
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-5-2014 12:00 AM

Intents-based Service Discovery and Integration Intents-based Service Discovery and Integration

Cheng Zheng
The University of Western Ontario

Supervisor

Weiming Shen

The University of Western Ontario Joint Supervisor

Hamada Ghenniwa

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Cheng Zheng 2014

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Zheng, Cheng, "Intents-based Service Discovery and Integration" (2014). Electronic Thesis and
Dissertation Repository. 2402.
https://ir.lib.uwo.ca/etd/2402

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61654849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2402&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F2402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2402?utm_source=ir.lib.uwo.ca%2Fetd%2F2402&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

INTENTS-BASED SERVICE DISCOVERY AND INTEGRATION

(Thesis format: Monograph)

by

Cheng Zheng

Graduate Program in Electrical and Computer Engineering
Department of Electrical and Computer Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Cheng Zheng 2014

ii

Abstract

With the proliferation of the Web and Web services, when a new application is being

developed, it makes sense to seek and leverage some existing Web services rather than

implementing the corresponding components from scratch. As a result, significant research

efforts have been devoted to the techniques for service discovery and integration. However,

most of the existing techniques are based on the ternary participant classification of the Web

service architecture which only takes into consideration the involvement of service providers,

service brokers, and application developers. The activities of application end users are

usually ignored.

This thesis presents an Intents-based service discovery and integration approach at the

conceptual level which is inspired by two industrial protocols: Android Intents and Web

Intents. The proposed approach is characterized by allowing application end users to

participate in the process of service seeking. Instead of directly binding with remote services,

application developers can set an intent which semantically represents their service goal in

applications. When applications are running, an Intents user agent will resolve their intents

and generate candidate service lists. Then application end users can choose a service from the

candidate lists to complete their application tasks. The intents in this work are classified into

explicit intents, authoritative intents, and naïve intents. This thesis examines in depth the

issue of naïve intent resolution analytically and empirically. Based on the empirical analysis,

an adaptive intent resolution approach is devised. For validation purposes, this thesis studies

two cases to show the advantages of Intents. In addition, a design for the Intents user agent is

presented and its proof-of-concept prototype is demonstrated. Finally, Intents and the Intents

user agent are applied to integrate Web applications and native applications on mobile

devices.

Compared with the traditional techniques for service discovery and integration, the Intents-

based approach is innovative and opens up new promising directions in this area. However,

Intents is still a newborn framework, and it still has a lot of room for improvement and

requires further research and development efforts.

iii

Keywords

Web Services, Intents, Service Discovery and Integration, Assistant Agent, Semantic

Integration, Information Retrieval, Mobile Computing

iv

Acknowledgments

First, I would like to express my sincere gratitude to my supervisors Dr. Weiming Shen and

Dr. Hamada H. Ghenniwa for their continuous support for my PhD study and research. Their

patience, experience, and knowledge helped me in all of my research and writing of this

thesis. I learned a lot from them and have progressed rapidly in the past 4 years. I could not

imagine what my doctorate life would be without their assistance.

Besides my supervisors, I would like to thank the other members of my thesis committee for

their encouragement, insightful comments, and challenges.

My sincere thanks also go to my colleagues in the same lab: Fujun Yang, Afshan Samani, Dr.

Yunjiao Xue, Dr. Wafa Ghonaim, Ali Hussain, and Islam Ali for their priceless help. Their

enthusiasm on the road of science and technology makes me work hard every day.

I also want to express my great appreciation to Henry Xue and Qi Hao who provided me with

a happy life as a volunteer in NRC. They made every effort to teach me how to participate in

a project and collaborate with other team members.

Last but not least, I would like to thank my parents for supporting me spiritually throughout

my life.

v

Table of Contents

Abstract ... ii

Acknowledgments.. iv

Table of Contents .. v

List of Tables ... viii

List of Figures .. xi

List of Acronyms ... xiii

Nomenclature .. xv

Chapter 1 ... 1

1 Introduction .. 1

1.1 Research Issue ... 2

1.2 Proposed Solution ... 3

1.3 Outline of the Thesis ... 5

Chapter 2 ... 6

2 Background and Literature Review ... 6

2.1 Web Service Discovery and Integration ... 6

2.1.1 Service Functionalities and Qualities .. 6

2.1.2 Collaboration of Auxiliary Information .. 11

2.1.3 Semantic Web ... 12

2.1.4 Android Intents and Web Intents .. 13

2.2 Information Retrieval .. 14

2.2.1 Information Retrieval Models ... 14

2.2.2 Short Text Document Retrieval .. 19

2.3 Summary ... 21

Chapter 3 ... 22

vi

3 Intents-based Service Discovery and Integration ... 22

3.1 Intents Architectures ... 22

3.1.1 Implicit Mode.. 26

3.1.2 Explicit Mode.. 27

3.2 Intent Data Structure ... 29

3.2.1 Authoritative Intent ... 30

3.2.2 Naïve Intent ... 35

3.2.3 Explicit Intent.. 36

3.2.4 Comparison and Discussion on Intent Types.. 36

3.3 Intents Services ... 38

3.3.1 Intents Advertisement ... 39

3.3.2 Intents Services from SOAP Web Services .. 42

3.3.3 Intents Services from REST Web Services .. 44

3.4 Intent Resolution ... 45

3.5 Use Cases Study .. 50

3.5.1 Sharing Button .. 50

3.5.2 Weaving Services.. 52

3.6 Summary ... 54

Chapter 4 ... 56

4 Adaptive Intent Resolution .. 56

4.1 Similarity Model Formulation .. 56

4.2 Empirical Study on the Similarity Model ... 58

4.2.1 Similarity Model Templates and IR Models ... 59

4.2.2 Evaluation Measures ... 63

4.2.3 Experiment set-up and preprocessing ... 66

4.2.4 Results and Analysis ... 68

vii

4.3 An Adaptive Intent Resolution Approach ... 74

4.3.1 Empirical Result Review .. 74

4.3.2 Adaptive Approach Design ... 75

4.3.3 MAP-based Adaptive Approach ... 78

4.3.4 MRR-based Adaptive Approach ... 79

4.4 Summary ... 80

Chapter 5 ... 81

5 User Agent: Design, Implementation, and Application ... 81

5.1 User Agent Design .. 81

5.2 Prototype ... 84

5.2.1 Implementation ... 84

5.2.2 Demonstration ... 84

5.3 User Agent Application: Integration of Web and Native Applications on Mobile
Devices .. 87

5.3.1 Motivation for the Integration ... 87

5.3.2 Web Applications Depending on Android Components 90

5.3.3 Native Applications Depending on Web Services 93

5.4 Summary ... 96

Chapter 6 ... 97

6 Conclusion and Future Work ... 97

6.1 Conclusion .. 97

6.2 Future Work .. 98

References ... 100

Curriculum Vitae .. 107

viii

List of Tables

Table 2.1: Axioms from IR heuristics ... 18

Table 3.1: Authoritative intent specification sample .. 31

Table 3.2: Authoritative intent sample .. 31

Table 3.3: Web Intents public intents ... 33

Table 3.4: Naïve intent example ... 35

Table 3.5: Explicit intent example .. 36

Table 3.6: Comparison of explicit, authoritative, and naïve intents 37

Table 3.7: RESTful and REST-RPC samples ... 44

Table 3.8: Field comparison between intents and Intents advertisements 45

Table 3.9: Data type matching instances .. 46

Table 3.10: Workflow samples for weaving services ... 52

Table 3.11: Possible services for each action ... 53

Table 3.12: Service selection for each user .. 53

Table 4.1: Weight constraints for S ... 58

Table 4.2: Set of similarity model templates .. 59

Table 4.3: Lucene default IR model items .. 60

Table 4.4: Notation explanation for Table 4.3 .. 60

Table 4.5: Notation explanation for Formula 4.7 ... 61

Table 4.6: Notation explanation for Formula 4.8 ... 61

ix

Table 4.7: Notation explanation for Formula 4.9 ... 62

Table 4.8: Summary of the implemented IR models .. 62

Table 4.9: Summary of evaluation measures .. 65

Table 4.10: Dataset statistics... 66

Table 4.11: Recall results .. 70

Table 4.12: Best selection of ,s m under recall .. 70

Table 4.13: Precisione results .. 71

Table 4.14: Best selection of ,s m under precisione ... 71

Table 4.15: F-measuree results .. 72

Table 4.16: Best selection of ,s m under F-measuree ... 72

Table 4.17: MAPe results .. 73

Table 4.18: Best selection of ,s m under MAPe ... 73

Table 4.19: MRR results ... 74

Table 4.20: Best selection of ,s m under MRR .. 74

Table 4.21: Selected ,s m pairs for recall, precisione, F-measuree, and MAPe 75

Table 4.22: Selected ,s m pairs for MRR ... 75

Table 4.23: Example of the extended Intents advertisement registry 77

Table 4.24: Effective top service thresholds ... 77

Table 5.1: Development kits for the user agent prototype .. 84

Table 5.2: Mobile platform and their required skill set .. 88

x

Table 5.3: Comparison between intents and Android intents ... 90

xi

List of Figures

Figure 3.1: Web service architecture .. 22

Figure 3.2: The process of service discovery and integration in the current Web service

architecture .. 23

Figure 3.3: Modified design for service discovery and integration .. 25

Figure 3.4: Implicit mode of the Intents architecture ... 27

Figure 3.5: Explicit mode of the Intents architecture ... 28

Figure 3.6: The hierarchy of intent classification ... 30

Figure 3.7: An Intents advertisement example for link sharing services 41

Figure 3.8: Intents advertisement publishing ways... 41

Figure 3.9: The WSDL document of a SOAP Web service sample 43

Figure 3.10: Creating Intents services from SOAP Web services .. 43

Figure 3.11: Creating Intents services from RESTful and REST-RPC Web services 45

Figure 3.12: Intent resolution process ... 47

Figure 3.13: Intents advertisement registry levels .. 48

Figure 3.14: Registry upgrading in intent resolution .. 49

Figure 3.15: Sharing an article link with sharing buttons ... 50

Figure 3.16: The sharing button in Intents .. 52

Figure 3.17: User selected services graph... 54

Figure 4.1: Effective top services ... 63

xii

Figure 4.2: Effective top services for the experiments ... 68

Figure 4.3: Effective top services compared to the retrieved services 69

Figure 4.4: Adaptive intent resolution process ... 76

Figure 5.1: User agent design ... 82

Figure 5.2: Intents text sharing example ... 85

Figure 5.3: Instructions to trigger an intent in JavaScript ... 85

Figure 5.4: Candidate services for the example in Figure 5.3 .. 86

Figure 5.5: Selection of the Twitter application and continue the sharing task 87

Figure 5.6: Field mapping from Android intents to intents .. 91

Figure 5.7: Scheme to combine the Android intent data and extra fields 91

Figure 5.8: Web text sharing example by calling Android components 92

Figure 5.9: Instructions to invoke Android components in the Web application in Figure 5.8

... 92

Figure 5.10: Candidate Android components for the Web application example in Figure 5.8

... 93

Figure 5.11: Flow of calling Web services in Android applications 94

Figure 5.12: Field mapping from intents to Android intents .. 94

Figure 5.13: Android text sharing example by calling Web services 95

Figure 5.14: Instructions to invoke Web services in the Android application in Figure 5.13 95

Figure 5.15: Candidate Web services for the Android application example in Figure 5.13 .. 96

xiii

List of Acronyms

CRUD Create, Retrieve, Update, and Delete

CSS Cascading Style Sheets

DAML DARPA Agent Markup Language

EM Expectation-Maximization

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDF Inverse Document Frequency

IR Information Retrieval

JSON JavaScript Object Notation

MAP Mean Average Precision

MLE Maximum Likelihood Estimation

MRR Mean Reciprocal Rank

OS Operating System

OWL Web Ontology Language

PC Personal Computer

QoS Quality of Service

RDF Resource Description Framework

REST REpresentational State Transfer

SOAP Simple Object Access Protocol

xiv

TF Term Frequency

UDDI Universal Description, Discovery and Integration

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

W3C The World Wide Web Consortium

WSDL Web Services Description Language

xv

Nomenclature

d Text document

| |d Document length

q Text query

t Index term

(,)sim q d The similarity between query q and document d

N The number of all documents

()df t Document frequency for term t

(,)f t d The count of term t in document d

I Intent

A Intents advertisement

S Similarity model for naïve intent resolution

C The set of services having passed intent type checking and data type matching

()commonf C The common fields of C

M IR model set

m IR model

 Similarity model template set

s Similarity model template

,s m A pair of a similarity model template and an IR model which determines a

specific S

xvi

E Evaluation measure

 All intents used to search for services

()e I All the effective top services for intent I

kp Precision at rank k

Irank Rank of the first relevant service for intent I

1

Chapter 1

1 Introduction

In the early 1990s, Tim Berners-Lee [Berners-Lee, 1992] wrote a proposal which

articulated the idea of the World Wide Web (later also named the Web). Within just a

few years of its birth, the Web had achieved unbelievable success and won substantial

fame. WorldWideWebSize.com 1 estimates that there exist at least 1.63 billion pages

currently on the Web. The fast growth of the Web along with its vast amount of

information including text, audio and video has created an era of information explosion.

On the other hand, the Web initiative was to establish a global man-knowledge sharing

system with hypertext to link pieces of the content in text or other media which mimics

the human association of ideas. In addition to such ambition, after decades of evolution,

the functionalities of the Web have been far beyond simple knowledge sharing with the

development of transaction processing systems [Gray and Reuter, 1992], code on demand

[Fuggetta et al., 1998], and the representational state transfer (REST) architectural style

[Fielding, 2000; Fielding and Taylor, 2002]. Today’s Web has been an aggregation of

social networking sites, e-business services, blogs, wikis and online games which

influences every corner of society.

With the proliferation of the Web, Web services emerged as a communication method

between two devices over the Web. A Web service is a software component, placed on

the Web, that exposes its access through a programming interface and adopts common

protocols such as Extensible Markup Language (XML) for communications [Chappell

and Jewell, 2002; Manes, 2003; Newcomer, 2002]. W3C2 defines the Web services

architecture with a series of protocols including WSDL, SOAP and UDDI. Web Services

Description Language (WSDL) is used for describing the functionality offered by a Web

service and encompasses the information such as operations and their parameters in the

1
 “The size of the World Wide Web,” accessed Jan 10, 2014, http://www.worldwidewebsize.com/

2
 The World Wide Web Consortium

2

form of XML. Simple Object Access Protocol (SOAP) is a protocol for exchanging

messages between service consumer clients and Web services. Universal Description,

Discovery and Integration (UDDI) defines the standard for constructing platform-

independent service registries to provide a mechanism to register and locate Web services.

These standards constitute the core elements of SOAP Web services which is one major

family of Web services. Compared with the SOAP Web services, in recent years, another

family of Web services, named REST Web services, which are created directly on

Hypertext Transfer Protocol (HTTP) and uniform resource locators (URL) have achieved

wide popularity as well.

1.1 Research Issue

Over the past decade, the scale of Web services has surged significantly. In 2010, Zheng

et al. [Zheng et al., 2010] claimed that over 28,500 public Web services exist on the Web

under their monitoring. With such a scale of Web services, it is an attractive and sensible

option to seek suitable existing Web services and integrate them instead of implementing

the corresponding components from scratch in a new product development. In order to

achieve this vision, the techniques on seeking and integrating a best suitable service for a

system requirement, i.e., service discovery and integration, should be developed.

Most of the state-of-the-art research efforts on service discovery and integration are based

on the currently famous Web services ternary participant role classification. In the

classification, participant roles revolving around Web services are divided into three

categories: service providers, service brokers and service consumers [Al-Jaroodi and

Mohamed, 2012]. Service providers take the responsibility for designing and developing

a Web service. Service brokers collect the available services and advocate them to the

rest of the world through mechanisms such as UDDI or Web services search engines.

Service consumers find and locate the desired services and create their products

depending on these services. Based on this classification, if the product is assumed to be

a software application, the process of discovering and integrating a desired service is

usually as follows:

3

The developers of the software application manually create queries representing

their functional and non-functional service needs and search the service registries

provisioned by service brokers. Once they discover a suitable service, a piece of

binding script for the service is hardcoded into the application. When end users of

the application use it, the binding script will directly communicate with the

remote service.

In the above service discovery and integration process, the application developers take on

almost all the work for seeking and binding the desired remote service while at the same

time the end users, who indirectly use the service are ruled out of the steps for

determining the working service. The very limited end user participation in service

discovery and integration may cause serious problems. For example, application

developers may choose service A for their released product. However, while using the

product, some end users may prefer service B and others have interests in service C. Even

worse, if A is blocked in a network, the product may be out of order to the end users in

the network. As a result, the product marketing will be seriously affected.

1.2 Proposed Solution

In order to address the issues incurred by limited end user participation, an Intents-based

approach for service discovery and integration is proposed in this thesis. The approach is

inspired by two industrial protocols: Web Intents and Android Intents. The difference

between Intents and the existing techniques is that Intents introduces the involvement of

application end users into the service seeking process, i.e., application end users instead

of application developers ultimately decide which service is selected to complete the

given application task.

In Intents, if an application developer wants to leave the right of selecting a working

service to the end users of an application, he/she can create a corresponding intent in the

application. The intent is a data structure which semantically represents the operation of

the service desired by the application developer. When an end user uses the application

and triggers the intent, a message enclosing the intent is created and sent to a user agent.

The user agent resolves the intent and generates a list of candidate services to the end

4

user according to the content of the intent. Then the end user selects a service from the

candidate service list to continue the application.

The term “Intents” means the proposed approach for service discovery and integration

revolves around a collection of various intents. Basically, this work classifies intents into

explicit intents, authoritative intents, and naïve intents. Explicit intents specifically point

to a desired service. If an application developer uses the explicit intent, it means the

developer has determined the desired service and wants to rule application end users out

of the service seeking process. Authoritative and naïve intents are together called implicit

intents. It is only by implicit intents that end users have the right of taking a role in

service discovery. The difference between authoritative and naïve intents is that the

former category asks for third-party or authority participation. The specification of an

authoritative intent should be made up by an authoritative organization so that the

authoritative intent is more reliable, robust and effective in service discovery. In contrast,

naïve intents sacrifice the involvement of authoritative organizations for flexibility.

A Web service capable of accepting an intent is called Intents service. When a message

enclosing an intent arrives at the service, it can extract the data from the intent for further

internal data processing. An Intents service should be marked with an Intents

advertisement which can be leveraged by the user agent in creating candidate services.

This work formally defines the concept of Intents advertisements and comprehensively

discusses the ways of publishing an Intents advertisement to be captured by the user

agent. Since currently SOAP and REST Web services have together dominated the Web

services world, this work also presents how to wrap a SOAP or REST Web service to

create an Intents service.

The process of resolving an intent by user agents is complicated. This work presents the

process systematically including the utilization of different levels of Intents

advertisement registries for the generation of candidate services. In addition, this work

formally defines the process of resolving naïve intents as an optimization problem and

applies information retrieval (IR) models to the problem. However, this problem is

difficult to solve by analytic methodologies. Instead, this work conducts a set of

5

experiments on an Intents dataset acquired from the real world for an empirical study of

the problem. Based on the empirical study, the work presents an adaptive approach for

intent resolution.

The user agent plays a pivotal role in intent resolution. It takes the responsibility of

storing user-collected Intents advertisements, rendering the user interfaces of Web

applications and Intents services, resolving intents for the generation of candidate

services, and communicating with remote services. This work shows a design of the user

agent and implements a prototype based on the design. The prototype demonstrates the

advantage of applying Intents to the case of text sharing.

With the development of mobile devices, implementing a mobile application in the form

of Web applications or native applications is a hard choice. On the other hand, integrating

Web applications and native applications to make the most of their advantages is an

attractive direction. Since Intents originates from Android Intents which is used to

communicate Android native components, this work applies Intents to integrate Web

applications and Android applications to show the benefits and advantages of Intents in

this direction.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 reviews the background and

related research literature. Chapter 3 formally and systematically describes the proposed

Intents-based approach for service discovery and integration in terms of the architecture,

intent data structure, Intents services, and the intent resolution mechanism. In addition,

two cases are applied to demonstrate the benefits and advantages of Intents in service

discovery and integration. Chapter 4 defines the intent resolution problem as an

optimization problem and conducts an empirical study to address the problem. Based on

the empirical study, an adaptive intent resolution approach is presented. Chapter 5

presents a design and implementation of user agents. In addition, this chapter also

presents that Intents and the proposed Intents user agent is leveraged to address the

problem of integrating Web applications and native applications on mobile devices.

Chapter 6 provides the conclusion and discusses the future work.

6

Chapter 2

2 Background and Literature Review

This work aims to employ Intents to address the problem of service discovery and

integration. Thus the existing efforts which have been devoted to the field will be

investigated in this chapter. On the other hand, since information retrieval (IR) techniques

are applied in the naïve intent resolution process, which is one of the key steps for the

proposed approach, we will also review their related literature.

2.1 Web Service Discovery and Integration

The resources used for service discovery and integration include service functionality and

quality. In addition, some researchers tried to utilize other auxiliary information such as

service related Web pages, user history log, and peer data. With the development of the

semantic Web, ontologies are also applied to this field.

Android Intents and Web Intents are two industrial protocols which introduce application

end users into the process of seeking and integrating Android and Web applications,

respectively. The two protocols also provided inspiration for this work.

2.1.1 Service Functionalities and Qualities

One early attempt for Web service discovery and integration was the UDDI initiative. A

business can register its related information with a UDDI registry for the services it

provides [Jewell and Chappell, 2002]. UDDI specifies three types of information: white

pages, yellow pages, and green pages. A white page contains basic contact information

and identifiers about a service provider, including business name, address, contact

information, and its unique identifiers. Yellow pages have information that describes the

taxonomy of Web services. Service consumers are able to browse a UDDI registry for

desired services by such information. Green pages are used to describe how to access a

Web service such as service binding information. On the other hand, UDDI

implementations usually have user-friendly interfaces through which service consumers

may search for their desired services. However, service searching in UDDI is still

7

keyword-based. With the development of Web services, keyword-based searching is far

from satisfying user requirements. As a result, a great deal of effort is devoted to explore

innovative techniques for service discovery and integration.

User requirements for Web services can be divided into functional and non-functional

categories. Functional requirements indicate if the functionalities of a service satisfy user

demands. Non-functional requirements indicate if service quality properties such as price,

reputation and response time are appropriate for users. A lot of previous research efforts

for service discovery and integration are inspired by the two types of user requirements.

The Woogle project [Dong et al., 2004] attempted to compute functional similarities

based on input parameters, output parameters and operation names in Web services. Their

approach clusters input and output parameters into concept groups and the concept

groups are exploited in the computation of input and output similarities. In addition to a

keyword search, the proposed approach also uses template search and composition search.

In a template search, users are able to represent a query in the form of service structures

including input parameters, output parameters, and operation names. Composition search

means that if any single service operation could not fulfill user requirements but a

composition of some service operations can, the operation composition should be

returned.

Wang and Stroulia [Wang and Stroulia, 2003] presented a set of similarity assessment

methods based on WSDL documents and the WordNet lexical database [Miller, 1995].

For each WSDL document, in addition to the original words in the document which

constitute a word vector, another two vectors are proposed. One is the vector of

synonyms for all word senses. The other is the vector of direct hypernyms, hyponyms,

and siblings for all word senses. If a user inputs a natural language query for the desired

service, the vector space model in IR is applied for each vector and three similarity scores

are obtained. Then an overall score which indicates the service relevance is calculated as

a linearly weighted combination of the three similarities.

Hatzi et al. [Hatzi et al., 2012] designed and developed a specialized search engine for

Web services. It captures Web service descriptions from the Web, parses them and

8

constructs an index. The search engine adopts TF-IDF and cosine to create similarities

between service descriptive documents and user queries. If a user inputs a multiple-field

query to describe his/her desired service, a linearly weighted combination of all the

similarities in each field will be applied.

Plebani and Pernici [Plebani and Pernici, 2009] attempted to address the similarity

problem in Web services through graph theory. They organized the operation names,

parameter names, and parameter data types of a Web service into a tree structure.

Inspired by the assignment problems in bipartite graphs [Wang et al., 2005; Wolsey,

1998], Plebani and Pernici treated operation name terms and parameter name terms in

two Web services as the two separate sets in a bipartite graph. Based on the bipartite

graph, the closeness of any two terms is modeled by their edge weight. Then operation

similarities and parameter similarities can be obtained by maximizing the average weight

over all the matching assignments in the bipartite graph. They also defined parameter

data type similarities and applied WordNet in their computation. Then all the similarities

for the operation names, parameter names, and parameter data types are combined

according to the Web service tree structure. Liu et al. [Liu et al., 2010] later improved

this method by taking account of term relations within each set in bipartite graphs. They

demonstrated the effectiveness of their improvement by a set of experiments.

The approaches mentioned above mainly focus on employing user functional

requirements and service functionalities to address the problem of service discovery and

integration. With the growth of Web services, there could be the case that many services

provide similar functionalities. As a result, more and more researchers began to apply

other service attributes such as service qualities in seeking desired services.

Al-Masri and Mahmoud [Al-Masri and Mahmoud, 2007] proposed a set of service

quality attributes such as response time, throughput, availability, accessibility,

interoperability, and cost. They also defined how to compute these attributes and

attempted to use a linear combination of these attributes to construct a relevance function.

In order to demonstrate the significance of service qualities in service discovery, Al-

Masri and Mahmoud [Al-Masri and Mahmoud, 2009] conducted a survey and discussed

9

the impact of service quality on service discovery and integration. They divided user

queries for service goals into exploratory and informational categories. Exploratory

queries have no service quality requirements while informational queries do. They made

statistics of user queries for the two categories. The results show that more than 80

percent of user queries are informational which demonstrate that service qualities are

significant in service discovery and integration.

Ran [Ran, 2003] also noticed the importance of service qualities and suggested an

extended model for the UDDI architecture. In the new model, a UDDI service registry

should have both the functionality information and quality attributes of registered

services. The quality attributes come from service providers. In addition, Ran introduced

a Web service QoS (Quality of Service) certifier which takes the responsibility for

verifying any service quality attribute from service suppliers. With the extended UDDI

architecture, user requesters are able to search for the desired services by queries with

constraints on service qualities.

Canali et al. [Canali et al., 2013] divided service qualities into static and dynamic

qualities. Static qualities (e.g., service provider security or reputation) remain the same or

change very slowly over time. In contrast, dynamic qualities (e.g., response time or

throughput) may change on a per-invocation basis. They claimed that most techniques

treated dynamic qualities as static and may lead to very poor performance in realistic

scenarios. So they proposed a set of algorithms for selecting Web services by satisfying

both static and dynamic requirements.

Hang et al. [Hang et al., 2012] employed trust as an assessment for service qualities.

They proposed a model for the trust of a service based on both positive and negative

evidence for the service. The beta distribution is applied in the model. In addition, they

also treated composite services as a statistical mixture of beta distributions, each for a

constituent service. When constituent services behind a composite service cannot be fully

observable, the trust of each constituent service may be estimated based on its

contribution to the composite service.

10

Mehdi et al. [Mehdi et al., 2012] improved Hang et al.’s method by extending the

positive and negative evidence classes to a set of more than two quality classes so that

more evidence degrees can be considered. As a result, they adopted the multinomial

Dirichlet distribution [Bouguila, 2008] to model the trust for each single Web service in

which the Dirichlet distribution [Bishop, 2006] is a multivariate generalization of the beta

distribution. As for composed services, they used two ways (Bayesian networks [Jordan,

1998] and a mixture of multinomial Dirichlet distributions) to model their trust.

Mobedpour and Ding [Mobedpour and Ding, 2013] noted the significance of assisting

users in the formulation of QoS-based queries. Thus their work mainly focuses on user

interfaces for service query formulation in three aspects. First, a tool is integrated to help

non-expert users gain a perception of QoS value ranges by browsing through available

services. The tool is designed because ordinary users have little idea of QoS values. Then

user service requests are divided into exact and fuzzy classes. The former is for service

qualities which users know clearly and the latter is for those when users have only vague

requirements. In addition, if no service is returned for a service request, some service

constraints in the request will be relaxed because they are too strict to find a service. Thus

a QoS attribute preference order is defined in service requests for users to relax the

constraints. Moreover, their approach classifies service discovery results into full and

partial matching classes to meet different user requirements.

Yau and Yin [Yau and Yin, 2011] proposed selecting the service that best satisfies user

service quality requirements instead of the service with best service qualities which may

be overqualified. In order to achieve this objective, they defined a service quality

requirement specification which enables users to specify the expected upper and lower

bounds, weight, and confidence for each quality attribute in their service requirements.

On the other hand, their approach divides service quality attributes into two types. One is

the utility type which users want to maximize their values. The other is the cost type

which users want to minimize their values. They also designed different normalization

methods for the two types. Their service quality satisfactory score for each service is

modeled based on prospect theory [Kahneman and Tversky, 1979; Tversky and

Kahneman, 1992].

11

Shi et al. [Shi et al., 2012] argued that experienced users and novice users should be

treated separately in service quality computation. Based on this stand, they proposed

improvements on the three main steps in the service quality computation of Yau and

Yin’s work: property normalization, satisfaction calculation, and the aggregation of

multiple properties. Experienced users have the freedom to set the parameters for each

step because they are familiar with the parameters in practice. On the other hand, novice

users are only permitted to use default parameter values.

Xu et al. [Xu et al., 2011] designed and implemented a domain specific Web service

management system for bioinformatics research. The system adopts a skyline-based

algorithm [Kossmann et al., 2002; Papadias et al., 2003] for Web service

recommendation. Each service is described by a quality vector. The skyline algorithm

could find the service which is not dominated by any others. The algorithm’s feature is in

asking no weight input for service qualities.

2.1.2 Collaboration of Auxiliary Information

In addition to service functionalities and qualities, service related Web pages, user history

logs, and peer data can also be exploited to collaboratively address the issues in service

discovery and integration.

Chan et al. [Chan et al., 2012] argued that user history data on Web service usage play

significant roles in service recommendation. They applied collaborative filtering [Chen

and Mcleod, 2006; Herlocker et al., 2004] on usage data and created four algorithms for

service discovery: operation-operation filtering, user-user filtering, combination filtering,

and priorities-assignment strategy. The operation-operation filtering algorithm aims at

finding the closest Web service operations for an operation. The user-user filtering

algorithm is to find the most relevant users for a user. The two algorithms attempt to seek

the similarities for operations and users, respectively. Based on the two filtering

algorithms, the combination filtering algorithm was proposed to improve the accuracy of

service recommendation. In addition to the above three algorithms, the priorities-

assignment strategy algorithm was designed to address the “new item ram-up” problem in

12

applying history data, i.e., the most often used items are easily recommended while at the

same time other items are never considered for service recommendation.

Li et al. [Li et al., 2011] developed a Web service search engine named CoWS. The

search engine collects Web-related online pages and refines their content to extract a

service functional description. Then the functional description is combined with the

content from Web service WSDL files to compute Web service functional similarities.

On the other hand, the search engine also collects user experience feedback such as Web

service ratings and comments. The user feedback is employed to calculate service

reputation. Service reputation and other service qualities collaboratively constitute Web

service non-functional similarities. The search engine ultimately ranks Web services

based on their functional and non-functional similarities.

Yao et al. [Yao et al., 2012] presented a collaborative filtering method based on both user

history data and Web service content. They adapted a three-way model [Popescul et al.,

2001] to make it applicable to service recommendation. Their new model includes a set

of users, a set of Web services, and a set of semantic descriptions for the Web services.

The three sets collaboratively imply a set of latent topics which represent user

preferences. They adopted the expectation-maximization (EM) algorithm [Dempster et al.,

1977] to obtain the parameters for their model from training data.

2.1.3 Semantic Web

With the emergence of the semantic Web, many researchers attempt to address the

problem of service discovery and integration by taking advantage of the progress in the

semantic Web such as ontologies. An ontology is a formal, explicit specification of a

shared conceptualization [Guarino et al., 2009]. As an innovative mechanism for

information organization, ontologies are able to represent complex entities and their

relationships.

Paolucci et al. [Paolucci et al., 2002] proposed an approach based on DAML-S to

augment the search capability of UDDI. DAML-S is a DAML-based (DARPA Agent

Markup Language) language for service description. A DAML-S advertisement for Web

13

services consists of three fields: a service profile field, a service model field, and a

service grounding field. However, Paolucci et al.’s method only considers the service

profile field. Later Bansal and Vidal [Bansal and Vidal, 2003] made an improvement and

designed an algorithm by bringing in the service model field.

Si et al. [Si et al., 2013] proposed a service matchmaking approach by considering

service input and output parameters. Each parameter is denoted by an ordered pair and

the ordered pair consists of a parameter type and its value. As a result, each input or

output can be represented as a set of ordered pairs. On the other hand, user queries are

also represented as a set of input and output parameter types. In order to obtain the

closeness between two parameter types, a directed tree structure named ordered concept

tree is constructed from Web service related ontologies. Each node of the tree represents

a concept and its directed edge points to a super concept. Equivalent concept nodes are

merged to remove duplicate concepts. Based on the ordered concept tree structure, the

closeness between two parameter types can be reflected by the distance of their

corresponding tree nodes.

Vaculin et al. [Vaculin et al., 2008] devised a service discovery strategy specifically for

data providing services. Data providing services provide access to data sources with

structured data. The local schema of each data source behind data providing services is

represented as a set of RDF (Resource Description Framework) views [Chen et al., 2006]

over a shared mediated schema [Halevy, 2001] which is composed of the concepts from a

shared OWL (Web Ontology Language) ontology. On the other hand, service requests are

represented as input and output tuples with RDF constraints. Their algorithm leverages

the two semantic representations to make matches between services and service requests.

2.1.4 Android Intents and Web Intents

Although the techniques in the above subsections have contributed a lot to service

discovery and integration, they are mainly built on the ternary participant role

classification paradigm. Very little of them takes into consideration further dividing the

service consumer role.

14

Android Intents1 and Web Intents2 are two industrial protocols which initiate a new

paradigm for application discovery and integration. In this paradigm, if an application is

dependent on other applications, its developers are allowed to leave the right of

determining the working application to its end users. An application developer just needs

to specify his/her service goal in an intent data structure. However, the two protocols are

just specific protocols for Android applications and Web applications, respectively. They

are designed to address domain issues but not a concept-level or generic method. In

addition, their underlying service discovery and integration mechanisms only employ the

exactly matching strategy which is too simple and may rule out users’ desired services.

Even though the idea of this work comes from Android Intents and Web Intents, the

proposed approach is a systematic and extended version and is presented at a higher level

for generic uses. The proposed approach in this work also addresses the issues in the two

protocols.

2.2 Information Retrieval

Information retrieval aims at finding material of an unstructured nature that satisfies an

information need from within large collections [Manning et al., 2008]. In the context of

text material, each item in the searched collection is a text document and information

needs are represented by text queries. This section will examine IR techniques in terms of

two aspects. Since IR models are applied in the optimization problem of naïve intent

resolution, mainstream retrieval models will be discussed. On the other hand, each intent

has a field named action usually composed of short text. Therefore, the techniques for

short text document retrieval will also be examined in this section.

2.2.1 Information Retrieval Models

In the past few decades, a variety of approaches for modeling the similarity between a

query and a document from a collection have been proposed and developed. These

1
 http://developer.android.com/guide/components/intents-filters.html

2
 http://webintents.org/

15

models are called IR models. The following paragraphs will present some classic IR

models including the Boolean model, the vector space model, the probabilistic model, the

language model, and the axiomatic model in sequence.

The Boolean model [Baeza-Yates and Ribeiro-Neto, 1999; Manning et al., 2008] is a

simple IR model based on set theory and Boolean algebra. The model judges document

relevance by checking the relationship between document representations and query

Boolean expressions. Unfortunately, it is difficult for the Boolean model to compute a

similarity score for documents to measure their relevance degrees. Thus the application

of the Boolean model in information retrieval is very trivial.

The vector space model [Salton et al., 1975; Salton and McGill, 1983] represents

documents and queries as vectors in a high-dimensional space. Each vector is a tuple of

index term weights. The weighting scheme for index terms may vary greatly in practice.

One of the basic weighting schemes is the TF-IDF scheme. For any index term, term

frequency (TF) is proportional to its number of occurrences in a document or query, and

inverse document frequency (IDF) is inversely proportional to the number of documents

containing the index term. A good index term should have a high IDF value to

discriminate between documents. The ultimate term weight for each index term is

computed by utilizing the product of its TF and IDF values. Given index term weights,

the cosine value of the angle between a document vector and a query vector can be

treated as their similarity. However, applying only the cosine-based similarity is not

enough. For one thing, cosine is not a proper mathematical distance or metric [Munkres,

2000]. It does not have the triangle inequality property and it violates the coincidence

axiom. For another, the cosine similarity has a tendency to retrieve more short documents

than long documents [Singhal et al., 1996]. Therefore, many implementations of the

vector space model modify the cosine similarity to make it more effective in practice.

Apache Lucene [McCandless et al., 2010] has a modified built-in implementation

achieving wide success. This implementation will be applied in this work.

The probabilistic model tries to address the document-query relevance problem by

probability theory [Robertson and Jones, 1976; Manning et al., 2008]. Formally, given a

16

document d and a query q , their relevance can be modeled by the probability

(1| ,)P R d q , where 1R means d is a relevant document for q . According to the

Bayes’ law, we have:

(| 1,) (1|)
(1| ,)

(|)

P d R q P R q
P R d q

P d q

Using odds to replace the probability (1| ,)P R d q , item (|)P d q can be removed. So:

(| 1,)
(| ,) (|)

(| 0,)

P d R q
O R d q O R q

P d R q

(|)O R q which means the odds of relevant documents for q is a constant over all

documents. Assuming the index terms in d are independent, removing the constant, and

applying logarithms to transform products into sums, the probability model gives the

similarity between a document and a query as follows:

(| 1,)(1 (| 0,))
(,) log

(| 0,)(1 (| 1,))

(| 1,)(1 (| 0,))
log()

(| 0,)(1 (| 1,))

t q d

t q d

P t R q P t R q
sim q d

P t R q P t R q

P t R q P t R q

P t R q P t R q

The probability items in the similarity formula can be estimated by

0.5
(| 1,)

0.5

r
P t R q

R r

and

() 0.5
(| 0,)

() 0.5

df t r
P t R q

N df t R r

where ()df t is the document frequency for index term t , N the number of all the

documents, R the number of relevant documents for query q , and r the number of

documents in R having index term t .

17

The initial similarity scheme derived from the probability model only contains document

frequency which performs poorly in practice. Robertson and his group made a series of

revisions to the similarity scheme by introducing parameters such as term frequency and

document length. The revised similarities are applied in the Okapi information retrieval

system and have achieved good results [Robertson et al., 1995; Robertson et al., 1999].

One of the successful revisions, the Okapi BM25 similarity scheme, will be applied in

this work.

The language model [Ponte and Croft, 1998] also creates a probability to measure the

relevance between queries and documents. Different from the probability model, given a

query q and a document d , the language model tries to estimate the probability (|)P q d ,

i.e., the probability of generating the query from the document. The language model also

assumes the terms in a query are independent and transforms (|)P q d into:

(|) (|)
t q d

P q d P t d

The probability (|)P t d can be estimated by the fraction of term t in document d which

comes from the maximum-likelihood estimation (MLE) approach. However, the

language model has the disadvantage of assigning zero probabilities to the terms unseen

in documents. As a result, smoothing methods are needed to assign a non-zero probability

to each term unseen in documents and discount the probabilities for the terms occurring

in documents. Zhai and Lafferty [Zhai and Lafferty, 2001a] made a study of three

efficient smoothing methods for the language model including Jelinek-Mercer, absolute

discount, and Dirichlet. The Dirichlet smoothing method employs Baysian analysis

[Casella and Berger, 2001] with the Dirichlet distribution as its prior distribution. A

Dirichlet-based language model implementation will be applied in this work.

The axiomatic model derives IR relevance similarities from a set of axioms [Fang, 2007;

Fang et al., 2004]. The axioms are formal expressions of the IR heuristics which have

been applied in existing IR models. Table 2.1 lists the axiom set.

18

Table 2.1: Axioms from IR heuristics

Name Contents

TFC1
Let q be a query and d be a document. If term 1t q and 2t q , then

1 2(,) (,)sim q d t sim q d t

TFC2
Let q be a query and d be a document. If term 1t q and 2t q , then

1 2 2 2 1 1 1 2(,) (,) (,) (,)sim q d t t sim q d t t sim q d t t sim q d t t

TFC3

Let q be a query and d be a document. If term 1t q , 2t q and 1 2() ()td t td t

(()td is a term discrimination function, e.g., IDF), then

1 2 1 1(,) (,)sim q d t t sim q d t t

TDC

Let d be a document and 1 2,q t t be a query. Assume there are two documents

1d and 2d , where 1 2| | | |d d . 1d contains only 1t and 2d contains only the same

number of 2t . If 1 2() ()td t td t (()td is a term discrimination function, e.g., IDF), then

1 2(,) (,)sim q d d sim q d d

LNC1
Let q be a query and d be a document. If for some term t q , then

(,) (,)sim q d sim q d t

LNC2
Let q be a query and d be a document. If d q and 'd is formed by

concatenate q with itself k times, then (, ') (,)sim q d sim q d

TF‐LNC
Let q be a query and d be a document. If for some term t q , then

(,) (,)sim q d t sim q d

TFC1, LNC1, and TF-LNC come from the heuristic that if a document has more

occurrences for a query term, its relevance similarity should be larger. TFC2 is inspired

by the law of diminishing marginal utility in economics [Rittenberg and Tregarthen, 2009]

which means the first term occurrence yields more relevance increase than subsequent

terms, with a continuing reduction for more terms. TFC3 means a good relevance model

should favor documents that contain various query terms than more occurrences for just

one query term. TDC indicates that a term with a stronger discrimination capability (e.g.,

a term with a larger IDF value) should yield more relevance for a document. LNC2 to

some extent discloses the essence of long documents. A long document is generated from

the mixture of two conditions. One is by incorporating more different topics. The other is

by duplicating one topic many times. LNC2 means that if a long document is generated

by duplicating one topic many times it should be more relevant than the original

document before duplicating.

The axiom model develops a set of relevance formulae from the axioms. One of them

will be applied in this work.

19

2.2.2 Short Text Document Retrieval

The effectiveness of standard IR techniques is weak when they are directly applied to the

problem of short text document retrieval. Because most standard IR techniques depend

on the common terms occurring in both queries and documents and it is difficult for short

text documents to achieve such requirement, the similarity scores for short text

documents are very low. As a result, very few of the relevant documents can be retrieved

and the recall for short text document retrieval is usually not satisfying. On the other hand,

the feature of polysemy that a word may have multiple meanings exacerbates the problem.

For instance, there is a query “Apple computer” and two documents “MacBook” and

“apple pie”. The standard IR techniques usually develop a lower similarity score between

“Apple computer” and “MacBook” than “apple pie”.

Most of the short text retrieval techniques are based on query expansion [Buckley et al.,

1994; Mitra et al., 1998] which has been studied for years in the IR community.

Thesaurus looking-up is a straightforward and effective method to expand short text with

semantically similar or related words. A thesaurus is a reference work that lists words

grouped together according to their semantic similarities. Thesauri can be automatically

generated or manually created. WordNet [Miller, 1995] is a popular thesaurus which was

created by the Cognitive Science Laboratory of Princeton University. It provides

abundant resources for query expansion. Voorhees [Voorhees, 1994] presented an

automatic query expansion method by adding synonyms and descendents from WordNet.

In addition to manually created thesauri, there are also many techniques for automatically

constructing a thesaurus from documents.

Crouch and Yang [Crouch and Yang, 1992] presented an automatic thesaurus generation

method from a document corpus. Their approach employs a hierarchical clustering

technique [Voorhees, 1985] to create document clusters. Then the low frequency terms in

each cluster are selected to form a thesaurus class. Low frequency terms are terms whose

document frequency compared to the whole document corpus is less than 1 percent. Such

terms have a strong capacity in discriminating between documents.

20

Qiu and Frei [Qiu and Frei, 1993] represented a term as a feature vector. Each vector

dimension is computed by a function of the term and the whole document set. After the

feature vector for each term is constructed, the similarities between feature vectors are

computed by the cosine value of vector angles. If the vectors for two terms are similar,

they will be put into the same thesaurus synonym class.

Schütze and Pedersen [Schütze and Pedersen, 1997] created a term-document matrix.

Then they computed word co-occurrences from the matrix. Their approach constructs

thesauri through the co-occurrence relationship.

In the past few years, short text based applications such as microblog and image

searching have achieved unbelievable success. As a result, many innovative techniques

have been invented specifically for short text retrieval. These techniques attempt to

employ external resources like commercial Web search engines instead of thesauri.

Sahami and Heilman [Sahami and Heilman, 2006] treated short text documents as a

query to Web search engines so that a set of relevant regular length documents can be

retrieved. Then the TF-IDF term weighting scheme is applied to the returned documents.

For each returned document, only the highest ranked terms are kept and their term vector

is normalized. Finally, the centroid of all the normalized vectors for the returned

documents is selected as the context vector for the original short text document. In

essence, Sahami and Heilman’s method transforms short text documents into their

context vectors which are regular in length. Their approach employs context vector inner

products to construct a semantic similarity kernel function [Cristianini and Shawe-Taylor,

2000] for short text documents.

Metzler et al. [Meek et al., 2007] also employed commercial search engines to enrich and

expand both short text queries and documents. Similarly, queries and documents are fed

to a commercial Web search engine. Then the titles and snippets of the top 200 results for

each query or document are extracted as their expanded representations. As for similarity,

they developed a hybrid model based on exact matching and a language model on the

Kullback-Leibler (KL) divergence measure [Lafferty and Zhai, 2001; Zhai and Lafferty,

2001b].

21

The techniques discussed in this section indicate that adding extra information such as

similar words or words from relevant documents are crucial to short text retrieval. This

hinted to us that depending only on the action field in intent resolution may not be

enough and leveraging other service related information may bring in benefits.

2.3 Summary

This chapter reviews the techniques for service discovery and integration. Most of them

fail to take into account end user participation in the problem. On the other hand, Android

Intents and Web Intents are two innovative industrial protocols which introduce end user

participation and let them determine working services. This thesis which is inspired by

the two protocols is a concept-level approach for generic uses in service discovery and

integration.

The proposed approach has a step named naïve intent resolution which requires IR

techniques. As a result, this chapter also reviews some classic IR models and their

implementations. In addition, since the intent action field is a short text field, the

techniques for short text retrieval are also discussed in this chapter.

22

Chapter 3

3 Intents-based Service Discovery and Integration

This chapter will present the proposed Intents-based service discovery and integration

approach which aims to address the issues of existing techniques based on the current

Web service architecture. The approach is articulated in terms of the Intents architecture,

intent data structure, Intents services, and the intent resolution process. In addition, two

cases are studied to show the potential benefits and value of Intents.

3.1 Intents Architectures

Figure 3.1 shows the classic Web service architecture. There are three participants in the

architecture: service providers, service brokers and service consumers. Service providers

create Web services and publish their descriptive information on service functionalities,

service qualities, and service addressing methods. Service brokers construct service

registries, collect published service descriptive information, and provide querying

interfaces to the external world. If a service consumer needs a Web service, he/she sends

queries to service brokers to find a desired Web service and obtain its descriptive

information. Then the service consumer directly communicates with the service through

the addressing methods in its descriptive information.

Figure 3.1: Web service architecture

23

Based on this architecture, if a new product such as a Web application is in development

and its developers plan to use external Web services in the application, Figure 3.2 shows

the process of searching for a desired service and its interactive activities with the Web

application.

Figure 3.2: The process of service discovery and integration in the current Web

service architecture

Figure 3.2 takes the flight booking scenario for instance and assumes a set of flight

booking services separately running on servers supported by different service providers

(e.g., Expedia1, Google Flight2 and Priceline3) which are denoted by A, B and C. Their

service description documents are registered with a service broker. If an application

needs to use one of the flight booking services, its application developers first search the

broker by sending a query “Flight booking”. Then the broker returns a list of relevant

services including A, B and C. If the developers decide to choose A as the desired service,

1
 http://www.expedia.ca/

2
 https://www.google.ca/flights/

3
 http://www.priceline.com/

24

they will embed a piece of scripting code for communicating with A into the application.

When the application is released and an end user tries to use it for a flight booking task,

the application will communicate directly with A and complete the task.

In the above process, application developers and end users both belong to the category of

service consumers in the Web service architecture. Application developers create service-

dependent applications for end users. However, end users play almost no role in the

process of service discovery and integration. This scheme may cause serious problems in

the following two situations:

 Service A runs ineffectively or is totally blocked in end user networks. It is

possible that A performs the best when application developers test it in their own

networks in terms of reliability, responsiveness and other service quality attributes.

However, as a result of the heterogeneity of computer networks, end user

environments may be totally different and it is highly possible that A becomes

inferior to other services. Even worse, if A is blocked by the gateway of an end

user network, the corresponding functionalities supported by A will also be out of

work.

 End users have a preference for other services rather than A. For instance,

some end users may have a B membership card which offers a discount. However,

it is impossible for application developers to have such information for all

prospective end users. As a result, the end users who have a B membership card

are forced to use A by the application. Thus they may choose other applications

which are dependent on B and as a result the application depending on A is

devalued.

In order to address these issues, Figure 3.3 provides a modified design for service

discovery and integration.

25

Figure 3.3: Modified design for service discovery and integration

In Figure 3.3, if application developers want to take advantage of external Web services,

they can just specify a semantic service goal (e.g., “Flight Booking”) in their application

instead of statically binding it to a specific service. While an end user is using the

application, it retrieves the service description from the service brokers and generates a

list of candidate services to the end user as per the semantic goal specified by the

developers. Then the end user takes the responsibility for selecting a working service

such as B in Figure 3.3. After that, the application communicates with the selected

service and completes the end user’s task. This scheme is capable of addressing the

aforementioned issues as follows:

 End users can dynamically choose the services which are valid and that perform

well in terms of reliability, responsiveness or other service quality attributes in

their own computer networks.

 End users are capable of choosing any services for which they have a preference.

For instance, if one user has a membership card for service A and another user has

a card for service B, they can apply their own favorite service separately while

using the same application.

26

Even though the design in Figure 3.3 is an improvement compared to Figure 3.2, it is

non-trivial and tedious for application developers to implement the functionality of

generating candidate service lists and communicating with selected services in every

application. Thus each end user should have a user agent which takes the above

responsibilities for applications.

On the other hand, service providers should be allowed to publish their service

descriptive information directly to the Web. For instance, service providers may create

hypertext references to their Web services descriptive information files and put them into

relevant Web pages. At the same time, both service brokers and service consumers are

capable of acquiring these files directly from the Web.

3.1.1 Implicit Mode

Based on the above discussion, and motivated by the two industrial protocols of Android

Intents and Web Intents, an Intents architecture in compliance with the idea in Figure 3.3

is presented in Figure 3.4.

In Figure 3.4, if an application is dependent on some external services, its developers can

specify their service goal by a construct named intent and embed it into the application.

Once an end user executes the application and triggers the intent, a message with the

intent is created as a service request. On the other hand, services in the architecture are

Intents services which can accept and process intents. When an Intents service is

published, part of its service description is wrapped into an Intents advertisement which

may be registered with service brokers or put directly on the Web. At the same time,

service brokers are able to capture Intents advertisements by searching the Web. The

process is analogous to that when Web spiders capture Web pages from the Web. Each

end user has a user agent. It contains a private service registry which collects Intents

advertisements from both service brokers and the Web under the control of its owner.

End users may choose to add the Intents advertisements of interest, or remove the Intents

advertisements which are not needed. Intents advertisement management in user agents

looks like software management on PCs or mobile devices. The above mentioned intent

message is first sent to the end user’s user agent. Then the user agent may generate a list

27

of candidates according to both the intent content and its private service registry. The

candidate services are returned to the end user. After the end user makes a choice, the

user agent forwards the intent to the selected service. If the service produces some results,

the user agent receives them and sends them back to the application.

Figure 3.4: Implicit mode of the Intents architecture

The architecture shown in Figure 3.4 is the implicit mode of the Intents architecture. The

intents in this mode only represent a semantic service goal instead of a specific service. In

addition, end user participation and interaction is required in this mode for service

discovery and integration. The ultimate working services are determined dynamically at

run time.

3.1.2 Explicit Mode

Sometimes, application developers know which specific services should be used in their

applications. They may not need end user participation and this is the currently used

28

paradigm for service discovery and integration as in Figure 3.2. Thus in addition to the

implicit mode, an explicit mode of the Intents architecture is also designed in Figure 3.5

to be compatible with the current paradigm in Figure 3.2. The explicit mode of the Intents

architecture permits directly binding between applications and specific services without

end user interference.

Figure 3.5: Explicit mode of the Intents architecture

In the explicit mode, the developers of an application search service brokers for a desired

service. After they find the service, an intent is specified in the application as a binding

between the application and the service. The intent has the necessary addressing

information which can be used to locate the service. Once an end user executes the

application and triggers the intent, a message enclosing the intent is created and sent to

the end user’s user agent. The user agent resolves the intent and extracts its service

addressing information. Then the intent is directly transferred to the specified Intents

service. If the service produces some results, the user agent receives them and sends them

back to the application.

29

The implicit and explicit modes of the Intents architecture are characterized by two

different paradigms of service discovery and integration whose main difference is end

user participation and interaction. The explicit mode keeps the current widely applied

paradigm in which only application developers make a decision on the ultimate working

services. Its existence shows that Intents is compatible with current techniques. However,

only applying the explicit mode is not enough to meet all requirements. Thus the implicit

mode is created to bring in end user participation and interaction in service discovery and

integration which complements the defects in the explicit mode.

The intents applied in the two modes are explicit intents and implicit intents, respectively.

Their content is different. The next section will present them in detail.

3.2 Intent Data Structure

The aforementioned intents are a data structure which represents a service need or goal.

An intent contains an intended operation and the data prepared for the operation.

Application developers specify intents in their applications. When an end user executes

an application task which triggers an intent, a message with the intent will be created and

sent to the end user’s user agent. Then the user agent resolves the intent and assists the

end user in seeking an appropriate service to complete the task.

Formally an intent is a tuple (, , ,)I t a dt dv , where t stands for intent type, a intent

action, dt intent data type, and dv intent data value. We design three types of intents:

explicit intents, authoritative intents and naïve intents. Explicit intents are designed for

the explicit mode of the Intents architecture where end users are not involved in service

discovery and selection. Authoritative intents and naïve intents are designed for the

implicit mode of the Intents architecture where end users participate in the process of

determining ultimate working services. Therefore, authoritative intents and naïve intents

are together in the implicit intent category. Figure 3.6 illustrates the hierarchy of intent

classification.

The action field indicates an intended operation. For implicit intents, the action field is a

text string which semantically represents the intended operation name. On the other hand,

30

if it is an explicit intent, the action field is the identifier of a desired Intents service which

can be used to identify and locate the service directly.

Figure 3.6: The hierarchy of intent classification

The data type field and data value field are input parameter types and values, respectively.

They are prepared for the intended operation. The data type field adopts the internet

media type [Bray, 2002] which is a two-level format composed of a type and a subtype,

and the data value field obeys the format specified by the selected internet media type.

In the following subsections, authoritative intents, naïve intents, explicit intents, and a

comparison among them will be presented.

3.2.1 Authoritative Intent

Authoritative intents are implicit intents whose action, data type, and the format of data

value comply with a specification designed by an authoritative organization. On the other

hand, service providers who choose to support the authoritative intent specification

should implement their services to enable them to accept and process any intent in

conformity with the specification. If the authoritative specification is thought of as an

interface in the object-oriented programming language, the Intents services which support

the specification are the implemented classes of the interface. Then any authoritative

intent of the specification is the statement to invoke one of the class functions.

31

For instance, W3C as an authoritative organization may publish an authoritative intent

specification for one-way flight searching. It specifies the intent fields as listed in Table

3.1.

Table 3.1: Authoritative intent specification sample

Intent Field Remark

Intent Type authoritative

Action www.w3.org/intent/one‐way_flight_search

Data Type application/json

Data Value Format

Requested parameters

departure_location The location where customers depart

arrival_location The location where customers arrive

departure_date The date when customers depart

An application developer who wants to use services complying with the specification

may set up an authoritative intent in his/her applications as listed in Table 3.2.

Table 3.2: Authoritative intent sample

Intent Field Value

Intent Type authoritative

Action www.w3.org/intent/one‐way_flight_search

Data Type application/json

Data Value

{
 “departure_location” : “London, London Int'l, Ontario (YXU)”,
 “arrival_location” : “Toronto, Pearson Int'l, Ontario (YYZ)”,
 “departure_date” : “2013‐11‐25”
}

Authoritative intents of the same specification should share the same action which is

unique compared to authoritative intents from another specification. Thus it is suggested

that the domain name of the authoritative organization which creates the specification be

added into the action field.

In addition to intent fields, specifications for authoritative intents may also contain

service outcome formats. Services supporting a specification should produce results

according to the outcome formats of the specification so that the applications depending

on the services are able to leverage their results.

32

Authoritative intent specifications may be included in technical online documents to

which both service providers and application developers have access. On the service

provider side, services are implemented to accept any valid authoritative intent and

produce outcomes in conformity with an authoritative intent specification. On the other

hand, application developers make their applications trigger intents according to the same

specification. Thus to some extent, authoritative intent specifications are a well-designed

contract made by third-party organizations for service providers and application

developers. When end users use an application which creates authoritative intents

according to an authoritative intent specification, any service conforming to the

specification will have a chance to be selected as the ultimate working service.

The concept of authoritative intents has been currently applied in Web Intents and

Android Intents. Web Intents defined a suite of public intents as in Table 3.3 which can

be thought of as a kind of authoritative intent. More details about their specifications can

be found on Web Intents’ official website1.

Android Intents also defined a set of standard activity and broadcast actions in the class

“android.content.Intent”2 which also reflect the idea of authoritative intents in

this work. When android application developers create an object of the class with one of

the standard actions, they actually construct an authoritative intent.

1
 http://webintents.org/

2
 http://developer.android.com/reference/android/content/Intent.html

33

Table 3.3: Web Intents public intents

Intent Name Action Description

Share http://webintents.org/share

The share intent is designed to give
applications the ability to offer a simple
mechanism for sharing data from the
current page.

Edit http://webintents.org/edit

The edit intent is designed to give
applications the ability to offer a simple
mechanism to edit data from the current
page.

View http://webintents.org/view

The view intent is designed to give
applications the ability to offer a simple
mechanism to view data in their
application.

Pick http://webintents.org/pick

The pick intent is designed to give
services the ability to allow their users to
pick files from their service for use in a
client application.

Subscribe http://webintents.org/subscribe

The subscribe intent is designed to give
applications the ability to offer a simple
mechanism for subscribing to data from
the current page.

Save http://webintents.org/save

The save intent is designed to give
applications the ability to offer a simple
mechanism to save data in their
application.

Authoritative intents are not perfect. They may have drawbacks in the following three

situations:

 There is no specification of authoritative intents defined in the domain of

application developers and service providers. It takes time for authoritative

organizations to propose, draft, refine, and finalize an authoritative intent

specification. As a result, before a satisfied authoritative intent specification is

created, the contract between service providers and application developers cannot

be constructed. On the one hand, service providers could not make their

developed services follow any authoritative intent specification. On the other

hand, application developers are not able to make their applications create

corresponding authoritative intents. For instance, an application developer wants

his/her application to trigger an image editing intent to seek a desired service, but

there is no related authoritative intent specification available. Therefore, the

34

application developer cannot create the required authoritative intent for his/her

service goal.

 Application developers or service providers cannot strictly comply with

authoritative intent specifications. Even though there exist authoritative intent

specifications in the domain of application developers and service providers, they

may not be satisfied by any of them. Since authoritative intent specifications must

be fully obeyed in intent creation and service implementation, any additional

modifications by application developers or service developers are not permitted.

Take the aforementioned flight searching intent, for instance. If the service

provisioned by a service provider only accepts XML-based input for technical

reasons, it cannot support JSON-based authoritative intents. On the other hand, if

an application developer has his/her application to generate intents with airlines

input in addition to the data value format specified in the authoritative intent

specification, its end users may be returned no candidate services as a result of

input mismatching.

 Authoritative intents require the exact matchmaking scheme in all intent

fields including the action field in intent resolution. When user agents receive

messages with an enclosed intent from any application, it needs to analyze the

intent to determine its intent type, and extract its field content for further

processing like generating candidate services for implicit intents. Such a process

is called intent resolution. Once service providers implemented an Intents service,

its Intents advertisement should be created with information including supported

action and data type. In the process of resolving an intent, user agents search for

the services whose supported action and data type match the corresponding fields

in the intent. For an authoritative intent, its action should be exactly matched with

the supported action of a service so that the service can be selected as a candidate.

However, the exact matchmaking scheme for the action field will cause issues in

certain situations. For instance, organization A and B separately design and

publish an authoritative intent specification for file storage. All the fields of the

two intent specifications are compatible except for the action field. Organization

A uses “A/file_upload” while B adopts “B/file_upload”. The two actions mean

35

semantically the same. However, if an application developer chooses to support

A’s intents, his/her end users will miss the services supporting B and vice versa.

In order to address the above problems for authoritative intents, naïve intents are

designed in the next subsection.

3.2.2 Naïve Intent

Compared with the strictness of authoritative intents, naïve intents are designed as a loose

or relaxed contract between service providers and application developers. For application

developers, they may have applications to trigger an intent without an authoritative

specification. On the other hand, service providers are allowed to claim non-authoritative

intent support in their service Intents advertisements. It is the responsibility of user agents

to judge if services and naïve intents are matched according to its built-in similarity

models in intent resolution. Taking the image editing case for instance, if application

developers fail to find a satisfied authoritative intent specification, their application may

generate a naïve intent as in Table 3.4.

Table 3.4: Naïve intent example

Intent Field Value

Type naive

Action image edit

Data Type image/jpeg

Data Value the image file

At the same time, service providers who cannot find a satisfied authoritative specification

may create their services and mark them with actions like “picture editor” or “photo

editing” in the Intents advertisement. Then user agents may adopt a similarity model so

that relevant services can be put onto candidate lists. Naïve intents are characterized by

its extension to non-exact matching schemes compared with authoritative intents in intent

resolution.

Web Intents and Android Intents can also create naïve-similar intents. Applications and

intents in the two protocols can choose any action content without having to comply with

public contracts. However, just like their authoritative-similar intents, only the exact

36

matching scheme which is the simplest similarity model is applied in resolving these

intents.

3.2.3 Explicit Intent

When application developers design a product and want to use some external services,

they may have found the desired specific service and refuse end user participation in

service discovery and integration like the explicit mode of the Intents architecture. Thus

explicit intents are employed to allow application developers to create direct

communication between their products and remote services. The major difference

between implicit intents and explicit intents is that the action field of an explicit intent is

able to directly locate the desired remote service. As a result, it is suggested that a URL

be used in their action fields. Table 3.5 is an explicit intent example for image editing

services.

Table 3.5: Explicit intent example

Intent Field Value

Type explicit

Action http://202.117.0.119/intents_services/image_edit

Data Type image/jpeg

Data Value the image file

Explicit intents are designed to make Intents compatible with the currently used service

discovery and integration paradigm, i.e. application developers take the full load in

service seeking. Application developers who need the use of direct service binding may

choose explicit intents in their products. When a user agent receives an explicit intent, it

directly transfers the explicit intent to the service specified in the intent. If the service

produces some results, the user agent receives them and sends them back to the

application triggering the intent.

3.2.4 Comparison and Discussion on Intent Types

Authoritative intents, naïve intents and explicit intents are designed to complement each

other in service discovery and integration. Explicit intents keep the traditional

characteristics of service discovery and integration in the explicit mode of the Intents

architecture. Authoritative intents compensate for explicit intents by introducing end user

37

participation. However, authoritative intents adopt a strict action matching scheme in

intent resolution which may cause problems in some cases. Thus naïve intents are

designed as a relaxed version of authoritative intents. The three intent types

collaboratively meet various requirements of service providers, application developers,

and end users.

Table 3.6 lists a comparison of the three intent types in terms of third-party and end user

participation, action matching scheme, positive false error in candidate services,

flexibility, and reliability.

Table 3.6: Comparison of explicit, authoritative, and naïve intents

 Explicit Authoritative Naïve

Third Party Participation No Yes No

End User Participation No Yes Yes

Action Matching Exact Matching Exact Matching Exact and Non‐exact Matching

False Positive Error No No Yes

Flexibility Weak Medium Strong

Reliability Strong Strong Weak

Authoritative intents require third-parity participation to make up the specifications

including action, data type, data value format, service outcome format, and other details

on technical information. On the contrary, explicit and naïve intents do not have that

requirement. Neither of them needs a predefined specification to obey when service

providers create a service or application developers specify an intent for their application.

Authoritative and naïve intents work for the implicit mode of the Intents architecture

where user agents generate candidate services to end users for service selection. Thus the

two intent types require end user participation. However, when user agents receive an

explicit intent, they will directly transfer the intent to the remote service, ruling out any

end user participation.

In intent resolution, action matching is a critical step. Since the action field of explicit

intents can locate the required service, exact action matching applies to explicit intents.

Authoritative intents also adopt the exact action matching scheme which is more accurate

in generating candidate service lists. The exact action matching scheme applied in

explicit intents and authoritative intents guarantees no false positive error in candidate

38

services. On the contrary, naïve intents may relax the exact action matching scheme and

introduce non-exact action matching schemes. This may put any services whose

functionality is relevant onto candidate lists without their action fields having to be the

same as the resolved intent. As a result of the applied similarity model, naïve intents may

cause false positive errors in service discovery and integration. Thus a tradeoff between

coverage and accuracy should be taken into careful consideration when a non-exact

action matching scheme is being designed for naïve intents.

Explicit intents permit no end user participation in service discovery and integration,

therefore they have weak flexibility. In contrast, though authoritative intents introduce

end user participation, they may rule out some qualified services as a result of the exact

action matching scheme. Naïve intents are most flexible among the three intent types.

They permit end user participation in service selection, do not involve authoritative

organization, and bring in non-exact action matching in the generation of candidate

services. However, resolving a naïve intent depends too much on user agent built-in

similarity models and they may result in false positive errors, hence reliability is weak in

naïve intents compared to the other two intent types.

3.3 Intents Services

An Intents service is a Web service which is able to accept and process intents as service

input. Each Intents service is identified by a unique address to which user agents send

their received intents. After receiving an intent, Intents services extract data from the

intent, process the data, and return results.

If Intents services are constructed in reference to an authoritative intent specification,

they should be able to accept and process any authoritative intent in compliance with the

specification. In addition, they can also accept any naïve intent whose data fields (data

types and values) coincidently comply with the authoritative intent specification. On the

other hand, if service providers cannot find a satisfied authoritative intent specification,

they may also create Intents services based on their service designs and mark them with

appropriate Intents advertisements. These Intents advertisements should semantically

reflect corresponding service functionalities (operation names and parameters).

39

An Intents service should be marked with only one Intents advertisement as part of its

service description. Intents advertisements are compact and can be embedded into Web

pages in the form of tags as well as being registered with service brokers. User agents

collect Intents advertisements under the control of end users and use them in the process

of implicit intent resolution.

Intents services can be created from current mainstream Web services. This section will

present the Intents advertisement concept which is closely related to Intents services and

the method of creating Intents services from two mainstream Web services: SOAP and

REST Web services.

3.3.1 Intents Advertisement

An Intents advertisement is a tuple (, ,)A id a dt where id is its Intents service identifier,

a intent action and dt data type. More details on the three fields are presented as follows:

 Identifier. An Intents service identifier is a text string. It is used to uniquely

identify and locate the Intents service. With the identifier, Intents user agents are

able to forward received intents to the specified Intents service. For instance, a

URL (Universal Resource Locator) can be used as a service identifier.

 Action. This field corresponds to the action field in intents. The action field in the

Intents advertisement of an Intents service specifies the operation supported by

the Intents service. If the Intents service wants to be advertised for the

authoritative intents of an authoritative intent specification and implemented

according to the specification, its action field should be the same as that in the

specification. Otherwise, Intents user agents will not be able to discover the

service for the authoritative intents of the authoritative intent specification. On the

other hand, if an Intents service is not developed for any authoritative intent

specification, its Intents advertisements should be defined by its developers to

semantically reflect the functionalities of the service.

 Data type: This field corresponds to the data type field in intents. The data type

field in the Intents advertisement of an Intents service specifies the input

parameter data types accepted by the Intents service. Similarly, if an Intents

40

service is implemented in accordance with an authoritative intent specification,

the data type field of its Intents advertisements should comply with the

specification. Otherwise, Intents user agents will not be able to discover the

service for the authoritative intents of the specification. On the other hand, if an

Intents service is not developed for any authoritative intent specification, its

Intents advertisements may be defined by its developers according to the data

types accepted by the service. The data type field also adopts the Internet media

type. However, since an Intents service may support multiple data types, the data

type field in Intents advertisements is slightly different from that in intents. For

instance, an image editing service may only accept one image file, but the image

can be in the form of a gif, jpeg or png. In this situation, the data type field should

be “image/gif, image/jpeg, image/jpeg”. The Internet media types are separated

by commas. If the image editing service supports all image formats, it can also

use a global or generic type with the wildcard character (*), e.g., “image/*”.

Intents advertisements can be thought of as a kind of service description. They specify

where an Intents service is and what action and data type it supports. It is compact and

machine readable which user agents are able to leverage in intent resolution. Intents

advertisements are created by service providers and can be published in the following

two ways:

 To the Web. An Intents advertisement can be created in the form of HTML tags

which can be embedded into any online Web page. Intents advertisement tags are

not rendered with Web page content but they can be detected by Intents user

agents. Besides, it is suggested that the enclosing Web pages be relevant to their

advertised Intents services with introductory information. As a result, Web page

content may be utilized in intent resolution. Figure 3.7 is an Intents advertisement

sample for link sharing services.

 To service brokers. Intents advertisements can also be registered with service

brokers similar to registering WSDL files with UDDI registries. Service brokers

should provide user interfaces for service providers to register the Intents

41

advertisements of their Intents services. Meanwhile, service brokers can also

capture and collect Intents advertisements from their enclosing Web pages.

Figure 3.7: An Intents advertisement example for link sharing services

Figure 3.8 shows the two ways for publishing Intents advertisements and the relationship

between the Web, service brokers, user agents, and service providers.

Figure 3.8: Intents advertisement publishing ways

As shown in Figure 3.8, user agents and service brokers maintain separate registries for

Intents advertisements. Service providers publish their Intents advertisements to the Web

as well as to service brokers. Intents advertisements on the Web also connect with each

<intent

id=https://twitter.com/intent/tweet

action=”share to twitter”

type=”text/uri-list” />

42

other through the hypertext references in their enclosing Web pages, which are illustrated

by dashed arrows in the figure. Service brokers are also able to capture and collect Intents

advertisements from the Web. For a user agent, it can collect Intents advertisements from

the Web or service brokers under the control of its owner.

3.3.2 Intents Services from SOAP Web Services

SOAP Web services are one category of mainstream Web services which are constructed

on public protocols including SOAP, WSDL, UDDI, and XML. Each SOAP Web service

is usually created and published along with a WSDL document which is composed of the

elements for invoking the SOAP Web service (e.g., parameters, operation names, and

service address). On the other hand, service consumers can use toolkits for SOAP Web

services to generate a client stub from WSDL documents. The stub takes the

responsibility for converting application objects into SOAP messages. Then the

communication between service consumers and service providers is completed through

the SOAP protocol. If results are returned, the stub converts the results back to

application readable objects.

A SOAP Web service is capable of accommodating multiple operations while at the same

time only one end point is exposed to the external world for communicating with service

consumers. Figure 3.9 demonstrates a sample WSDL document for SOAP Web services.

The document represents a SOAP Web service with three operations but only one end

point.

43

Figure 3.9: The WSDL document of a SOAP Web service sample

When creating Intents services from the SOAP Web service, each operation should be

mapped to a separate Intents service as shown in Figure 3.10.

Figure 3.10: Creating Intents services from SOAP Web services

Figure 3.10 presents the SOAP Web service with three operations and one end point.

Three separate Intents services are created for three operations. If an Intents service

44

receives an Intents-based message, it will be converted into a SOAP message and

transferred to the SOAP service end point by the Intents service. The end point dispatches

the SOAP message to the corresponding operation module. When the operation is

completed, results are returned to the Intents service in SOAP formats. Then the results

are converted to messages in accordance with the specification of the Intents service and

sent back to the invoking application.

3.3.3 Intents Services from REST Web Services

REST Web services are another type of mainstream Web service. Richardson

[Richardson and Ruby, 2007] divided REST Web services into RESTful and REST-RPC

Web services. RESTful Web services comply strictly with the principles and constraints

specified in Fielding’s articles [Fielding, 2000; Fielding and Taylor, 2002]. A RESTful

Web service only exploits the methods (GET, POST, PUT, DELETE, etc.) specified in

Hypertext Transfer Protocol (HTTP). In other words, the communications between a

RESTFul Web service and its clients are built directly on top of raw HTTP methods.

REST-RPC Web services also employ HTTP messages as communication envelopes but

may create new methods instead of only using those given by HTTP. These new methods

and their parameters are often embedded into service URLs or other fields of HTTP

request messages. For instance, a people profile querying service at the path

“/rest_services/get_profile” of host “www.sample.com” can be designed into RESTful or

REST-RPC style, respectively, as in Table 3.7.

Table 3.7: RESTful and REST-RPC samples

 HTTP Request

RESTful
POST /rest_services/get_profile HTTP 1.1
Host: www.sample.com
name=value

REST‐RPC
GET /rest_services/get_profile?name=value HTTP 1.1
Host: www.sample.com

Either RESTful or REST-RPC Web services are each identified with a URL which is also

exploited to address the service. This characteristic is similar to Intents services.

Therefore, while wrapping a REST Web service, only one Intents service needs to be

created.

45

Figure 3.11: Creating Intents services from RESTful and REST-RPC Web services

Figure 3.11 shows how to wrap RESTful and REST-RPC Web services to create Intents

services. Once an Intents service receives an Intents-based message, the Intents service

converts it into a HTTP request message and transfers it to the corresponding REST Web

service. If the REST Web service produces some results, the Intents service transforms it

back to the format adhering to the specification of the Intents service and sends it back to

the invoking application.

3.4 Intent Resolution

When a user agent receives an intent, it will need to analyze the intent to determine its

intent type, and extract its fields for further processing. If it is an explicit intent, the user

agent directly transfers the intent to the corresponding service specified by its action field.

On the other hand, if it is an implicit intent, the user agent needs to generate a candidate

service list based on an Intents advertisement registry and the content of the intent. The

whole process described above is called intent resolution which will be presented in this

section.

Table 3.8: Field comparison between intents and Intents advertisements

Field Intent Intents Advertisement

Service ID Explicit Intent (Yes)
Implicit Intent (No)

Yes

Action Yes Yes

Data type Yes Yes

Data Value Yes No

Intent Type Yes No

Table 3.8 lists all the fields of intents and Intents advertisements. Explicit intents are

directly transferred to remote services, thus user agents do not have too much work for

46

them in intent resolution. As for implicit intents, it can be found that only the action field

and the data type field appear in both intents and Intents advertisements. Thus implicit

intent resolution should be discussed in terms of the two fields.

 Date type: The data type field describes the data type for service input. Both of

the fields in intents and Intents advertisements adopt the Internet media type. The

only difference is that the data type field in Intents advertisements supports

multiple and generic types. Thus the intent data type should be exactly matched

with one of the non-generic types, or its first level type should be the same as one

of the generic types. Table 3.9 lists some instances for data type matching

between Intents advertisements and intents.

Table 3.9: Data type matching instances

Intents advertisement
data type

Matched intent
data type

Unmatched intent
data type

“image/jpeg, image/gif”
“image/jpeg”
“image/gif”

“image/png”

“image/*”
“image/jpeg”
“image/gif”
“image/png”

“text/plain”

 Action: The action field of an authoritative intent is usually well designed by

authoritative organizations in the specification for the intent. Therefore, for

authoritative intents, the exact matching scheme should apply for the action field,

i.e., only those services which support the same action in their Intents

advertisements can be put onto candidate lists. On the other hand, naïve intents

are a relaxed version of authoritative intents. Thus a similarity model is required

to measure the relevance between the naïve intent action field and the Intents

advertisement action field. Then services are scored according to the similarity

model and ranked in descending order, following which, the top ranked services

above a threshold are returned as candidate services.

Figure 3.12 shows the process of intent resolution in user agents. When an intent comes,

user agents first determine its intent type. If it is an explicit intent, it is directly transferred

to remote services. If it is an implicit intent, an Intents advertisement registry is needed to

47

generate candidate services. User agents first dispose of the services whose data type fails

to pass the data type matching process. Then the intent is checked to see if it is an

authoritative intent or naïve intent. For an authoritative intent, exact action matching is

employed and only those services which support the same action can be selected as

candidate services. On the other hand, for a naïve intent, user agents need to calculate a

similarity score for each service. Then services are sorted by the score in descending

order and the top ranked services above a threshold are returned to the user as candidate

services. After the end user makes a choice, the implicit intent will be sent to the selected

service.

Data type matching
Intents

Advertisements
Registry

Exact action matching

Score services by
action similarity and

rank them

End user

Candidate
service

list

Intent

...

Remote services

Invoke remote service

Yes

Selected serivce

Explicit intent?

No

Authoritative intent?

Yes

No

Figure 3.12: Intent resolution process

As for the Intents advertisement registry used for generating candidate service lists, there

could be three levels for them: the personal level, the group level, and the public level, as

shown in Figure 3.13.

48

Figure 3.13: Intents advertisement registry levels

 Personal level: Each user agent keeps a private Intents advertisement registry and

works on behalf of its owner, i.e., an end user. End users add and remove Intents

advertisements according to their own interests. As a result, their registries are

populated with separate and personalized service sets, and when a user agent

generates candidate service lists from its private registry, the lists are personalized

and different from user to user.

 Group level: Several end users may create an interest group. Then the union of

their private Intents advertisement registries constitutes a group Intents

advertisement registry. As a result, the candidate services generated from the

group registry could reflect a collaborative service recommendation. For instance,

user A is using an application which depends on a travel agency service. However,

A’s user agent has no such service in its internal advertisement registry.

Fortunately, the travel agency service E is popular in A’s friend circle. Then A’s

user agent can acquire service E from the group registry as a candidate service to

49

A. If A is satisfied with E, he/she can add the service to his/her own Intents

advertisement registry for later use.

 Public level: A service broker may build a public service registry working as a

service market. On the one hand, when neither private registry nor group registry

is able to assist user agents in generating candidate services, public registries

provide the last resort with their most populous storage of Intents advertisements.

On the other hand, public registries also provide a facility through which end

users can populate their own private registries.

Private
Registry

Group
Registry

Public
Registry

End user

...

...

Generate CandidatesIntent

No Candidate? Generate Candidates

No Candidate? Generate Candidates

Show Candidates

No

No
Yes

Yes

Figure 3.14: Registry upgrading in intent resolution

From private registries to public registries, the sizes and varieties of Intents

advertisements increase. Thus the possibilities of finding out candidate services also

increase. Figure 3.14 presents the idea that user agents may turn to higher level registries

when they fail to generate candidate services from the current registry. When an intent

comes, user agents first use their private registry. If there is no candidate service

50

generated, they can turn to a group registry. If neither the private registry nor the group

registry is able to assist user agents in creating candidate services, they will resort to a

public Intents advertisement registry.

The three levels of registries also provide flexibility to meet different user requirements.

For instance, an end user may not want to maintain a private Intents advertisement

registry; he/she can just use a group or set a public registry for intent resolution.

This section only articulates the basic procedure for intent resolution. Chapter 4 will

present more details on intent resolution, especially the problem of constructing similarity

models.

3.5 Use Cases Study

Intents is able to address some issues prevailing in current application development and

provides innovative solutions. This section will present two scenarios to demonstrate the

benefits and value of Intents.

3.5.1 Sharing Button

Sharing buttons are widely adopted in current Web applications for users to share links,

files, text, images, audio and videos. Figure 3.15 shows a Web application with sharing

buttons.

Figure 3.15: Sharing an article link with sharing buttons

51

Figure 3.15 is an application with sharing buttons to share this article through Facebook,

Twitter, and LinkedIn. If the three sharing services cannot meet user needs, a plus button

follows which can pop up a list with more sharing services.

Like Figure 3.15, current applications usually attach a list of sharing buttons, each for one

remote service. However, this design has the following issues:

 If there are too few sharing buttons, they may not meet user sharing requirements.

With the rapid growth of social media Web sites, people have many and various

preferences on using different platforms for content sharing and these platforms

are not limited to just a few such as Facebook, Twitter and Gmail. Besides, not all

buttons are applicable everywhere. The gates of regional networks may block the

services for some buttons. If all the sharing buttons in an application are blocked,

the functionality of the application which depends on sharing buttons will be

affected.

 If there are too many sharing buttons, they may degrade application performance

because each sharing button is composed in JavaScript code which is interpreted

at runtime and needs to communicate with its service provider. In addition, too

many sharing buttons may cripple the user’s decision making ability. It is difficult

for users to quickly find out the desired button when they are faced with too many

options.

Figure 3.16 demonstrates how Intents addresses the above issues. Intents applies only one

sharing button instead of creating one for each service. When the sharing button is

triggered by end users, an implicit intent is created and sent to user agents. User agents

resolve the intent and generate candidate service lists based on their own private registry.

Since each user agent has a personalized registry which is maintained according to its

owner’s preference, candidate service lists are totally personalized and moderate in size.

In addition, when some services are blocked in a regional network, the end users in the

network can maintain a registry of services which are operational in the network. As a

result, his/her generated candidate lists will contain only valid services.

52

Share

Intents Ad
Registry

User Agent

Intents Ad
Registry

User Agent

Intents Ad
Registry

User Agent

Candidate Service List Candidate Service List Candidate Service List

Intent Intent Intent

...

Figure 3.16: The sharing button in Intents

3.5.2 Weaving Services

Intents can also be used in service recommendation. Assuming a case which considers

three actions (edit, upload and share) revolving around an image, if they are denoted by

A , B and C respectively, some of their possible workflows are listed in Table 3.10.

Table 3.10: Workflow samples for weaving services

 Work Flow Remark

1 start A end Edit the image

2 start B end Upload the image to a cloud drive

3 start C end Share the image to some social media Web site

4 start A B end First edit the image, then upload it to a cloud drive.

5 start A C end First edit the image, then share it to some media Web site

At the same time, each action has a set of possible services as in Table 3.11.

53

Table 3.11: Possible services for each action

Action Possible Services

A 1a , 2a

B 1b , 2b

C 1c , 2c , 3c

Each user selects a service for each action in Intents. For instance, one user with

workflow of start A end may select service 2a , and another user with workflow of

start A B end may select 2a and 2b for each action. Table 3.12 lists a set of end

users and their service selections.

Table 3.12: Service selection for each user

User Work Flow Service Selection

1 start C end 1start c end

2 start A C end 1 2start a c end

3 start B end 1start b end

4 start A end 2start a end

5 start A B end 2 2start a b end

If the flow from one service to another by an end user is considered as a link, all user

activities and selected services can be woven together to constitute a graph, as shown in

Figure 3.17.

With this graph when a new user comes and takes a picture, his/her Intents user agent is

capable of guiding him/her on the follow-up actions and recommending services for each

action. For instance, the user agent may suggest editing the picture and recommend a list

of services for the action according to the information in the graph.

54

Figure 3.17: User selected services graph

3.6 Summary

This chapter presents a new Intents-based service discovery and integration approach.

The work starts off with a discussion on the current Web service architecture and its

issues in service discovery and integration. In order to address the issues, the implicit

mode of the Intents architecture, which is characterized by end user participation is

introduced. Meanwhile, the explicit mode of the Intents architecture keeps the

characteristics of the current service discovery and integration techniques.

An intent represents a user service goal. This chapter presents the intent data structure

and three intent types which are designed to meet various user service needs. An Intents

service is a Web service which is able to accept and process intents. Intents services

should be marked with Intents advertisements as a part of the service description. Intents

services can be created directly from scratch or indirectly from current Web services.

This chapter demonstrates how to create Intents services from SOAP and REST Web

services.

55

Intent resolution is the process of analyzing an incoming intent and generating candidate

services. This chapter presents the basic intent resolution steps and the three levels of

Intents advertisement registries which are utilized in intent resolution.

In order to demonstrate the benefits of Intents, two cases are studied. One is the sharing

button scenario. Compared with current sharing button mechanisms, Intents only adopts

one sharing button and can generate personalized candidate service lists. In the other case,

Intents is able to weave services together to constitute a service graph. Based on the

graph, Intents may recommend new users with actions and services.

56

Chapter 4

4 Adaptive Intent Resolution

In intent resolution, a similarity model is needed for naïve intents. This chapter will

explore the task of seeking a similarity model by transforming it into an optimization

problem. Then the problem is addressed by empirical methods. Based on the empirical

analysis, an adaptive intent resolution approach is proposed in this chapter.

4.1 Similarity Model Formulation

As mentioned in the previous chapter, a similarity model is required in the process of

naïve intent resolution. The model takes the responsibility for scoring services according

to their relevance to the naïve intent. This section will present how to formulate the

similarity model.

Formally, if the naïve intent and Intents advertisement are denoted by I and A

respectively, their only fields which can be leveraged for calculating the similarity score

are I ’s action field and A ’s action field. As a result, the similarity model S should be:

 (,)I AS sim action action (4.1)

Formula 4.1 shows the similarity model as a function of I ’s action field and A ’s action

field. However, the action fields are usually short text which may not yield satisfactory

results. Inspired by the literature reviewed in Subsection 2.2.2, additional information

will be utilized to extend the similarity model.

In addition to the action field in Intents advertisements, each service may have another

two fields as its descriptive information: service title and service introduction. The two

fields can be leveraged to help extend Formula 4.1. Service title is a short text field for

describing services while at the same time service introduction is a long text field which

provides introductory information for services. Compared with the action field, service

titles and introductions may provide more descriptive information which assists in

calculating service similarity scores. Service titles and introductions are not required in

57

Intents advertisements but they may be obtained from other service description files such

as online documents or Web pages where Intents advertisements are embedded.

With the introduction of the two fields, the similarity model is transformed into:

1

2

3

3

1

(,)

(,)

(,)

s.t. 1

I A

I

I

i
i

S sim action action

sim action title

sim action introduction

 (4.2)

In Formula 4.2, the (,)sim x y function can be constructed as follows:

Since x comes from a text field of an intent and y from a text field of a set of services,

the function (,)sim x y works like for the problem of scoring document d in a document

set based on query q . Then (,)sim x y is transformed into

 (,)sim q d (4.3)

which is the classic problem in information retrieval (IR). Thus the similarity model

required in naïve intent resolution can be created by employing retrieval models in IR.

In Formula 4.2, S represents a linearly weighted combination of similarities between the

intent action field, the Intents advertisement action field, the service title field, and the

service introduction field. On the service side, only the Intents advertisement action field

always exists (service titles and introductions are optional), therefore the weights in S

are subject to meeting a set of constraints in different conditions. In other words, if the set

of services having passed intent type checking and data type matching is denoted by C ,

and ()commonf C represents the set of common fields in C , then the weight constraints for

S as per ()commonf C are listed in Table 4.1.

58

Table 4.1: Weight constraints for S

Condition Weight Constraint

() { }common Af C action
1

2 3

1

0

() { , }common Af C action title
1 2

3

1

0

() { , }common Af C action introduction
1 3

2

1

0

() { , , }common Af C action title introduction
3

1

1i
i

Given a set of weighting schemes, there could be a set of similarity model templates

derived from S . On the other hand, the (,)sim x y function may be selected from a set of

IR models, i.e., IR model m from model set M . If the formula template set derived from

S is denoted by and s is its member, then each tuple ,s m determines a specific

similarity model which may be used directly in naïve intent resolution.

In order to seek the optimal ,s m , an evaluation measure (denoted by E) which is a

function of s and m should be applied. Then the optimization problem for seeking the

best ,s m can be expressed as:

,

arg max((,)) s.t. ()common
s m M

E s m f C

 (4.4)

Formula 4.4 can help to find out the best ,s m under a constraint of ()commonf C .

However, analytically solving the formula is almost impossible. In the next section, an

empirical approach will be demonstrated to search for the best ,s m under different

conditions.

4.2 Empirical Study on the Similarity Model

In this section, an empirical approach is demonstrated for seeking the best ,s m pair

under different ()commonf C conditions. The whole idea of the approach is as follows:

Firstly, a set of templates derived from S and some IR models in M are listed. Then we

conduct a series of experiments on a data set to measure the performance of different

59

combinations of the templates and IR models based on a set of selected evaluation

measures. According to the results, the best ,s m pairs are determined for all the

()commonf C conditions and selected evaluation measures.

4.2.1 Similarity Model Templates and IR Models

Table 4.2 lists the set of formula templates derived from S which will be applied in the

following experiments.

Table 4.2: Set of similarity model templates

Template Formula Description

1 1 2 3(1, 0, 0)S S
Only consider the Intents advertisement action
field

2 1 2 3(0, 1, 0)S S Only consider the service title field

3 1 2 3(0, 0, 1)S S Only consider the service introduction field

4 1 2 3

1 1
(, , 0)

2 2
S S

Equal combination of the Intents advertisement
action field and the service title field

5 1 2 3

1 1
(, 0,)

2 2
S S

Equal combination of the Intents advertisement
action field and the service introduction field

6 1 2 3

1 1
(0, ,)

2 2
S S

Equal combination of the service title field and
the service introduction field

7 1 2 3

1 1 1
(, ,)

3 3 3
S S

Equal combination of the Intents advertisement
action field, the service title field, and the
service introduction field

1S – 7S cover all the equal combinations of one, two, and three weights. They constitute

the set for Formula 4.4.

As for IR models, Apache Lucene default IR model, Okapi BM25, a Dirichlet smoothed

language model, and F2-EXP are chosen for the experiments. They are representative

implementations for the space vector model, the probabilistic model, the language model,

and the axiomatic model, respectively.

Lucene Default Model

Lucene default IR model is an implementation of the vector space model which is

empirically successful and widely recognized. Its function can be described as:

60

 2(,) (,) () (,) () () (,)
t q d

sim q d coord q d queryNorm q tf t d idf t boost t norm t d

 (4.5)

More details on the formula are listed in Table 4.3.

Table 4.3: Lucene default IR model items

Item Calculation

(,)coord q d
q d

d

()queryNorm q Not applicable in the experiments

(,)tf t q (,)f t d

()idf t 1 log
() 1

N

df t

()boost t Set to 1 in the experiments

(,)norm t d
1

d

The notation in Table 4.3 is explained in Table 4.4.

Table 4.4: Notation explanation for Table 4.3

Symbol Explanation

| |q d The number of terms both in query q and document d

| |d The length of document d

(,)f t d The count of term t in document d

N The number of all indexed documents
()df t The count of documents containing term t

If only the effective parts are considered, the formula for the Lucene default IR model is

reduced to Formula 4.6 which will be applied in the experiments.

1

22
3

2

(,) (,)(1 log)
() 1t q d

q d N
sim q d f t d

df td

 (4.6)

Okapi BM25

Okapi BM25 [Robertson et al., 1995; Robertson et al., 1999] is an implementation of the

probabilistic model in the Okapi IR system. Its function can be shown as:

61

() 0.5 (,)(1)

(,) log
() 0.5

(,) (1)t q d

N df t f t d k
sim q d

ddf t
f t d k b b

avgdl

 (4.7)

The notation in Formula 4.7 is explained in Table 4.5.

Table 4.5: Notation explanation for Formula 4.7

Symbol Explanation

k Constant, set to 1.25 in the experiments

b Constant, set to 0.75 in the experiments
avgdl The average length of all the indexed documents

| |d The length of document d

(,)f t d The count of term t in document d

N The number of all indexed documents
()df t The count of documents containing term t

LM Dirichlet

Bayesian smoothing using the Dirichlet distribution prior to the language model is a

technique studied by Zhai and Lafferty [Zhai and Lafferty, 2001a]. Its function can be

shown as:

(,)

(,) log(1) log()
(|)t q d

f t d
sim q d q

P t C d

 (4.8)

The notation in Formula 4.8 is explained in Table 4.6.

Table 4.6: Notation explanation for Formula 4.8

Symbol Explanation
 Constant, set to 2000

| |q The length of query q

| |d The length of document d

(,)f t d The count of term t in document d

(|)P t C The count of term t in all documents in the collection C

F2-EXP

F2-EXP is an implementation of the axiomatic model. Its function can be shown as:

62

(,)

(,) (,)
()

(,)

k

t q d

N f t d
sim q d f t d

s ddf t
f t d s

avgdl

 (4.9)

The notation in Formula 4.9 is explained in Table 4.7.

Table 4.7: Notation explanation for Formula 4.9

Symbol Meaning

k Constant, set to 0.35

s Constant, set to 0.5
avgdl The average length of all indexed documents

| |d The length of document d

(,)f t d The count of term t in document d

N The number of all indexed documents

The four functions are representative implementations for classic IR models. Table 4.8

summarizes them with some brief information. They constitute the M set applied in the

experiments in this thesis.

Table 4.8: Summary of the implemented IR models

Implementation
Name

Model (,)sim q d

Lucene Default
Model

Vector space
model

1
22

3

2

(,)(1 log)
() 1t q d

q d N
f t d

df td

Okapi BM25
Probabilistic
model

() 0.5 (,)(1)
log

() 0.5
(,) (1)t q d

N df t f t d k
ddf t

f t d k b b
avgdl

LM Dirichlet
Language
model

(,)
log(1) log()

(|)t q d

f t d
q

P t C d

F2‐EXP
Axiomatic
model

(,)
(,)

()
(,)

k

t q d

N f t d
f t d

s ddf t
f t d s

avgdl

63

4.2.2 Evaluation Measures

This subsection will deduce the evaluation measures applied in the experiments. The

evaluation measures applied in this work come from five classic evaluation measures

commonly applied in IR. They are recall, precision, F-measure, mean average precision

(MAP), and mean reciprocal rank (MRR). However, some of them are slightly changed

because of the following concept.

Figure 4.1: Effective top services

Figure 4.1 shows a result of retrieved services. It can be observed that the bottommost

part of the retrieved services may be all irrelevant services. When it comes to the last

relevant service, the retrieval of extra irrelevant services only produces noise in the

retrieved services. As a result, the services before the last retrieved relevant services as

shown in Figure 4.1 are named effective top services because new retrieved services have

a chance to be relevant when their ranks are within effective top services.

The ratio of the effective top services to retrieved services can be treated as a threshold to

cut off the irrelevant services in the bottommost part of retrieved services to improve the

resulting quality. Since this threshold will be applied in the design of the adaptive intent

resolution approach in the next section, the precision, F-measure, and MAP evaluation

64

measures are modified to incorporate the concept of effective top services. The modified

evaluation measures are named precisione, F-measuree, and MAPe.

The recall measure is illustrated by Formula 4.10.

|{ } { }|

|{ } |

relevant services retrieved services
recall

relevant services

 (4.10)

A high recall means that a similarity model returns most of the relevant services.

The precisione measure is illustrated by Formula 4.11.

|{ } { } |

|{ } |e

relevant services effective top services
precision

effective top services

 (4.11)

The precisione measure substitutes effective top services for retrieved services in the

ordinary precision definition. However, their underlying rationale is similar. A high

precisione value means that the majority of effective top services are relevant services.

The F-measuree measure is illustrated by Formula 4.12.

 2 e
e

e

precision recall
F measure

precision recall

 (4.12)

F-measuree creates a balance between recall and precisione. A high F-measuree means the

sets of effective top services and relevant services are similar.

MAPe is the mean of average precision over all intents and average precision is the

average of the precisions at each rank for all the effective top services. Formally speaking,

if is the set of all intents used to search for services, ()e I is the set of all the

effective top services for intent I , and kp is the precision at rank k then MAP is

formalized as Formula 4.13.

65

| ()|

1

1 1

| | | () |

e I

e k
I ke

MAP p
I

 (4.13)

Like precisione and F-measuree, MAPe in this thesis is also slightly different from the

MAP measure commonly used in IR. We also substitute effective top services for

retrieved services. But their underlying rationale is similar. A high MAPe indicates that

the majority of relevant services are placed at the topmost positions in effective top

services.

MRR is the average multiplicative inverse of the rank for the first correctly retrieved

service, as shown in Formula 4.14.

1 1

I I

MRR
rank

 (4.14)

where is the set of all intents used to search for services, and Irank is the first relevant

service rank. MRR is high when the first relevant service in effective top services is

ranked at the top for most of the intents in question.

Table 4.9 briefly summarizes the five evaluation measures and their corresponding

purposes.

Table 4.9: Summary of evaluation measures

Evaluation
Measure

Purpose

Recall Retrieve more relevant services

Precisione Make the effective top services pure with relevant services

F‐measuree A balance between recall and precision

MAPe Make the majority of relevant services at the topmost positions

MRR Make the first relevant service ranked at the top

The five evaluation measures can be applied to meet different user requirements. Thus

they will be used to select the best ,s m for the similarity model in this work.

66

4.2.3 Experiment set-up and preprocessing

This subsection will present the experimental platform, the dataset and its preprocessing

steps.

Platform

Apache Lucene1 is modified to become the experimental platform for this work. Lucene

has inner implemented IR models including a default implementation for the vector space

model, an Okapi BM25 for the probability model, and a Dirichlet smoothed

implementation for the language model. In addition to the three implementations, we

developed an axiomatic IR model (F2-EXP) based on the programming interfaces

provided by Lucene.

Dataset

The dataset employed in the experiments was extracted from a public intent registry on

OpenIntents2. The dataset is composed of Android intent description entries which are

registered by Android application developers. Each entry in the dataset consists of an

action field, a service title field, an introduction field, and other parts which can be

counted as service description. The action field, the service title field and the introduction

field are selected and applied in the experiments. The action field and the service title

field are short text fields while the introduction field is a long text field and they meet the

experimental requirements. An overview of the dataset is shown in Table 4.10.

Table 4.10: Dataset statistics

Name Statistics

Services 83

Intent actions for querying 88

Relevance judgments 119

Average relevance judgments 1.35

1
 http://lucene.apache.org/

2
 http://www.openintents.org/

67

Even though this is a comparatively small dataset, all the data are from realistic open

Android applications registered by their developers with OpenIntents. Therefore, we

believe it can help reveal the true characteristics of intent resolution. A set of 88 intent

actions for querying (empirically, more than 50 queries is enough for testing [Manning et

al., 2008]). They are created randomly from the service description keywords. Their

relevance judgments are generated manually.

Preprocessing

Before the experiments start, some preprocessing steps should be applied to all the

involved fields including the intent action field, the intent advertisement action field, the

service title field, and the service introduction field. The steps include tokenization,

lowercasing, removing stop words, and stemming.

Tokenization is the process of breaking up the text field into words and removing

punctuation. Lowercasing is the process of transforming capital letters into their lower

case forms. The two steps together generate a sequence of normalized words for each text

field.

Stop words are words that appear in most services. They contribute little to discriminate

services. Therefore, stop words should be removed from all the service fields in question.

Lucene keeps an internal stop word list for ordinary text. In order to make it appropriate

to the experimental dataset, “com”, “intent”, and “org” which often occur in the action

field, are added to the stop list.

For grammatical reasons, words are used in different forms such as “edit”, “editing”, and

“edits”. These words are semantically similar. Thus their separate forms can affect the

performance of the experiments. Stemming is the process of reducing words to their

stems. For instance, the words “edit”, “editing”, and “edits” are all represented by “edit”.

There exist many stemming techniques. In this work, a widely accepted and recognized

stemming implementation is adopted, in accordance with the idea by Porter [Porter,

1980].

68

4.2.4 Results and Analysis

The experiments measured recall precisione, F-measuree, MAPe, and MRR for all the

combinations of the seven similarity model templates and the four IR model

implementations listed in Table 4.2 and Table 4.8, respectively. This subsection will

present the results and analysis from the conducted experiments.

Effective Top Services

Figure 4.2 shows the retrieved services and effective top services for each pair of

similarity templates and IR model implementations.

Figure 4.2: Effective top services for the experiments

It can be observed that all the IR model implementations for a similarity template

retrieved the same number of services. Since the amount of all the services in C may be

very big, retrieving and scoring them is time-consuming. Most IR implementations do the

job in two steps. The first step retrieves the services whose fields in question have at least

a common word with the intent action field. Then in the second step the retrieved services

are scored and sorted in decreasing order. Even though the IR model implementations

have separate scoring functions, their process of retrieving services are almost the same,

i.e., the services whose fields in question have a common word with the intent action

field are retrieved. In essence, for each similarity model template the fields in question

are the same. Thus the retrieved services do not change for the same iS .

69

1S – 7S consider the different combinations of the related fields which cause various

retrieved service sets. 1S , 2S and 4S retrieve comparatively fewer services. The reason

for this is that they only take into account the action field and the service title field which

both are short text. 3S , 5S , 6S , and 7S consider the service introduction field which is a

long text field. Thus they retrieve more services. On the other hand, the four similarity

templates result in relatively small effective top services compared with their retrieved

services. Figure 4.3 shows the effective top services as a fraction of the retrieved services

for all the similarity model templates.

Figure 4.3: Effective top services compared to the retrieved services

It can be observed that under no circumstances the effective top services are equivalent to

the retrieved services. Moreover, some similarity model templates only generate a small

portion (20%–40%) for their effective top services. Therefore, cutting off the tail of the

retrieved services, which are irrelevant, may improve resulting accuracy significantly.

Recall

Table 4.11 shows the recall results for each pair of similarity model templates and IR

model implementations. Since all the IR model implementations adopt the same approach

in the process of retrieving services, they should have the same set of relevant services.

Thus their recalls for the same similarity model template are the same. Table 4.12 shows

the best ,s m pair for each condition under the recall evaluation measure.

70

Table 4.11: Recall results

Similarity Model Template Lucene Default Model Okapi BM25 LM Dirichlet F2‐EXP

1S 0.891 0.891 0.891 0.891

2S 0.95 0.95 0.95 0.95

3S 0.908 0.908 0.908 0.908

4S 0.958 0.958 0.958 0.958

5S 0.966 0.966 0.966 0.966

6S 0.966 0.966 0.966 0.966

7S 0.966 0.966 0.966 0.966

Table 4.12: Best selection of ,s m under recall

Condition Best ,s m Pair

() { }common Af C action

1,S Lucene Default Model

1, 25S Okapi BM

1,S LM Dirichlet

1, 2S F EXP

() { , }common Af C action title

4 ,S Lucene Default Model

4 , 25S Okapi BM

4 ,S LM Dirichlet

4 , 2S F EXP

() { , }common Af C action introduction

5 ,S Lucene Default Model

5 , 25S Okapi BM

5 ,S LM Dirichlet

5 , 2S F EXP

() { , , }common Af C action title introduction

5 ,S Lucene Default Model

5 , 25S Okapi BM

5 ,S LM Dirichlet

5 , 2S F EXP

6 ,S Lucene Default Model

6 , 25S Okapi BM

6 ,S LM Dirichlet

6 , 2S F EXP

7 ,S Lucene Default Model

7 , 25S Okapi BM

7 ,S LM Dirichlet

7 , 2S F EXP

From Table 4.12 it can be inferred that recall is not a good measure to help select the best

,s m pair because it generates too many solutions for each condition.

71

Precisione

Table 4.13 shows the precisione results for each pair of similarity model templates and IR

model implementations.

Table 4.13: Precisione results

Similarity Model Template Lucene Default Model Okapi BM25 LM Dirichlet F2‐EXP

1S 0.134 0.134 0.134 0.134

2S 0.107 0.099 0.143 0.099

3S 0.102 0.102 0.102 0.102

4S 0.162 0.162 0.144 0.162

5S 0.131 0.163 0.145 0.187

6S 0.131 0.163 0.163 0.218

7S 0.187 0.187 0.163 0.187

Even though all the IR model implementations retrieve the same set of relevant services,

they may generate different effective top services because they have separate scoring

functions. Thus their results are different under the same similarity template. Table 4.14

shows the best ,s m pair for each condition under the precisione evaluation measure.

Table 4.14: Best selection of ,s m under precisione

Condition Best ,s m Pairs

() { }common Af C action

1,S Lucene Default Model

1, 25S Okapi BM

1,S LM Dirichlet

1, 2S F EXP

() { , }common Af C action title
4 ,S Lucene Default Model

4 , 25S Okapi BM

4 , 2S F EXP

() { , }common Af C action introduction 5 , 2S F EXP
() { , , }common Af C action title introduction 6 , 2S F EXP

From Table 4.14 it can be seen that precisione is much better than recall in selecting the

best ,s m pair. Under two conditions, it has found the best solution.

F-measuree

72

Table 4.15 shows the F-measuree results for each pair of similarity model templates and

IR model implementations.

Table 4.15: F-measuree results

Similarity Model Template Lucene Default Model Okapi BM25 LM Dirichlet F2‐EXP

1S 0.233 0.233 0.233 0.233

2S 0.192 0.179 0.248 0.179

3S 0.184 0.184 0.184 0.184

4S 0.277 0.277 0.250 0.277

5S 0.230 0.279 0.252 0.313

6S 0.230 0.279 0.279 0.355

7S 0.313 0.313 0.279 0.313

F-measuree, which is the combination of precisione and recall should have the advantages

of both recall and precisione in discriminating IR model implementations under the same

similarity model template. Table 4.16 shows the best ,s m pair for each condition

under the F-measuree evaluation measure.

Table 4.16: Best selection of ,s m under F-measuree

Condition Best ,s m Pair

() { }common Af C action

1,S Lucene Default Model

1, 25S Okapi BM

1,S LM Dirichlet

1, 2S F EXP

() { , }common Af C action title
4 ,S Lucene Default Model

4 , 25S Okapi BM

4 , 2S F EXP

() { , }common Af C action introduction 5 , 2S F EXP
() { , , }common Af C action title introduction 6 , 2S F EXP

From Table 4.16 it can be observed that F-measuree works the same as precisione in

selecting the best ,s m pair. Under two conditions, it has found the best solution.

MAPe

Table 4.17 shows the MAPe results for each pair of similarity model templates and IR

model implementations.

73

Table 4.17: MAPe results

Similarity Model Template Lucene Default Model Okapi BM25 LM Dirichlet F2‐EXP

1S 0.302 0.302 0.301 0.301

2S 0.281 0.266 0.337 0.267

3S 0.264 0.260 0.259 0.264

4S 0.370 0.366 0.343 0.369

5S 0.325 0.361 0.331 0.392

6S 0.329 0.376 0.363 0.443

7S 0.411 0.404 0.366 0.407

Table 4.18 shows the best ,s m pair for each condition under the MAPe evaluation

measure.

Table 4.18: Best selection of ,s m under MAPe

Condition Best ,s m Pair

() { }common Af C action 1,S Lucene Default Model

1, 25S Okapi BM
() { , }common Af C action title 4 ,S Lucene Default Model

() { , }common Af C action introduction 5 , 2S F EXP
() { , , }common Af C action title introduction 6 , 2S F EXP

MAPe has the strongest capability to discriminate IR model implementations under the

same similarity template. It can be observed that three conditions have found the best

solution and the solutions for the left one are reduced to just two.

MRR

Table 4.19 shows the MRR results for each pair of similarity model templates and IR

model implementations.

MRR is only related to the position of the first returned relevant service, so the

distribution of other relevant services has no influence on its value. Table 4.20 shows the

best ,s m pair for each condition under the MRR evaluation measure.

74

Table 4.19: MRR results

Similarity Model Template Lucene Default Model Okapi BM25 LM Dirichlet F2‐EXP

1S 0.834 0.834 0.832 0.832

2S 0.950 0.948 0.949 0.949

3S 0.879 0.858 0.847 0.878

4S 0.974 0.961 0.962 0.969

5S 0.973 0.941 0.916 0.949

6S 0.981 0.981 0.936 0.981

7S 0.994 0.972 0.946 0.983

Table 4.20: Best selection of ,s m under MRR

Condition Best ,s m Pair

() { }common Af C action 1,S Lucene Default Model

1, 25S Okapi BM
() { , }common Af C action title 4 ,S Lucene Default Model
() { , }common Af C action introduction 5 ,S Lucene Default Model
() { , , }common Af C action title introduction 7 ,S Lucene Default Model

MRR also has a strong capability in discriminating between IR model implementations

under the same similarity model template. Under three conditions the best solution has

been found and the solutions of the left condition are reduced to just two.

4.3 An Adaptive Intent Resolution Approach

In this section, an adaptive intent resolution approach is proposed based on the previous

experimental results and analysis.

4.3.1 Empirical Result Review

In the results of seeking the best ,s m pair in Table 4.12, 4.14, 4.16, and 4.18, it can

be observed that

 { } { } { } { }
e e erecall precision F measure MAPresults results results results (4.15)

for each condition. Therefore, the results of MAPe can also apply to the other three

evaluation measures. Table 4.21 shows the selected ,s m pairs for all the possible

conditions under the evaluation measures of recall, precisione, F-measuree, and MAPe.

75

Table 4.21: Selected ,s m pairs for recall, precisione, F-measuree, and MAPe

 Introduction NOT Introduction

Title 6 , 2S F EXP 4 ,S Lucene Default Model

NOT Title 5 , 2S F EXP 1,S Lucene Default Model

Since the Intents advertisement action field is a required field. Table 4.21 only considers

the different conditions of the service title field and the service introduction field. In

Table 4.21, “NOT” means such field is absent in C . In the condition that neither the

service title field nor the service introduction field occurs, 1,S Lucene Default Model

is chosen as the best solution. The reason for disposal of the 1, 25S Okapi BM pair is

that the Lucene default model is also chosen as the best solution in other conditions. So

from a global point of view, the Lucene default model works better than the Okapi BM25

model.

The results of MRR are not compatible with the other four, so they are listed in Table

4.22 separately.

Table 4.22: Selected ,s m pairs for MRR

 Introduction NOT Introduction

Title 7 ,S Lucene Default Model 4 ,S Lucene Default Model

NOT Title 5 ,S Lucene Default Model 1,S Lucene Default Model

Similarly, in the condition that neither the service title field nor the service introduction

field occurs, the pair 1,S Lucene Default Model is chosen as the best solution because

the Lucene default model is also chosen as the best solution in other conditions. So from

a global point of view, the Lucene default model works better than Okapi BM25.

Table 4.21 and 4.22 together constitute the two basic heuristics which can be used to

develop our adaptive intent resolution approach.

4.3.2 Adaptive Approach Design

In order to design an adaptive approach, the intent resolution process in Figure 3.12

should be modified to introduce adaptability.

76

Data type matching
Extended

Intents
Advertisements

Registry

Exact action matching

Adaptive score
services and rank

them

End user

Candidate
service

list

Intent

...

Remote services

Invoke remote service

Yes

Selected serivce

Explicit intent?

No

Authoritative intent?

Yes

No

Figure 4.4: Adaptive intent resolution process

Figure 4.4 is a modified intent resolution process for Figure 3.12 to accommodate an

adaptive intent resolution capability. The difference between the two figures is that

Figure 4.4 introduces an adaptive service scoring and ranking procedure to replace the

basic service scoring and ranking procedure. In addition, the Intents advertisement

registry is extended to include the service title field and the service introduction field.

Each entry of the extended Intents advertisement registry is composed of a service

identifier field, a service title field, a service introduction field, an Intents advertisement

action field, and a data type field. Table 4.23 lists an example of the extended Intents

advertisement registry.

77

Table 4.23: Example of the extended Intents advertisement registry

Service ID Action Title Introduction Data Type

http://202.117.1.119/sha
re

share a link
Facebook
link share

NULL text/url‐list

http://202.117.0.200/get‐
a‐weather

local weather NULL
This is a local
weather
service.

application/js
on

http://202.117.1.119/sho
rten

http://webintents.or
g/shorten

NULL NULL text/uri‐list

In the real world, it is impossible for every service to have all of the Intents advertisement

action field, the service title field, and the service introduction field. It should be possible

that a service lacks the service title field or the service introduction field. Thus the

prerequisite of the adaptive scoring process is to detect the common fields of the services

which have passed the step of data type matching. As aforementioned, since the Intents

advertisement action field is required and the service title field and the service

introduction field are optional, the result of common field detection can only be one of

four conditions.

The core idea of the adaptive scoring procedure is choosing the best ,s m to

determine the similarity model based on the detected common fields, the predefined

evaluation measure, and the two heuristics obtained from the empirical study in Section

4.2. Then the similarity model is used to score and rank the services. Finally, the tail of

the ranked services will be cut off according to the effective top service threshold of the

,s m pair. Table 4.24 lists the effective top service thresholds which are measured in

the empirical study in Section 4.2.

Table 4.24: Effective top service thresholds

Similarity Model Template Lucene Default Model Okapi BM25 LM Dirichlet F2‐EXP

1S 90.00% 90.00% 90.00% 90.00%

2S 80.00% 86.67% 60.00% 86.67%

3S 52.17% 52.17% 52.17% 52.17%

4S 50.00% 50.00% 56.25% 50.00%

5S 43.48% 34.78% 39.13% 30.43%

6S 41.67% 33.33% 33.33% 25.00%

7S 29.17% 29.17% 33.33% 29.17%

78

4.3.3 MAP-based Adaptive Approach

This subsection will present the MAP-based adaptive approach which applies to the

evaluation measures of recall, precisione, F-measuree, and MAPe. If one of the four

evaluation measures is selected by the user, the MAP-based approach can be used.

Assuming C is the set of services which have passed data type matching and I the naïve

intent, Algorithm 1 presents the MAP-based adaptive approach.

Algorithm 1: MAP-based approach for the adaptive service scoring and ranking procedure
Input: Service set C

Naive intent I
Output: A ranked list of candidate services from C

1 Detect the common fields of C
2 if the service introduction field is in the common fields

then set F2-EXP as the IR model implementation
 if the service title field is in the common fields
 then
 Set the similarity model template to 6S
 Set the cut-off threshold to 0.25
 else
 Set the similarity model template to 5S
 Set the cut-off threshold to 0.3043
else Set the Lucene default model as the IR model implementation
 if the service title field is in the common fields
 then
 Set the similarity model template to 4S
 Set the cut-off threshold to 0.5
 else
 Set the similarity model template to 1S
 Set the cut-off threshold to 0.9

3 Use the selected similarity model template and IR model implementation to generate a
ranked list of relevant services from C

4 Use the selected threshold to cut off the tail of the list
5 Return the resulting candidate service list

As demonstrated in Algorithm 1, the procedure begins with detecting the common

service fields. The ultimate similarity model template and retrieval model are adaptively

set according to the detected common fields and the heuristic in Table 4.21. Then the

services are ranked and the tail is cut off according to the adaptively set threshold. Finally,

an ordered list of candidate services is generated and returned.

79

4.3.4 MRR-based Adaptive Approach

This subsection will present the MRR-based adaptive approach which applies if the user

selects MRR as the evaluation measure.

Assuming C is the set of services which have passed data type matching and I the naïve

intent, Algorithm 2 presents the MRR-based adaptive approach.

Algorithm 2: MRR-based approach for the adaptive service scoring and ranking procedure
Input: Service set C

Naive intent I
Output: A ranked list of candidate services from C

1 Detect the common fields of C
2 Set Lucene’s default model implementation as the IR model implementation
3 if the introduction field is in the common fields

then
 if the title field is in the common fields
 then
 Set the similarity model template to 7S
 Set the cut-off threshold to 0.2917
 else
 Set the similarity model template to 5S
 Set the cut-off threshold to 0.4348
else
 if the title field is in the common fields
 then
 Set the similarity model template to 4S
 Set the cut-off threshold to 0.5
 else
 Set the similarity model template to 1S
 Set the cut-off threshold to 0.9

4 Use the selected similarity model template and IR model implementation to generate a
ranked list of relevant services from C

5 Use the selected threshold to cut off the last part of the list
6 Return the resulting candidate service list

As demonstrated in Algorithm 2, the procedure begins with detecting the common

service fields. The ultimate similarity model template and retrieval model are adaptively

set according to the detected common fields and the heuristic in Table 4.22. Then the

services are ranked and the tail is cut off according to the adaptively set threshold. Finally,

an ordered list of candidate services is generated and returned.

80

4.4 Summary

This chapter begins with formally articulating the similarity model applied in naïve intent

resolution. Since the action field is a short text field, we add two other fields (the service

title field and the service introduction field) to enrich the service-side information and

obtain an extended similarity model determined by a similarity model template and IR

model pair. Then we transform the similarity model into an optimization problem.

In order to solve the similarity model problem, an empirical approach is applied. First, we

define seven representative similarity model templates, four classic IR model

implementations, and five evaluation measures. Then a series of experiments are

conducted on a dataset from the real world to measure the performance of each

combination of similarity model templates, IR model implementations, and evaluation

measures. For each evaluation measure, the best similarity template and IR model pairs

are selected under different conditions.

Based on the empirical study and analysis, two heuristics are obtained. Then we revise

the intent resolution process to introduce adaptability and devise two adaptive approaches

for the process according to the two heuristics, respectively.

81

Chapter 5

5 User Agent: Design, Implementation, and Application

In the Intents architecture, a user agent exists and works for each end user. It takes the

responsibility for resolving intents and generating candidate services for implicit intents.

This chapter will present a design for user agents. In addition, a proof-of-concept

implementation of the design will be demonstrated.

With the development of mobile devices, integrating Web services and on-device native

services is in demand. This chapter will also present employing Intents and the Intents

user agent to integrate Web services and native services. The integration will be

demonstrated by the implemented user agent.

5.1 User Agent Design

Intents user agents are the most critical component in Intents. A user agent takes the

responsibility for collecting and managing Intents advertisements on behalf of its owner,

rendering Web applications, resolving intents, generating candidate services,

communicating with remote services and service brokers, and managing its owner’s

interest groups.

Figure 5.1 shows a three-tier architecture design of the user agent at the presentation

layer, the application layer, and the data layer. More details on each layer are presented as

follows.

 Data layer. The data layer of each user agent includes an Intents advertisement

registry, a group list, a settings file, and an index for Intents advertisements. The

Intents advertisement registry is private where personalized Intents

advertisements are stored. The registry is managed under the control of the owner

through the interfaces provided by the user agent. The group list keeps a list of

interest groups which can refer the user agent to a set of group Intents

advertisement registries. The settings file contains broker profiles, evaluation

settings, and other configurations which are of great use in intent resolution. The

82

Intents advertisement index contains the Intents advertisements which are used to

generate candidate services. Mature indexing techniques are applied here so that

accessing the index by upper layer modules is very fast. The content of the index

may not only come from the internal Intents advertisement registry. Broker and

group registries can also be sources of the Intents advertisements index.

Figure 5.1: User agent design

 Application layer. Each user agent should have a service port module to

communicate with remote services. Inside the user agent, the port module is only

connected to the intent processor module. None of the other user agent modules

can communicate with it but through the intent processor. If the port receives a

request message from the intent processor, it sends the message directly to the

remote service specified in the message. On the other hand, once it receives any

response message from remote services, it forwards the message to the intent

processor. The intent processor is the critical module of the user agent which is

composed of an intent analyzer, a data type filter, an action filter, and a scoring

component. The intent analyzer parses incoming intents to extract the content of

the intent type field, the action field, and the data type field. Then the fields are

distributed to corresponding components according to the intent type field for

further processing. If the intent is an explicit intent, it is sent to the specified

83

remote service through the service port directly. If the intent is an authoritative

intent, its action field and data type field are sent to the action filter and the data

type filter, respectively. If the intent is a naïve intent, its action field and data type

field are sent to the scoring component and the data type filter, respectively. The

data type filter does the job of data type matching. It filters out services whose

data type is not matched with the intent services. The action filter looks for the

services whose Intents advertisement actions are the same as the intent action.

The scoring component takes the responsibility for scoring and ranking the

services based on the adaptive approaches presented in Section 4.3 and the

predefined evaluation measure in the settings file. In addition to the intent

processor and service port, another four modules are also included in the design.

They are the Intents advertisement CRUD (Create, Retrieve, Update, and Delete)

module, the group list CRUD module, the settings CRUD module, and the Intents

advertisement index controller module. The three CRUD modules are the bridges

between their corresponding user interfaces and the underlying data stores. They

execute the instructions to create, retrieve, update, and delete the store entries.

The Intents advertisement index controller maintains the Intents advertisement

index. The controller collects Intents advertisements and other service descriptive

information from different sources based on the user configurations in the settings

file and creates the index.

 Presentation layer. The Web view module renders the user interfaces of Web

applications and services including parsing and executing their HTML (Hypertext

Markup Language), CSS (Cascading Style Sheets) and JavaScript. During the

process of parsing the Web content, the Web view module takes the responsibility

for locating the controls in Web applications which are associated with an intent.

When an end user executes one of the controls and triggers its intent, the Web

view module should capture the intent and send it down to the application layer.

In addition to the Web view module, the presentation layer also has three user

interface (UI) modules. The intent advertisement management UI module helps

end users manage their own intent advertisement registry. With the interface,

users are able to add, view, and remove intent advertisements for their private

84

registry. Similarly, the interest group management UI module helps users manage

their own interest groups. With its help, users are capable of adding, viewing, and

removing their own interest groups. Last but not least, the settings UI module is

used to configure the settings file.

This section presents only the user agent in design. It can be implemented in various

forms. For instance, the user agent may be developed as an extension or plugin to a full-

fledged browser such as Chrome or Firefox. It may also be developed as an independent

application on a personal computer (PC) or mobile device.

5.2 Prototype

5.2.1 Implementation

We developed a user agent implementation on Android. It is an extension of our previous

work presented in [Zheng et al., 2013]. Table 5.1 lists the major development libraries or

tools for each layer.

Table 5.1: Development kits for the user agent prototype

Layer Development Kit

Presentation Layer Android API

Application Layer Android API

Data Layer SQLite, Apache Lucene, file

At the data layer, the SQLite database is used to store private Intents advertisements.

Apache Lucene is applied to build an index on the mobile device. Other system settings

and the group list are stored in plain files. The application and presentation layer modules

are implemented in the API provided by Android Software Development Kit (SDK). The

Web view is implemented by the class “android.webkit.WebView” in the Android

API.

5.2.2 Demonstration

Figure 5.2 demonstrates a typical text sharing sample in Intents. It can be compared with

Figure 3.15 to see the advantages of Intents in content sharing applications.

85

Figure 5.2: Intents text sharing example

In Figure 5.2, the Intents-supported application is rendered in the Web view of the user

agent. Instead of adopting a set of sharing buttons, the application uses only one sharing

button. The click event of the button is associated with an event listener function written

in JavaScript. The function only executes the instructions in Figure 5.3.

Figure 5.3: Instructions to trigger an intent in JavaScript

The JavaScript code creates an intent object with its fields of intent type, action, data type,

and data value. Then the “startActivity(intent)” instruction sends the intent to the

user agent. The user agent generates a list of candidate services as in Figure 5.4.

var intent = new Intent(“naive”,

“share text”,

“text/plain”,

[text]);

startActivity(intent);

86

Figure 5.4: Candidate services for the example in Figure 5.3

Each candidate service entry is composed of a service title and service identifier.

Currently in the implementation, all the sample Intents services and applications are

embedded into the user agent Android application for demonstration purposes. Thus the

identifiers are in the form of file paths.

The candidate services are generated from the private Intents registry of the user agent so

they are totally personalized. If a service is selected by end users, for instance, Twitter, it

continues the workflow and completes the action as in Figure 5.5.

87

Figure 5.5: Selection of the Twitter application and continue the sharing task

5.3 User Agent Application: Integration of Web and Native
Applications on Mobile Devices

In recent years, mobile devices including smart phones and tablets have prevailed over

traditional PCs in popularity. Applications developed on mobile devices can be either

native or Web-based. A Web application is an application with an UI entry that runs in a

Web browser and is in compliance with common Web standards. In contrast, native

applications are developed specifically for a platform. Both Web and native applications

have their own irreplaceable characteristics. Thus it is of substantial significance to

explore the interoperability of the two kinds of applications. This section will present

how to use Intents and the Intents user agent to facilitate the integration of Web

applications and native applications

5.3.1 Motivation for the Integration

When planning an application on mobile devices, it is often difficult to decide to make

the application native or Web-based. Both Web and native applications have advantages

and disadvantages in terms of platform independence, maintenance, performance, and

88

device feature exploitation. A comparison of these two kinds of applications can be

summarized as follows:

 Platform independence. For Web applications, even though they are running

within different browsers, most browsers are designed to support almost the same

Web technology standards (HTML, CSS and JavaScript). Thus Web application

projects can be easily ported to different mobile platforms without too much effort.

On the contrary, native applications running on separate mobile platforms

encounter problems caused by the many and various mobile operating systems

(OS) such as Apple, Android, Blackberry, Windows, and Symbian. Each platform

requires a different development skill set which is distressing and troublesome for

application developers. Table 5.2 lists the detailed skills by Charland and Leroux

[Charland and Leroux, 2011]. Therefore, individual developers or startups may

only be able to support their applications in one or two platforms. As a result, a

limit is imposed on spreading the application. On the other hand, giant companies

are required to invest more to make their applications support most of the existing

mobile platforms.

Table 5.2: Mobile platform and their required skill set

Mobile OS Skill Set

Apple iOS C, Objective C

Google Android Java

RIM BlackBerry Java

Symbian C, C++, Python, HTML/CSS/JS

Window 7 Phone .NET

HP Palm webOS HTML/CSS/JS

MeeGo C, C++, HTML/CSS/JS

Samsung bada C++

 Maintenance. Native application developers have to publish updates

simultaneously into all application stores for the platforms on which their

applications are running. This requirement is extremely hard and sometimes they

may publish the latest update onto the most popular platforms first. The result of

the action is fragmentation with platforms possibly keeping different application

versions. In addition, the maintenance of native applications on all platforms is

89

also very expensive and users have to install their updates manually. However, the

major maintenance of Web applications only happens on the servers where Web

applications are kept. Application developers just need to update application files

on the server side and it automatically takes effect when users open the

applications again in their browsers.

 Performance. Native applications are usually developed in programming

languages which are supported by a specific platform. Thus native applications

can be compiled and optimized to the platform which is able to achieve a much

faster response time. In contrast, Web applications are downloaded and

interpreted at runtime which slow their running speed. Even though caching

technology is applied and the JavaScript engines on some platforms have been

enhanced, the whole performance of Web applications falls far behind compared

to native applications, especially for heavily resource-consuming applications

such as games and videos.

 Device features. Native applications have the advantage of employing device

sensors including the accelerometer and the compass to enhance their

functionalities. Besides, they may employ platform-dependent UI elements and

controls which are capable of providing a good user experience. Web applications,

however, are limited in leveraging device-dependent features. Currently, some

third-party libraries like PhoneGap1 enable Web applications to use device units

including cameras and sensors. But they still could not match native applications

in terms of device features and user experience.

Now that both native and Web applications are advantageous in different aspects,

integrating them provides a possibility to make the most of mobile devices. Specifically,

Android native applications are developed revolving around a mechanism named Android

Intents which, in this work, provides inspiration for Intents. Therefore, the nature of

1
 http://phonegap.com/

90

Intents should be that it can be leveraged to integrate Web applications and Android

native applications.

Android Intents indicates the android.content.Intent class in Android SDK

and the mechanism revolving around it for communication in the Android operating

system. Android components communicate with each other through its instance

transmission. In order to make a difference between intents in this work and Android

Intent instances, the latter type of intents are called Android intents. Although, in this

work, Intents partly originates from Android Intents, their intent data structures are

different. Table 5.3 compares the fields of intents and Android intents.

Table 5.3: Comparison between intents and Android intents

Field Intent Android Intent

type Yes No

action Yes Yes

data Yes Yes

data type Yes Yes

extra No Yes

From Table 5.3 it is seen that Android intents have no intent type field but they added an

extra field to accommodate additional information. On the other hand, the Android

intents data field only supports URI-like data which is totally different from the intents

data field. Thus integrating Web and Android applications requires a method for the

conversion between intents and Android intents.

In the next two subsections, Intents and the Intents user agent are applied to two

situations for the integration of Web applications and Android native applications. One is

calling Android components from Web applications. The other is calling Web services

from Android applications. The conversion between intents and Android intents will be

presented in the two situations, respectively.

5.3.2 Web Applications Depending on Android Components

Calling Android components in Web applications requires creating Android intents in the

form of intents. Then the user agent can identify the intent-formed Android intent and

extract its fields to create a real Android intent. After that the real Android intent is sent

91

to the underlying Android system for further processing. If the Android intent is explicit,

the expected component is executed directly. On the other hand, if the Android intent is

an implicit intent, Android may generate a list of candidate components to the end user.

Then the end user chooses a component to continue his/her task. Figure 5.6 shows how to

map the fields of Android intents into the fields of intents.

Figure 5.6: Field mapping from Android intents to intents

In Figure 5.6, the Android intent action and data type fields are mapped to the intent

action and data type fields, respectively. The Android intent data and extra fields are

together put into the intent data field. Moreover, the intent type field is filled with

“android” to let the user agent know it is an intent-formed Android intent.

Figure 5.7 shows the scheme to combine the Android intent data and extra fields.

Figure 5.7: Scheme to combine the Android intent data and extra fields

In Figure 5.7, two JSON objects are joined together with a comma as the separator. The

first JSON object is for the data field. Its name/value pair has a “data” name and a string

value. The latter JSON object is for the extra field. Its name/value pair has an “extra”

name and a JSON object which is used for multiple extra settings in Android intents. The

92

upper path of the two JSON objects means both the data field and the extra field are

optional and can be set to null.

Figure 5.8 demonstrates an example of calling Android components in Web applications

through Intents.

Figure 5.8: Web text sharing example by calling Android components

The example also adopts the text sharing scenario. Its JavaScript code to create Android

intents is shown as in Figure 5.9.

Figure 5.9: Instructions to invoke Android components in the Web application in

Figure 5.8

var intent = new Intent(“android”,

“android.intent.action.SENDTO”,

“text/plain”,

“{},{"extra":{"android.intent.extra.TEXT":[text]}}”);

startActivity(intent);

93

In Figure 5.9, the text to be shared is put into the extra field. When a user agent receives

the intent, it is first identified as an intent-formed Android intent. Then the user agent

extracts the intent fields, creates an android.content.Intent instance, and sends

the instance to the underlying Android operating system. Because the Android intent is

implicit, the operating system generates a candidate list as shown in Figure 5.10.

Figure 5.10: Candidate Android components for the Web application example in

Figure 5.8

Then the end user is able to choose an Android component to complete the text sharing

task.

5.3.3 Native Applications Depending on Web Services

Calling Web services in Android applications requires creating intents in the form of

Android intents. Then an Intents helper module transforms them into real intents which

can be recognized by user agents. After that user agents accept and process the intents.

The whole workflow is shown in Figure 5.11.

94

Figure 5.11: Flow of calling Web services in Android applications

Figure 5.12 shows how to map the Android intent fields into the intent fields. The intent

action and data type fields are mapped into the Android intent action and data type fields,

respectively. The intent type and data fields are together mapped into the Android intent

extra field.

Android intent

action

data type

data

extra

intent

type

action

data type

data

Figure 5.12: Field mapping from intents to Android intents

Because the Android intent data field only supports a URI type, it is not suitable for

storing intent data. On the other hand, the extra field is able to accommodate multiple

name/value pairs. Thus both the intent type and data fields are mapped into the Android

intent extra field.

Figure 5.13 demonstrates an example of calling Web services in Android applications

through Intents.

95

Figure 5.13: Android text sharing example by calling Web services

The example also adopts the text sharing scenario. The code to create intents is written in

Java as shown in Figure 5.14.

Figure 5.14: Instructions to invoke Web services in the Android application in

Figure 5.13

The Android application creates an intent in the form of Android intents and sends it to

the Intents helper. Then the Intents helper extracts its fields and creates a real intent.

After that the intent is sent to the user agent for further processing. Because the intent is

naïve, the user agent generates a list of candidate services as shown in Figure 5.15.

Intent intent = new Intent();

intent.setAction(“share text”);

intent.setType(“text/plain”);

intent.putExtra(“intents.type”, “naive”);

intent.putExtra(“intents.data”, “[text]”)

IntentsHelper.startWebActivity(intent);

96

Figure 5.15: Candidate Web services for the Android application example in

Figure 5.13

Then the end user is able to choose a Web service to complete the text sharing task.

5.4 Summary

This chapter presents a design for Intents user agents which play an important role in

Intents. A proof-of-concept prototype is developed on Android and a text sharing

application is demonstrated.

This chapter also explores applying Intents and the proposed Intents user agent to the

integration of Web applications and native applications on mobile devices. Two attempts

are demonstrated on the developed user agent. One is to call Android components on

Web applications. The other is to invoke Web services on Android applications.

97

Chapter 6

6 Conclusion and Future Work

In this chapter, we will conclude the research work and discuss future research directions.

6.1 Conclusion

Developing an effective and efficient technique for service discovery and integration is a

long-standing challenge. Although significant efforts have been devoted to this area, most

of them are based on the ternary participant classification for the Web service

architecture which only takes into consideration the involvement of service providers,

service brokers, and the application developers in service consumers. The application end

user participation is usually ignored.

This thesis presents an innovative service discovery and integration approach named

Intents which is inspired by two industrial protocols: Android Intents and Web Intents.

The approach is characterized by allowing application end users to participate in the

process of service seeking and provides a new direction for service discovery and

integration. The major contributions of this work can be summarized as follows:

 Proposed the Intents approach at the conceptual level. The proposed Intents

approach is at the conceptual level so it has a strong capability in addressing

generic problems. Our approach not only inherits the innovations of Android

Intents and Web Intents but also extends them in terms of the Intents architecture,

intent data structure, intent types, Intents advertisements, the intent resolution

process, and Intents service creation methods.

 Examined the process of intent resolution and developed an adaptive intent

resolution approach. Intent resolution is a critical process in Intents and the

naïve intent resolution process asks for a similarity model. We formulated a

similarity model and constructed an optimization problem for seeking the best

similarity model. Then we conducted an empirical study of the problem. Based on

98

the results and analysis of the empirical study, an adaptive intent resolution

approach has been developed.

 Presented a design and implementation of the Intents user agent and applied

Intents and the implemented user agent to the integration of Web

applications and native applications on mobile devices. The Intents user agent

is the most significant component in the Intents architecture which takes the

responsibilities including collecting and managing Intents advertisements,

rendering Web applications, intent resolution, and communicating with remote

services. We proposed a design and implementation for user agents in this thesis.

In addition, with the development of mobile devices, integrating Web applications

and native applications on mobile devices is in great demand. This thesis makes

an attempt by applying Intents and the proposed user agent to the integration of

Web applications and Android native applications.

6.2 Future Work

Intents is an innovative framework which opens up a new direction in the research area of

service discovery and integration. In the research directions related to this thesis, the

following future work is envisioned:

 Enrich Intents services and Intents-based Web applications. Currently there

are only a limited number of Intents services and Intents-based Web applications

for research purposes. In the long run, more mature Intents services and Intents-

based Web applications should be developed to exploit the advantages of Intents.

 Continue improving the adaptive intent resolution process. The dataset

applied in the empirical study in this work is comparatively small. More data is

needed to examine the intent resolution process. At the same time, more IR model

implementations and similarity model templates should be explored for seeking

the best similarity model in different conditions. In addition, machine learning

techniques can be applied to help formulate the similarity model template set.

 Apply semantic integration techniques such as ontologies to the organization

of data types. Intents currently adopts the Internet media type for the data type

99

field. It works well for simple-parameter Web services, i.e., Web services that

have one basic input parameter. As for complex parameters, JSON or XML is

applied. Thus it requests service providers to provide more information on how to

construct input and application developers to form the data in compliance with

such information. As a future work, ontologies will be used to organize data types

so that each input of data conforms to a concept in a global ontology.

100

References
[Al-Jaroodi and Mohamed, 2012] J. Al-Jaroodi and N. Mohamed, “Service-oriented Middleware: a

Survey,” Journal of Network and Computer Applications, Vol. 35, No. 1, pp. 211–220, 2012.

[Al-Masri and Mahmoud, 2007] E. Al-Masri and Q. Mahmoud, “QoS-based Discovery and Ranking of

Web Services,” In Proceedings of 16th International Conference on Digital Object Identifier (ICCCN

2007), Honolulu, HI, USA, 2007, pp. 529–534.

[Al-Masri and Mahmoud, 2009] E. Al-Masri and Q. Mahmoud, “Understanding Web Service Discovery

Goals,” In Proceedings of 2009 IEEE International Conference on Systems, Man, and Cybernetics

(IEEE SMC 2009), San Antonio, Texas, USA, 2009, pp. 3714–3719.

[Baeza-Yates and Ribeiro-Neto, 1999] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval,

Addison Wesley, 1999.

[Bansal and Vidal, 2003] S. Bansal and J. Vidal, “Matchmaking of Web Services Based on the DAML-S

Service Model,” In Proceedings of the 2nd International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2003), Melbourne, Australia, 2003, pp. 926–927.

[Berners-Lee, 1992] T. Berners-Lee, “World-Wide Web: The Information Universe,” Electronic

Networking, Vol. 2, No. 1, pp. 52–58, 1992.

[Bishop, 2006] C. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics),

Springer, 2006.

[Bouguila, 2008] N. Bouguila, “Clustering of Count Data Using Generalized Dirichlet Multinomial

Distributions,” IEEE Transactions on Knowledge and DataEngineering, Vol. 20, No. 4, pp. 462–474,

2008.

[Bray, 2002] T. Bray, “Internet Media Type Registration, Consistency of Use,” W3C, September 4, 2002,

Accessed February 8, 2014, http://www.w3.org/2001/tag/2002/0129-mime.

[Buckley et al., 1994] C. Buckley, G. Salton, J. Allan, and A. Singhal, “Automatic Query Expansion Using

SMART: TREC 3,” In Proceedings of the 3rd Text REtrieval Conference (TREC-3), Gaithersburg,

MD, USA, 1994, pp. 69–80.

[Canali et al., 2013] C. Canali, M. Colajanni, and R. Lancellotti, “Algorithms for Web Service Selection

with Static and Dynamic Requirements,” Service Oriented Computing and Applications, Vol. 7, No. 1,

pp. 43–57, 2013.

[Casella and Berger, 2001] G. Casella and R. Berger, Statistical Inference, Duxbury Press, 2001

[Chan et al., 2012] N. Chan, W. Gaaloul, and S. Tata, “A Recommender System based on Historical Usage

Data for Web Service Discovery,” Service Oriented Computing and Applications, Vol. 6, No. 1, pp.

101

51–63, 2012.

[Charland and Leroux, 2011] A. Charland and B. Leroux, “Mobile Application Development: Web vs.

Native,” Communications of the ACM, Vol. 54, No. 5, pp. 49–53, 2011.

[Chappell and Jewell, 2002] D. Chappell and T. Jewell, Java Web Services, O’Reilly, 2002.

[Chen and Mcleod, 2006] A. Chen and D. McLeod, “Collaborative Filtering for Information

Recommendation Systems,” In Encyclopedia of E-Commerce, E-Government, and Mobile Commerce,

edited by M. Khosrow-Pour and M. Khosrowpour, pp. 118–123, Idea Group Publishing, 2006.

[Chen et al., 2006] H. Chen, Y. Wang, H. Wang, Y. Mao, J. Tang, C. Zhou, A. Yin, and Z. Wu. “Towards a

Semantic Web of Relational Databases: A Practical Semantic Toolkit and an In-Use Case from

Traditional Chinese Medicine,” In Proceedings of the 5th International Semantic Web Conference

(ISWC 2006), Athens, GA, USA, 2006, pp. 750–763.

[Cristianini and Shawe-Taylor, 2000] N. Cristianini and J. Shawe-Taylor, An Introduction to Support

Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.

[Crouch and Yang, 1992] C. Crouch and B. Yang, “Experiments in Automatic Statistical Thesaurus

Construction,” In Proceedings of the 15th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR 1992), Copenhagen, Denmark, 1992, pp. 77–88.

[Dempster et al., 1977] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from Incomplete Data

via the EM Algorithm,” Journal of the Royal Statistical Society, Series B, Vol. 39, No. 1, pp. 1–38,

1977.

[Dong et al., 2004] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Similarity Search for Web

Services,” In Proceedings of the 13th International Conference on Very Large Data Bases (VLDB

2004), Toronto, Canada, 2004, pp. 372–380.

[Fang, 2007] H. Fang, “An Axiomatic Approach to Information Retrieval,” PhD Dissertation, University of

Illinois at Urbana-Champaign, 2007.

[Fang et al., 2004] H. Fang, T. Tao, and C. Zhai, “A Formal Study of Information Retrieval Heuristics,” In

Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR 2004), Sheffield, United Kingdom, 2004, pp. 49–56.

[Fielding, 2000] R. Fielding, “Architectural Styles and the Design of Network-based Software

Architectures,” PhD Dissertation, University Of California, Irvine, 2000.

[Fielding and Taylor, 2002] R. Fielding and R. Taylor, “Principled Design of the Modern Web

Architecture,” ACM Transactions on Internet Technology, Vol. 2, No. 2, pp. 115–150, 2002.

[Fuggetta et al., 1998] A. Fuggetta; G. P. Picco, and G. Vigna, “Understanding Code Mobility,” IEEE

Transactions on Software Engineering, Vol. 24, No. 5, pp. 342–361, 1998.

102

[Guarino et al., 2009] N. Guarino, D. Oberle, and S. Staab, “What Is an Ontology?,” In Handbook on

Ontologies, International Handbooks on Information Systems (2nd ed), edited by S. Staab and R.

Studer, pp. 1–17, Springer, 2009.

[Gray and Reuter, 1992] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques,

Morgan Kaufmann, 1992.

[Halevy, 2001] A. Halevy, “Answering Queries Using Views: a Survey,” The VLDB Journal, Vol. 10, No.

4, pp. 270–294, 2001.

[Hang et al., 2012] C. Hang, A. Kalia, and M. Singh, “Behind the Curtain: Service Selection via Trust in

Composite Services,” In Proceedings of the IEEE 19th International Conference on Web Services

(ICWS 2012), Honolulu, Hawaii, USA, 2012, pp. 9–16.

[Hatzi et al., 2012] O. Hatzi, G. Batistatos, M. Nikolaidou, and D. Anagnostopoulos, “A Specialized Search

Engine for Web Service Discovery,” In Proceedings of the IEEE 19th International Conference on

Web Services (ICWS 12), Honolulu, Hawaii, USA, 2012, pp. 448–455.

[Herlocker et al., 2004] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl, “Evaluating Collaborative

Filtering Recommender Systems,” ACM Transactions on Information Systems, Vo. 22, No. 1, pp. 5–

53, 2004.

[Jewell and Chappell, 2002] T. Jewell and D. Chappell, Java Web Services, O’Reilly, 2002.

[Jordan, 1998] M. Jordan, Learning in Graphical Models (Adaptive Computation and Machine Learning),

MIT Press, 1998.

[Kahneman and Tversky, 1979] D. Kahneman and A. Tversky, “Prospect Theory: An Analysis of Decision

under Risk,” Econometrica, Vol. 47, No. 2, pp. 263–292, 1979.

[Kossmann et al., 2002] D. Kossmann, F. Ramsak and S. Rost, “Shooting Stars in the Sky: an Online

Algorithm for Skyline Queries,” In Proceedings of the 28th International Conference on Very Large

Data Bases (VLDB 2002), Hong Kong, China, 2002, pp. 275–286.

[Lafferty and Zhai, 2001] J. Lafferty and C. Zhai, “Document Language Models, Query models, and Risk

Minimization for Information Retrieval,” In Proceedings of the 24th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR 2001), New Orleans, LA,

USA, 2001, pp. 111–119.

[Li et al., 2011] M. Li, J. Zhao, L. Wang, S. Cai, and B. Xie, “CoWS: An Internet-Enriched and Quality-

Aware Web Services Search Engine,” In Proceedings of the IEEE 18th International Conference on

Web Services (ICWS 2011), Washington, DC, USA, 2011, pp. 419–427.

[Liu et al., 2010] F. Liu, Y. Shi, J. Yu, T. Wang, and J. Wu, “Measuring Similarity of Web Services Based

on WSDL,” In Proceedings of the IEEE 17th International Conference on Web Services (ICWS

103

2010), Miami, Florida, USA, 2010, pp.155–162.

[Manes, 2003] A. Manes, Web Services: A Manager's Guide, Addison Wesley, 2003.

[Manning et al., 2008] C. Manning, P. Raghavan, and H. Schütze, An Introduction to Information

Retrieval, Cambridge University Press, 2008.

[McCandless et al., 2010] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action (2nd ed.),

Manning, 2010.

[Mehdi et al., 2012] M. Mehdi, N. Bouguila, and J. Bentahar, “Trustworthy Web Service Selection Using

Probabilistic Models,” In Proceedings of the IEEE 19th International Conference on Web Services

(ICWS 2012), Honolulu, Hawaii, USA, 2012, pp. 17–24.

[Meek et al., 2007] D. Metzler, S. Dumais, and C. Meek, “Similarity Measures for Short Segments of

Text,” In Proceedings of the 29th European Conference on IR Research (ECIR 2007), Rome, Italy,

2007, pp. 16–27.

[Miller, 1995] G. Miller, “WordNet: a Lexical Database for English,” Communications of the ACM, Vol.

38, No. 11, pp. 39–41, 1995.

[Mitra et al., 1998] M. Mitra, A. Singhal, and C. Buckley, “Improving Automatic Query Expansion,” In

Proceedings of the 21st Annual International ACM-SIGIR Conference on Research and Development

in Information Retrieval (SIGIR 1998), Melbourne, Australia, 1998, pp. 206–214.

[Mobedpour and Ding, 2013] D. Mobedpour and C. Ding, “User-centered Design of a QoS-based Web

Service Selection System,” Service Oriented Computing and Applications, Vol. 7, No. 2, pp. 117–127,

2013.

[Munkres, 2000] J. Munkres, Topology (2nd ed.), Pearson, 2000.

[Newcomer, 2002] E. Newcomer, Understanding Web Services: XML, WSDL, SOAP, and UDDI, Addison-

Wesley, 2002.

[Paolucci et al., 2002] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara, “Semantic Matching of Web

Services Capabilities,” In Proceedings of the First International Semantic Web Conference on The

Semantic Web (ISWC 2002), Seattle, Washington, USA, 2002, pp. 333–347.

[Papadias et al., 2003] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An Optimal and Progressive Algorithm

for Skyline Queries,” In Proceedings of the 22th ACM SIGMOD International Conference on

Management of Data (SIGMOD 2003), San Diego, CA, USA, 2003, pp. 467–478.

[Plebani and Pernici, 2009] P. Plebani and B. Pernici, “URBE: Web Service Retrieval Based on Similarity

Evaluation,” IEEE Transactions on Knowledge and Data Engineering, Vol. 21, No. 11, pp. 1629–

1642, 2009.

[Ponte and Croft, 1998] J. Ponte and W. Croft, “A Language Modeling Approach to Information

104

Retrieval,” In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR 1998), Melbourne, Australia, 1998, pp. 275–281.

[Popescul et al., 2001] A. Popescul, L. Ungar, D. Pennock, and S. Lawrence, “Probabilistic Models for

Unified Collaborative and Content-based Recommendation in Sparse-Data Environments,” In

Proceedings of the 17th International Conference on Uncertainty in Artificial Intelligence (UAI

2001), San Francisco, CA, USA, 2001, pp. 437–444.

[Porter, 1980] M. Porter, “An Algorithm for Suffix Stripping,” Program, Vol. 14, No. 3, pp. 130–137,

1980.

[Qiu and Frei, 1993] Y. Qiu and H. Frei, “Concept-based Query Expansion”, In Proceedings of the 16th

Annual International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR 1993), Pittsburgh, PA, USA, 1993, pp. 160–169.

[Ran, 2003] S. Ran, “A Model for Web Services Discovery with QoS,” ACM SIGecom Exchanges, Vol. 4,

No. 1, pp. 1–10, 2003.

[Richardson and Ruby, 2007] L. Richardson and S. Ruby, Restful Web Services, O'Reilly Media, 2007.

[Rittenberg and Tregarthen, 2009] L. Rittenberg and T. Tregarthen, Principles of Macroeconomics, Flat

World Knowledge, 2009.

[Robertson and Jones, 1976] S. Robertson and K. Jones, “Relevance Weighting of Search Terms,” Journal

of the American Society for Information Science, Vol. 27, No. 3, pp. 129–146, 1976.

[Robertson et al., 1995] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford, “Okapi

at TREC-3,” In Proceedings of the 3rd Text REtrieval Conference (TREC-3), Gaithersburg, MD,

USA, 1994, pp.109–126.

[Robertson et al., 1999] S. Robertson, S. Walker, and M. Hancock-Beaulieu, “Okapi at TREC-7,” In

Proceedings of the 7th Text REtrieval Conference (TREC-7), Gaithersburg, MD, USA, 1999, pp. 253–

264.

[Sahami and Heilman, 2006] M. Sahami and T. Heilman, “A Web-Based Kernel Function for Measuring

the Similarity of Short Text Snippets,” In Proceedings of the 15th International Conference on World

Wide Web (WWW 2006), Edinburgh, Scotland, 2006, pp. 377–386.

[Salton et al., 1975] G. Salton, A. Wong, and C. Yang, “A Vector Space Model for Automatic Indexing,”

Communications of the ACM, Vol. 18 No. 11, pp. 613–620, 1975.

[Salton and McGill, 1983] G. Salton and M. McGill, Introduction to Modern Information Retrieval,

McGraw-Hill, 1983.

[Schütze and Pedersen, 1997] H. Schütze and J. Pedersen, “A Cooccurrence-based Thesaurus and Two

Applications to Information Retrieval,” Information Processing & Management, Vol. 33, No. 3, pp.

105

307–318, 1997.

[Shi et al., 2012] C. Shi, D. Lin, and T. Ishida, “User-Centered QoS Computation for Web Service

Selection,” In Proceedings of the IEEE 19th International Conference on Web Services (ICWS 12),

Honolulu, Hawaii, USA, 2012, pp. 448–455.

[Si et al., 2013] H. Si, Z. Chen, Y. Deng, and L. Yu, “Semantic Web Services Publication and OCT-based

Discovery in Structured P2P Network,” Service Oriented Computing and Applications, Vol. 7, No. 3,

pp. 169–180, 2013.

[Singhal et al., 1996] A. Singhal, C. Buckley, and M. Mitra, “Pivoted Document Length Normalization,” In

Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR 1996), Zurich, Switzerland, 1996, pp. 21–29.

[Tversky and Kahneman, 1992] A. Tversky and D. Kahneman, “Advances in Prospect Theory: Cumulative

Representation of Uncertainty,” Journal of Risk and Uncertainty, Vol. 5, No. 4, pp. 297–323, 1992.

[Vaculin et al., 2008] R. Vaculin, H. Chen, R. Neruda, and K. Sycara, “Modeling and Discovery of Data

Providing Services,” In Proceedings of the IEEE 15th International Conference on Web Services

(ICWS 2008), Beijing, China, 2008, pp. 54–61.

[Voorhees, 1985] E. Voorhees, “Architectural Styles and the Design of Network-based Software

Architectures,” PhD Dissertation, Cornell University, 1985.

[Voorhees, 1994] E. Voorhees, “The Effectiveness and Efficiency of Agglomerative Hierarchic Clustering

in Document Retrieval”, In Proceedings of the 17th Annual International ACM-SIGIR Conference on

Research and Development in Information Retrieval (SIGIR 1994), Dublin, Ireland, 1994, pp. 61–69.

[Wang and Stroulia, 2003] Y. Wang and E. Stroulia, “Semantic Structure Matching for Assessing Web

Service Similarity,” in Proceedings of the 1st International Conference on Service Oriented

Computing, Trento, Italy, 2003, pp. 194–207.

[Wang et al., 2005] J. Wang, J. Xiao, C. Lam, and H. Li, “A Bipartite Graph Approach to Generate Optimal

Test Sequences for Protocol Conformance Testing Using the Wp-Method,” In Proceedings of the 12th

Asia-Pacific Software Engineering Conference (APSEC 2005), Taipei, Taiwan, China, 2005, pp. 307–

316.

[Wolsey, 1998] L. Wolsey, Integer Programming. Wiley, 1998.

[Xu et al., 2011] K. Xu, Q. Yu, Q. Liu, J. Zhang, and A. Bouguettaya, “Web Service Management System

for Bioinformatics Research: a Case Study,” Service Oriented Computing and Applications, Vol. 5,

No. 1, pp. 1–15, 2011.

[Yao et al., 2012] L. Yao, Q. Sheng, A. Segev, and J. Yu, “Recommending Web Services via Combining

Collaborative Filtering with Content-based Features,” In Proceedings of the IEEE 20th International

106

Conference on Web Services (ICWS 2013), Santa Clara, CA, USA, 2012, pp. 42–49.

[Yau and Yin, 2011] S. Yau and Y. Yin, “QoS-based Service Ranking and Selection for Service-based

Systems,” In Proceedings of the IEEE 8th International Conference on Services Computing (SCC

2011), Washington DC, USA, 2011, pp. 56–63.

[Zhai and Lafferty, 2001a] C. Zhai and J. Lafferty, “A Study of Smoothing Methods for Language Models

Applied to Ad Hoc Information Retrieval,” In Proceedings of the 24th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2001), New

Orleans, LA, USA, 2001, pp. 334–342.

[Zhai and Lafferty, 2001b] C. Zhai and J. Lafferty, “Model-based Feedback in the Language Modeling

Approach to Information Retrieval,” In Proceedings of the 10th International Conference on

Information and Knowledge Management (CIKM 2001), Atlanta, Georgia, USA, 2001, pp. 403–410.

[Zheng et al., 2010] Z. Zheng, Y. Zhang, and M. Lyu, “Distributed QoS Evaluation for Real-World Web

Services,” In Proceedings of the 2010 IEEE International Conference on Web Services (ICWS 2010),

Washington, D.C., USA, 2010, pp. 83–90.

[Zheng et al., 2013] C. Zheng, W. Shen, and H. Ghenniwa, “Design and Implementation of Intents User

Agent,” In Proceedings of 2013 IEEE 17th International Conference on Computer Supported

Cooperative Work in Design (IEEE CSCWD 2013), Whistler, BC, Canada, 2013, pp. 275–280.

107

Curriculum Vitae

Name: Cheng Zheng

Post-secondary Xian Jiaotong University
Education and Xian, Shaanxi, China
Degrees: 2003-2007 Bachelor’s Degree

Xian Jiaotong University
Xian, Shaanxi, China
2007-2010 Master’s Degree

The University of Western Ontario
London, Ontario, Canada
2010-2014 Ph.D.

Honours and Western Graduate Research Scholarship - Engineering
Awards: 2010-2014

Xian Jiaotong University Outstanding Graduate Student Award
2007-2008

Fuji Xerox Corporation Scholarship
2007-2008

Xian Jiaotong University Outstanding Undergraduate Scholarship
2003-2007

Xian Jiaotong University Outstanding Undergraduate Student
2004-2007

Related Work Research & Teaching Assistant
Experience The University of Western Ontario

Sep 2010-Aug 2014

Student Developer
GSoC 2012 for Google Inc.
May-Aug 2012

Volunteering Student Worker
National Research Council Canada
May-Aug 2011

Research Assistant

108

Shaanxi Key Lab of Satellite-Terrestrial Network Tech R&D
Dec 2006-June 2010

Publications:
[1]. C. Zheng, W. Shen, H. Ghenniwa, “An Intents-based Approach for Dynamic Service

Discovery,” Service Oriented Computing and Applications, 2014,
doi:10.1007/s11761-014-0163-9.

[2]. C. Zheng, W. Shen, H. Ghenniwa, “An Adaptive Intent Resolving Scheme for
Service Discovery and Integration,” accepted for Journal of Universal Computer
Science, 2014.

[3]. C. Zheng, W. Shen, H. Ghenniwa, “A Study of Intents Resolving for Service
Discovery,” the 18th IEEE International Conference on Computer Supported
Cooperative Work in Design (CSCWD 2014), Hsinchu, Taiwan, China, 2014, pp.
649–654.

[4]. C. Zheng, W. Shen, H. Ghenniwa, “An Intents-based Approach for Service
Discovery and Integration,” In Proceedings of the 17th IEEE International
Conference on Computer Supported Cooperative Work in Design (CSCWD 2013),
Whistler, BC, Canada, 2013, pp. 207–212.

[5]. C. Zheng, W. Shen, H. Ghenniwa, “Design and Implementation of Intents User
Agent,” In Proceedings of the 17th IEEE International Conference on Computer
Supported Cooperative Work in Design (CSCWD 2013), Whistler, BC, Canada,
2013, pp. 275–280.

[6]. C. Zheng, W. Shen, H. Xue, Q. Hao, “A Heterogeneous Sensors Integration Platform
for Independent Living Spaces,” In Proceedings of the 16th IEEE International
Conference on Computer Supported Cooperative Work in Design (CSCWD 2012),
Wuhan, Hubei, China, 2012, pp. 616–621.

	Intents-based Service Discovery and Integration
	Recommended Citation

	Intents-based Service Discovery and Integration

