movements.

KTH Human Action Dataset contains single-action video sequences of 25 actors

who perform six different types of human actions; walking, jogging, running, boxing,

hand waving, and hand-clapping in 4 different scenarios: outdoors s1, outdoors with

scale variation s2, outdoors with different clothes s3 and indoors s4. Representative

frames are shown in Fig.(17). It contains a total of 2391 sequences, all taken over

homogeneous backgrounds with a static camera with a 25 fps frame rate. The spatial

resolution of the sequences is 160x120 pixels, and their average length is around 4

seconds. This dataset has been used at video level, i.e., each video sequence has been

represented as a histogram using the bag of features approach. [75]

The Ballet Dataset contains multiple actions in a video sequence, so in that case

we perform per-frame classification instead of per-video classification. It consists of

44 labelled video sequences with 8 different ballet dancing activities; standing hand

opening, standing still, turning, left-to-right hand opening, leg swinging, jumping,

hopping, and right-to-left hand opening. The activities are performed by one woman

and two men and only one actor is performing in each video at a particular time. The

example sequences from video of Ballet dataset are shown in Fig.(18). This dataset

has been used at the frame level, i.e., we extracted the frames and treated each frame
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Figure 17: Different sample frames on human actions in KTH database.

Table 6: Average accuracy (in %), and estimated number of components of NMD
algorithms over different runs for human action recognition.

MN DCM NMD K̂ K
KTH 72.75 73.56 78.85 5.8 6
Ballet 76.93 81.23 84.81 8.2 8

as an image.

From the experimental results shown in Table (6), we observe that the model using the

Neerchal-Morel distribution and MM learning approach performs better as compared

to the Multinomial and DCM distributions. The proposed model achieves a clustering

accuracy of 78.85% and 84.81% for the KTH and Ballet datasets, respectively. The

gain in performance is higher for the KTH dataset, with almost 12% as compared

to the multinomial model and 5% as compared with the DCM model. To perform

the online learning for the Ballet dataset, we splitted the dataset into batches of 50

datapoints. The accuracy of the model is increasing as new data become available,

as shown in Fig.(21). Thus, the incremental learning serves as a powerful tool to

tackle the many challenges brought by huge volume and high dimensionality nature

of count data. In addition, the performance of our model selection approach based on

44



Figure 18: Different sample frames on human actions in Ballet database .

Figure 19: Class recognition accuracy for KTH database.

NMD was evaluated on both datasets, and the average numbers of clusters found over

the 10 runs were 5.8 and 8.2 for KTH and Ballet datasets, respectively as shown in

Table (6). Both clustering accuracy and the selected optimal number of components

confirmed that our proposed frameworks are capable of providing promising results in

modeling overdispersed count data. Finally, the random initialization along with the

model selection criteria, where the number of clusters decreases gradually, mitigates

the tendency of the algorithm to overfit the data or get stuck in a local maxima.
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Figure 20: Class recognition accuracy for Ballet database .

Figure 21: Online NDM algorithm accuracies for Ballet dataset.
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Figure 22: Summary of Probability Distribution and Learning Approaches
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Chapter 4

Conclusion

4.1 Contribution

Our major contributions in this thesis can be summarized as follows:

First, we have compared three new parametric models for clustering based on finite

mixture model of multinomial and Dirichlet Compound Multinomial (DCM) distri-

butions. By using a complete-data information matrix, approximation of the Fisher

Information matrix, we were able to simplify the computations and address the com-

plexity of high-dimensional count data. Moreover, we utilize two alternative repre-

sentations of DCM distribution, which have several properties that make them more

convenient than the original DCM, such as: (1) replacing ratios of Gamma functions

by rising polynomials considerably simplifies the calculations and derivations, (2) a

second parameter is added which can model overdispersion of the data.

Second, we have used a powerful minorization-maximization (MM) framework to ad-

dress the mixture’s parameter estimation. MM algorithms avoid many complications

that arise during the optimization of DCM mixture models due to the non-existence

of a closed-form solution and have proven to be easy to implement and provide re-

markable numerical stability.

Third, to tackle the problem of the unknown number of clusters in unsupervised

learning, we have implemented two different approaches of minimum message length

model selection criterion. In the second approach, the weights of irrelevant mixture

components are driven towards zero, which resolves the problem of knowing the num-

ber of clusters beforehand.
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Fourth, a Neerchal-Morel Mixture Model is developed, which due to its representa-

tions as mixture of multinomial distributions captures overdispersion of high dimen-

sional count data by assigning different weights to features in each cluster.

Finally, we adapt the latter model into an online scheme, able to address the high

velocity of data in real-time applications.

The effectiveness and comparison of the newly proposed mixture models was shown

through extensive experiments on challenging clustering problems in a wide range

of applications, such as: sentiment analysis, topic detection, facial expression recog-

nition, human action recognition and medical diagnosis. The complete-data infor-

mation matrix, along with the gained simplicity of AFSA, make the Multinomial

mixture model comparable to the DCM mixture model, which is designed to cap-

ture the burstiness phenomena of count data. However, the model based on the first

parametrization of DCM distribution, supported by the MM framework, achieves

higher accuracy on similar levels of simplicity. The results show that the proposed

mixture model based on the second parametrization of DCM distribution outperforms

the other models, owing to the ability of the extra parameter to capture overdisper-

sion. Moreover, online NDM mixture model has proven to be a robust algorithm

which has achieved better or similar performance with the offline model and has,

therefore, been able to retain a satisfactory trade off between classification accuracy

and time performance. Finally, our unsupervised algorithms provide promising re-

sults in selecting the optimal number of clusters by optimizing the message length of

the data efficiently. Please refer to Fig.22 or a summary of the contribution in this

thesis.

4.2 Future Work

We plan to further improve the online learning algorithm by adding the model se-

lection criteria so that the number of clusters and therefore, the model that best

represents the data can be selected automatically after each new data instance or

batch. When the range of candidate number of clusters is large, the time-complexity

increases significantly. We aim to find an efficient solution for the model selection of

the online algorithm.
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