
APPROXIMATE BAYESIAN INFERENCE FOR COUNT

DATA MODELING

FRANCISCO XAVIER SUMBA TORAL

A THESIS

IN

THE DEPARTMENT

OF

ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE (ELECTRICAL AND COMPUTER

ENGINEERING)

CONCORDIA UNIVERSITY
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Abstract

Approximate Bayesian Inference for Count Data Modeling

Francisco Xavier Sumba Toral

Bayesian inference allows to make conclusions based on some antecedents that de-

pend on prior knowledge. It additionally allows to quantify uncertainty, which is impor-

tant in Machine Learning in order to make better predictions and model interpretability.

However, in real applications, we often deal with complicated models for which is un-

feasible to perform full Bayesian inference. This thesis explores the use of approximate

Bayesian inference for count data modeling using Expectation Propagation and Stochastic

Expectation Propagation.

In Chapter 2, we develop an expectation propagation approach to learn an EDCM

finite mixture model. The EDCM distribution is an exponential approximation to the

widely used Dirichlet Compound distribution and has shown to offer excellent modeling

capabilities in the case of sparse count data. Chapter 3 develops an efficient generative

mixture model of EMSD distributions. We use Stochastic Expectation Propagation, which

reduces memory consumption, important characteristic when making inference in large

datasets.

Finally, Chapter 4 develops a probabilistic topic model using the generalized Dirich-

let distribution (LGDA) in order to capture topic correlation while maintaining conju-

gacy. We make use of Expectation Propagation to approximate the posterior, resulting

in a model that achieves more accurate inference compared to variational inference. We

show that latent topics can be used as a proxy for improving supervised tasks.
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Chapter 1

Introduction

Nowadays, there is an overwhelming amount of data that continues to increase more and

more. These data vary in content (e.g. tweets, news, security recordings, etc) and kind

(e.g. documents, images, speech, etc). Moreover, the emergence of the internet has led

us to have an interconnected world that facilitates data sharing and generation of new

content; thus, countless streams of data are generated daily. A large portion of these data

comes as discrete data (count data) such as documents, messages from social media, or

features extracted from videos or images.

Extracting knowledge from large datasets of count data allows us to make inferences

from a specific problem at hand. Machine learning helps us uncover patterns, but in most

cases it is hard or expensive to label these large amounts of count data for a supervised

setting. Unsupervised learning, clustering, however, allows to uncover patterns with

no need of labels, more specifically when given a group of count data, mixture models

allow to incorporate some hidden knowledge and make inferences. In natural language

processing, when dealing with text, we can infer statistical regularities as a result of these

hidden components that often correspond to groups of data or topics. These learned

models or distributions can be later used as a proxy for other machine learning tasks such

as classification or semi-supervised settings. Additionally, we want to have interpretable
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results with a certain amount of uncertainty. The Bayes framework allows measuring

uncertainty under a probabilistic model.

1.1 Approximate Inference

In Bayesian inference, we make use of the Bayes’ theorem (Eq. 1) in order to infer a pos-

terior distribution that is a consequence of the likelihood function and some prior knowl-

edge. It not only allows to quantify uncertainty but as more information is available,

our initial hypothesis can be updated. In this setting, we often want to make inferences

about unknown data or parameters Θ given the observed data X , which require the

computation of the evidence. Computing the evidence can be unfeasible due to com-

plicated integrals since we need to marginalize the latent variables from the likelihood

(i.e.
∫
p(Θ,X )dΘ). Thus, instead of calculating the exact posterior, we estimate it.

p(Θ | X ) =
p(Θ,X )

p(X )
=

p(Θ,X )∫
p(Θ,X )dΘ

(1)

There are many advances that have been done in approximate inference, but approx-

imate methods can be classified in deterministic and sampling methods. The former eval-

uates the integral in several locations and constructs an approximate function. The latter

relies in the law of large numbers and given enough samples, the integral will converge

to the true value.

The rest of this chapter describes some previous work on approximate Bayesian infer-

ence that lies groundwork for the remaining chapters.

1.2 Monte Carlo

Monte Carlo (MC) [4,33] can be motivated by the law of large numbers, if we have enough

samples from a distribution, its average converges to the expected value. It is a flexible

way of approximating sums or integrals when they cannot be computed in closed-form.
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The idea is to see any expectation as a sum or integral and then approximate it by the

average. However, it is computationally expensive. The estimator is as shown in Eq. 2,

where we take N samples, x1, . . . ,xN , from the distribution p and evaluate in a function

f(xi).

Î =
1

N

N∑
i=1

f(xi) ≈ Ep [f(x)] (2)

Sometimes, when it is not possible to sample from the distribution p, Importance Sam-

pling (IS) or Markov Chain Monte Carlo (MCMC) can be used.

1.2.1 Importance Sampling

In cases when is impractical to sample from the target distribution p(x), we can pro-

pose a decomposition using a proposal distribution q(x) that matches the shape of the

distribution and is easier to sample (i.e. p(x)f(x) = q(x)p(x)f(x)/q(x)). We can select

any proposal distribution, however, this choice is sensitive to variance, and the optimal

choice of the proposal distribution is important. Then, we can compute the expectation

by averaging N samples from the proposal distribution (Eq. 3).

Î =
1

N

N∑
i=1

p(xi)f(xi)

q(xi)
≈ Eq

[
p(x)f(x)

q(x)

]
(3)

1.3 Laplace Approximation

Laplace’s method [43] seeks a Gaussian approximation q(x) to a probability density func-

tion p(x) = f(x)/Z, where Z is a normalizing constant. The approximate distribution

is centered in the mode of p′(x0) = 0. We expand log f(x) about its mode using Taylor

expansion:

log f(x) ≈ log f(x0)− 1

2
H(x− x0)2 (4)

3



where H is the Hessian matrix H = −∇2 log f(x) |x=x0 .

By taking the exponent and normalizing, we obtain an approximate Gaussian distri-

bution to p(x) that is centered on its mode (Eq. 5).

q(x) =

√
H

D
√

2π
exp {−H

2
(x− x0)2} (5)

where D is the dimension of x.

1.4 Expectation Propagation

Expectation Propagation (EP) [60] is a generalization of Assumned Density Filtering (ADF)

[64], which is a one-pass sequential method and is dependent on the order of data points.

Unlike ADF, EP reuses data points to perform iterative refinements. In other words, EP

handles partitioned data and combines partitions iteratively through message passing.

Indeed, EP is more computationally efficient than MCMC [63], and it has shown to be

more accurate than Variational Inference (VI) [60, 61].

Having the latent variable Θ, EP approximates a target distribution p(Θ | X ), which is

commonly the posterior, with a global approximation q(Θ) that belongs to the exponential

family. The choice of q depends on the problem but it has to be a simple approximating

distribution that can be fitted using small refinements. Thus, in order to apply EP, firstly

the target distribution must be factorizable such that the posterior can be split in D sites

p(Θ | X ) ∝ p0(Θ)
∏D

i pi(xi | Θ); the initial site p0 is commonly represented with the

prior distribution and the remaining pi sites represent the contribution of each term to

the likelihood. The approximating distribution must admit a similar factorization, i.e.

q(Θ) ∝
∏D

i p̃i(Θ). Therefore, the goal of EP is to refine each of the approximating sites

such that they capture the contribution of each of the likelihood sites to the posterior,

i.e. p̃i(Θ) ≈ pi(x | Θ). Each approximating site has to be initialized and belong to the

exponential family. Consequently, each site is refined to create a cavity distribution by

4



dividing the global approximation over the current approximate site.

q\i(Θ) ∝ q(Θ)

p̃i(Θ)
(6)

Additionally, in order to approximate each site, we introduce a new tilted distribution

which consists in the product of the cavity distribution and the current site.

q∗i (Θ) ∝ pi(Θ)q\i(Θ) (7)

Subsequently, a new posterior is found by minimizing the Kullback Leibler divergence

DKL(q∗i (Θ) || qnew(Θ)) such that p̃i(Θ) ≈ pi(x | Θ). This minimization is equivalent to

match the moments of those distributions [4, 61]. We can also notice that this updating

scheme creates a coupling for the approximating factors, so updates must be iterated.

Finally, the revised approximate site is updated by removing the remaining terms from

the current approximation p̃i(Θ) ∝ qnew(Θ)/q\i(Θ).

EP can also be seen as a variational method [8, 83] that instead of evaluating the KL

divergence from p to q, it evaluates from q to p.

1.5 Stochastic Expectation Propagation

Efficient inference and learning for probabilistic models that scale to large datasets are

essential in the Bayesian setting. Thus, a variety of methods have been proposed from

sampling approximations [58] to distributional approximations such as Stochastic Expec-

tation Propagation (SEP) [37].

As previously mentioned EP commonly provides more accurate approximations com-

pared to sampling methods [63] and variational inference [60, 61]. Yet, the number of

parameters grows with the number of data points, causing memory overheads and mak-

ing it difficult to scale to large datasets. Besides, ADF [64], which has been introduced

5



before EP, maintains a global approximating posterior; however, it results in poor esti-

mates. Therefore, [48] proposed an alternative to push EP to large datasets denominated

Stochastic Expectation Propagation (SEP). SEP takes the best of these two methods by

maintaining a global approximation that is updated locally. It does this by introducing a

global site that captures the average effect of the likelihood sites and, as a result avoiding

memory overheads.

For the same Bayesian setting where we are given a probabilistic model p(X | θ) with

parameters θ drawn from a prior p0(θ), SEP approximates a target distribution p(θ | X ),

which is commonly the posterior, with a global approximation q(θ) that belongs to the

exponential family. The target distribution must be factorizable such that the posterior

can be split in D sites p(θ | X ) ∝ p0(θ)
∏D

i=1 pi(θ); the initial site p0 is commonly repre-

sented with the prior distribution and the remaining pi sites represent the contribution

of each ith item to the likelihood. The approximating distribution must admit a similar

factorization as:

q(θ) ∝ p0(θ)p̃(θ)D (8)

Unlike EP, the SEP maintains a global approximating site, p̃(θ)D, to capture the aver-

age effect of a likelihood on the posterior. Thus, we only have to maintain the parameters

of the approximate posterior and approximate global site that commonly belongs to the

exponential family. Consequently, each site is refined to create a cavity distribution (Eq. 9)

by dividing the global approximation over one of the copies of the approximate site.

q\1(θ) ∝ q(θ)/p̃(θ) (9)

Additionally, in order to approximate each site, a new tilted distribution (Eq. 10) is

introduced using the cavity distribution and the current site.

p̂i(θ) ∝ pi(θ)q\1(θ) (10)

6



Subsequently, a new posterior is found by minimizing the Kullback Leibler divergence

DKL(p̂i(θ) || qnew(θ)) such that p̃i(θ) ≈ pi(θ). This minimization is equivalent to match the

moments of those distributions [4,61]. Finally, the revised approximate site is updated by

removing the remaining terms from the current approximation by employing damping

[31, 59] in order to make a partial update since p̃i captures the effect of a single likelihood

function:

p̃(θ) = p̃(θ)1−η
(
qnew(θ)

q\w(θ)

)η
= p̃(θ)1−ηp̃i(θ)η (11)

Notice that η is the step size, and when η = 1, no damping is applied. A natural choice

is η = 1/D.

1.6 Contributions

The key contributions of this thesis were either published or being reviewed in scientific

journals or conferences. The contributions are as follows:

1. Creating an EDCM mixture model for count data using EP for inference [80]. We

also propose an initialization method for the mixture model which facilitates learn-

ing.

2. An improvement of the EDCM mixture model with a distribution with more de-

grees of freedom named EMSD that captures better count data and models word

appearance. We employ SEP for inference that is more appropriate for large datasets

[79].

3. We learn the topic model LGDA that replaces the Dirichlet distribution with Gener-

alized Dirichlet distribution modeling topic correlation and show that the learned

topics can be used for supervised tasks [77].

7



1.7 Thesis Structure

The next chapters present three new clustering models for count data that achieve com-

parable results to its analogous counterparts. In general, we make use of EP, SEP, and

other deterministic or sampling methods to compute intractable integrals. First, in Chap-

ter 2, we introduce a mixture model that models the burstiness problem using the EDCM

distribution using EP for inference. Chapter 3 extends the mixture model by making use

of SEP to learn an EMSD mixture that has more degrees of freedom and captures better

word occurrence. Later, in Chapter 4, we introduce a topic model that captures the cor-

relation between topics while maintaining conjugacy. Finally, in Chapter 5 we conclude

and point out future directions for this thesis.

8



Chapter 2

Improving the EDCM mixture model

with Expectation Propagation

Bayesian inference is extremely important to challenging scenarios that involve complex

probabilistic models, which are usually intractable. In this work, we develop an Expecta-

tion Propagation approach to learn EDCM finite mixture models. The EDCM distribution

is an exponential approximation to the widely used Dirichlet Compound distribution and

has been shown to offer excellent modeling capabilities in the case of sparse count data.

Expectation Propagation is a deterministic approach that provides accurate approxima-

tions to the full posterior and allows to include prior beliefs in the model as opposed to

the maximum-likelihood method which provides point estimates only. We evaluate the

validity of our framework on several datasets for sentiment analysis and image recogni-

tion. Our proposed model shows comparable to superior results to other approaches in

the literature.

2.1 Introduction

Statistical methods are excellent at modeling semantic content of text documents [46].

More specifically, document clustering is widely used in a variety of applications such as

9



text retrieval or topic modeling [5]. For instance, Latent Dirichlet Allocation (LDA) [12],

a very well-know hierarchical topic model, captures the word-topic assignment. In other

words, LDA can capture the likeliness of word w appearing in topic k. However, in

other settings, it is necessary to know the word appearance dependencies, i.e. if word

w appears once, it is more probable that the same word w will appear again. This phe-

nomenon is denominated as burstiness, which has shown to be addressed using Dirich-

let Compound Multinomial (DCM) distribution [53]. Furthermore, taking into account

the sparsity and high-dimensionality of text data, [26] proposed the EDCM distribu-

tion which approximates the DCM as a member of the exponential family. EDCM has

shown to be more efficient and keep the merits of DCM for modeling word occurrence

dependency. Indeed, EDCM distribution has been successfully used to develop a mix-

ture model to efficiently cluster high-dimensional count data in several real-world appli-

cations (e.g. [26, 41, 62, 87, 91]).

At the core of our proposed method, there is the notion of modeling the behavior of

rare words appearing often in a document. The DCM distribution not only captures this

behavior [53] but also models text data better than a multinomial distribution. Similarly,

different distributions had been used in order to model burstiness while preserving con-

jugacy; for instance, [88] used the Scaled Dirichlet instead of Dirichlet distribution and

other works used Generalized Dirichlet [13] or Beta-Liouville distribution [15]. How-

ever, all these models share similar limitations including that they do not belong to the

exponential family of distributions and their parameters estimation is slow especially in

high-dimensional spaces. The approximation for the DCM distribution, denominated as

EDCM, offers fast parameter learning and a helpful intuition for the study of the bursti-

ness phenomenon [26]. Moreover, Bayesian learning commonly involves statistical mod-

eling and inference methods. Parameter learning is one of the encountered challenges in

mixture models, and typically the maximum-likelihood method via the Expectation Max-

imization (EM) algorithm has been used for learning the parameters of an EDCM mixture

model [26].
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In spite of the maximum-likelihood method has been showing fast parameter learn-

ing, this approach suffers from numerous inconveniences such as providing a point es-

timate, which impacts the accuracy of the learned model [4]. Additionally, the appro-

priate number of components has to be known in advance, which can be approached by

selecting the appropriate model with techniques such as Minimum Message Length cri-

terion (MML) [2,17]. For instance, recent work has developed an MML criterion based on

EDCM [87,91] to detect the appropriate number of clusters, but also the authors claim its

improvement is due to the prior information introduced by the MML-based criterion. In

fact, deterministic Bayesian inference techniques (e.g. variational inference or expectation

propagation) allow good approximation of the full posterior. Recently, [62] has proposed

the use of a sampling method, i.e. Markov Chain Monte Carlo (MCMC), for learning an

EDCM mixture and has shown the importance of having priors, outperforming previous

results. However, sampling methods are computationally expensive [68].

In this work, we study the application of the Bayesian framework for learning the

EDCM mixture model. In particular, we propose an approach for an EDCM mixture

model using Expectation Propagation (EP) [60] for parameter learning. EP is a general-

ization of Assumed Density Filtering (ADF) that approximates the model posterior with

a tilted distribution using small refinements to approximate the global posterior. EP,

a deterministic approximate inference framework, has shown to be more accurate than

methods such as variational inference and MCMC [4, 59], and it has shown appropriate

generalization in a Gaussian mixture model [61], hierarchical models such as LDA [59] or

even infinite mixtures [28]. The contributions of this chapter are summarized as follows:

1) derive foundations to learn an EDCM mixture model using EP; 2) test and evaluate the

proposed approach on high-dimensional count data.

The rest of this chapter is organized as follows. First, Section 2.2 revisits the core

methods upon our work is built on, such that, we review the family of distributions (i.e.

DCM and EDCM distributions) to tackle the burstiness problem. Next, in Section 2.3, we

outline the EDCM mixture model, describe the expectation propagation approach, and
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derive a complete learning approach. Section 2.4 describes our experimental setup and

evaluation of our proposed method. Finally, we conclude the chapter in Section 2.5.

2.2 The Exponential-family Approximation to DCM Dis-

tribution

We start with a brief review of the approximation of the Dirichlet Compound Multinomial

distribution (EDCM) [26]. We are given a dataset X with D samples X = {xi}Di=1, each xi

is a vector of count data (e.g. a document or an image, represented as a vector of word

frequencies or visual words, respectively).

2.2.1 Dirichlet Compound Multinomial distribution

A text document of vocabulary size V is commonly modeled with a multinomial distri-

bution with parameters θ:

p(x | θ) =
n!∏V

w=1 xw!

V∏
w=1

θxww (12)

where n =
∑V

w=1 xw is the document length.

However, the multinomial distribution is not appropriate when analyzing the bursti-

ness of words. This is due to the fact that according to the multinomial distribution words

follow the i.i.d assumption, but in real data, there is actually an occurrence dependency

such that if a word appears once, it is more likely to appear again [44]. In [53], the authors

proposed a generative model to deal with this problem by introducing a prior Dirichlet

distribution with parameters α. They define a new marginal distribution by integrating

out θ, obtaining a discrete distribution known as the Dirichlet Compound Multinomial

(DCM) distribution or multivariate Polya distribution.

DCM(x | α) =
n!∏V

w=1 xw!

Γ(s)

Γ(s+ n)

V∏
w=1

Γ(xw + αw)

Γ(αw)
(13)
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where s =
∑V

w=1 αw is the sum of the Dirichlet distribution parameters. This model has an

intuitive interpretation representing the Dirichlet as a general topic and the multinomial

as a document-specific subtopic, making some words more likely in document x based

on word counts.

2.2.2 Approximating the DCM distribution

Text documents representation is very sparse because not every word appears in most

of the documents. In [26], the authors noted that using only the non-zero values of x is

computationally efficient. Moreover, the parameter αw of the DCM distribution is small

for most words, αw � 1. Thus, replacing Γ(xw+αw)
Γ(αw)

by Γ(xw)αw and using the fact that

Γ(xw) = (xw − 1)! leads to an approximation of the DCM distribution known as EDCM.

We replace α with β in order to follow the same notation as in [26]:

EDCM(x | β) = n!
Γ(s)

Γ(s+ n)

∏
w:xw≥1

βw
xw

(14)

Additionally, Eq.(14) exhibits a nice interpretation for why the DCM or EDCM dis-

tributions are appropriate for the burstiness problem. It is noticeable that the resulting

probability of a document depends on the words appearing in it since it is proportional

to
∏

w:xw≥1 βw/xw. In other words, if a word w appears once, it reduces the document’s

probability by βw, taking into account both word type and word token. Thus, the mth

appearance of word w reduces the document’s probability by (m− 1)/m, and as a result,

multiple appearances of the same word leads to a high probability.
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2.3 The proposed model

2.3.1 Mixture-based Clustering Model

In this section, we state the settings for a finite EDCM mixture model and develop a

framework for learning the mixture using expectation propagation.

Here, we state the settings for a finite EDCM mixture model and develop a mathemat-

ical framework for learning the mixture using expectation propagation. Generally, a finite

mixture model is represented as the graphical model shown in Figure 1. We assume that

we are given D documents drawn from an EDCM distribution, and each xi document is

composed of V words. K ≥ 1 represents the number of mixture components or clusters.

Thus, a document is drawn from its respective component j as follows: xi ∼ EDCM(βj).

Consequently, a latent variable Z = {zi}Di=1 is introduced for each xi document in

order to represent the component assignment. We posit a Multinomial distribution for

the component assignment such that zi ∼ Mult(1,π) where π = {πj}Kj=1 represents the

mixing weights, and they are subject to the constraints 0 < πj < 1 and
∑

j πj = 1. In other

words, zi is a K-dimensional indicator vector containing a value of one when document

xi belongs to the component j, and zero, otherwise. Note that in this setting the value of

zij = 1 acts as the selector of the component that generates xi document with parameter

βj ; hence, p(zi | π) = πj .

Therefore, following the graphical model in Figure 1, the full posterior can be written

as follows:

p(π,β | X ) ∝ p(π)p(β)
D∏
i

∑
zi

p(xi | zi,β)p(zi | π) (15)

∝ p(π)p(β)
D∏
i

p(xi | β,π)

∝ p(π)p(β)
D∏
i

K∑
j

πjp(xi | βj) (16)
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zi xiπ

β1...K

i = 1, . . . , D

Figure 1: Graphical model representation of the EDCM mixture model. The box is a

plate representing documents, white circles represent latent variables and shaded circle

represents the observed variables. Arrows represent the conditional dependence between

random variables.

2.3.2 Parameters Learning

In this section, we describe the learning approach using EP algorithm. We partition

the likelihood in D sites and start by defining an ith approximating site for each of

the latent variables (π and β). First, we assign a Dirichlet distribution with parameter

α = (α1, . . . , αK) as a prior for the mixing weights since it fits properly the constraints

imposed by the model and works as a nice prior for the mixing weights π that holds

conjugacy properties.

p̃i(π | αi) ∝
K∏
j=1

π
αij−1
j (17)

For the β variable of the EDCM mixture, we adopt a Gaussian distribution, which

leads to an intractable distribution since p̃(π) is a Dirichlet distribution. However, this

setting has been used successfully to approximate Beta and Dirichlet distributions [27,51].

Additionally, a Gaussian distribution not only allows analytically tractable calculations

but also captures correlation for the values of βj . Hence, we select for the approximating

site of βj a Gaussian distribution with mean mij and precision matrix Λ−1
ij for each j
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component.

p̃i(β) =
K∏
j

N (βj |mi,j,Λ
−1
i,j )

∝
K∏
j=1

exp

(
−1

2
(βj −mij)

ᵀΛij(βj −mij)

)
(18)

The EDCM mixture model posterior p(π,β) can be factorized in D sites, one for each

document i with priors p(π) and p(β). Additionally, after defining the approximate sites,

we compute the approximate posterior q(π,β) by getting the product of D approximate

sites:

q(π,β | α′,m′,Λ′−1) ∝
D∏
i

p̃i(π,β | αi,mi,Λ
−1
i ) (19)

whereα′, m′, and Λ′ are the parameters of the posterior distribution and can be calculated

using Eqs. (20), (21), and (22), respectively. We will discuss the initialization scheme used

for the approximate sites and inclusion of priors in Section 2.3.3.

α′j =
D∑
i

αi,j −D (20)

Λ′j =
D∑
i

Λi,j (21)

m′j = Λ
′−1
j

(
D∑
i

Λi,jmi,j

)
(22)

In order to create a refinement for the approximate site pi(π,β), we introduce a cavity

distribution q\i(π,β) by deleting the contribution of the ith site. Thus, the cavity distri-

bution has parameters α\i, Λ\i, and m\i as shown in Eqs. (23), (24) and (25), respectively,

and it is calculated as follows: q(π,β)/p̃i(π,β).

α
\i
j = α′j − αi,j + 1 (23)
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Λ
\i
j = Λ′j −Λi,j (24)

m
\i
j = Λ

\i−1
j

(
Λ
′

jm
′

j −Λi,jmi,j

)
(25)

Then, we incorporate the contribution of the ith site to the cavity distribution, result-

ing in a tilted distribution q∗(π,β) that is an updated posterior. We normalize this new

posterior using a normalizing factor Zi to guarantee that it is a proper distribution (see

equation 7).

q∗(π,β) =
1

Zi
p(xi | β,π)q\i(π,β)

=
1

Zi
p(xi | β,π)p(π|α\i)

K∏
j

N (βj |m\ij ,Λ
\i−1
j ) (26)

The normalizing factor can be then calculated by integrating out π and β, obtaining

the following expression for the normalization constant Zi(α\i,m
\i
j ,Λ

\i
j ):

Zi(α
\i,m

\i
j ,Λ

\i
j ) =

∫
p(xi | β,π)Dir(π | α\i)

K∏
j

N (βj |m\ij ,Λ
\i−1
j )dπdβ

=
K∑
j

α
\i
j∑K

j α
\i
j

∫
EDCM(xi | βj)N (βj |m\ij ,Λ

\i−1
j )dβj (27)

However, the integration of the normalization factor is not possible since Eq. 27 is

intractable, and having an analytically expression is necessary. Thus, we propose to solve

this integral via Monte Carlo sampling, as shown in Eq. 28, where we take S samples

from βs ∼ N (m\i,Λ\i−1). In order to simplify the notation, we remove the dependence of

β on j.

Ep(β) [EDCM(xi | β)] =
1

S

S∑
s=1

EDCM(xi | βs) (28)
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Therefore, after rewriting the normalization factor (from Eq. 27), the following expres-

sion is obtained:

Zi(α
\i,m

\i
j ,Λ

\i
j ) =

K∑
j

α
\i
j∑K

j α
\i
j

Ep(βj) [EDCM(xi | βj)] (29)

Finally, we minimize the KL divergence between the tilted distribution and the ap-

proximate posterior DKL(q∗i (π,β) || qnew(π,β)). This minimization is achieved by cal-

culating the partial derivative of logZi with respect to the parameters of the model and

matching its respective moments, as shown in the following equations:

∇
α
\i
j

logZi = Eq∗(π,β)[∇α
\i
j

logDir(π | α\i)] = Ψ(
K∑
j

α
\i
j )−Ψ(α

\i
j ) + Ψ(α

′

j)−Ψ(
K∑
j

α
′

j) (30)

∇
m
\i
j

logZi = Eq∗(π,β)[∇m
\i
j

logN (βj | m\ij ,Λ
\i−1
j )] = Λ

\i
j (m′j −m

\i
j ) (31)

∇
Λ
\i
j

logZi = Eq∗(π,β)[∇Λ
\i
j

logN (βj | m\ij ,Λ
\i−1
j )] =

1

2
(Λ
\i
j −Λ

′

j−m
′

jm
′ᵀ
j +2m

′

jm
\iᵀ
j −m

\i
j m

\iᵀ
j )

(32)

After matching the sufficient statistics of Eq∗
[
∇
α
\i
j

logDir(π)
]
, Eq∗

[
∇
m
\i
j

logN (βj)
]
,

and Eq∗
[
∇

Λ
\i
j

logN (βj)
]

(Eqs. 30, 31, and 32), we can update the parameters of the ap-

proximate posterior qnew(π,β) using Eqs. (33), (34), and (35):

Ψ(α
′

j)−Ψ(
K∑
j

α
′

j) = ∇
α
\i
j

logZi −Ψ(
K∑
j

α
\i
j ) + Ψ(α

\i
j ) (33)

m′j = Λ
\i−1
j (∇

m
\i
j

logZi + Λ
\i
j m

\i
j ) (34)

Λ
′

j = −2∇
Λ
\i
j

logZi + Λ
\i
j −m

′

jm
′ᵀ
j + 2m

′

jm
\iᵀ
j −m

\i
j m

\iᵀ
j (35)
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The gradient of logZi, can be calculated analytically using Eq. (29). The values of α′

are calculated using fixed point iteration as describe in [57]. Finally, we reuse the updated

approximate posterior and remove the cavity distribution in order to obtain the update

for the current approximate site p̃i as:

p̃i = Zi
qnew(π,β)

q\i(π,β)
(36)

where the parameters of the ith site can be updated using the followings equations:

αi,j = α′j − α
\i
j + 1 (37)

mi,j =
(
Λ
′−1
j −Λ

\i−1
j

)(
Λ
′

jm
′

j −Λ
\i
j m

\i
j

)
(38)

Λi,j = Λ′j −Λ
\i
j (39)

This procedure is repeated for all the D documents and iterated until a certain level

of convergence is reached. The values of the mixing weights can be approximated by

calculating its expectation with respect to the approximating posterior.

Eq [πj] =
α
′
j∑K

j=1 α
′
j

(40)

2.3.3 A Note on Initialization and Learning Algorithm

We initialize each approximate site such that p̃i(π,β)→ 1. In that sense, the approximate

posterior is initialized with the values of the prior q(π,β) = p̃0(π,β). For instance, we ini-

tialize the mixing weights uniformly, thus we consider a symmetric Dirichlet prior p̃0(π)

with parameter value 1/K. Consequently, for the prior p(β), we follow an adaptation of

the method of moments (MoM) described in [18]. We compute an initial βj and calculate

its statistics as follows: 1) we apply K-means clustering1; 2) apply MoM for the EDCM

1We use the implementation of NLTK with the cosine distance. https://www.nltk.org/api/nltk.
cluster.html
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distribution to each j component found; 3) calculate m0,j and Λ0,j . It is possible to en-

code any prior information in the mixing weights (i.e. the means of the k-means clusters).

Nevertheless, for the EDCM parameter β, we find that the MoM restricts the values of β

to be small and positive while sampling from a Gaussian distribution. This initialization

scheme helps the proposed framework to stabilize while fitting the values of βj,w � 1.

Algorithm 1 illustrates the complete algorithm for EDCM Mixture Model.

Algorithm 1: Expectation Propagation (EP) algorithm for learning a EDCM Mix-
ture model

Input : K: number of clusters; X = {x1, . . . ,xD}: corpus

1 Initialize approximate sites p̃i. This can be achieved by initializing its parameters
αi,j , mi,j , and Λi,j for i = 1, . . . , D and j = 1, . . . , K

2 Calculate initial values of α0, m0, and Λ0 as described in the initialization section.
3 Compute q(π,β) by calculating α′, Λ′, and m′

4 while not convergence do
5 for i in X do
6 Select an approximate site p̃i(π,β) to refine
7 Compute the cavity distribution q\i(π,β) by removing the contribution of

the selected approximate site. This is done by calculating α\i, Λ\i, and m\i

8 Match moments of the tilted distribution q∗(π,β) and approximate
posterior qnew(π,β) by minimizing DKL(q∗ ‖ qnew).

9 Update parameters of p̃i(π,β)

10 end
11 end
12 Estimate mixing weights πj
13 Combine or eliminate clusters with very small weights (πj → 0)

2.4 Results

We evaluate the validity of the proposed framework in two tasks. First, we perform sen-

timent analysis in various review datasets. Next, we use the Swedish leaf dataset [74] for

object recognition. In both applications, the achieved results outperform the traditional

EDCM mixture model with maximum-likelihood learning approach.
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2.4.1 Text clustering

Many online users employ online platforms to express opinions or experiences regarding

a product or service through reviews. We exploit these data to investigate the validity of

our framework on a sentiment analysis task where we know the right number of compo-

nents (i.e. positive/negative, K = 2). For all the experiments, we use a greater number of

clusters. We use a number of clusters of K = 10 and ignore components with very small

values (i.e. πj → 0). We use three benchmark datasets [52, 93]: 1) Amazon Review Polar-

ity; 2) Yelp review Polarity; 3) IMDB Movie Reviews. This section presents the details of

our experimentation and its results.

Experimental setup

Before describing the experimental results of our framework, we first outline the key

properties of the datasets used, as well as the setup for the experiments carried out. For

each j component, at inference time, we set all values to zero except the diagonal ones

from the precision matrix Λ−1
∗j for computational simplicity. Additionally, we take S = 100

samples from N (m\i,Λ\i−1) and force all values to be positive. For every dataset, we

analyze the effect of pre-processing. In other words, we examine whether pre-processing

helps the mixture to fit the data better. We performed the following pre-processing for

all datasets: 1) lowercase all text; 2) remove non-alphabetical characters; 3) remove stop

words; 4) lemmatize text.

All datasets are reviews and contain two labels indicating whether the post has a pos-

itive or negative sentiment. Specifically, Amazon Review Polarity contains 180K customer

reviews from products on the Amazon.com website. The dataset has an average of 75

words per review before pre-processing and 40 words after pre-processing. Our second

dataset, Yelp Review Polarity, contains 560K user reviews from Yelp with an average of

133 words before pre-processing and 60 words after pre-processing. The final dataset we

consider is the IMDB movie reviews. This dataset consists of 50K movie reviews with 231

and 108 words before and after pre-processing respectively.
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Results

We apply the proposed framework to all the datasets described in the above section. We

compare our approach with an EDCM mixture model using maximum-likelihood (ML)

for learning its parameters as reported in [26]. Additionally, we evaluate the effect of

pre-processing text documents when using the proposed method since in latent models

(such as LDA), it has been shown that common pre-processing steps have no impact on

the obtained results [69]. Thus, we evaluate our parameter learning method where pre-

processing is involved (EP-P) and raw text (EP-NP). We evaluate our results in terms of

precision and recall as shown in Table 1.

Table 1: Results on the three text datasets. Comparison using precision and recall for

every inference method. ML: maximum-likelihood; EP-P: expectation propagation + pre-

processing; EP-NP: expectation propagation + raw text.

Dataset

Metrics Amazon Yelp IMDB

Precision
MM 50.83 89.12 64.18
DCM 55.65 91.01 71.14
ML 80.65 89.25 78.54
EP-P 84.84 74.26 78.60
EP-NP 86.91 80.50 86.36

Recall
MM 51.99 89.20 64.40
DCM 63.94 91.01 89.45
ML 80.88 89.28 89.33
EP-P 81.23 93.83 78.45
EP-NP 84.82 78.60 85.94

For the case of the Amazon Review Polarity dataset our framework completely out-

performs the maximum-likelihood estimation by ∼6% and ∼4% improvement for pre-

cision and recall respectively, and thus, achieving 86.91% and 84.82%. Additionally, we

notice that pre-processing causes a bad effect on the model instead of helping infer the

right cluster assignments. For Yelp Review Polarity dataset our approach outperforms the
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maximum-likelihood approach in terms of recall, meaning that the EP model is more con-

fident at assigning the right clusters. Finally, for the IMDB movie review EP surpasses ML

in terms of precision by a large margin ∼9%.

2.4.2 Object recognition

For object recognition, we use the Swedish leaf dataset [74] that contains 15 different types

of leaves. We evaluate with 26 and 39 clusters (i.e. K = 26, K = 39). Mixture components

πj with very small values are ignored.

Experimental setup

The framework configuration is similar to the one used in the previous section.

Moreover, the leaf dataset contains 585 images, each corresponding to a specific specie

from the following list: Ulmus carpinifolia, Acer platanoides, Ulmus, Quercus robur, Alnus

incana, Tilia, Salix fragilis, Populus tremula, Corylus avellana, Sorbus aucuparia, Prunus padus,

Tilia, Populus, Sorbus hybrida, and Fagus silvatica. Each image size is 128×128. For each

image, we extracted 200 discrete features. In order to extract features from the leaves

images, we use shape context [3] in which an object is assumed to be essentially captured

by a finite set of its N points sampled from the internal or external contours on the object.

A shape context is a descriptor for each point, which captures the distribution of the

remaining points relative to the current one. As choosing more points will result in an

accurate representation of the shape, we sampled 200 points from internal and external

boundary of each shape image. Then, following the practice in [82], we considered each

context vector as a visual word and created the bag-of-features (BoF).

Results

We compare the mixture of EDCM model with both ML and EP inference methods and

report performance in terms of accuracy (see Table 2) using the leaf dataset. The proposed
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Table 2: Results for object recognition on the leaf dataset. Comparison using accuracy for

every inference method. ML: maximum-likelihood; EP: expectation propagation.

Inference Accuracy Recall

ML 94.45 -
EP (K = 26) 98.12 23.93
EP (K = 39) 88.76 78.63

model improves the accuracy of the leaf dataset. The EDCM mixture with ML gets an

accuracy of 94.45 while results with EP improves accuracy by 3.67%, obtaining 98.12 when

using 26 components. On the other hand, we obtain a lower accuracy with a greater

number of components K = 39. Consequently, with a number of clusters smaller than 26

we get an average accuracy of ∼ 78. On the other hand, we notice that EP with K = 26

gives a really high precision with low recall while the model with K = 39 provides a

balance between precision and recall. The selection of one of these models will highly

depend on the intended application.

2.4.3 Discussion

In general, the EDCM mixture with EP provides comparable results to ML estimation,

and outperforms, in some cases, the previous state of the art results. We also notice that

text pre-processing does not have an impact on the obtained clusters. In fact, it can have

a bad effect on the inferred clusters. In the sampling schema used to solve the integral

in equation 27, we use Monte Carlo samples where S determines the number of samples

to be taken. We notice that S = 100 provides accurate estimates compared to the DCM

distribution. However, in order to speed up inference, other smaller values can be used

with the risk of hurting performance. On the other hand, large values could provide bet-

ter performance exposing a greater computational time. We observe that the initialization

scheme used in section 2.3.3 helps the proposed framework achieve not only faster con-

vergence but also improves the performance of the obtained clusters. Finally, different
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values of K provide different cluster assignments and analyzing the values of the mix-

ture components helps to not only select the optimal number of components but it can

also be used for feature selection tasks.

2.5 Conclusions

In this chapter, we propose the use of Expectation Propagation to learn a finite EDCM

mixture model instead of the maximum-likelihood (ML), and as a result, incorporating

some advantages that the Bayesian framework provides. EP is used to learn the model

parameters and additionally, we notice that the number of clusters can be determined by

ignoring or merging components with very small values of the expected mixing weights.

Moreover, we propose a simple but optimal initialization scheme in order to meet the

restrictions that the approximation of the DCM distribution is subject to. Given that we

use the Bayesian framework, some other sources of prior information can be encoded

in the model. Finally, we demonstrate the efficacy of our framework by evaluating it in

sentiment analysis and shape recognition tasks. Results show the validity of our frame-

work and obtaining comparable and superior results as opposed to using ML estimation

in terms of clustering performance.
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Chapter 3

Clustering Count Data with Stochastic

Expectation Propagation

Clustering count vectors is a challenging task given its sparsity and high-dimensionality.

An efficient generative model called EDCM has been recently proposed, as an exponential-

family approximation to the Multinomial Scaled Dirichlet distribution, and has shown to

offer excellent modeling capabilities in the case of sparse count data and to overcome

some limitations of the frameworks based on the Dirichlet distribution. In this work,

we develop an approximate Bayesian learning framework for the parameters of a finite

mixture of EDCM using the Stochastic Expectation Propagation approach [48]. In this

approach, we maintain a global posterior approximation that is being updated in a lo-

cal way, which reduces the memory consumption, important when making inference in

large datasets. Experiments on both synthetic and real count data have been conducted

to validate the effectiveness of the proposed algorithm in comparison to other traditional

learning approaches. Results show that SEP produces comparable estimates with tradi-

tional approaches.
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3.1 Introduction

Statistical methods are excellent at modeling semantic content of text documents [46].

More specifically, document clustering is widely used in a variety of applications such

as text retrieval or topic modeling, (see e.g. [20]). Words in text documents usually ex-

hibit appearance dependencies, i.e., if word w appears once, it is more probable that the

same word w will appear again. This phenomenon is denominated as burstiness, which

has shown to be addressed by introducing the prior information into the construction

of the statistical model to obtain several computational advantages [54]. Given that the

Dirichlet distribution is generally taken as a conjugate prior to the multinomial, the most

popular hierarchical approach is the Dirichlet Compound Multinomial (DCM) distribu-

tion [53]. While the Multinomial distribution fails to model the words burstiness given

its dependency assumption, the DCM distribution not only captures this behavior but

also models text data better [53]. Furthermore, taking into account the sparsity and high-

dimensionality of text data, [26] proposed the EDCM model, which approximates the

DCM as a member of the exponential family. EDCM has shown to be more computa-

tionally efficient while maintaining the merits of DCM for modeling word occurrence

dependency.

The Dirichlet distribution has its own limitations due to its negative covariance struc-

ture and equal confidence [50,86]. Hence, a generalization of it called the Scaled Dirichlet

(SD) distribution has shown to be a good alternative as a prior to the multinomial [88].

Indeed, Multinomial scaled Dirichlet (MSD) distribution has shown to have high flex-

ibility in count data modeling with superior performance in several challenging appli-

cations [88–90, 92]. Despite its flexibility, MSD distribution shares similar limitations to

the one with DCM since its parameter estimation is slow, especially in high-dimensional

spaces. Thus, [92] proposed a close exponential-family approximation called EDCM to

combine the flexibility and efficiency of MSD with the desirable statistical and computa-

tional properties of the exponential family of distributions, including sufficiency. EDCM
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has shown to reduce the complexity and computational efforts, especially for sparse and

high-dimensional data.

Moreover, finite mixture models have been frequently used as an efficient flexible sta-

tistical approach to cluster data into homogeneous groups [56]. In mixture models, three

crucial issues need to be addressed, including the choice of the component’s densities,

the estimation of the mixture parameters, and the selection of the number of clusters

that best describes the data. In order to learn the parameters of a mixture model, both

frequentist and Bayesian approaches have been used. Bayesian learning commonly in-

volves statistical modeling and inference methods. Since parameter learning is one of

the encountered challenges in mixture models, the maximum-likelihood method via the

expectation-maximization (EM) algorithm is typically used for learning the parameters

of the EDCM mixture model. Even though that the maximum-likelihood method shows

fast parameter learning, it carries some disadvantages since it provides point estimates

and is highly dependant on parameter initialization [4] while in the Bayesian setting we

can compute an approximate posterior and measure uncertainty. In fact, deterministic

Bayesian inference techniques (e.g. variational inference or expectation propagation) al-

low good approximations by introducing a prior distribution that is much better in ap-

proximating the full posterior.

In this work, we study the application of the Bayesian framework for learning the

exponential-family approximation to the Multinomial Scaled Dirichlet (EMSD) mixture

model which has been shown to be an appropriate distribution to model the burstiness

in high-dimensional feature space. In particular, we propose a learning approach for an

EDCM mixture model using Stochastic Expectation Propagation (SEP) [48] for parameter

estimation. Indeed, SEP combines both Assumed Density Filtering (ADF) and Expec-

tation Propagation (EP) in order to scale to large datasets while maintaining accurate

estimations. Only EP is usually more accurate than methods such as Variational Infer-

ence (VI) and Markov Chain Monte Carlo (MCMC) [4, 59], and SEP solves some of the
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problems encountered when using EP given that the number of parameters increase ac-

cording to number of datapoints. Thus, SEP is a deterministic approximate inference

method that prevents memory overheads when increasing the number of data points. EP

has shown to be an appropriate generalization in the case of Gaussian mixture model [61],

hierarchical models such as LDA [59] or even infinite mixture models [28]. Furthermore,

SEP has been used with Deep Gaussian process [21], showing the benefits of scalable

Bayesian inference and outperforming traditional Gaussian process. The contributions

of this chapter are summarized as follows: 1) we show that SEP can provide effective

parameter estimates when dealing with large datasets; 2) we derive foundations to learn

an EDCM mixture model using SEP; 3) we exhaustively evaluate the proposed approach

on synthetic and real count data and compare the performance with other models and

learning approaches.

The rest of this chapter is organized as follows. First, Section 3.2 revisits the approxi-

mation to the Multinomial Scaled Dirichlet (EMSD) distribution used to tackle the bursti-

ness phenomenon efficiently for high-dimensional count data. In Section 3.3, we outline

the EDCM mixture model, describe the SEP learning approach, and derive the complete

learning algorithm. Section 3.4 is devoted to the experimental results on both synthetic

and real high-dimensional count data. Finally, conclusions are given in Section 3.5.

3.2 The Exponential-family Approximation to MSD Distri-

bution

We start with a brief review of the Multinomial Scaled Dirichlet distribution (MSD) re-

cently introduced by [88]. We are given a dataset X with D samples X = {xi}Di=1, each

xi is a vector of count data (e.g. a text document or an image, represented as a frequen-

cies vector of words or visual words, respectively). We assume that each data set has a

vocabulary of size V .
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The Multinomial distribution with positive parameters p = (p1, . . . , pV ) is commonly

used to model features involving counts:

M(x | p) =
n!∏V

w=1 xw!

V∏
w=1

pxww (41)

where n =
∑V

w=1 xw is the document length.

However, the Multinomial distribution is not appropriate when analyzing the bursti-

ness of words [53]. This is due to the fact that according to the Multinomial distribution,

words follow the i.i.d assumption, but in real data, there is actually an occurrence depen-

dency such that if a word appears once, it is more likely to appear again [44].

The hierarchical approach of DCM considers the count vector to be generated by a

multinomial distribution whose parameters are generated by the Dirichlet distribution.

That is, in a specific document, for example, the Multinomial is linked to particular sub-

topics, and thus, it makes the emission of some words more likely than others. This gives

it the ability to handle burstiness, even for rare words. The limitations of the Dirichlet

motivated the scholars to use different interesting alternative priors for the multinomial

including the generalized Dirichlet [13], and the Beta-Liouville [15]. Recently, [88] pro-

posed a more flexible generative model to deal with burstiness phenomenon, called the

Multinomial scaled Dirichlet (MSD), which is the composition of the Multinomial and

Scaled Dirichlet in the same way that the DCM is the composition of the Multinomial and

the Dirichlet. In this model, the prior information is introduced using the scaled Dirich-

let distribution, which is a generalization of Dirichlet distribution that is obtained after

some perturbation and powering operations to a Dirichlet random composition, opera-

tions that define a vector-space structure in the simplex [65]. The scaled Dirichlet with a

scale ρ and shape ν parameter is defined as:

SD(p | ρ,ν) =
Γ(s)∏V

w=1 Γ(ρw)

∏V
w=1 ν

ρw
w pρw−1

w(∑V
w=1 νwpw

)s (42)
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where s =
∑V

w=1 ρw is the sum of the scale parameter.

Thus, the MSD is the marginal distribution defined by integrating out the probability

parameter p (i.e.
∫
p(x | p)p(p | ρ,ν)), obtaining a discrete distribution known as the

Multinomial Scaled Dirichlet (MSD) distribution [88], which is given by:

MSD(x | ρ,ν) =
n!∏V

w=1 xw!

Γ(s)

Γ(s+ n)
∏V

w=1 ν
xw
w

V∏
w=1

Γ(xw + ρw)

Γ(ρw)
(43)

Notice that the authors in [88] use an approximation to
(∑V

w=1 νwpw

)∑V
w=1 xw ≈

∏V
w=1 ν

xw
w .

Observe that when ν = 1, we obtain the Dirichlet Compound Multinomial (DCM) distri-

bution [53]. Similar to DCM, this model, MSD, has an intuitive interpretation represent-

ing the Scaled Dirichlet as a general topic and the Multinomial as a document-specific

subtopic, making some words more likely in a document x based on word counts.

The text documents representation is very sparse as many words in the vocabulary

do not appear in most of the documents. Thus, in [92], the authors note that using only

the non-zero values of x is computationally efficient since xw! = 1, νxww = 1 and Γ(xw +

ρw)/Γ(ρw) = 1 when xw = 0. Moreover, since in high dimensional data the parameters are

very small, [26], the following fact for small values of ρ when x ≥ 1 was used in [92]:

lim
ρ→0

Γ(x+ ρ)

Γ(ρ)
− Γ(x)ρ = 0 (44)

Thus, being able to approximate Γ(xw + ρw)/Γ(ρw) = Γ(xw)ρw and using the fact that

Γ(xw) = (xw − 1)! leads to an approximation of the MSD distribution known as the

Exponential-family approximation to the MSD distribution (EMSD), given by:

EMSD(x | α,β) =
n!∏V

w:xw≥1 xw

Γ(s)

Γ(s+ n)

V∏
w:xw≥1

αw
βxww

(45)

The parameters of the EDCM distribution are denoted with α and β to distinguish them

from the MSD parameters.
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3.3 EMSD Mixture Model

This section gives groundwork of the main components that our work is built on and

introduces the notation used throughout the present chapter.

3.3.1 Clustering Model

We assume that we are given D documents drawn from a finite number of EDCM distri-

butions, and each xi document is composed of V words. K ≥ 1 represents the number

of mixture components. Thus, a document is drawn from its respective component j as

follows: xi ∼ EMSD(αj,βj).

zi xiπ

β1...Jα1...J

i = 1, , D

Figure 2: EMSD mixture model.

In a mixture model, a latent variable Z = {zi}Di=1 is introduced for each xi document

in order to represent the component assignment. We posit a Multinomial distribution

for the component assignment such that zi ∼ Mult(1,π) where π = {πj}Kj=1 represents

the mixing weights, and they are subject to the constraints 0 < πj < 1 and
∑

j πj = 1

(Figure 2 illustrates the graphical model for the mixture model). In other words, zi is a

K-dimensional indicator vector containing a value of one when document xi belongs to

the component j, and zero otherwise. Note that in this setting the value of zij = 1 acts

as the selector of the component that generates xi document with parameters αj and βj ;
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hence, p(zi | π) = πj . Thus, the full posterior is in equation 46.

p(π,α,β | X ) ∝ p(π)p(α)p(β)
D∏
i

K∑
j

πjp(xi | αj,βj) (46)

3.3.2 Parameter Learning

We use SEP in order to learn the parameters of the mixture model. We start by partition-

ing the likelihood in D sites and define a global approximating site for each of the latent

variables (π, α, and β). Theoretically, any distribution belonging to the exponential fam-

ily can be used for the sites. We use a Gaussian distribution for the parameters of the

EDCM distribution in order to facilitate calculations [51]. For the mixture weights, we

use a Dirichlet distribution since it belongs to the K − 1 simplex and fits the constraints

imposed by the mixing weights. Eqs. 47, 48 and 49 illustrate the choices for the approxi-

mate sites.

p̃(π) ∝
∏
j

π
aj
j (47)

p̃(α) =
K∏
j

N (αj |mj, p
−1
j ) (48)

p̃(β) =
K∏
j

N (βj | nj, q−1
j ) (49)

Once have defined the global approximate site, we compute the approximate posterior

q(π,α,β) by introducing the priors and the average effect of the global site:
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q(π,α,β) ∝p(π,a0)p̃(π | a)D

K∏
j

p
(
αj |m0

j , (p
0
j)
−1
)
p̃
(
αj |mj, (pj)

−1
)D

p
(
βj | n0

j , (q
0
j )
−1
)
p̃
(
βj | nj, q−1

j

)D
The approximate posterior distribution have the parameters illustrated in Eqs. 50, 51,

52, 53 and 54.

a′ = 1 + a0 +Da (50)

(p
′

j)
−1 = (p0

j +Dpj)
−1 (51)

m
′

j = (p
′

j)
−1(p0

jm
0
j +Dpjmj) (52)

(q
′

j)
−1 = (q0

j +Dqj)
−1 (53)

n
′

j = (q
′

j)
−1(q0

jn
0
j +Dqjnj) (54)

Consequently, we introduce a cavity distribution by removing the contribution of one

of the copies of the global site. The cavity distribution has parameters a\1,
(
p
\1
j

)−1

, m\1j ,(
q
\1
j

)−1

, and n\1j illustrated in Eqs. 55, 56, 57, 58 and 59 that are calculated as follows:

q(π,α,β)/p̃i(π,α,β)

a\1 = a
′ − a; (55)
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(
p
\1
j

)−1

=
(
p
′

j − pj
)−1

(56)

m
\1
j =

(
p
\1
j

)−1 (
p
′

jm
′

j − pjmj

)
(57)

(
q
\1
j

)−1

=
(
q
′

j − qj
)−1

(58)

n
\1
j =

(
q
\1
j

)−1 (
q
′

jn
′

j − qjnj
)

(59)

We use the cavity distribution and incorporate the ith site, resulting in the tilted dis-

tribution p̂ = 1
Zi
piq
\1. We use this distribution to compute the KL divergence with the

approximate distribution, which is equivalent to matching the moments. However, in

this case, matching the moments leads to another analytically intractable integral (i.e.

Zi =
∑K

j

a
\1
j∑K

k a
\1
k

Ep(αj ,βj) [p(xi | αj, βj)]). Thus, we compute this integral via Monte Carlo

sampling. After matching the moments, we obtain the parameters for an updated ap-

proximate posterior (Eq. 60, 61, 63, 64 and 62).

Ψ(a
′

j)−Ψ(
K∑
j

a
′

j) = Ψ(a
\1
j )−Ψ(

K∑
j

a
\1
j ) +∇

a
\1
j

logZi (60)

m
′

j = m
\1
j +

(
p
\1
j

)−1

∇
m
\1
j

logZi (61)

n
′

j = n
\1
j +

(
q
\1
j

)−1

∇
n
\1
j

logZi (62)

p
′

j =
(
p
\1
j

)−1
(

2∇(
p
\1
j

)−1 logZi + p
\1
j

)(
p
\1
j

)−1

−
(
m
′

j −m
\1
j

)(
m
′

j −m
\1
j

)ᵀ
(63)
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q
′

j =
(
q
\1
j

)−1
(

2∇(
q
\1
j

)−1 logZi + q
\1
j

)(
q
\1
j

)−1

−
(
n
′

j − n
\1
j

)(
n
′

j − n
\1
j

)ᵀ
(64)

The values of a′ are calculated using fixed point iteration as describe in [57]. Using

this updated approximate posterior, we remove the cavity distribution in order to obtain

an approximation to the ith site (Eq. 65 to Eq. 69).

a = a′ − a\1 (65)

(pj)
−1 = (p

′

j − p
\1
j )−1 (66)

mj = (pj)
−1
(
p
′

jm
′

j − p
\1
j m

\1
j

)
(67)

(qj)
−1 = (q

′

j − q
\1
j )−1 (68)

nj = (qj)
−1
(
q
′

jn
′

j − q
\1
j n

\1
j

)
(69)

Finally, we use damping to partially update the global approximate site. First, we

update the parameters of the global site as follows Θnew = (1−η)Θold+ηΘi where Θold are

the current parameters of the global site, and Θi are the parameters for the approximation

of a single likelihood. Then, we introduce the global approximate site in the approximate

distribution. The learning approach is described in the algorithm 2.

3.4 Experimental Results

In this section, we describe the experiments carried out to test the validity of the proposed

method on both synthetic and real count data.
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Algorithm 2: Stochastic Expectation Propagation (SEP) algorithm for learning a
EMSD Mixture model

Input : K: number of clusters; X = {x1, . . . ,xD}: corpus; p0(π,α,β): prior
knowledge

1 Initialize the approximate site p̃(π,α,β).
2 If priors are not provided, initialize them to 1 (i.e. p0(π,α,β)=1)
3 Compute the approximate distribution q(π,α,β) by calculating the average effect

p̃(π,α,β)D of the likelihood and introducing the priors p0

4 while not convergence do
5 for xi in X do
6 Compute the cavity distribution q\1(π,α,β) by removing the contribution

of one of the copies of the approximate site.
7 Match moments of the tilted distribution p̂(π,α,β) and approximate

posterior qnew(π,α,β) by minimizing DKL(p̂ ‖ qnew).
8 Compute the parameters of a revised approximate site after matching the

moments.
9 Make a partial update to the approximate site and include the approximate

site in the approximate distribution.
10 end
11 end
12 Estimate mixing weights πj

3.4.1 Synthetic dataset

We create a synthetic dataset X = {xi}Di=1 by using the probabilistic mixture model with

D = 210 data points. We use K = 3 components each is an EDCM distribution where the

mixing weights are uniformly sampled. For simplicity, we set a fixed value of 1 for the

scale parameter of the Scaled Dirichlet. Since the shape parameter is commonly αw � 1

[26], we sample from a Beta distribution.

We initialize the priors of the model with covariance matrix 5I and 3I for the scale

and shape parameter. Random values are used for the prior means and mixing weights

parameter. We set a step size of η = 0.1 and approximate the posterior using SEP. Table 3

show the obtained estimates. The mixing weights can be estimated using the expected

value of πj ; for instance, E [πj] = a
′
j/
∑K

j=1 a
′
j .

The used parameters as well as the estimated values are shown in Table 3. We notice

that estimates are very close to the target values. Since we need to store only the local

37



Table 3: Original parameters and estimated parameters for the mixture of EMSD using

the proposed approach.

j π α β

Real

1 0.333 [0.610, 0.318, 0.646] 1
2 0.333 [0.556, 0.188, 0.848] 1
3 0.334 [0.129, 0.891, 0.507] 1

Estimation

1 0.335 [0.663, 0.305, 0.676] [1.082, 1.055, 1.062]
2 0.332 [0.573, 0.098, 0.720] [0.963, 1.027, 0.996]
3 0.333 [0.193, 0.858, 0.527] [1.087, 0.976, 1.002]

and global parameters, we emphasize the fact that SEP reduces memory consumption

allowing us to scale EP.

3.4.2 Sentiment Analysis

We analyze the problem of sentiment analysis in the setting when online users employ on-

line platforms to express opinions or experiences regarding a product or service through

reviews. We exploit these data to investigate the validity of our framework where we

know the right number of components (i.e. positive/negative, K = 2). We use three

benchmark datasets [52,93]: 1) Amazon Review Polarity; 2) Yelp review Polarity; 3) IMDB

Movie Reviews. This section presents the details of our experimentation and its results.

Before describing the experimental results, we first outline the key properties of the

datasets and the performed setup. We pre-process the dataset as follows: 1) lowercase all

text; 2) remove non-alphabetical characters; 3) lemmatize text. All datasets are reviews

and contain two labels indicating whether the post has a positive or negative sentiment.

Amazon Review Polarity contains 180k customer reviews that span a period of 18 years,

for products on the Amazon.com website. The dataset has an average of 75 words per re-

view with a vocabulary size of over 55k unique words.
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Yelp Review Polarity contains 560k user reviews from Yelp with an average of 133

words with > 85k unique words. The Yelp dataset contains a polarity label by consid-

ering stars 1 and 2 negative, and 3 and 4 positive reviews about local businesses.

IMDB movie reviews this dataset consists of 50K movie reviews with an average 231

words per review and a vocabulary size of over 76k unique words. Ratings on IMDB

are given as star values ∈ [1, 10] which were linearly mapped to [0, 1] to use as document

labels; negative and positive, respectively.

We compare the clustering performance of EDCM mixture model using the proposed

SEP to different modeles with the same approach and different learning techniques such

as Expectation Propagation (EP), and maximum-likelihood (ML) for parameter estima-

tion. More precisely, we compared to the following models that use maximum-likelihood

for estimating its parameters. Firstly, we have a mixture of Multinomials (MM) [16].

Even though the MM is appropriate for modeling common words, not words bursti-

ness problem, we add it to the comparison to evaluate its predictive power. Next, we

make a comparison with different models that capture the words bustiness problem such

as Dirichlet Compound Multinomial (DCM) [53], Exponential-family Approximation to

DCM (EDCM) [26], the Multinomial Scaled Dirichlet (MSD) [88], and the Exponential-

family Approximation to MSD (EMSD) [92]. Furthermore, we compare to the perfor-

mance of EDCM mixture model in case of considering EP for parameter estimation as we

have recently proposed in [80]. We evaluate the performance of the considered models

according to precision and recall as illustrated in Table 4.

In general, most models are superior than a Multinomial mixture model (except for

Yelp dataset). We notice that SEP gives comparable results to the EDCM model in terms

of precision and recall. Additionally, we evaluate an EDCM mixture that uses EP for

parameter learning where we can assume that SEP is computing similar approximations

to EP with the advantage that there is no need to store the parameters for each of the

approximate sites. One of the main advantages is that we only store the local and global
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Table 4: Results on the three text datasets. Comparison using precision and recall. ML:

maximum-likelihood; EP: expectation propagation; SEP: sthocastic expectation propaga-

tion.

Dataset

Metrics Amazon Yelp IMDB

Precision
ML-MM 50.83 89.12 64.18
ML-DCM 55.65 91.01 71.14
ML-EDCM 80.65 89.25 78.54
EP-EDCM 86.91 80.50 86.36
ML-MSD 82.21 86.96 84.00
ML-EMSD 83.31 87.23 85.00
SEP-EMSD (ours) 86.35 82.83 86.83

Recall
ML-MM 51.99 89.20 64.40
ML-DCM 63.94 91.01 89.45
ML-EDCM 80.88 89.28 89.33
EP-EDCM 84.82 93.83 85.94
ML-MSD 82.21 87.09 84.00
ML-EMSD 83.57 87.28 86.00
SEP-EMSD (ours) 83.91 90.02 87.64
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parameters, reducing memory usage. More specifically, for the Amazon dataset, EP and

SEP are superior in terms of precision and recall compared with most models that use

maximum-likelihood estimation. Our intuition is that the length of documents plays a

critical role in parameter estimation. That is, in the Amazon dataset, for example, we

obtain better precision and recall using a Bayesian approach given that the document

length is relatively shorter than in the other two datasets.

3.5 Conclusions

In this chapter, we propose a Stochastic Expectation Propagation (SEP) algorithm to learn

a finite EDCM mixture model. We derive the mathematical framework using SEP, and

since performing moment matching leads to an intractable integral, we use sampling in

order to compute its moments. Then, we evaluate the proposed approach on both syn-

thetic and real data and notice that SEP-EMSD provides comparable results to traditional

approaches and in some cases being superior. Although we evaluated the proposed learn-

ing method with text data, we can use any type of count data such as a clustering of visual

words for images or videos. It is noticeable that SEP does not need a site per data point

and similar to variational inference maintains a global posterior approximation that is

updated locally and reduces memory consumption.
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Chapter 4

Improving classification using topic

correlation and Expectation Propagation

Probabilistic topic models are broadly used to infer meaningful patterns of words over

a mixture of latent topics that are commonly used for statistical analyses or as a proxy

for supervised tasks. However, models such as Latent Dirichlet Allocation (LDA) assume

independence between topic proportions due to the nature of the Dirichlet distribution;

this effect is captured with other distributions such as the logistic normal distribution,

resulting in a complex model. In this chapter, we develop a probabilistic topic model

using the generalized Dirichlet distribution (LGDA) in order to capture topic correlation

while maintaining conjugacy. We make use of Expectation Propagation to approximate

the posterior, resulting in a model that achieves more accurate inferences compared to

variational inference. We evaluate the convergence of EP compared with the classical

LDA by comparing the approximation to the marginal distribution. We show the ob-

tained topics by LGDA and evaluate its predictive performance in two text classification

tasks, outperforming the vanilla LDA.
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4.1 Introduction

Topic models are among the best-known models to automatically organize documents.

Especially, probabilistic topic models [5] have received great attention from the research

community. They use statistical methods for uncovering topics from a collection of docu-

ments and are commonly used for annotating or organizing documents. Latent Dirichlet

Allocation (LDA) [12] was proposed as an improvement of probabilistic Latent Seman-

tic Analysis [38, 39] and has become the most popular topic model since its introduction.

Many variations have been introduced leading to applications [20] in a variety of do-

mains. For instance, they are used in academics for bibliometrics [32], labeling groups of

publications [78], entity disambiguation [71], and the author-topic model [67] that cap-

tures information not only about documents but also authors. LDA has also been used

successfully in applications for computer vision [7,29,47,72] commonly using a represen-

tation of visual words. Other applications can be found in areas such as healthcare [49],

social sciences [66], and psychology [73].

These applications have been possible due to the flexibility of the LDA model. LDA

can be extended with other more complex models and adapted to a specific problem. For

instance, DiscLDA [45] is an extension of LDA for dimensionality reduction and classi-

fication that uses a linear transformations. On the other hand, other models deal with

the exchangeability assumption made by LDA for word order [24, 35] and dynamic topic

models for document order [9]. LDA assumes that the number of topics is known before-

hand. However, in real applications, this is not always the case. The number of topics can

be learned using a non-parametric approach of Hierarchical Dirichlet Process [81]. And

going even further, hierarchies of topics [6] can be modeled using the Nested Chinese

restaurant process. Features as these manifest the importance of topic models since they

can potentially improve the experience and performance of information retrieval tasks.

The extensions of LDA introduced so far aim at learning unsupervised representations
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only. The supervised LDA [55] uses a response variable to tackle prediction tasks. Fi-

nally, other extensions allow to model correlation between topics; we will introduce these

models further since are related to this work.

It is noticeable that the applicability of topic models are endless and due to digital-

ization, there is an exponential growth of information available online. Thus, organizing

and annotating those documents can be overwhelming and obtaining better topic models

can substantially ease these tasks. For doing so, a lot of emphasis has been put in ap-

proximate inference since these models need to compute a posterior distribution which is

intractable. Commonly sampling methods or deterministic approaches are used to deal

with this intractable integral. For instance, Markov Chain Monte Carlo (MCMC), a sam-

pling method, is usually implemented using a Gibbs sampling algorithm [34, 76]. Sim-

ilarly, there are deterministic approaches such as Expectation Propagation (EP) and [60]

and Variational Inference (VI) [8]. VI has been an active area of research having varia-

tions that are much faster and scale to great amounts of data by using stochastic opti-

mization [36,37] or Autoencoding variational Bayes [42,75] that uses neural networks for

approximating the posterior distribution.

In this work, we introduce a variation of LDA that models topic correlations lever-

aging the advantages of EP for approximating the posterior distribution. Topic correla-

tions are important when, for example, a document about sports has content about soccer

and athletics but lacks information about basketball. This correlation cannot be captured

by LDA for the intrinsic nature of the Dirichlet distribution. However, the Generalized

Dirichlet (GD) distribution is a generalization of the Dirichlet distribution that solves the

limitations of its negative covariance matrix. It has been used successfully with count

data [13], and apart from solving the restrictions of the Dirichlet distribution, maintains

conjugacy in the LDA model. EP factorizes the joint distribution for later combining each

factor with an approximation, and as a result, obtaining an overall approximation of the
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posterior distribution. This is appealing for models such as LDA since data partition al-

lows EP to be distributed and scale to large datasets. In addition, EP has shown to obtain

a better approximation than VI [59], which are biased.

The rest of this chapter is organized as follows. First, Section 4.2 revisits the core

methods upon our work is built on and related work in Section 4.3. Next, in Section 4.4,

we outline the LGDA model, describe the expectation propagation approach, and derive a

complete learning approach. Section 4.5 describes our experimental setup and evaluation

of our proposed method. Finally, we conclude the chapter in Section 4.6.

4.2 Background

This section gives groundwork of the main components upon our work is built on and

introduces the notation used throughout this work.

4.2.1 Latent Dirichlet Allocation

LDA [12] is the most popular probabilistic topic model and since its introduction, it has

become the most conventional and known unsupervised topic model for the discovery of

latent topics. It can be described as a generative model, meaning that uses a probabilistic

approach allowing to generate documents.

Following this generative process, each topic βk is a distribution over a vocabulary

V and a document has a mixture of topics β = (β1, . . . ,βK), where K is the number of

topics, which has to be known beforehand. All documents in the corpus share the topics

β, but each document can express a topic in a different proportion θd. The generative

process continues by drawing a word wd,n from topic βzd,n , where zd,n is the topic assign-

ment for the word wd,n. The topic assignment zd,n is drawn from a distribution over the

document proportion θd.

Commonly, the document proportion is modeled with a Dirichlet distribution, and the

topics and words with a Multinomial distribution. However, the evidence p(w) of this
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model is intractable due to the coupling of θ and β [25]. Thus, the posterior is frequently

approximated with VI using the mean-field variational family, and by integrating out the

latent variables, LDA is capable to infer the topic structure of a set of documents.

4.2.2 Generalized Dirichlet distribution

A Dirichlet distribution can only capture negative correlations due to its negative covari-

ance matrix. Additionally, when it is used as a prior, poses only one degree of freedom

which hinders the ability to introduce variance information to each component of the

random vector. Therefore the GD distribution [23, 85] was introduced to alleviate these

problems. It has positive parameters α = α1, . . . , αK and κ = κ1, . . . , κK , and a random

vector θ = θ1, . . . , θK , where
∑K

k θk ≤ 1 and 0 < θk < 1 for k = 1, . . . , K. GD’s PDF is

illustrated in equation 70.

p(θ | α,κ) =
K∏
k

Γ(αk + κk)

Γ(αk)Γ(κk)
θαk−1
k (1−

k∑
j=1

θj)
γk , (70)

where γk = κk − αk+1 − κk+1 for k = 1, . . . , K − 1 and γK = κK − 1; Γ(·) is the Gamma

function. The mean and variance are shown in equation 71 and 72 respectively.

µk =
αk

αk + κk

k−1∏
j=1

κj
αj + κj

(71)

V ar(θk) = µk

(
αk + 1

αk + κk + 1

k−1∏
j=1

κj + 1

αj + κj + 1
− µk

)
(72)

Additionally, equation 73 illustrates the covariance matrix, which has a more general

structure. For instance, the Dirichlet distribution is just an special case of the GD distri-

bution when κk = αk+1 + κk+1.

Cov(θm, θn) = µn

(
αm

αm + κm + 1

m−1∏
j=1

κj + 1

αj + κj + 1
− µm

)
(73)

46



It is noteworthy that the GD distribution has K degrees of freedom which makes it

more flexible and suitable for modeling correlated topics.

4.3 Related Work

The work in [59] proposes an inference alternative using Expectation Propagation (EP) for

LDA model that does not bound the marginal probability as in [12] and leads to higher

accuracy. However, in general, the LDA model is incapable of capturing topic correla-

tion due to the limitation of the Dirichlet distribution for the document-topic probability.

The Correlated Topic Model (CTM) [10] is proposed in order to capture a correlation of

the topic proportions using a logistic normal distribution which results in a complicated

model since the conjugacy with the Multinomial distribution is lost. Thus, [22] showed

that the CTM can be modeled using a Generalized Dirichlet distribution (denominated

GD-LDA or LGDA), maintaining conjugacy and leading to faster inference. Finally, the

work of [1] and [40] propose inference alternatives to the LGDA model using collapsed

variational bayes inference and variational bayes inference, respectively.

4.4 Latent Generalized Dirichlet Allocation

This section provides an overview of the LGDA model and an approach to perform infer-

ence and estimation using expectation propagation.

4.4.1 Model

LGDA is a generative probabilistic model for count data. The generative process is similar

to the vanilla LDA [12] with the difference that document-topic proportions θd are drawn

from a GD distribution.

1. Choose θ ∼ GenDir(α,κ)
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2. For each of the N words wn:

(a) Choose a topic zn ∼Multinomial(θ)

(b) Choose a word wn from p(wn | zn,β)

The probabilistic graphical model of LDA is depicted in figure 3. The model has the

corpus level hyperparameters α and κ for the prior GD distribution and β for the topics.

Words are observed and represented by the shaded node w.

θ

α

κ z w

β

N
D

Figure 3: Probabilistic graphical model of LGDA. The shaded circle represent the ob-

served words w while the blank circles represent the topics β, the topic proportion θ, and

the topic assignments z.

Given the hyperparameters, the joint distribution for a document of the model is given

in equation 74.

p(θ, z,w | α,κ,β) = p(θ | α,κ)
N∏
n=1

p(zn | θ)p(wn | zn,β) (74)

We can impose that each word among the documents belongs to a fixed vocabulary

of size V . Then, because we assume there are K fixed topics in the corpus, and we are

using a GD distribution prior, the word-topic probability matrix β is K+1×V . Addition-

ally, since we are dealing with probabilities, the topic proportions have to sum up to one∑K+1
k=1 θk = 1. It is evident that θ is a different sample for each document, and as a result,

each document exhibits a different topic proportion.

The topic assignment dictates which component to select from the topic mixture such

that p(zn|θ) = θzn . Similarly, a word topic probability is selected from β in a manner that
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p(wn | zn,β) = βzn,wn . Thus, we rewrite the joint distribution as a sum over the topic

assignments zn, obtaining equation 75.

p(θ,w | α,κ,β) = p(θ | α,κ)
N∏
n=1

K+1∑
k=1

θkβk,wn (75)

Each document has lengthN yet we can use a fixed vocabulary to represent the words

over the collection of documents, and because of the ex-changeability assumption [12],

the order of words is not relevant. Thus, the joint for a fixed vocabulary is represented in

equation 76.

p(θ,w | α,κ,β) = p(θ | α,κ)
V∏
w=1

(
K+1∑
k

θkβk,w

)nw

, (76)

where nw is the number of times that word w appears in the document.

Finally, the marginal probability of a document is obtained by integrating out the mix-

ing topics θ such that p(w) =
∫
p(θ,w)dθ. Now, it is more evident the coupling between θ

and β, which makes the posterior intractable [25]. Thus, in this work, we will make use of

EP to approximate the posterior distribution. For instance, the probability of a collection

of documents C is shown in equation 77.

p(C | α,κ,β) =
D∏
d=1

∫
p(θd | α,κ)

V∏
w=1

(
K+1∑
k=1

θd,kβk,w

)nd,w

dθd (77)

4.4.2 Inference

As it is common in any Bayesian setting, the posterior distribution is defined by the hid-

den variables given the observed words p(θ, | w,α,κ,β) ∝ p(θ,w | α,κ,β). Hence,

LGDA’s evidence is intractable. Thus, we generate an approximation to p(w) using EP

since it has been shown that generates more accurate approximations [59, 60]; unlike VI

that tends to create biased approximations. Then, EP can provide an estimate for both the

posterior and evidence, and sites can be defined as show in equation 78.
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tw(θ) =
K+1∑
k=1

θkβk,w (78)

So, the posterior distribution can be factorized as shown in equation 79, where we use

a GD distribution as prior.

p(θ, | w,α,κ,β) ∝ p(θ | α,κ)
V∏
w=1

tw(θ)nw (79)

Similar to [59], the approximate sites have a product form (Eq. 80). The parameter φ is

a matrix V ×K + 1 and sw is a normalization constant for the site w.

t̃w(θ) = sw

K+1∏
k=1

θ
φw,k

k (80)

By making use of the approximate sites and the GD prior, an approximate posterior

distribution can be calculated. Notice that because of conjugacy, we obtain an approxi-

mate GD distribution (Eq. 81)

q(θ | α′,κ′) ∝ p(θ | α,κ)
V∏
w=1

t̃w(θ)nw , (81)

where γ′k = κ′k − α′k+1 − κ′k+1 for k = 1, . . . , K − 1 and γ′K = κ′K +
∑V

w=1 φw,K+1nw − 1, and

its parameters are shown in equations 82 and 83, respectively.

α′k = αk +
V∑
w=1

φw,knw for k = 1, . . . , K (82)

κ′k = κk +
K+1∑
j=k+1

V∑
w=1

φw,jnw for k = 1, . . . , K (83)

In order to update the approximate site t̃w(θ), a cavity distribution is introduced

by removing it from the approximate posterior q\w(θ) = q(θ)/t̃w(θ). We obtain a cav-

ity distribution that is another GD distribution with parameters α\w and κ\w shown in
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equation 84 and 85, where γ
\w
k = κ

\w
k − α

\w
k+1 − κ

\w
k+1 for k = 1, . . . , K − 1 and γ

\w
K =

κ
\w
K +

∑V
w=1 φw,K+1nw − φw,K+1 − 1.

α
\w
k = α′k − φw,k for k = 1, . . . , K (84)

κ
\w
k = κ′k −

K+1∑
j=k+1

φw,j for k = 1, . . . , K (85)

Next, the tilted posterior distribution can be obtained by using the site tw(θ) and the

cavity distribution such that

q∗w(θ) =
1

zw
tw(θ)q\w(θ), (86)

where the normalization constant zw(α\w,κ\w) is shown in equation 87.

zw = βK+1,w +
K∑
k=1

(βk,w − βK+1,w)
α
\w
k

α
\w
k + κ

\w
k

k−1∏
j=1

κ
\w
j

α
\w
j + κ

\w
j

(87)

Once found the tilted distribution, we proceed to match the moments with the ap-

proximate distribution in order to approximate the current site tw with the approximate

site t̃w. Since moment matching is equivalent to minimizing the KL divergence, we obtain

an optimal distribution qnew(θ) with parameters αnew and κnew that can be obtained from

the system of equations shown in equations 88 and 89. The values of the parameters can

be obtained with fixed-point iteration method.

Ψ(αnewk )−Ψ(αnewk + κnewk ) =
1

zw

∂zw

∂α
\w
k

+ Ψ(α
\w
k )−Ψ(α

\w
k + κ

\w
k ) (88)

Ψ(κnewk )−Ψ(αnewk + κnewk ) =
1

zw

∂zw

∂κ
\w
k

+ Ψ(κ
\w
k )−Ψ(α

\w
k + κ

\w
k ) (89)

After matching the moments, the approximate site can be updated using the tilted

distribution. In order to accomplish faster convergence and obtain a better representation
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of the global approximation, we use damping [30] with a step size µ. Notice when µ = 1,

no damping is applied. Hence, the factor updates are expressed in equations 90 and 91.

s′w = zw

K∏
k=1

Γ(αnewk + κnewk )

Γ(αnewk )Γ(κnewk )

Γ(α
\w
k )Γ(κ

\w
k )

Γ(α
\w
k + κ

\w
k )

(90)

φ′w,k = µ(αnewk − α\wk ) + (1− µ)φw,k

φ′w,K+1 =
µ

2

(
κnewK − κ\wK + φw,K+1 −

∑
w

φw,K+1nw

)
+ (1− µ)φw,K+1 (91)

Finally, we incorporate the contribution of the optimized site in the global approxi-

mate distribution q∗(θd) by employing the cavity distribution and the optimal site; the

updates are shown in equation 92.

α′newk = α′k + nw(φ′w,k − φw,k)

κ′newk = κ′k + nw(
K+1∑
j=k+1

φ′w,j − φw,j) (92)

After convergence, we can compute p(w) as follows:

z =
K∏
k=1

Γ(αk + κk)

Γ(αk)Γ(κk)

Γ(α′k)Γ(κ′k)

Γ(α′k + κ′k)
×

V∏
w=1

snw
w (93)

The full learning algorithm for inference is depicted in Algorithm 3.
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Algorithm 3: LGDA inference algorithm with EP. We use an step size of ndw.
1 Initialize approximate factors t̃w = 1, where φw,k = 0 and sw = 1. This is the same

as initializing approximate parameters with priors α′k = αk and κ′k = κk;
2 for doc in Corpus do
3 Compute q(θ) by calculating α′ and κ′;
4 while not convergence do
5 for word in doc do
6 Delete: compute cavity distribution q\w(θ | α\w,κ\w).;
7 if α\w < 0 or κ\w < 0 then
8 Ignore word in this iteration and undo changes.;
9 end

10 Match moments: match the moments of q∗(θ) and qnew(θ) by
minimizing DKL(q∗(θ) ‖ qnew(θ));

11 Update: get parameters of t̃w by calculating φ′w,k and s′w;
12 Incorporate: introduce the optimized site into the global approximation

q(θ | α′,κ′);
13 if α′ < 0 or κ′ < 0 then
14 Ignore word in this iteration and undo changes.;
15 end
16 end
17 end
18 end

4.4.3 Parameter Estimation

Finally, we obtain estimates of the model parameters by maximizing the ELBO with re-

spect to α, κ, and β. Thus, we can write the ELBO as shown in equation 94.

L(α,κ,β) =
D∑
d=1

Eq [log p(θd)] +
D∑
d=1

Eq

[
V∑
w=1

nd,w log(
K+1∑
k=1

θd,kβk,w)

]
+ C (94)

Maximizing this expression with respect to αk and κk lead us to the following system

of equations (eq. 95, which has no closed-form and can be approximated using Newton’s

method [57].
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D [Ψ(αk + κk)−Ψ(αk)] =
D∑
d

[
−Ψ(α′d,k) + Ψ(α′d,k + κ′d,k)

]
D [Ψ(αk + κk)−Ψ(κk)] =

D∑
d

[
−Ψ(κ′d,k) + Ψ(α′d,k + κ′d,k)

]
(95)

Next, we find the optimal topics by maximizing the ELBO w.r.t. βk,w (see eq 96) where

we find an expectation that can be approximated using second-order Taylor expansion

about E [θd].

βk,w ∝
D∑
d

nd,wEq

[
θd,kβk,w∑K+1
k=1 θd,kβk,w

]
(96)

4.5 Results

In this section, we test convergence by comparing the lower bounds and evaluate the

LGDA model on a text classification task in order to evaluate the predictive performance

due that correlation can lead to better predictive distributions.

Dataset We use the Reuters-215781 corpus which is a collection of labeled newswire

articles. The dataset consists of 21, 578 documents, including documents without topics

and typographical errors. Thus, we use the top-6 categories following the experiment

performed by [1], resulting in approximately 9, 000 documents. Table 5 summarizes the

selected categories and number of documents per class. We preprocess the selected cor-

pus by lowercasing words and removing punctuation. Next, words in third person are

changed to first person and tenses are changed to present by using a standard lemma-

tizer. Stop words and words with less than three characters are filtered. Finally, we use

a stemmer to reduce all the remaining words to its root form and tokenize to form the

vocabulary.

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 5: Classes and number of documents extracted from Reuters dataset

category num. docs

acq 2369
crude 578
earn 3964
grain 582

interest 478
money-fx 717

Models We compare the performance of LGDA-Expectation Propagation with LDA

since it is the most commonly used topic model and has not only similar conjugacy prop-

erties but also a similar generative process. We use an implementation of LDA with vari-

ational Bayes inference2.

Experiment description As noticed by [1], LGDA has a similar predictive power as

LDA yet LGDA is better at discriminating related categories due that topics are corre-

lated. Thus, we use train/test splits as specified in [1] and build two classifiers, a su-

pervised LASSO regression with a Multinomial and Bernoulli distribution for multiclass

and binary classification. We use the full dataset for the multiclass classifier which has a

vocabulary size of V = 10, 123 words, and similarly for the binary classifier, we use two

related categories (i.e. interest and money-fx) resulting in a vocabulary size of V = 4, 233

words. We use the number of topics K reported in [1].

Topic Interpretability We train LGDA-EP and LDA and evaluate the lower bounds us-

ing the full dataset with K = 15 and K = 30 topics as shown in figure 4. For EP, we

initialize the approximate factors t̃w = 1, and for LDA-VI, we initialize the variational pa-

rameters randomly. We can notice that LGDA-EP not only converged considerably faster

but also reaches a better solution by looking at the approximate evidence.

We next look at the learned topics. Table 6 displays the 4 most used topics for LDA-EP,

as given by the average of the topic proportions θd. LDA provide interpretable topics.
2We use an implementation of LDA where no smoothing is applied [11].
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Figure 4: Comparison of LGDA-EP and LDA in terms of evidence lower bound for K =

15 and K = 30 topics.

Table 6: Top five words on the full dataset with vocabulary size 10, 123 andK = 15 topics.

LGDA-EP Topics

bank dlrs stock say
market billion record share

say loss april company
billion profit dividend dlrs
money year prior offer

Topic Classification We evaluate the predictive power of LDA-EP and compare the ob-

tained results with LDA using variational Bayes inference (LGDA-VI) [1] and LDA [11].

We evaluate the models’ performance in terms of accuracy. First, we build a binary clas-

sifier in order to evaluate the ability of LDA to discriminate similar categories. We select

the optimal number of topics as proposed by [1]. Table 7 illustrates the results of binary

classification for the categories money-fx and interest. As expected LDA is slightly better

at discriminating similar categories obtaining 71% of accuracy.
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Figure 5: LDA K = 15 topics

Consequently, we build a classifier using the full-dataset, and as expected LDA-EP3

provides similar or better predictive performance than the vanilla LDA as shown in Ta-

ble 7. Figure 5 and 6 illustrate the confusion matrix for both LDA and LDA with K = 15

topics. It is noticeable that LDA is better not only at discriminating distinct categories but

also similar categories which accounts for the accuracy’s jump.

Table 7: Results for binary classification with K=15 and multi-class classification with

K=15 and K=30. Comparison using accuracy. VI: variational inference model; EP: expec-

tation propagation.

Accuracy

Models money-fx vs. interest all classes

K=15 K=15 K=30

LDA 69% 81% 78.8%
LGDA-VI [1] 70% 64.9% 64.8%

LGDA-EP 71% 84% 78.9%

4.6 Conclusions

In this chapter, we propose the use of Expectation Propagation (EP) for the Latent Gener-

alized Dirichlet allocation model to learn a mixture of latent topics over documents and

3Results with LDA-VI differ due to the pre-processing or hyperparameter configuration.
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Figure 6: LGDA K = 15 topics

a vocabulary while maintaining topic correlation. We make use of EP in order to have

accurate approximations since as opposed to variational inference, EP doesn’t need to be

bounded to create an approximation to the posterior. We additionally develop a method

for parameter estimation. We evaluate topic interpretability by looking at the resulting

topics and the predictive power of LDA-EP showing the efficacy of the proposed method

and showing superior results to the traditional LDA.
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Chapter 5

Conclusions and Future Directions

This thesis focuses in learning efficiently mixture models employing message passing

when dealing with count data, more specifically we use Expectation Propagation (EP)

and Stochastic Expectation Propagation (SEP) to learn the parameters of the model and

a latent variable model. We use the Exponential approximation to the Dirichlet Com-

pound Multinomial (EDCM) distribution and Exponential approximation to the Multi-

nomial Scaled Dirichlet (EMSD) distribution to model word appearance. Additionally,

we use the Generalized Dirichlet (GD) distribution to model correlation between topics.

We show how to use effectively EP to learn a finite EDCM mixture model that shows

comparable results with other inference methods. Consequently, we learn a finite EMSD

mixture using SEP that performs comparably to EP but requires fewer parameters to be

saved, and thus, being faster and reducing memory consumption. We, finally, use EP for

the Latent Generalized Dirichlet allocation model to learn a mixture of latent topics over

documents while maintaining topic correlation and show that the learned topics can be

used as feature inputs for downstream machine learning tasks.

The proposed models can be extended to feature selection by weighting discrete fea-

tures, similar to [19] and using model selection methods (e.g. Bayesian Information Crite-

rion [70]) to choose the appropriate model. Additionally, there is the problem of knowing

the number of topics beforehand, selecting the right number of clusters can be challenging
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depending on the application. A non-parametric Bayesian mixture model could alleviate

this complication. Thus, applying an infinite mixture model would not allow to detect

the appropriate number of clusters only but also find relevant features (e.g. [14]). These

models could be extended to a supervised settings.

EP and SEP depend on moment matching which in some cases is intractable. In this

work, we attempted different approaches to match the moments such as Laplace Method,

Black Box variational inference and sampling methods. We found sampling to be the

most stable but future directions could be devoted to compute the moments effectively

(e.g. [21, 84]). Next, SEP is a new inference method that saves memory consumption

and performs similar to EP. Here, we use SEP for estimating parameters but would be

interesting to see the performance of SEP when combined with latent variable models

and as well how well SEP performs when doing mini-batching.
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Acronyms

ADF Assumned Density Filtering. 4, 5

DCM Dirichlet Compound Multinomial. 10, 11, 13, 24, 25, 39

EDCM Exponential-family Approximation to DCM. 7–11, 13–16, 19, 20, 22–29, 31–33, 37,

39, 41

EM Expectation Maximization. 10

EMSD Exponential-family Approximation to MSD. 7, 8, 39

EP Expectation Propagation. 4–9, 25, 42, 44, 45, 49, 53, 55, 58

IS Importance Sampling. 3

LDA Latent Dirichlet Allocation. 10, 11, 22, 44–48, 55–58

LGDA Latent Generalized Dirichlet Allocation. 7, 42, 45, 47, 49, 54, 55

MC Monte Carlo. 2

MCMC Markov Chain Monte Carlo. 3, 4, 28, 44

MSD Multinomial Scaled Dirichlet. 39

SEP Stochastic Expectation Propagation. 5–8, 28

VI Variational Inference. 4, 28, 44

61



Bibliography

[1] Ali Shojaee Bakhtiari and Nizar Bouguila. A variational bayes model for count data

learning and classification. Engineering Applications of Artificial Intelligence, 35:176–

186, 2014.

[2] Rohan A Baxter and Jonathan J Oliver. Finding overlapping components with mml.

Statistics and Computing, 10(1):5–16, 2000.

[3] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recogni-

tion using shape contexts. IEEE Transactions on Pattern Analysis & Machine Intelligence,

(4):509–522, 2002.

[4] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[5] David M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84, April 2012.

[6] David M Blei, Thomas L Griffiths, and Michael I Jordan. The nested chinese restau-

rant process and bayesian nonparametric inference of topic hierarchies. Journal of the

ACM (JACM), 57(2):7, 2010.

[7] David M Blei and Michael I Jordan. Modeling annotated data. In Proceedings of the

26th annual international ACM SIGIR conference on Research and development in infor-

maion retrieval, pages 127–134. ACM, 2003.

[8] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review

for statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

62



[9] David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of the 23rd

international conference on Machine learning, pages 113–120. ACM, 2006.

[10] David M Blei, John D Lafferty, et al. A correlated topic model of science. The Annals

of Applied Statistics, 1(1):17–35, 2007.

[11] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. In

Advances in neural information processing systems, pages 601–608, 2002.

[12] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Jour-

nal of machine Learning research, 3(Jan):993–1022, 2003.

[13] Nizar Bouguila. Clustering of count data using generalized dirichlet multinomial

distributions. IEEE Transactions on Knowledge and Data Engineering, 20(4):462–474,

2008.

[14] Nizar Bouguila. A model-based approach for discrete data clustering and feature

weighting using MAP and stochastic complexity. IEEE Trans. Knowl. Data Eng.,

21(12):1649–1664, 2009.

[15] Nizar Bouguila. Count data modeling and classification using finite mixtures of

distributions. IEEE Transactions on Neural Networks, 22(2):186–198, 2010.

[16] Nizar Bouguila and Djemel Ziou. Unsupervised learning of a finite discrete mix-

ture model based on the multinomial dirichlet distribution: Application to texture

modeling. In Ana L. N. Fred, editor, Pattern Recognition in Information Systems, Pro-

ceedings of the 4th International Workshop on Pattern Recognition in Information Systems,

PRIS 2004, In conjunction with ICEIS 2004, Porto, Portugal, April 2004, pages 118–127.

INSTICC Press, 2004.

[17] Nizar Bouguila and Djemel Ziou. Unsupervised selection of a finite dirichlet mixture

model: an mml-based approach. IEEE Transactions on Knowledge and Data Engineer-

ing, 18(8):993–1009, 2006.

63



[18] Nizar Bouguila and Djemel Ziou. Unsupervised learning of a finite discrete mixture:

Applications to texture modeling and image databases summarization. Journal of

Visual Communication and Image Representation, 18(4):295–309, 2007.

[19] Nizar Bouguila and Djemel Ziou. A countably infinite mixture model for clustering

and feature selection. Knowl. Inf. Syst., 33(2):351–370, 2012.

[20] Jordan Boyd-Graber, Yuening Hu, David Mimno, et al. Applications of topic models.

Foundations and Trends R© in Information Retrieval, 11(2-3):143–296, 2017.

[21] Thang D Bui, José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-

Lobato, and Richard E Turner. Training deep gaussian processes using stochas-

tic expectation propagation and probabilistic backpropagation. arXiv preprint

arXiv:1511.03405, 2015.

[22] Karla L Caballero, Joel Barajas, and Ram Akella. The generalized dirichlet distribu-

tion in enhanced topic detection. In Proceedings of the 21st ACM international conference

on Information and knowledge management, pages 773–782. ACM, 2012.

[23] Robert J Connor and James E Mosimann. Concepts of independence for proportions

with a generalization of the dirichlet distribution. Journal of the American Statistical

Association, 64(325):194–206, 1969.

[24] Gabriela Csurka and Florent Perronnin. Fisher vectors: Beyond bag-of-visual-words

image representations. In International Conference on Computer Vision, Imaging and

Computer Graphics, pages 28–42. Springer, 2010.

[25] James M Dickey. Multiple hypergeometric functions: Probabilistic interpretations

and statistical uses. Journal of the American Statistical Association, 78(383):628–637,

1983.

64



[26] Charles Elkan. Clustering documents with an exponential-family approximation of

the dirichlet compound multinomial distribution. In Proceedings of the 23rd interna-

tional conference on Machine learning, pages 289–296. ACM, 2006.

[27] Wentao Fan and Nizar Bouguila. Non-gaussian data clustering via expectation prop-

agation learning of finite dirichlet mixture models and applications. Neural processing

letters, 39(2):115–135, 2014.

[28] Wentao Fan and Nizar Bouguila. Expectation propagation learning of a dirichlet

process mixture of beta-liouville distributions for proportional data clustering. En-

gineering Applications of Artificial Intelligence, 43:1–14, 2015.

[29] Li Fei-Fei and Pietro Perona. A bayesian hierarchical model for learning natural

scene categories. In 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), volume 2, pages 524–531. IEEE, 2005.

[30] Andrew Gelman, Aki Vehtari, Pasi Jylänki, Christian Robert, Nicolas Chopin, and

John P Cunningham. Expectation propagation as a way of life. arXiv preprint

arXiv:1412.4869, 157, 2014.

[31] Andrew Gelman, Aki Vehtari, Pasi Jylänki, Tuomas Sivula, Dustin Tran, Swupnil

Sahai, Paul Blomstedt, John P Cunningham, David Schiminovich, and Christian

Robert. Expectation propagation as a way of life: A framework for bayesian in-

ference on partitioned data. arXiv preprint arXiv:1412.4869, 2017.

[32] Sean Gerrish and David M Blei. A language-based approach to measuring scholarly

impact. In ICML, volume 10, pages 375–382. Citeseer, 2010.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[34] Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the

National academy of Sciences, 101(suppl 1):5228–5235, 2004.

65



[35] Thomas L Griffiths, Mark Steyvers, David M Blei, and Joshua B Tenenbaum. Inte-

grating topics and syntax. In Advances in neural information processing systems, pages

537–544, 2005.

[36] Matthew Hoffman, Francis R Bach, and David M Blei. Online learning for latent

dirichlet allocation. In advances in neural information processing systems, pages 856–

864, 2010.

[37] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic vari-

ational inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

[38] Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings of the Fif-

teenth conference on Uncertainty in artificial intelligence, pages 289–296. Morgan Kauf-

mann Publishers Inc., 1999.

[39] Thomas Hofmann. Unsupervised learning by probabilistic latent semantic analysis.

Machine learning, 42(1-2):177–196, 2001.

[40] Koffi Eddy Ihou and Nizar Bouguila. Variational-based latent generalized dirichlet

allocation model in the collapsed space and applications. Neurocomputing, 332:372–

395, 2019.

[41] Joshua Johnston and Greg Hamerly. Improving simpoint accuracy for small sim-

ulation budgets with edcm clustering. Worksh. on Statistical and Machine learning

approaches to ARchitectures and compilaTion (SMART08), 2008.

[42] Weonyoung Joo, Wonsung Lee, Sungrae Park, , and Il-Chul Moon. Dirichlet varia-

tional autoencoder, 2019.

[43] Robert E Kass and Adrian E Raftery. Bayes factors. Journal of the american statistical

association, 90(430):773–795, 1995.

[44] Slava M Katz. Distribution of content words and phrases in text and language mod-

elling. Natural language engineering, 2(1):15–59, 1996.

66



[45] Simon Lacoste-Julien, Fei Sha, and Michael I Jordan. Disclda: Discriminative learn-

ing for dimensionality reduction and classification. In Advances in neural information

processing systems, pages 897–904, 2009.

[46] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. 2001.

[47] Li-Jia Li, Chong Wang, Yongwhan Lim, David M Blei, and Li Fei-Fei. Building and

using a semantivisual image hierarchy. In 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 3336–3343. IEEE, 2010.
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