
Trust and Reputation Management: a
Probabilistic Approach

Mohamad Mehdi

A Thesis

in

The Computer Science Department

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

May 2015

c© Mohamad Mehdi, 2015

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Mohamad Mehdi

Entitled: Trust and Reputation Management: a Probabilistic Approach

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Dr. S. Mudur Chair

Dr. Noura Faci External Examiner

Dr. Olga Ormandjieva Examiner

Dr. Abdulwahab Hamou-Lhadj Examiner

Dr. Peter Grogono Examiner

Dr. Nizar Bouguila Supervisor

Dr. Jamal Bentahar Co-supervisor

Approved
Chair of Department or Graduate Program Director

20

Dr. Amir Asif, Ph.D., Dean

Faculty of Engineering and Computer Science

Abstract

Trust and Reputation Management in Web Services: A Probabilistic
Approach

Mohamad Mehdi, Ph.D.

Concordia University, 2015

Software architectures of large-scale systems are perceptibly shifting towards employing open

and distributed computing. Web services emerged as autonomous and self-contained business

applications that are published, found, and used over the web. These web services thus exist in

an environment in which they interact among each other to achieve their goals. Two challenging

tasks that govern the agents interactions have gained the attention of a large research community;

web service selection and composition. The explosion of the number of published web services

contributed to the growth of large pools of similarly functional services. While this is vital for a

competitive and healthy marketplace, it complicates the aforementioned tasks. Service consumers

resort to non-functional characteristics of available service providers to decide which service to

interact with. Therefore, to optimize both tasks and maximize the gain of all involved agents, it is

essential to build the capability of modeling and predicting the quality of these agents.

In this thesis, we propose various trust and reputation models based on probabilistic approaches

to address the web service selection and composition problems. These approaches consider the

trustworthiness of a web service to be strongly tied to the outcomes of various quality of ser-

vice metrics such as response time, throughput, and reliability. We represent these outcomes by

a multinomial distribution whose parameters are learned using Bayesian inference which, given a

likelihood function and a prior probability, derives the posterior probability. Since the likelihood,

in this case, is a multinomial, a commonly used prior is the Dirichlet distribution. We propose, to

overcome several limitations of the Dirichlet, by applying two alternative priors such as the gen-

eralized Dirichlet, and Beta-Liouville. Using these distributions, the learned parameters represent

the probabilities of a web service to belong to each of the considered quality classes. These prob-

abilities are consequently used to compute the trustworthiness of the evaluated web services and

iii

thus assisting consumers in the service selection process. Furthermore, after exploring the corre-

lations among various quality metrics using real data sets, we introduce a hybrid trust model that

captures these correlations using both Dirichlet and generalized Dirichlet distributions. Given their

covariance structures, the former performs better when modeling negative correlations while the

latter yields better modeling of positive correlations. To handle composite services, we propose

various trust approaches using Bayesian networks and mixture models of three different distri-

butions; the multinomial Dirichlet, the multinomial generalized Dirichlet, and the multinomial

Beta-Liouville. Specifically, we employ a Bayesian network classifier with a Beta- Liouville prior

to enable the classification of the QoS of composite services given the QoS of its constituents. In

addition, we extend the previous models to function in online settings. Therefore, we present a

generalized-Dirichlet power steady model that predicts compositional time series. We similarly

extend the Bayesian networks model by using the Voting EM algorithm. This extension enables

the estimation of the networks parameters after each interaction with a composite web service.

Furthermore, we propose an algorithm to estimate the reputation of web services. We extend this

algorithm by leveraging the capabilities of various clustering and outlier detection techniques to

deal with malicious feedback and various strategic behavior commonly performed by web services.

Alternatively, we suggest two data fusion methods for reputation feedback aggregation, namely,

the covariance intersection and ellipsoidal intersection. These methods handle the dependency be-

tween the information that propagates through networks of interacting agents. They also avoid over

confident estimates caused by redundant information. Finally, we present a reputation model for

agent-based web services grouped into communities of homogeneous functionalities. We exploit

various clustering and anomaly detection techniques to analyze and identify the quality trends pro-

vided by each service. This model enables the master of each community to allocate the requests it

receives to the web service that best fulfill the quality requirements of the service consumers. We

evaluate the effectiveness of the proposed approaches using both simulated and real data.

iv

Acknowledgements

First and foremost, all praises to Allah for guiding and blessing me throughout this long journey.

I would like to express my sincere gratitude to my supervisors Prof. Nizar Bouguila and Prof.

Jamal Bentahar for their continuous support and guidance that were vital to the completion of this

thesis. Their insightful feedback taught me valuable lessons for life-long career in research. I

extend my gratitude to all the members of the examining committee including Prof. Olga Ormand-

jieva, Prof. Peter Grogono, and Prof. AbdelWahab Hamou-Lhadj for their valuable feedback and

suggestions that definitely ameliorated my thesis.

Special thanks to all my colleagues and friends, in particular, Elise Epaillard, Claude Fachkha,

Elias Bou-Harb, and Ali S. Bakhtiari for the fruitful discussions and their encouragements espe-

cially during tough times.

I also would like to take this opportunity to extend my heartfelt gratitude to my parents who

crafted my education path with their sweat and lots of sacrifice. Without their constant support

and endless prayers I wouldnt have reached thus far. My brothers and sister, thank you for your

incessant encouragements and love. Your faith in me was a never-ending source of energy and

determination.

Finally, last but not the least, I express my profound and sincere gratitude to my wife for her

patience and unwavering support and love. I am specially grateful for her tolerance towards my

endless working hours and over-occupied mind. She was definitely the bedrock upon which the

last five years of my life have been built.

v

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Methodology . 5
1.3 Thesis Contributions . 7
1.4 Thesis Organization . 9

2 Trust and Reputation: a Literature Review 12
2.1 Existing Surveys . 12
2.2 Probability-Based Trust And Reputation Systems 14
2.3 Other Trust and Reputation Systems . 16
2.4 Trust and reputation systems categorization . 17

2.4.1 Reputation propagation and storage . 18
2.4.2 Reputation target . 18
2.4.3 Conceptual modeling . 19
2.4.4 Information sources . 19
2.4.5 Computation techniques . 20
2.4.6 Cheating filtration . 21

2.5 Discussion . 22

3 QoS-Based Probabilistic Trust Models 24
3.1 QoS Modeling Via Composite Distributions . 25

3.1.1 QoS Metrics Overview . 26
3.1.2 MDD, MGDD and MBLD for QoS Modeling 27

vi

3.2 Correlations-Based Trust Model . 32
3.2.1 Correlation Analysis of Two Real Datasets 32
3.2.2 QoS-Aware Trust Model . 35
3.2.3 Trust with multi-dimensional QoS . 37
3.2.4 Practical Example . 40

3.3 Online Trust: Generalized Dirichlet Power Steady Model 43
3.3.1 Compositional Time Series . 43
3.3.2 Generalized Dirichlet Formulation . 47

3.4 State Space Models . 50
3.5 Generalized Dirichlet Power Steady Model (GDPSM) 50

3.5.1 Transformations . 51
3.5.2 Time Series Model . 52
3.5.3 Model Evaluation . 53

3.6 Experiments . 54
3.6.1 Correlation Estimation . 54
3.6.2 GDPSM Experiments . 55

4 Trustworthy Composite Web Services Using Probablistic Approaches 64
4.1 Trustworthiness of Composite Services . 65

4.1.1 Bayesian Network Model . 65
4.1.2 Online Bayesian Network . 72
4.1.3 Generative Mixture Models . 77

4.2 Experimental Results . 77
4.2.1 Bayesian Network Experiments . 78
4.2.2 Mixture Models Experiments . 95

5 Reputation Aggregation and Filtering Approaches 100
5.1 Reputation Background . 100
5.2 Reputation Aggregation: Model 1 . 103

5.2.1 QoS-Based Reputation . 103
5.2.2 Kalman Filter for Service Reputation . 105
5.2.3 Proposed Aggregation Methods . 106

5.3 Reputation Aggregation: Model 2 . 109
5.3.1 Unfair referrals . 109
5.3.2 Dynamic Behavior . 111

5.4 Reputation Aggregation: Model 3 . 112
5.4.1 Gaussian Reputation . 114
5.4.2 Web Service QoS profile . 116

5.5 Experimental Evaluation . 121
5.5.1 Model 1 Experiments . 121

vii

5.5.2 Model 2 Experiments . 123
5.5.3 Model 3 Experiments . 129

6 Conclusions 134

List of References 137

viii

List of Figures

1.1 Web service selection . 3
1.2 Thesis Organization . 10

2.1 Trust and Reputation Systems Taxonomy . 17

3.1 Correlation between six pairs of QoS metrics from the QWS data set 35
3.2 MSE of estimating positive correlations . 54
3.3 MSE of estimating negative correlations . 56
3.4 Sample data (top) with zoom (bottom) . 59
3.5 Actual versus predicted data for the first (top) and second (bottom) dimensions . . 60
3.6 Actual (left) versus predicted (right) 6-dimensional function-based data 61
3.7 Actual (left) versus Predicted (right) 3-dimensional Random data 62
3.8 Actual (left) versus Predicted (right) 6-dimensional random data 63

4.1 Bayesian network representation of an example of a composite web service. 66
4.2 Bayesian (Dirichlet prior) vs. Naive Bayes trust estimation for Switch composition

function . 81
4.3 Bayesian (Dirichlet prior) vs. Naive Bayes trust estimation 82
4.4 Conditional trust estimation based on constituent services A and B 83
4.5 Bayesian (Beta Liouville prior) vs. Naive Bayes trust estimation for SWITCH

composition function . 83
4.6 Bayesian (BL prior) vs. Naive Bayes trust estimation 84
4.7 Mean Error of parameters estimation. 92
4.8 Bayesian network representation of a more complex composite web service. 93
4.9 Error bars of the estimated parameter CPT(1,4,3) using Voting EM (8 services). . . 93
4.10 Error bars of the estimated parameter CPT(1,4,3) and CPT(2,1,1) using Voting EM

(15 services). 94
4.11 True vs. estimated trust scores with η = 0.1 and η = 0.4. 95

ix

4.12 Actual vs. learned trust using the mixture of MDD with Switch (left), Min (center),
and Max (right) composition functions . 97

4.13 Actual vs. learned trust using the mixture of MDD with Sum (left) and Product
(right) composition functions . 98

4.14 Actual vs. learned trust using the mixture of MGDD with various Switch (left),
Min (center), and Max (right) composition functions 98

4.15 Actual vs. learned trust using the mixture of MGDD with Sum (left) and Product
(right) composition functions . 99

4.16 Actual vs. learned trust using the mixture of MGDD with various Switch (left),
Min (center), and Max (right) composition functions 99

4.17 Actual vs. learned trust using the mixture of MBLD with Sum (left) and Product
(right) composition functions . 99

5.1 UML Use Case diagram of the proposed Reputation system 117
5.2 QoS1 (left) and QoS2 (right) Reputation scores (4 agents). 122
5.3 QoS1 (left) and QoS2 (right) Reputation scores (100 agents). 123
5.4 Reputation aggregation with varied ratio of malicious web services and reputation

feedback . 124
5.5 Reputation with dynamic behaviors . 125
5.6 Reputation with dynamic behaviors . 126
5.7 Reputation with dynamic behaviors . 127
5.8 Data based on stable QoS behavior and fair feedback reports 130
5.9 Data based on stable QoS behavior and both fair and unfair feedback reports 131
5.10 Data based on unstable QoS and both fair and unfair feedback reports 132
5.11 Centroids plot view . 133

x

List of Tables

3.1 Attributes extracted from the ProgrammableWeb API 32
3.2 Sample of SSL and Fees raw values . 33
3.3 A sample from the QWS dataset . 34
3.4 Correlation of QWS dataset QoS metrics . 34
3.5 10 outcomes of three QoS metrics . 41
3.6 Counts of pair-wise outcomes combinations . 41
3.7 Mean of pair-wise outcomes combinations . 41
3.8 Correlation matrix of 100000 outcomes . 55
3.9 Standardized residuals (left) and MSE (right) of GDPSM and DPSM (3-dimensional

data) . 59
3.10 Standardized residuals for GDPSM and DPSM with 6-dimensional data 60
3.11 Residuals correlations at lag 0 . 60
3.12 MSE for GDPSM and DPSM with 6-dimensional data 61
3.13 Standardized residuals (left) and MSE (right) for GDPSM and DPSM with 3-

dimensional random data . 62
3.14 Standardized residuals for GDPSM and DPSM with 6-dimensional random data . . 62
3.15 Residuals correlations at lag 0 . 63
3.16 MSE for GDPSM and DPSM with 6-dimensional random data 63

4.1 CPT of constituent service A. 79
4.2 CPT of constituent service B. 79
4.3 CPT of composite service CS . 80
4.4 Multinomials used to generate the classes of the four single web services. 84
4.5 CPT of WS1, WS2, WS3 and WS4. 85
4.6 CPT of composite service WS5. 86
4.7 CPT of composite service WS6. 87
4.8 CPT of composite service WS7. 88

xi

4.9 CPT of WS1, WS2, WS3 and WS4. 88
4.10 CPT of composite service WS5. 89
4.11 CPT of composite service WS6. 90
4.12 CPT of composite service WS7. 91
4.13 Confusion Matrices: classifier1 (left) 82%, classifier2 (middle) 84%, classifier3

(right) 77% . 91
4.14 Confusion Matrices: classifier1 (left) 82%, classifier2 (middle) 84%, classifier3

(right) 77% . 92
4.15 Estimated parameters by multinomial mixture and MDD mixture with Switch com-

position operator. 96
4.16 Estimated parameters by multinomial mixture and MDD mixture with Min and

Max composition operators. 96
4.17 Estimated parameters using multinomial mixture and MDD mixture with Product

and Sum composition operators. 97

5.1 MSE of the three estimators with 4 and 100 agents 122
5.2 Means of the mixture components - scenario 1 . 130
5.3 Means of the mixture components - Scenario 2a 131
5.4 Means of the mixture components - scenario 2b 133
5.5 KL-divergence between the 3 components . 133

xii

Chapter 1
Introduction

1.1 Background and Motivation

The emergence of service oriented architecture (SOA), the competitiveness of nowadays global

markets, and the agility of business processes have contributed to the increase in the number of

published web services. SOA provided the necessay infrastructure for distributed computing in

which web services are built as Internet-based applications. Web services are business applica-

tions deployed as autonomous and interoperable agents that are published, found, and used on

the web. As presented in [1–3], and as defined by W3C, each web service is associated with an

agent that acts on its behalf and oversees its performance, commitments, and availability details.

In this setting, an agent-based web service is a service entity that exists in a computational envi-

ronment and acts both individually and cooperatively with other peers in order to accomplish its

goals. Being loosely coupled and platform and language independent, web services ensure a flex-

ible integration of diverse systems especially for business-to-business and business-to-consumer

applications. Examples of such applications exist in various domains including e-commerce ac-

tivities [4], semantic web, and peer-to-peer networks [5]. Key players in the high-tech space that

participated in the existence and development of web services include IBM, Microsoft, Amazon,

and Google.

The web services environment is basically defined by the following:

1

Chapter 1. Introduction

• WSDL: is an XML-based standard language used for describing web services. The

main elements of a wsdl document as described by W3C are:

• types: This element defines the data types used by the web services.

• message: This element defines the data being handled by the corresponding

web service.

• portType: This is the core element of wsdl documents. It describes the

operations and input and output messages of a web service.

• binding: This element defines the protocol and data format of each port

type defines in the previous element.

• SOAP: is an XML-based simple object access protocol used for accessing web ser-

vices.

• UDDI: stands for Universal Description, Discovery and integration. It is employed

as a web service directory that is described in WSDL and communicates via SOAP.

UDDI is is the medium between service consumers and service providers.

Web services have been argued to have many advantages of which we select the following

noteworthy benefits:

• Ease of information sharing and processing: as companies grow in size, various busi-

ness processes become more cumbersome including data entry and lookup, and ap-

plications integration. Different applications may be written in different languages,

run on different platforms, and store data in different formats. Web services are de-

signed to overcome this challenge through a set of standardized protocols that govern

the communcation and data sharing between different applications.

• Cutting costs: Customized tools and patches to optimize business processes can get

very expensive. Web service are relatively cheaper to design and maintain.

Two major problems that are prominent in the web service research community motivate the

works developed in this thesis, namely, the web service selection and composition problems.

Web Service Selection: Web services are deluging the web with similar functionalities, ren-

dering the service selection a challenging task. We use the terms agent-based services, agents,

and web services interchangeably throughout this thesis. Figure 1.1 illustrates the web service

2

Chapter 1. Introduction

Service Consumer Service Provider

Service Registry

Service Response

Service Request

P
u

b
lish

 Se
rvices

 (W
SD

L)
Se

ar
ch

 Q
u

er
y

Se
rv

ic
e

D
es

cr
ip

ti
o

n

Figure 1.1: Web service selection

selection scenario that involves three main actors; the service consumer, service provider, and the

registry in which a web service can be found (UDDI).

Given a search query, the UDDI returns the relevant web services. However, querying the

UDDI is based on the functional requirements of the target web service only. The non-functional

or quality characteristics required by the service consumer are utterly ignored. This increases the

difficulty of choosing among of functionally similar web services the one that best meets all other

requirements of a specific consumer.

Web Service Composition

The main motive behind the web services effort is to enable the interoperability between busi-

ness applications by exploiting the Web standards, As such, the success of SOA was mainly in-

fluenced by the standardization of composition languages such as the Business Process Execution

Language (BPEL). BPEL is based on the WSDL specifications and enables the definition of busi-

ness processes as sets of integrated web services interactions. For a comprehensive description of

BPEL and its characteristics, the reader can refer to [6]. Many business process management sys-

tems have been developed to enhance the automation the discovery, management and composition

of business processes, including “SAPs NetWeaver, and IBMs WebSphere and BPM Suite” [7].

3

Chapter 1. Introduction

However, with the emergence of service oriented computing, the need for composing and integrat-

ing services from different providers becomes compelling. Indeed this emanates the same web

service selection problem described above and the need to consider the quality characteristics of

the constituent services. The difference between evaluating the quality of single and composite

web services arises as a result of the dependencies between the composed services. Therefore,

new composition systems or add-ons are needed to consider these dependencies when evaluating

the quality of web services before selecting the ones to be included in compositions. Whether

BPEL is used to describe the control logic that coordinates the web services in a process flow,

or WSCI is employed to describe the exchanged messages between web services, the quality of

service (QoS) characteristics are important to complement and optimize the composition process.

Trust and Reputation Based Solutions

Trust is a fundamental concern in our social life which is governed by the quality of our inter-

actions. Due to the contingent nature of human behavior, this confidence is not stable, but rather a

dynamic belief. A person you trust today might loose your trust tomorrow if s/he lets you down,

has been caught lying, or betraying. The notion of human trust can be projected on the compu-

tational trust in the open world available on the web. This projection is rationalized due to the

increase of various activities available on the web involving the interactions between various par-

ties. Therefore, trust becomes a critical concern in this kind of loosely-controlled environment [8].

Trust has been defined in various ways in different contexts. In this thesis, we consider the defini-

tion given by the authors in [9]; a confidence one party has that the other party will act truthfully

and reliably according to his/her claims.

Thus, in loosely-controlled open agent-based web service environment, trust becomes vital

especially for selecting and composing services. Many applications require agents to coordinate

with each other including e-commerce, supply chain management, semantic web and peer-to-peer

networks [10]. Resources involved in the interactions among agents include time, money, and

hardware usage. To make efficient use of these resources, it becomes extremely essential for an

agent to be able to predict as accurately as possible the future behavior of its peers. These valuable

resources play major roles in increasing productivity, enhancing the economic cycle, and saving

the resources of individuals, businesses, and governments.

4

Chapter 1. Introduction

The majority of trust and reputation mechanisms has been employed in opens systems such as

e-commerce, peer-to-peer-systems, and multi-agent systems. However, trust and reputation sys-

tems in web services has lately been an active research area with the continuous need for further

investigations and studies. Therefore, our research questions are concerned with trust and rep-

utation approaches related to web services even though we argue they can scale to other open

systems.To compute the trustworthiness of web services, considering the web services QoS per-

formance has become the norm. The trust and reputation models proposed in this thesis are also

based on the QoS of the direct and indirect interactions among agents. The agent with the highest

trust score will be then selected to provide the required functionalities.

1.2 Methodology

The trust and reputation models presented in this thesis are based on representing the quality of

web services by various probabilistic distributions. The intuition behind this representation is that

the outcome of an interaction with a web service is governed by the uncertainty concept. In other

words, a service consumer is always skeptical about the quality a web service might provide.

Modeling the quality as a statistical distribution is aligned with this fact and helps evaluating the

uncertainties about the quality of web services.

Therefore, the basis of our models is to map the web services QoS outcomes into multinomial

distributions. This is an intuitive mapping that appreciates the consumers need to have a simplistic

way to view and assess the quality of one service and easily compare it to other web services.

Estimating the parameters of the multinomial results in the probabilities of a web service to deliver

a quality that belongs to one of the predefined quality classes. The probabilities provide a simple

mechanism by which a service consumer would select, from a pool of functionally similar web

services, the one that has the highest probability assigned to the highest quality class. To estimate

these probabilities we apply, in Chapter 3, the Bayesian inference method which solves the poor

estimates of the popular maximum likelihood estimation method in cases of low frequencies by

adding a prior to the estimate the posterior. In our models, we present and compare three conju-

gate priors, Dirichlet, generalized Dirichlet, and Beta-Liouville. We argue for selecting the last

5

Chapter 1. Introduction

two priors as they have more general covariance structures that overcome the limitation embedded

in the strictly negative covariance of the Dirichlet distribution. In Chapter 3, we analyze the corre-

lations among various QoS attributes and found that both positive and negative correlations exist.

We leverage the correlation information to propose a trust model that provides a trust score based

on the outcomes of multiple QoS attributes. It also computes the correlations among each pair of

attributes using a hybrid model that takes advantage of both Dirichlet and generalized Dirichlet.

These correlations are subsequently employed to enhance the estimation of the uncertainties in the

delivered trust scores.

The previous models consider web services that function independently of others to provide

a simple business function. However, larger business processes require the collaboration among

multiple services which enter what is referred to as a service composition. Therefore, there is a

need to devise a model that is capable of evaluating the trustworthiness of composite services and

the influence of each of the constituent services in their overall quality. Chapter 4 is dedicated

to trust models that are developed for these purposes. These models consist of representing the

quality of composite services by Bayesian networks or mixtures of the probability distributions

discussed in Chapter 3.

The previous learning approach belongs to the batch learning family. In other words, it requires

a historical data on which the model is trained. However, such data is not always possible and the

learning has to occur in near real-time. For single web services, we proposed a generalized power

steady model that takes as input a time series of the quality classes proportions (Chapter 3). As

for composite web services, we extended the Bayesian networks approach to function in online

settings using two methods. The first applies the Voting-EM algorithm to learn the parameters of

the networks when the underlying data is complete. The second method deals with missing data by

employing the expectation maximization algorithm and a moving window that incorporates larger

weights for newer data and smaller ones for older data within the same window (Chapter 4).

The aforementioned trust models are based on direct interactions among web services. The

computed trust scores can be then viewed as the personalized opinion of each web service in the

peers it interacts with. Nevertheless, the personal opinion is not always satisfactory to solve the

web service selection problem especially when service consumers have no direct experience with

6

Chapter 1. Introduction

certain services. This raises the need for reputation models that compute the global opinion about

the web services quality based on the trust scores of multiple consumers. The three models pro-

posed in Chapter 5 are developed to serve this purpose. The first model is based on two data

fusion algorithms, namely covariance intersection and ellipsoidal intersection. Both methods are

motivated by the need to combine two estimates while handling correlated errors (the former) and

mutual information (the latter). The second model extends the correlation-based trust approach

from Chapter 3 by combining trust scores that are perceived credible by the service consumer who

requested these scores. The credibility of the trust scores is computed using a combination of a

heuristic method and a cluster-based outlier detection algorithm. This reputation model deals with

unfair referrals sent to badmouth or unreasonably praise a service. It also identifies various dy-

namic behaviors a web service may encounter; milking, building, and oscillating behaviors. The

first occurs when a service performs well over a long period of time then suddenly drops its quality.

The second behavior, building, is the opposite phenomenon. A web service’s quality is boosted

after a long period of low performance. The oscillating behavior is an alternation between both

milking and building behaviors. The third model aims to demonstrate the potential of applying data

mining techniques to evaluate the trustworthiness of communities of web services. These commu-

nities group web services that provide similar functionalities in order to better serve consumers by

handling simultaneous requests and implementing a fault-tolerant architecture.

1.3 Thesis Contributions

This thesis aims to present various probabilistic approaches to solve the web service selection

and composition tasks via QoS-aware trust and reputation. These approaches are built upon the

modeling of the web services QoS metrics as various composite multi-simensional distributions,

namely, multinomial Dirichlet, multinomial generalized Dirichlet, and multinomial-Beta Liouville.

The main contributions of this thesis can be summarized as follows:

7

Chapter 1. Introduction

P QoS Modeling Using Multi-Dimensional Composite Distributions:

We propose to compute the QoS ratings based on the outcomes of multiple quality metrics. Subse-

quently, we model the counts of the QoS ratings, after a number of interactions, by various multi-

dimensional statistical distributions including the multinomial-Dirichlet, multinomial-genralized

Dirichlet and multinomial-Beta Liouville. These distributions offer, in comparison to the Beta-

binomial used in current models, a more comprehensive QoS representation of evaluated web

services. We also leverage the correlations among QoS metrics to devise a hybrid trust approach

based on Dirichlet and generalized Dirichlet distributions. This approach aims to improve the

accuracy of trust estimates and their corresponding uncertainties.

P Online Trust Estimation Via Time-Series Forecasting Model:

To assist service consumers in real-time, we introduce a time-series forecasting approach, based on

a generalized-Dirichlet state space model. This approach follows the popular divide-and-conquer

method by transforming a generalized-Dirichlet distribution into multiple Dirichlet distributions in

a lower dimensional space.

P Bayesian Networks and Mixture Models for Trustworthy Composite Services:

Business processes, in the majority of cases, provide more than a single functionality, which ne-

cessitate the collaboration among various web services to form a composite service. To evaluate

the performance of composite services and assist the composition of new web services, we pro-

pose multiple Bayesian networks classifiers and mixture models. These are capable of learning

the dependencies between the composed web services and the responsibilities (contributions) of

each web service in the overall quality of the composite service. We also extend the Bayesian

networks model to estimate the future quality of composite web services in an online setting using

the Voting EM algorithm. In other words, the estimated conditional probabilities of the QoS of

composite web services are updated after every interaction. This addresses the dynamic behavior

of web services that might offer a low quality interaction at time t and a better one at time t+ 1.

P Data Fusion Methods for Reputation Feedback Aggregation:

One of the main issues in considering the indirect interactions among web services in the trust

computation is the aggregation of the reputation feedback. Kalman filter is an attractive method

to combine multiple measurements (in this case, reputation feedback) and predict the state of a

8

Chapter 1. Introduction

dynamic system. However, Kalman filter is limited by the independence assumption between

the estimation and measurement errors at time t and t + 1, respectively. This assumption leads

to under/over-estimated covariance matrices of the predictions. To overcome this limitation, we

employ two data fusion methods that avoid this assumption and lead to more consistent estimates;

covariance intersection and ellipsoidal intersection.

P Reputation Management Using Clustering and Outlier Detection Techniques:

It has been recorded that the quality of web services fluctuate both intentionally and unintention-

ally. In this thesis, the interest is in the intentional fluctuations due to different malicious behavior.

We propose a reputation management framework that captures different types of web service ma-

licious behaviors including milking and building reputation. It also penalize web services that

exhibit such behaviors by diminishing their reputation scores. This framework is based on cluster-

ing and outlier detection techniques.

1.4 Thesis Organization

This thesis is organized into an introductory chapter, four chapters that describe the proposed

models, and a closing chapter that summarizes the contributions and sets the stage for potential

future works. This organization is illustrated in Figure 1.2.

o Chapter 1: overviews the web service selection and composition problems highlighting the

notion of trust to solve these problems. The motivation of the proposed approaches is also clearly

defined. Afterwards, the existing literature of trust and reputation systems is reviewed and the main

contributions of the thesis are described.

o Chapter 2: presents a trust approach that is based on modeling the outcomes of various

QoS metrics using three composite distributions; multinomial-Dirichlet, multinomial-generalized

Dirichlet, and multinomial-Beta Liouville. This approach is further extended by considering the

correlations among the considered QoS metrics. This extension aims to improve the estimated

trust scores and provide an accurate uncertainty measure in these scores.

9

Chapter 1. IntroductionChapter 1. Introduction

Chapter 1

•Introduction

•Web Services Background

•Motivation

•Thesis Contributions

•Thesis Organization

Chapter 2

•Literature Review

•Trust and Reputation Models Surveys

•Probabilistic Trust and Reputation Models

•Taxonomy of Trust and Reputation Models

Chapter 3

•QoS-Aware Trust Models for Single Web Services

•Batch learning approaches

•Bayesian inference method to learn the parameters of three distributions
that represent the QoS ratings of web services:

•Multinomial-Dirichlet Distribution

•Multinomial-Generalized Dirichlet distribution

•Multinomial-Beta Liouville distribution

•Correlation-based trust model to have more accurate confidence in the
estimated trust scores

•Online Learning Approach

•Generalized-Dirichlet time series state space model

Chapter4

•QoS-Aware Trust Models for Composite Web Services

•Batch learning approaches

•Bayesian network models to classify the quality of composite web services

•Bayesian network models to identify the structure of composite web
services

•Mixture of distributions models to estimate the quality of composite web
services

•Online learning approaches

•Bayesian network model that learns the parameters of the network in real-
time fashion (Voting-EM)

Chapter 5

•Reputation Aggregation and Filtering Approaches

•Reputation Aggreagation using two data fusion methods

•Covariance Intersection

•Ellipsoidal Intersection

•Reputation feedback filters

•Clustering and outlier detection techniques

•Credibility of feedback senders

•Reputation in Communities of web services

•Clustering and anomaly detection techniques

Figure 1.2: Chapters Organization

8

Figure 1.2: Thesis Organization

10

Chapter 1. Introduction

o Chapter 3: proposes various Bayesian network models to estimate the trustworthiness of

composite web services. Each of these models employs one of the QoS models described in Chap-

ter 1. An alternative approach, based on generative mixture of multinomial Dirichlet distributions

is also introduced to learn the distributions of the quality outcomes of the constituents web services

given the quality outcomes of the composite web service.

o Chapter 4: extends the proposed trust models to function in online settings. Specifically, a

generalized Dirichlet power steady model is proposed to model the time series that consist of the

proportions of the quality classes of the evaluated web service over a period of time. Moreover,

the Bayesian network models from Chapter 3 are extended to learn the networks parameters after

each data point.

o Chapter 5: describes three models for reputation aggregation taking into account the exis-

tence of dishonest feedback and malicious behaviors. These models are based on different outlier

detection algorithms, data fusion methods, and data mining techniques.

o Chapter 6: summarizes the thesis by highlighting its main contributions. It also discusses

some concluding remarks and the limitations of the proposed models. Directions for future works

are also outlined.

11

Chapter 2
Trust and Reputation: a Literature Review

2.1 Existing Surveys

Computational trust has gained the attention of a wide range of research in the area of reputation

and rating systems [11]. The notion of trust has been defined differently by researchers influenced

by their diverse background areas and applications. On one hand, the most common definition of

trust can be stated as being an entity’s opinion regarding another entity’s behavior. The importance

of this opinion appears in governing decision making processes such as deciding on which entity

(agent/service provider) to be selected. Reputation, on the other hand, is the community’s opinion

about the standing of an entity [12]. This section far from being systematic, aims to discuss the

current literature’s most representative models. It also intends to fit our research within the exist-

ing academic studies. The next few paragraphs are dedicated to examining the existing literature

reviews of trust and reputation systems [13], [14], [12], [5], [15], [16].

Jøsang et al. presented an in-depth literature review of trust and reputation systems in various

web communities rather than in specific ones [13]. After disambiguating the notion of trust, this

survey identified various reasons that motivate research in this area. The authors also discussed and

provided multiple dimensions to differentiate between trust and reputation system. For instance,

they used Grandison and Sloman’s classification (2000) to divide trust into five classes; provision,

12

Chapter 2. Trust and Reputation: a Literature Review

access, delegation, identity, and context. The reputation systems were classified as either central-

ized or decentralized. This classification depicts how ratings and reputation scores are distributed

among agents in reputation systems. The reputation computation adds another dimension that fur-

ther divides reputation systems into simple summation, Bayesian, discrete trust, belief, fuzzy and

flow systems. [13] also lists a number of problems that current trust and reputation systems face

along with solutions to each of these problems. The prominent problem is uncovering and dealing

with biased positive and negative ratings that unfairly affect the trust and reputation values of an

entity.

Artz et al. reviewed scholarly work related to trust in computer science and semantic web

[14]. The authors of this survey classified trust into four main areas including policy-based trust,

reputation-based trust, general models of trust, and trust in information resources. In our research,

we treat the reputation-based trust to evaluate the future behavior of an agent-based web service

based on the quality of its past performance. They further divided the reputation-based trust into

four subcategories. Namely, decentralization and referral trust, trust metrics in a web of trust, trust

in P2P networks and grids, application specific reputation.

Wang and Vassileva investigated trust and reputation systems for the purpose of drawing poten-

tial research directions for similar systems in web services [12]. The main contribution of this work

is a three-dimensional classification of existing trust and reputation systems. The first dimension

captures the reputation management aspect of such systems and distinguish between “centralized”

and “decentralized” systems. The second dimension depicts the reputation modeling target. On

one hand, trust and reputation systems such as eBay can be viewed as “person/agent” if the target

is a person or an agent. On the other hand, they can be viewed as “resource” systems such as

Epinions if the reputation is associated with products or services. The third and last dimension

encapsulates the basis or source of the reputation of a person or service. For instance, if this source

is the opinions of specific group of people, the system is referred to as “personalized”. However, if

the reputation is the result of the opinions of all entities, then the system is classified as “global”.

According to the authors in [12], the majority of trust and reputation systems for web services are

centralized, resources-based and personalized. Indeed, these systems make use of a central registry

that is responsible for collecting and storing the QoS data. This opens new research directions for

13

Chapter 2. Trust and Reputation: a Literature Review

investigating decentralized, agent-based and global trust and reputation systems for web services.

In [5], the authors classified the different approaches to trust in multi-agent systems as individual-

level trust and system-level trust. The individual-level trust enables agents to reason about their

level of trust in other agents using different models including socio-cognitive, reputation, and

evolutionary and learning models. The system-level trust mechanisms such as trustworthy interac-

tion, reputation, and distributed security mechanisms, ensure that an agent can trust other agents’

actions. Our study builds upon and extends the trust learning models using machine learning tech-

niques.

Sabater and Sierra classified trust and reputation models with special attention on computa-

tional models. This classification’s highest level consider the following dimensions [15]. The con-

ceptual model, information sources, visibility types, model’s granularity, agent behavior assump-

tions, type of exchanged information, and trust/reputation reliability measure. We will elaborate

on these dimensions in the trust and reputation systems categorization section.

Pinyol and Sabater-Mir reviewed in [16] the classification schemes of trust and reputation sys-

tems in three previous works; [15], [17] and the European project eRep *(2006)*. The authors

also contributed with an additional four-dimensional classification: trust, cognitive, procedural

and generality dimensions.

2.2 Probability-Based Trust And Reputation Systems

This section overviews studies in which trust is computed using statistical models. Hang and Singh

modeled the quality of a service using a Binomial distribution [18]. The authors of this study

proposed two service selection approaches based on Bayesian networks and Beta-mixture model.

These approaches capture the responsibilities of the constituent services in the overall quality of a

composite service. They used various composition functions including switch, sum, product, min,

and max. The proposed approaches can only handle one quality metric at a time. It is rare that

agents would be interested in only one quality metric when willing to interact with other agents.

Although it is possible to treat each quality metric separately, this would be time consuming. Also,

the Binomial distribution represents the quality of a service as good or bad which fails to depict its

14

Chapter 2. Trust and Reputation: a Literature Review

degree of goodness or badness.

Wang and Vassileva proposed a Bayesian network approach representing and combining dif-

ferent faces of trust In [19]. The focus of this work is peer-to-peer networks. for instance, the

Bayesian network root represent the overall quality of a file provider. The root’s children and net-

work’s leaves represent the trust in various capabilities of the file provider. These may include the

download speed, the file quality and the file type. It would be interesting to scale this to handle

other types of large scale distributed systems.

Rettinger et al. aimed for learning context-specific trust using statistical relational learning

[20]. The authors used the collaborative filtering to improve the performance of trust learning.

The proposed model in this work does not consider composite services. According to [20], a large

number of the current models of trust are based on a holistic view of the behavior of the trustee. The

contextual information of the subject entities and their environment is not deeply addressed yet.

Trust is based on various quality metrics which constitute quantifiable measures of web services

reliability, throughput, availability, latency, and response time. Most of existing trust models either

deal with each quality metric separately or fail to capture the responsibility of each metric in the

overall performance of an agent. An agent, for example, might be reliable, but disappoints its

truster because of its low availability.

Teacy et al. used probability theory to compute trust based on past interactions between agents

[21]. Using such approach, each agent stores the outcomes of its interactions with other agents.

These outcomes have the values 1 in case of a successful interaction (contract fulfilled) and 0

otherwise. A beta distribution is then used to represent the probability of having a good outcome

based on previous ones. Two main measures are then computed; the level of trust in an agent

and a confidence value associated with it. Moreover, this system considers the reputation of an

agent in cases where the confidence values are low. It also employs an exogenous solution to filter

inaccurate reputation.

In [22], Li and Wang proposed a subjective probability based deductive approach to compute

trust for composite web services. The composition of services is modeled according to six types

15

Chapter 2. Trust and Reputation: a Literature Review

of invocations between them; sequential, parallel, probabilistic, circular, synchronous, and asyn-

chronous. A direct invocation from one service to another causes trust dependency which is mod-

eled by a conditional probability. An algorithm, SELECTIVE, has also been proposed to compute

the subjective trustworthiness of a composite service. The travel example was used to represent

a composite service for which the ratings were taken from Epinions. Neither the reputation of

service providers nor the inaccurate ratings were considered in this work.

2.3 Other Trust and Reputation Systems

Zacharia et al. proposed in [23] two collaborative filtering methods to compute users’ reputation

ratings; SPORAS and HISTOS for loosely and highly connected online communities, respectively.

SPORAS combined direct and witness ratings to compute the reputation of an entity. It dealt

with new entities by assigning them low reputations which are then built up after interactions with

other entities. To update the reputation of an entity, SPORAS considered the last rating only.

When SPORAS is considered as a global reputation system, HISTOS is a personalized system that

accounts for pairwise ratings. These ratings are propagated through the edges of a directed graph

connecting entities that had interacted with each others. A breadth first search and a recursive

step are used to to compute a personalized reputation score of an entity. Both systems were tested

using four simulations presenting different scenarios including a new entity joining the system and

a collusion by two entities.

A QoS-based service selection with trust and reputation reinforcement was proposed in [24].

The prediction of a web service future quality is accomplished using a real-valued time series

forecasting technique. The basis of the approach developed in this study is the quality conformance

values of a service dispensed for various quality attributes. This is computed as the ratio of the

difference between the observed quality and the one claimed by the service provider to the latter.

The conformance valued are also broadcasted among users as reputation reports about each web

service. The dishonest values were filtered out ”by combining a trust-distrust propagation approach

with a data-mining method”.

16

Chapter 2. Trust and Reputation: a Literature Review

Trust & Reputation
Systems

Reputation Propagation and
Storage

Centralized/global

Decentralized/distributed

Reputation Target

Person/Agent

Resource

Conceptual

Cognitive

Game-
theoretical

Trust-based

Procedural

General

Information
sources

Direct/Past
Interactions

Indirect/witness
Information

Sociological

Signs

Computation
techniques

Average of
ratings

Bayesian
methods

Discrete
models

Belief
models

Fuzzy models

Flow models

Cheating filtration
techniques

Exogenous

Endogenous

Figure 2.1: Trust and Reputation Systems Taxonomy

2.4 Trust and reputation systems categorization

This section amalgamates the trust and reputation systems dimensions extracted from the various

studies reviewed in the literature review section. Figure 2.1 summarizes these dimensions in a

hierarchical taxonomy. The following sections provide descriptions for each of the categories

illustrated in this taxonomy.

17

Chapter 2. Trust and Reputation: a Literature Review

2.4.1 Reputation propagation and storage

The current trust and reputation systems can be divided by the means the reputations of the sys-

tem’s entities are propagated and stored. For instance, we differentiate between Centralized and

Decentralized systems [12], [13]. These two groups match the two visibility types reported in [15],

namely Global and Personal, respectively. They also overlap with the Centralized and Distributed

reputation network architectures reported in [13].

Centralized Centralized systems follow the repository architectural style. In other words, these

systems employ a central repository that is responsible for computing and storing the ratings of

their entities. The ratings are then globally visible and accessible by all the entities presently in the

system.

Decentralized Decentralized systems are designed according to the distributed architecture. In

other words, there is no central repositories for all entities ratings. Instead, each entity stores a

model of the ratings of each other entities it interacts with. Afterwards, an entity can request the

ratings of other entities with which it had no direct interaction.

2.4.2 Reputation target

This dimension focuses on describing the reputation target that can be classified into two main

classes [12]; Person/Agent and Resource.

Person/Agent The most common reputation system that reports the ratings associated to a person

is Ebay. When the reputation target is a person or an agent acting on behalf of a person, the system

is referred to as Person/Agent.

Resource Systems in which the reputation target a product or a service are considered Resource

systems. A popular example of a Resource system is Epinions.

18

Chapter 2. Trust and Reputation: a Literature Review

2.4.3 Conceptual modeling

Various studies have considered the conceptual dimension to classify trust and reputation systems.

Sabater and Sierra divided the conceptual modeling category into two classes Cognitive and Game-

theoretical [15].

Cognitive Cognitive approaches are based on the entities’ mental states that drive to trust other

entities or assign them reputation scores. The mental state of an entity depend on the degree of

beliefs related to other entities.

Game-theoretical Game-theoretical approaches apply a more practical method to compute trust

and reputation scores when compared to cognitive ones. This method relies on the probability

an entity X has assigned to entity Y that the latter successfully fulfills certain functions that the

former’s goal depends on. Indeed this probability is based on past interactions between the two

entities X and Y.

2.4.4 Information sources

This is the dimension that can capture any trust and reputation system under at least one of its

classes. The majority of these systems compute their entities’ trust values based on Direct past

interactions between them. However, considering Indirect/Witness information about an entity has

lately gained the attention of many researchers [21], [25], [26], [27], etc... [15] appended two new

classes to the existing information sources: Sociological and Signs.

Direct past interactions In almost all trust and reputation systems, entities keep a model of other

entities they interact with. This model consists of the status or quality of the direct past interactions

between the two entities. This is a natural mapping of the foundation of human trust to the concept

of computational trust.

Indirect/Witness information A common real life scenario might be the following: an entity is

willing to interact with another entity with which it had no previous experience. In this case it is

19

Chapter 2. Trust and Reputation: a Literature Review

hard for the former entity to decide if the latter is trustworthy or not. Therefore, the indirect or

witness information would be vital to assist the truster entity in such scenarios. This information

consist of the reputation of the trustee entity computed by other entities who had direct interactions

with it.

Sociological This is a fairly new information source for trust and reputation systems. This can be

described as a projection of human social relations that have great impact on reputation values. For

instance, a group of people who have collaborative relationships might report biased reputations

about each others. This can also be the case in case of collaborative agents or web services.

Another example can be about two web services providing similar functions. These might then

report unfair low reputations one about the other. A social analysis of agents and web services is a

new challenge that assists the computation of trust and reputation.

Signs This class is called prejudice in [15]. We substituted prejudice by signs to amputate the

negativity of the former term. Signs can be attributed as identifiers of a group of people. For

instance, signs of harmless drugs and biological products can be the approval of the Food and

Drug Administration (FDA).

2.4.5 Computation techniques

In addition to the different information sources, trust and reputation can be computed using various

methods. These include the summation or Average of ratings, Bayesian, Discrete, Belief, Fuzzy

and Flow methods [13].

Summation/Average of ratings The authors in [13] accounted for three forms of computing

reputation values. The first and simplest way is by calculating the difference between the sum

of positive and negative ratings. This model is implemented in the eBay reputation system. The

second form would be by computing the average of all ratings given to an entity. Epinions is an

example of a reputation system that uses this form of reputation computing. The third and last

form add weights to the ratings before computing the average.

20

Chapter 2. Trust and Reputation: a Literature Review

Bayesian methods Bayesian systems are based on the statistical updating method that combine

the a priori and new values to compute the updated a posteriori score. Most of the Bayesian-based

reputation systems represent the reputation score by a Beta distribution parameters (α, β) [18]. α

and β represent the amounts of positive and negative ratings respectively. Other models also con-

sidered multi-valued scores which then can be represented by a Dirichlet distribution parameters

α1, . . . , αN . N is the number of categories a score can belong to. For instance, a system with the

three categories score model High, Medium, Low will introduce a Dirichlet distribution with the

parameters α1, α2, α3. α1, α2, and α3 represent the amounts of High, Medium, and Low ratings

respectively. Then, the trust values can be computed as the expected values of the Beta or Dirichlet

distributions given respectively by α
α+β

and α∑N
i=1 αi

.

Discrete models Discrete trust models such as in [25] are those that “rate performance in the

form of discrete verbal statements, than continuous measure” [13].

Belief models Belief models refer to the system that apply belief theory to compute trust or

reputation scores. This theory is based on the belief measures of the behavior of an entity in past

interactions.

Fuzzy models The intuition behind fuzzy models is the approximate reasoning rather than the

exact or fixed. Following this intuition, a reputation or trust score is represented by an approximate

value that depicts the degree to which a system is trustworthy or not.

Flow models [13] defined flowed models by the systems that “compute trust or reputation by

transitive iteration through looped or arbitrarily long chains”.

2.4.6 Cheating filtration

Most of trust and reputations systems are based on ratings of entities provided by other entities.

These ratings might be influenced by social relations or rivalries among these entities. Therefore,

one can surely assume that a number of the provided ratings are not just. Many cheating filtration

21

Chapter 2. Trust and Reputation: a Literature Review

mechanisms have been proposed by the community. Jøsang et al. classified these mechanisms as

Endogenous and Exogenous [13]:

Endogenous Endogenous methods use the ratings statistical properties to analyze the ratings

values and discount unfair ones. The authors in [28], [29], and [30] proposed statistical filtering

techniques that fit under this category.

Exogenous Exogenous methods cope with unfair ratings by using the rater’s global reputation.

This technique is applicable under the assumption that raters with low reputations tend to provide

unfair ratings. Examples of exogenous methods are available in [31] and [27].

2.5 Discussion

The trust and reputation systems literature seems to be facing the following research gaps:

1. Indirect/Witness information:

In addition to past direct interactions among web services, witness information is of compa-

rable importance especially in two main scenarios:

(a) A service consumer needs to evaluate the trustworthiness of a new web service (no past

interactions are available). This is a common scenario in open and distributed systems.

(b) A service consumer needs to evaluate the trustworthiness of a web service with which

only few interactions exist. In other words, the former’s model trust model of the latter

is based on the outcomes of few past interactions.

2. Confidence in trust scores:

A trust score that dates a year back is not as reliable as another score that was recently up-

dated. Moreover, a reputation score that has been assigned by an entity with high reputation

is more accurate than a score assigned by another one with low reputation. This raises the

need to assign a confidence value to each trust and reputation score. For instance, a web

22

Chapter 2. Trust and Reputation: a Literature Review

service with a trust score 0.5 and confidence value 0.8 is better than another web service

with trust score 0.8 and confidence value 0.3.

3. Unfair ratings:

Rivalries and alliances are homely to open systems whose entities might provide similar

goods or services. Therefore, the propagated ratings between the systems’ entities include

inequitable ones. Possible scenarios that might incur unfair ratings include:

(a) A web service WS1 requests a referral from WS2 about its biggest competitior WS3.

(b) Two web services WS1 and WS2 have formed and alliance to provide a group of com-

plementary functions. WS2 global reputation is not high due to certain flaws in its

behavior. When WS3 requests a referral from WS1 about WS2, the former sends a

high but unjust reputation score.

4. Service providers trustworthiness:

An additional information resource that helps directing any trust-based decision is the trust-

worthiness of service providers. For instance, a web service WS1 is willing to interact with

a new web service WS2. WS1 has never interacted with WS2 and neither did other web

services currently available in the system. Suppose WS1 has already interacted with WS3,

a web service supplied by the same service provider of WS2. Then, the trustworthiness

of the service provider of both WS2 and WS3 can be considered an initial indicator of the

trustworthiness of WS2.

23

Chapter 3
QoS-Based Probabilistic Trust Models

The service selection problem has gained the attention of researchers from the computational trust

community, especially with abundance of functionally similar services. Following our definition of

trust, designing a model that evaluates the trustworthiness of web services presents a challenging

yet motivating problem. Accoriding to [32], this is a defying task given the lack of intelligence in

the communication protocol among web services.

This chapter is devoted to the description of a QoS-based trust model that is based on the statis-

tical modeling of the QoS ratings of web services interactions. We propose to classify the quality of

web services into multiple classes (more than 2) based on different sets of QoS metrics according

to the consumers’ preferences. This approach allows consumers to maintain a trust model for each

service provider they interact with. As such, the trust model assists consumers in selecting, among

a plethora of similar services, the most trustworthy one. We thus associate the trust in a service to

its performance denoted by QoS ratings instigated by the amalgamation of various QoS metrics.

Since the quality of a service is contingent, which renders its trustworthiness uncertain, we adopt

a probabilistic approach for the prediction of the quality of a service based on the evaluation of

past experiences (ratings) of each of its consumers. We represent the QoS ratings of services using

different statistical distributions, namely, multinomial-Dirichlet (MDD) , multinomial-generalized

Dirichlet (MGDD), and multinomial-Beta-Liouville (MBLD). These representations enable the es-

timation of the probabilities of each web service to belong to different quality classes. For this

24

Chapter 3. QoS-Based Probabilistic Trust Models

purpose, we use the Bayesian inference method to estimate the parameters of the aforementioned

distributions, which presents a multidimensional probabilistic embodiment of the quality of the

corresponding web services.

In [14], the authors classified trust into four main areas including policy-based trust, reputation-

based trust, general models of trust, and trust in information resources. Following their definitions

of each type of trust, our approach fits the reputation-based trust definition which consists of eval-

uating the future behavior of web services based on the quality of its past performance. The

reputation-based trust may also include referrals from peers which is discussed in chapter 5.

The main contributions presented in this chapter can be summarized as follows:

1. We propose to compute QoS ratings based on multiple quality metrics such as the follow-

ing performance and dependability quality metrics: response time, throughput, availabil-

ity and reliability. Subsequently, we model the QoS ratings of web services by various

multi-dimensional statistical distributions which offer more descriptive representation than

the Beta Binomial.

2. We estimate the future quality of web services by learning the parameters of their QoS dis-

tributions using the Bayesian inference method based on their past behavior. Using this

method, the ratings of a service and the prior knowledge about its behavior are combined to

compute the posterior probabilities.

3. In addition to the multidimensional representation of the QoS of a web service, we propose

a QoS-based trust function to compute one-dimensional trust scores. These scores can be

used to compare between web services from various systems with disparate number of QoS

ratings.

3.1 QoS Modeling Via Composite Distributions

The following sections overview a subset of the QoS metrics that may be considered in the pro-

posed trust model. They also discuss the details and advatanges of modeling the QoS ratings using

25

Chapter 3. QoS-Based Probabilistic Trust Models

the different distributions; MDD, MGDB, and MBLD.

3.1.1 QoS Metrics Overview

The QoS of agent-based web services has gained the attention of wide spectrum of research es-

pecially in the contexts of service discovery, selection and composition. The computational trust

notion in agents was particularly treated in the pursuit of solving the preceding tasks. Given a pool

of agents that fulfill the functional requirements of a consumer, the latter chooses the one that is

estimated to provide the best quality. As such, the trustworthiness of a service is positively corre-

lated to the aggregation of the outcomes of its QoS metrics. However, aggregating the measures

obtained from monitoring the different QoS metrics is not trivial. This is due to (1) not all con-

sumers are interested in monitoring and evaluating the same metrics. (2) given the values of a set

of QoS metrics, there is no standardized approach to aggregate them.The list below defines some

examples of QoS metrics [33]:

• Response time (RT): This is a measure of the time spent between sending a request

and receiving the last byte of the response. RT is inversely proportional to the quality

of a service. In other words, a lower RT value implies a better service.

• Throughput (T): The throughput of a service is the number of requests it can handle

per time unit. This measure is directly proportional to the QoS.

• Availability (A): The availability measure denotes the probability of the service to be

up and ready to answer its users requests. Availability is directly proportional to the

overall quality of a service.

• Reliability (R): Reliability may refer to the ratio of the number of valid responses to

the total number of responses an agent-based service provides.

• Latency (LA): This refers to the time a server needs to process a request.

• Cost (C): The cost of a service measures the usage of resources during its execution

time and might refer to the service fees. This metric is inversely proportional to the

general quality of a service. A higher cost will compromise the quality of the corre-

sponding service.

26

Chapter 3. QoS-Based Probabilistic Trust Models

After each interaction with a service provider, the above metrics are measured and the service

provider is then assigned a QoS score given by:

QoS Score =
RT WRT

Max(RT)
+

T WT

Max(T)
+ AWA +RWR + CWC

,

where WM is the weight of the quality metric M and
∑

M∈{RT,T,A,R}WM = 1. Max(RT) and

Max(T) are used to normalize the values of RT and T , respectively. Afterwards, a QoS rating

(class) is attributed to the current interaction with the service provider. The following is one of

many possible ways to partition the QoS ratings:

QoS Rating =

1 if 0.7 < QoS Score < 1

2 if 0.5 < QoS Score < 0.7

3 if 0.3 < QoS Score < 0.5

4 otherwise

3.1.2 MDD, MGDD and MBLD for QoS Modeling

To compute the trustworthiness of a web service, we propose to model its quality over a period

of time using a MDD. This distribution helps positioning the quality of a service on a spectrum

that captures its level of goodness or badness. Given this distribution, we learn the probabilities of

the QoS to belong to various quality classes (note that we use the terms quality class and quality

rating interchangeably). To assist the service selection task, we will compute the trustworthiness

of a web service based on its past direct interactions with other web services. We will defer the

use of indirect observations based on peers recommendations to Chapter 4. The qualities of these

past interactions are represented as vectors of quality rankings counts. Each of these vectors has

a size equal to the number of quality classes. More formally, let X = [~X1, ~X2, ..., ~XN] represents

a set of N K-dimensional vectors of counts where ~Xi = [Xi1, Xi2, ..., XiK] represents the ith set

of quality rankings and K is the number of classes the quality of a service can belong to. Xik is

the number of times the quality of a web service was ranked as k. We assume that ~Xi is generated

27

Chapter 3. QoS-Based Probabilistic Trust Models

from a multinomial distribution with parameters ~θ = (θ1, . . . , θK+1) given by:

p(~Xi|~θ) =
| ~Xi|!∏K
k=1Xik!

K∏
k=1

θXikk (3.1)

where | ~Xi| =
∑K

k=1Xik. A common method to estimate the parameters of the multinomial is the

Maximum Likelihood Estimation (MLE) which gives the following estimates:

θ̂k =
Xik

| ~Xi|
(3.2)

For example, suppose that an agent A (truster) wants to estimate the trustworthiness of another

agent B (trustee) and we have four quality classes. Therefore, the past experiences of agent A

with agent B will be represented by 4-dimensional vectors such as the following: ~X = [8, 6, 3, 1].

Then, the MLE estimates of the trustworthiness of agent B will be according to equation (3.2)

the probabilities vector ~θ = [8
18
, 6

18
, 3

18
, 1

18
]. Each element of this vector represents the probability

of agent B providing one of the four qualities. Although the MLE method tends to give more or

less natural estimates, it gives poor estimates in the case of low or rare frequencies. For instance,

suppose agent A had eight interactions with agent B all of which were classified as first-class

quality. That is, the quality vector is ~X = [8, 0, 0, 0]. Then, the parameters vector ~θ will be

[1, 0, 0, 0] which gives a poor estimate by setting the distribution to zero.

To deal with the above problem, we can apply a Bayesian inference-based method to improve

these estimates. This approach consists of selecting a prior distribution for the vecθ parameters.

It is a common practice to assign a Dirichlet prior to the parameter vector of a multinomial dis-

tribution since it is a conjugate prior [34]. In other words, both the prior and the posterior are

Dirichlet. The Dirichlet distribution is the multivariate extension of the Beta distribution. There-

fore, this model states that the quality of an agent is drawn from a multinomial that represents the

counts of the quality being in each of the classes. The prior is a Dirichlet which parameters work

as pseudo-counts. The resulting distribution is known as MDD [35] given by:

p(~Xi|θ) =
Γ(
∑K+1

k=1 αk)Γ(
∑K+1

k=1 Xik + 1)

Γ(
∑K+1

k=1 Xik +
∑K+1

k=1 αk)

K+1∏
k=1

Γ(Xik + αk)

Γ(αk)Γ(Xik + 1)
(3.3)

28

Chapter 3. QoS-Based Probabilistic Trust Models

The posterior is given by:

p(~θ| ~Xi, α1, ..., αK+1) =
p(~Xi, ~θ|α1, ..., αK+1)

p(~Xi|α1, ..., αK+1)

=
Γ(
∑K+1

k=1 Xik +
∑K+1

k=1 αk)∏K+1
k=1 αk +Xik

K+1∏
k=1

θαk+Xik−1
k

which is a Dirichlet with parameters (α1 + Xik, ..., αK+1 + XiK+1), where (α1, ..., αK+1) are

the parameters of a Dirichlet. Using this prior information, θ̂k becomes:

θ̂k =
Xik + αk∑K+1

k=1 αk +
∑K+1

k=1 Xik

(3.4)

MDD is the multidimensional case of the Beta binomial distribution widely used in many ap-

plications including trust estimation [18]. Moreover, MDD has one extra degree of freedom when

compared to the multinomial distribution, since its parameters are not constrained to sum up to one,

which makes it more practical [36]. Further details about the MDD properties and the development

of its moments can be found in [37].

Suppose we have the same vector, ~X = [8, 0, 0, 0], which we have previously handled poorly

using MLE. By introducing a Dirichlet prior with the parameters ~α = [1, 1, 1, 1], the smoothed

estimates evaluated using equation (3.4) are:

~θ = [
8 + 1

4 + 8
,
0 + 1

4 + 8
,
0 + 1

4 + 8
,
0 + 1

4 + 8
]

= [
9

12
= 0.75,

1

12
≈ 0.083,

1

12
≈ 0.083,

1

12
≈ 0.083]

The hyperparameters ~α can be thought of as being hidden quantities added in order to repre-

sent our confidence about the estimates. They are also beneficial to moderate the extreme estimates

given by the MLE of the multinomial distribution. In spite of the flexibility of the Dirichlet distri-

bution and the fact that it is conjugate to the multinomial, it still suffers from various restrictions.

For instance, the Dirichlet has a very restrictive negative covariance matrix defined by:

29

Chapter 3. QoS-Based Probabilistic Trust Models

Cov(θi, θj) = − αiαj

(
∑K+1

i=1 αi)2(
∑K+1

i=1 αi + 1)
(3.5)

Indeed, this covariance presumes that any two random variables in ~θ are negatively correlated

which is not always the case [38]. Another restriction of the Dirichlet distribution is that variables

with the same mean must have the same variance which is proven in [39]. These restrictions can be

avoided if we use the generalized Dirichlet distribution (GDD) as a prior instead of the Dirichlet.

The GDD with parameter vector ~α = (α1, β2, ..., αK , βK) is defined by [40]:

p(θ1, ..., θd) =
K∏
k=1

Γ(αk + βk)

Γ(αk) + Γ(βk)
θαk−1
k (1−

k∑
j=1

θj)
γk , (3.6)

given
∑K

k=1 θk < 1 and 0 < θk < 1 for k = 1, ..., K, where αk > 0, βk > 0, γk = βk −
αk+1 − βk+1 for k = 1, ..., K − 1, and γK = βK − 1. The GDD has K − 1 more parameters

than the Dirichlet which gives it K degrees of freedom when used to construct a prior. It also

has a more general covariance and doesn’t restrict variables with the same mean to have the same

variance [35]. Additionally, it is conjugate to the multinomial distribution. The mean, variance,

and covariance of the GDD are available in [40]. Thus, the marginal distribution of ~Xi obtained

from integrating the joint distribution of ~X and ~θ over the latter is:

p(~Xi|~α) =

∫
~θ

p(~Xi, ~θ|~α)d~θ

=
Γ((
∑K+1

k=1 Xik) + 1)∏K+1
k=1 Γ(Xik + 1)

K∏
k=1

Γ(αk + βk)

Γ(αk) + Γ(βk)

K∏
k=1

Γ(α′k) + Γ(β′k)

Γ(α′k + β′k)

The above density is called MGDD. Therefore, using the generalized Dirichlet as a prior to the

multinomial results with the following estimates:

θ̂k =
αk +Xik

αk + βk + nik

k−1∏
l=1

βl + nil+1

αl + βl + nil
, (3.7)

where nik = Xik +Xik+1 + · · ·+XiK+1.

30

Chapter 3. QoS-Based Probabilistic Trust Models

To illustrate the estimation using MGDD, suppose we have the same vector ~X = [8, 0, 0, 0]

handled above with MLE and MDD. By introducing a generalized Dirichlet prior in dimension

K = 3 with the parameters ~α = [1, 1, 1, 1, 1, 1], the new estimates computed using equation (3.7)

become:

~θ = [
1 + 8

2 + 8
,
1 + 0

2

1

2 + 8
,
1 + 0

2
(

1

10

1

2
), 1− (

9

10
+

1

20
+

1

40
)]

= [
9

10
= 0.1,

1

20
= 0.05,

1

40
= 0.025,

1

40
= 0.025]

Another possible choice of prior to the multinomial belongs to the Liouville family of dis-

tributions of second kind. In dimension K, the Liouville distribution, with positive parameters

(α1, . . . , αK) and generating density f(·) with parameters ξ, is defined by:

p(~θ|α1, . . . , αK , ξ) = f(u|ξ)Γ(
∑K

k=1 αk)

u
∑K
k=1 αk−1

K∏
k=1

θαk−1
k

Γ(αk)

where u =
∑K

k=1 θK < 1 and θk > 0, k = 1, . . . , K. One common and convenient choice of a

generating density for u is the Beta distribution with parameters α and β which is defined as:

f(u|α, β) =
Γ(α + β)

Γ(α) + Γ(β)
uα−1(1− α)β−1

The shapes in the Beta distribution are variable enough to allow for an approximation of almost

any arbitrary distribution [41]. The resulting distribution is called Beta-Liouville (BLD) which has

a covariance structure that can be either positive or negative, unlike the strictly negative covariance

matrix of Dirichlet distribution. Like both Dirichlet and generalized Dirichlet distributions, the

BLD is also conjugate to the multinomial distribution. The marginal distribution of ~Xi obtained

from integrating the joint distribution of ~X and ~θ over the latter is:

p(~Xi|~α) =

∫
~θ

p(~Xi, ~θ|~α)d~θ

=
Γ((
∑K+1

k=1 Xik) + 1)∏K+1
k=1 Γ(Xik + 1)

Γ(
∑K+1

k αk)Γ(α + β)Γ(α′)Γ(β′)
∏K

k=1 Γ(α′k)

Γ(
∑K+1

k α′k)Γ(α′ + β′)Γ(α)Γ(β)
∏K

k=1 Γ(αk)

31

Chapter 3. QoS-Based Probabilistic Trust Models

where α′k = αk + Xik, α′ = α +
∑K

k=1 Xik and β′ = β + XiK+1. The above density is called

MBLD. When using a BLD prior to the multinomial distribution, we obtain:

θ̂k =
α +

∑K
k=1Xik

α +
∑K

k=1Xik + β +XiK+1

αk +Xik∑K
k=1 (αk +Xik)

(3.8)

The new estimates using equation (3.8) for the same example discussed above become:

~θ = [
81

110
≈ 0.74,

9

110
≈ 0.08,

9

110
≈ 0.08,

1

110
≈ 0.01]

3.2 Correlations-Based Trust Model

3.2.1 Correlation Analysis of Two Real Datasets

This section aims to shed the light on the correlations that exist among various QoS metrics. In

order to support the motivation for our work, we collected the meta-data of 9392 web services

available from programmableweb through their API 1. The attributes captured in this data include

various meta-data information as well as the values of multiple QoS parameters of their web ser-

vices database. We use the terms parameters and metrics interchangeably throughout this thesis.

ProgrammableWeb: We extracted 39 attributes of meta-data and various QoS metrics of 9392

web services. These attributes include the ID, Name, Description, Type, Download Counts, and

Number of Comments for each of these web services. Table 3.1 lists all the extracted attributes:

ID Name Package Author
Description Type Downloads UseCount
DateModified Rating RemoteFeed NumComments
Tags Category Protocols ServiceEndpoint
Version WSDL DataFormats ApiGroups
Example ClientInstall Authentication SSL
Readonly VendorApiKits CommunityApiKits Blog
Forum Support AccountReq Commercial
Provider ManagedBy NonCommercial DataLicensing
Fees Limits Company

Table 3.1: Attributes extracted from the ProgrammableWeb API

1http://www.apihub.com/programmable-web/api/programmable-web-api

32

Chapter 3. QoS-Based Probabilistic Trust Models

We select from this data the values of two critical parameters: the security measure embedded

within the agent-based service and the fees for interacting with it. We aim to identify the relation-

ship that exists between these two parameters. Since the data is incomplete, we wrote a script to

consider the services that have values for both metrics and convert these values to binary. As such,

a “none” or “free” fees values are converted to 0, and all values that contain the dollar sign are

converted to 1. The true or false security values are mapped to their corresponding binary values

(1 and 0, respectively). A snapshot of the raw values of these two metrics is given in Table 3.2 that

shows that some data is missing in the original dataset. Only rows that had both information SSL

and Fees were considered in our analysis.

SSL Fees
http://www.360businesstool.com/priser/

No 1-10000 credits/$.05sms 10001-25000
Yes USA: 4.99−8.99 /mo -or- 5.00−20.00 for 400-2500 texts

Contact 3TIER for current rates
No No
Yes 0.055/sms 0.02/min to land lines

Free
Yes Free

Table 3.2: Sample of SSL and Fees raw values

Given the processed data, we calculate the correlation between both attributes by first comput-

ing its covariance matrix. This matrix is usually denoted by Σ with each entry, Σij , representing

the covariance between the QoS metrics i and j:

Σij = E[(Qi − µi)(Qj − µj)], (3.9)

where µi = E[Qi] is the expectation of the value of the ith quality metric, Qi. The covariance

matrix of Fees and SSL parameters is:

ΣSSL,Fees =

(
0.2461 0.0590

0.0590 0.2196

)
.

Afterwards, we compute the corresponding matrix of correlation coefficients, ρ given by:

ρij =
Σij√
ΣiiΣjj

. (3.10)

33

Chapter 3. QoS-Based Probabilistic Trust Models

The resulting correlation coefficient between the SSL and Fees parameters is ρSSL,Fees = 2.538.

This result confirms that the security and fees metrics are positively correlated. Indeed, agents

offering security measures to their service calls will possibly charge other agents a service call fee.

All the correlation coefficients reported here are calculated with 95% confidence intervals.

QWS: This dataset reports the following performance metrics of 2507 real agent-based web

services available on the web: response time, availability, throughput, successability, reliability,

compliance (to the WSDL specification provided by W3C standards), best practices (according to

the web service interoperability, WS-I, basic profile), latency, and documentation. A sample of

this dataset is given by Table 3.3. We applied Equations 3.9 and 3.10 to compute the correlation

matrix of these metrics which is displayed in Table 3.4.

Response
Time (ms)

Availability
(%)

Throughput
(invokes/sec)

Successability
(%)

Reliability
(%)

Compliance
(%)

Best Practices
(%)

Latency
(ms)

Documentation
(%) Service Name

302.75 89 7.1 90 73 78 80 187.75 32 MAPPMatching
482 85 16 95 73 100 84 1 2 Compound2

3321.4 89 1.4 96 73 78 80 2.6 96 USDAData
126.17 98 12 100 67 78 82 22.77 89 GBNIRHolidayDates

Table 3.3: A sample from the QWS dataset

Response Time Availability Throughput Successability Reliability Compliance Best Practices Latency Documentation
Response Time 1.0000
Availability -0.0664 1.0000
Throughput -0.2530 0.2007 1.0000
Successability -0.0773 0.9892 0.2007 1.0000
Reliability 0.0471 0.1289 0.2556 0.1211 1.0000
Compliance -0.0828 0.2436 0.0603 0.2609 -0.0300 1.0000
Best Practices 0.0327 0.0571 0.1684 0.0554 0.6895 0.0336 1.0000
Latency 0.3907 -0.0988 -0.1450 -0.1107 -0.0239 -0.0773 -0.0079 1.0000
Documentation -0.0402 -0.0058 -0.0311 0.0044 0.0606 -0.0803 -0.0366 -0.0403 1.0000

Table 3.4: Correlation of QWS dataset QoS metrics

We then select the most significant correlation coefficients; the ones with an absolute value

greater than 2.5. Subsequently, we display the normalized values of the corresponding QoS metrics

for each selected correlation coefficient which is plotted as a regression line in Figure 3.1. The

strongest positive correlation is between Availability and Successability with a value of 0.9892

after which comes the correlation between Reliability and Best Practices with a value of 0.6895.

The strongest negative correlation is observed between the Response Time and Throughput with

a value of −0.2530. This result is consistent with the technical nature of these two metrics; the

34

Chapter 3. QoS-Based Probabilistic Trust Models

smaller the Response Time of an agent-based service, the higher the number of requests it could

possibly process.

−5 0 5 10
−3

−2

−1

0

1

2

3

4

5

r = −0.25304

Response Time vs. Throughput

Response Time

Th
ro

ug
hp

ut

−5 0 5 10
−5

0

5

10

15

20

25

r = 0.39074

Response Time vs. Latency

Response Time

La
te

nc
y

−4 −2 0 2
−4

−3

−2

−1

0

1

r = 0.9892

Availability vs. Successability

Availability

Su
cc

es
sa

bi
lity

−2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

r = 0.25563

Throughput vs. Reliability

Throughput

Re
lia

bi
lity

−4 −2 0 2
−6

−5

−4

−3

−2

−1

0

1

2

r = 0.26088

Successability vs. Compliance

Successability

Co
m

pl
ia

nc
e

−5 0 5
−4

−3

−2

−1

0

1

2

3

r = 0.68949

Reliability vs. Best practices

Reliability

Be
st

 p
ra

ct
ice

s

Figure 3.1: Correlation between six pairs of QoS metrics from the QWS data set

3.2.2 QoS-Aware Trust Model

The trust model we propose consists of two main modules. The first one allows the agents to

select, for each web service they intend to interact with, the QoS metrics they choose to scrutinize.

The majority of existing trust models designate a binary variable to represent the outcomes of

QoS metrics (1 for successful outcome, 0 otherwise). This representation lacks the explanation

of when the outcomes of the quality metrics are considered successful and when they are not.

One possible solution to this issue is to specify a threshold under or above which a quality metric

is perceived successful. This threshold may vary depending on the type of data handled by the

agent and the requirements set by the designer of the trust system. For instance, a data critical

35

Chapter 3. QoS-Based Probabilistic Trust Models

agent-based service should be very reliable which requires a higher threshold for its reliability

metric. Metrics such as RE, with values directly proportional to the quality of the service, will

be assigned to 1 if they are above the defined threshold and 0 otherwise. The QoS metrics with

values indirectly proportional to the overall quality of the service (such as RT) will be assigned to

1 if they are below the defined threshold and 0 otherwise. For example, the RT threshold can be

set to 300 milliseconds (ms). Then, any response under 300 ms is deemed successful. However, if

the TH threshold is set to 10 and the time unit is a second, then handling 10 requests or more per

second is considered successful and unsuccessful otherwise. This seems a practical solution for the

problem in hand. However, the question becomes what values do we assign to these thresholds?

As a matter of fact, there is no magical values to be appointed to the thresholds of these metrics.

Nonetheless, it is reasonable to assume that for the metrics proportional to the quality of the service,

a higher threshold implies higher quality standards and expectation. A lower threshold in the case

of indirectly proportional metrics has the same implications. An agent looking to interact with

an agent-based web service that deals with sensitive data will necessarily set a high threshold for

the security aspect of the agent. Similarly, an agent that places high emphasis on productivity will

certainly be interested in a respective low and high thresholds for the response time and throughput

metrics. Therefore, these thresholds will be set by the truster agents (agents looking to interact with

other agents) to meet their non-functional requirements.

The performance monitoring of agent-based web services is not the focus of this thesis. We

presented the module above as a preparatory phase to set the stage for the main contributions

incorporated in the second module of the proposed approach. In this module, each truster agent

will be enabled to estimate the expected trustworthiness of other agents given the QoS outcomes of

their past interactions. This assists the former in maximizing their gain by selecting and interacting

with the agent that is assigned the highest trustworthiness score. The details of the trust estimation

approach based on the outcomes of the QoS metrics of agent-based services are described in the

subsequent section.

36

Chapter 3. QoS-Based Probabilistic Trust Models

3.2.3 Trust with multi-dimensional QoS

The second module of our approach implements a QoS-aware trust model that leverages the cor-

relation information among various QoS metrics. This model, based on the probability theory,

estimates the trustworthiness of web services by exploiting two statistical distributions, namely,

Dirichlet and generalized Dirichlet. These distributions represent the outcomes of multiple cor-

related QoS metrics. The former distribution is employed when the QoS metrics are positively

correlated while the latter handles negatively correlated metrics.

Suppose the following scenario: An agent wants to interact with an other agent-based web

service that returns a list of information about multiple stocks. The former requires the latter to be

available, reliable and fast. Therefore, the corresponding three QoS metrics to be considered are

AV ,RE andRT . For clarity of notation, we use av, re and rt in the rest of this chapter. After each

interaction with an agent, the truster agent keeps track of the outcomes of each of the three QoS

metrics. Each of the latter is assigned the values 1 or 0 to represent a successful or unsuccessful

outcome, respectively, as discussed above. After N interactions, the vector ~X = (Xav, Xre, XRT)

represents the number of interactions for which each of the QoS metrics had successful outcomes.

Since ~X is a vector of counts, it is common to assume that it is generated by a multinomial dis-

tribution. The Dirichlet distribution is a widely used conjugate prior to the multinomial in various

applications including QoS modeling [42]. Thus, to estimate the probabilities of each QoS metric

to have an outcome equal to 1, p̂(X) = (E(Pav), E(Pre), E(PRT)), we apply a Dirichlet prior

with the parameters (αav, αre, αRT). The density obtained after introducing this prior is called the

multinomial Dirichlet distribution (MDD), the multi-dimensional case of the Beta binomial distri-

bution. The posterior is then a Dirichlet with parameters (αav +Xav, αre +Xre, αRT +XRT). The

derived estimates of av, for example, are given by:

E(Pav) =
αav +Xav∑d+1
l=1 αl

∑d+1
l=1 Xl

, (3.11)

where d is the dimension in which the Dirichlet is defined. Since
∑d+1

l=1 Pl = 1, d in this case is

equal to 2 as P3 can be inferred from the first P1 and P2. Despite the flexibility of the Dirichlet

37

Chapter 3. QoS-Based Probabilistic Trust Models

distribution, its negative covariance matrix limits its applicability:

Cov(Pi, Pj) = − αiαj

(
∑d+1

i=1 αi)
2(
∑d+1

i=1 αi + 1)
. (3.12)

Indeed, this covariance is presuming that any two random variables in Pi and Pj are negatively

correlated which is not always the case [38]. We have also shown that the QoS metrics can be

either positively or negatively correlated. Moreover, the fact that the variables with the same

mean must have the same variance [39] adds another restriction to the use of Dirichlet that makes

certain models unrealistic [35]. To transcend these disadvantages, we use the generalized Dirichlet

distribution (GDD) to replace the Dirichlet distribution. Several studies have shown the flexibility

of the generalized Dirichlet and its advantages in various applications such as text modeling [43],

and image processing [44]. In dimension d, the GDD with parameter vector ~α = (α1, β2, ..., αd, βd)

is defined by [40] as:

p(P1, ..., Pd) =
d∏
l=1

Γ(αl + βl)

Γ(αl) + Γ(βl)
Pαl−1
l (1−

l∑
j=1

Pj)
γl , (3.13)

for
∑d

l=1 Pl < 1 and 0 < Pl < 1 for l = 1, ..., d, where αl > 0, βl > 0, γl = βl − αl+1 − βl+1 for

l = 1, ..., d− 1, and γd = βd− 1. Also, note that Γ(x) =
∫∞

0
tx−1e−tdt. The moments of the GDD

are given by:

E(Pl) =
αl

αl + βl

l−1∏
k=1

βk
αk + βk

, (3.14)

V (Pl) = E(Pl)
(αl + 1

αl + βl + 1

l−1∏
k=1

βk + 1

αk + βk + 1
− E(Pl)

)
. (3.15)

GDD has d − 1 more parameters than the Dirichlet which gives it d degrees of freedom when

used to construct a prior. It also has a more general covariance and does not restrict variables with

the same mean to have the same variance [35]. Additionally, it is conjugate to the multinomial

distribution. The mean, variance, and covariance of the GDD are available in [40]. The marginal

38

Chapter 3. QoS-Based Probabilistic Trust Models

distribution of ~X obtained from the employment of a GDD prior is given by:

p(~X|~α) =

∫
~P

p(~X, ~P |~α)d~P

=
Γ((
∑d+1

l=1 Xl) + 1)∏d+1
l=1 Γ(Xl + 1)

d∏
l=1

Γ(αl + βl)

Γ(αl) + Γ(βl)

×
d∏
l=1

Γ(α′l) + Γ(β′l)

Γ(α′l + β′l)
(3.16)

where α′k = αl+Xl and β′l = βl+Xl+1+· · ·+Xd+1 for l = 1, . . . , d. The above density is called the

multinomial generalized Dirichlet distribution (MGDD). Therefore, using the generalized Dirichlet

as a prior to the multinomial yields the following moments:

E(Pl) =
αl +Xl

αl + βl + nl

l−1∏
k=1

βk + nk+1

αk + βk + nk
, (3.17)

where nl = Xl +Xl+1 + · · ·+Xd+1, and

V (Pl) = E(Pl)
(Xl + αl + 1

αl + βl + 1 + nl
×

l−1∏
k=1

βk + 1 + nk+1

αk + βk + 1 + nk
− E(Pl)

)
. (3.18)

The probabilities that each of the QoS metrics outcome is equal to 1 given by p̂(X) are used to

estimate the trustworthiness of the evaluated service provider. In addition to these probabilities, the

service consumer assigns each of the QoS metrics a weight that represents its value in the overall

quality required by the consumer. The trustworthiness of a service provider sP as estimated by a

service consumer sC is denoted by Tr(sP, sC) and given by Equation 3.19. The uncertainty in

the computed trust is equally important to communicate the confidence of the service consumer

in the estimated trust score. This is supplied by the variance of the trust score, V ar(Tr(sP, sC)),

defined in Equation 3.20.

Tr(sP, sC) =
d+1∑
l=1

E(Pl)Wl, (3.19)

where W is the vector of consumers predefined weights of the significance of each of the d + 1

QoS metrics in the quality required by sC from sP .

V ar(Tr(sP, sC)) = WCov(~P)W T , (3.20)

39

Chapter 3. QoS-Based Probabilistic Trust Models

where Cov(~P), is a covariance matrix that represents the variances or uncertainties in ~P (diagonal

terms) and the correlations between each pair of QoS metrics (off-diagonal terms). The variances

in ~P are calculated following the same process used for ~P by marginalizing over the variances

given by Equation 3.18. The off-diagonal terms necessitate the computation of the covariances

between each pair of QoS metrics which are given by the covariance of the MGDD over the joint

probabilities of each pair of metrics. To simplify the notation, let t be the position of the combined

outcomes which, in case of pairwise combinations of binary values, t = 1, . . . , 4. Thus, for each

of the 11, 10, 01, and 00 outcomes, t is set to 1, 2, 3, and 4, respectively. Back to the example

with the three QoS metrics av, re, and rt, we define the following: sav,ret is the number of QoS

outcomes for which av and re had the combined outcome at position t. Eav,re
t is the estimate of

the outcomes of av and re at position t. V arav,ret is the variance in the estimate Eav,re
t and Cav,re

tu is

the covariance between the estimates Eav,re
t and Eav,re

u , where u = 1, . . . , 4 represents a position

of the combined outcomes 11, 10, 01, and 00, s.t. u 6= t. Similar notations are used for the other

pairs, (av, rt) and (re, rt). The means, variances, and covariances of the MGDD over the pairs of

QoS metrics follow Equations 3.21, 3.22, and 3.23 that are defined with the av, rt pair:

Eav,rt
t =

αav,rtt + sav,rtt

αav,rtt + βav,rtt + nav,rtt + 1
×

t−1∏
k=1

βav,rtk + nav,rtk+1

αav,rtk + βav,rtk + nav,rtk

(3.21)

V av,rt
t = Eav,rt

t

(αav,rtt + sav,rtt + 1

αav,rtt + βav,rtt + nav,rtt + 1
×

t−1∏
k=1

βav,rtk + nav,rtk+1 + 1

αav,rtk + βav,rtk + nav,rtk + 1
− Eav,rt

t

)
(3.22)

Cav,rt
tu = Eav,rt

u

(αav,rtt + sav,rtt

αav,rtt + βav,rtt + nav,rtt + 1
×

t−1∏
k=1

βav,rtk + nav,rtk+1 + 1

αav,rtk + βav,rtk + nav,rtk + 1
− Eav,rt

t

)
(3.23)

3.2.4 Practical Example

To exemplify, suppose we have 10 outcomes of the three QoS metrics given in Table 3.5. The vector

of counts that represent the total number of each metric being successfully fulfilled is {6, 6, 7}.
The probability of each QoS metric outcome being equal to 1 is then calculated using Equation

40

Chapter 3. QoS-Based Probabilistic Trust Models

3.17 and is given by p̂ = E(Pav) = 0.3333, E(Pre) = 0.3111, E(Prt) = 0.3556. The pairwise

outcomes counts are displayed in Table 3.6. The joint probabilities of the pairwise outcomes are

computed by Equation 3.21 and given in Table 3.7.

Availability (a) 1 1 0 1 1 0 1 0 1 0
Reliability (r) 1 0 0 1 0 1 1 1 1 0
Response time (rt) 1 1 1 0 0 1 1 1 0 1

Table 3.5: 10 outcomes of three QoS metrics

QoS metrics pair 11 10 01 00
(a, r) 4 2 2 2
(a, rt) 3 3 4 0
(r, rt) 4 2 3 1

Table 3.6: Counts of pair-wise outcomes combinations

P11 P10 P01 P00

(a, r) 0.4167 0.2188 0.1823 0.1823
(a, rt) 0.3333 0.2963 0.3086 0.0617
(r, rt) 0.4167 0.2188 0.2431 0.1215

Table 3.7: Mean of pair-wise outcomes combinations

The uncertainties in the above estimates and the correlations between the pairs of QoS metrics

are given by the following covariance matrix.

Cov(p(X)) =

Va Ca,rt Ca,rt

Ca,rt Vr Cr,rt

Ca,rt Cr,rt Vrt

 (3.24)

The diagonal terms are obtained from the variances calculated using Equation 3.18 with the

vector of counts {6, 6, 7}; Va = 0.0101, Vr = 0.0093, Vrt = 0.0147. To evaluate the off-diagonal

terms, we compute the covariances of the counts displayed in Table 3.6. For example, to compute

Ca,rt, we employ Equation 3.23 to calculate the covariances of the estimates of positive outcomes

of the metrics a and r; Ca,rt
t=1,u=3 ≡ Ca,rt

1101, Ca,rt
t=2,u=1 ≡ Ca,rt

1011, and Ca,rt
t=2,u=3 ≡ Ca,rt

1001. We also

41

Chapter 3. QoS-Based Probabilistic Trust Models

compute the variance in positive outcomes, V a,rt
t=1 ≡ V a,rt

11 using Equation 3.22. Ca,rt is then given

by:

Ca,rt = Ca,rt
13 + Ca,rt

21 + Ca,rt
23 + V a,rt

11 (3.25)

The resulting covariance matrix is given by:

Cov(p(X)) =

0.0101 0.0034 −0.0044

0.0034 0.0093 0.0006

−0.0044 0.0006 0.0147

 (3.26)

Therefore, given the observations from Table 3.5, the service consumer will report p̂(X), and

Cov(p(X). The former depicts the probabilities that each of the QoS metrics of the evaluated

service provider is fulfilled successfully. The latter provides the uncertainties in these probabili-

ties and the correlations between the observed QoS metrics. The service consumer will then use

p̂(X) and Cov(p(X) to compute the trustworthiness of the service provider using Equation 3.19.

Suppose the consumer associates the following weights with each of the observe QoS metrics:

W = {0.25, 0.35, 0.45}, the resulting trust value will be: Trust = 0.25 × 0.3333 + 0.35 ×
0.3111 + 0.45× 0.3556 = 0.3522. The uncertainty in this trust estimate is computed using Equa-

tion 3.20, which yields to var(Trust) = 0.0072.

It is noteworthy to mention that the proposed model scales to multi-valued QoS metrics. As-

suming we have k-valued QoS metrics, we will have 2K pairwise outcomes instead of just 4 (22)

in the binary case. The reason behind considering binary values is the intuitive mechanism that

classifies each metric into two classes; if a consumer believes, after interacting with a web service,

that a given metric was fulfilled, this metric is assigned to class “1”. Otherwise, if the consumer

was not satisfied with the outcome of a specific metric, it is then assigned to class “0”. In the case

of multi-valued metrics, one can define k ranges of values according to which each metric will be

classified into 1 to k classes. However, the challenge becomes to justify the boundaries of each of

the ranges. Another issue with considering multi-valued metrics is the need for more interactions

with a web service so the vector of counts of pairwise outcomes does not mainly consist of 0s.

42

Chapter 3. QoS-Based Probabilistic Trust Models

3.3 Online Trust: Generalized Dirichlet Power Steady Model

The interactions with web services occur in a dynamic and real-time environment. The trust models

described so far function in a batch learning framework. In other words, a collection of data

samples is needed to perform the learning. In this case, the ratings of past interactions with a web

service are needed before the model can estimate its trustworthiness. In more realistic scenarios, a

large number of past interactions are not always available to pass their ratings to the batch learning

algorithm. A service consumer would rather need to evaluate the trustworthiness of a web service

after few interactions and ultimately after each interaction. This allows a dynamic update of the

trust models of web services leading more accurate estimations and, subsequently, an optimized

selection process. To fulfill this requirement, we propose a time series approach that is based on

a generalized Dirichlet power steady model. This approach aims to model the proportions of the

ratings of web services and forecast their future ones.

This section presents a power steady model (PSM) based on GDD observations to model and

predict compositional time series. The models unobserved states evolve according to the GDD con-

jugate prior distribution which is transformed to a set of Beta distributions each of which is denoted

by a 2-dimensional re-parametrized Dirichlet. We demonstrate that subdividing the modeling of a

time series into multiple smaller problems lead to better prediction results. We evaluate this model

with the web service selection application. Specifically, we analyze the proportions of the quality

classes that are assigned to the outcomes of the web services interactions. Our model is compared

with another PSM that assumes Dirichlet observations. The experiments show promising results

in terms of standardized residuals and mean squared errors of predictions.

3.3.1 Compositional Time Series

Time series of continuous proportions that are also known as compositional data, have been ana-

lyzed and modeled using various approaches [45, 46]. This kind of series presents itself in various

domains such as economics (e.g., yearly provincial gross domestic product), chemistry (e.g., chem-

ical compositions of rocks) and political sciences (e.g., vote and seat shares). Generally, time series

of compositional data are multivariate and denoted by time-dependent vectors of proportions that

43

Chapter 3. QoS-Based Probabilistic Trust Models

sum to one. To model such data, one might resort to standard techniques such as the multivariate

autoregressive integrated moving average (ARIMA) [47] and Kalman filters. However, due to the

positive nature of the components of compositional data and their sum to one constraint, these

techniques are deemed not applicable [45].

Various approaches have been proposed to deal with the positivity and dependence of compo-

sitional data’s components. For instance, Aitchison proposed in [45] the mapping of the data from

the positive simplex

Sd = {(s1, . . . , sd), s.t.
d∑
i=1

si < 1},

to the d-dimensional real space Rd. Specifically, the author suggested the additive and multiplica-

tive logistic transformations. Let ~s be a vector defined on the positive simplex Sd and ~y is another

vector defined on the real space Rd. Therefore, the aforementioned transformations are defined as:

Additive log-ratio transformation:

yi = log
si
sd+1

. (3.27)

The inverse: additive logistic transformation:

si =

exp (yi)

1+
∑d
j=1 exp (yi)

for i = 1, . . . , d

1

1+
∑d
j=1 exp (yi)

if i = d+ 1
(3.28)

Multiplicative log-ratio transformation:

yi = log
si

1−
∑i

j=1 sd+1

,

The inverse: multiplicative logistic transformation:

si =

exp (yi)∏d

j=1 1+exp (yi)
for i = 1, . . . , d

1∏d
j=1 1+exp (yi)

if i = d+ 1
(3.29)

where sd+1 is considered as the fill-up value. Inspired by Aitchison proposals, [46] employed the

multivariate ARIMA to model compositional time series transformed using the above additive lo-

gistic transformation. The authors demonstrated the practicality of this transformation via a public

44

Chapter 3. QoS-Based Probabilistic Trust Models

opinion polls application. However, they argued that the limitation of such approach is dealing

with zero values of si which yield yi = ±∞. In the same line of research, the authors in [48] used

the same transformation with multivariate dynamic linear models. To circumvent the zero-infinity

issue, looking for a replacement for the additive transformation might be the answer. For instance,

in [49], the authors proposed an alternative approach that employs a hyperspherical transforma-

tion. This was intended to overcome the positivity and unit-sum constraints of compositional data.

It also promised to solve the problems that arise when cases have zero-valued components. This

approach is motivated by the problem of maintaining the unity-sum when forecasting is based on

modeling each component of the time series by the available data instances. To overcome this

problem, the compositional time series will first be mapped through a non-linear dimensionality

reduction approach onto a hypersphere. As such, a time series of dimension d will be reduced

to d − 1. After transforming the original data via a square root transformation, yi =
√
si,the

illustration of the hypersphere mapping is given by:

Hyperspherical transformation:

yi = cos θi

d∏
j=i

sin θj+1 , (3.30)

where θi is the hyperspherical coordinate of yi that is computed recursively as follows:

θi = arccos
(yi∏d

j=2 sinθj+1

)
Furthermore, the authors in [50] suggested a more general transformation, the Box-Cox, that given

~s, ~y is obtained as follows:

Box-Cox transformation:

yi =

log
(
si

sd+1
)λi−1

λi
if λi 6= 0

log si
sd+1

if λi = 0 ,
(3.31)

where λi ∈ R is the unknown Box-Cox parameter. Afterward, the authors proposed a regression

model that is framed in a dynamic Bayesian structure to model compositional time series. As illus-

trated above, the additive logistic transformation is a special case of the Box-Cox transformation.

45

Chapter 3. QoS-Based Probabilistic Trust Models

Forecasting is a major part of the body of time series literature. The various models developed

for time series forecasting during 25 years up to 2006 are reviewed in [51]. The classes of reviewed

models include the exponential smoothing methods, ARIMA, state space and structural models,

Kalman filters, and autoregressive conditional heterscedastic (ARCH) models. Compositional time

series, in particular, were also subject to various forecasting approaches influenced by those applied

with any time series such as the ones previously mentioned. Particularly, state space models have

been exploited for analyzing, modeling, and forecasting time series. These models consist of

observation and state processes that may be non-linear and non-Gaussian. The main usage of such

models is to deduce the properties of the states given the knowledge from the observations. They

are also employed for forecasting and parameter estimation. It is noteworthy to mention that all

autoregressive moving average (ARMA) and ARIMA may be written as state space models. In

the case of linear processes, Kalman filters are used to solve the corresponding state space models.

In [52], the authors developed a Dirichlet state space model (DSPM) to forecast compositional

time series. Their model also includes an estimation approach of these series’ trends, covariates,

and interventions. They compared three models, the power steady, trend, and covariate models,

using the Bayesian information criterion (BIC) metric. They used a motor vehicle production data

set that consists of the number of vehicle production in Japan, United States, and the rest of the

world during the years 1947 to 1987.

Motivation: As mentioned earlier, a wide range of real applications in varied domains involve

compositional time series. The majority of these applications handle series that consist of yearly,

quarterly, or monthly proportions. However, with the plethora of online data, some compositional

time series may arise on a daily or even hourly basis. For example, the geographic distribution of

the users of social media websites may be measured on an hourly basis for various business related

functions. Therefore, given the large amount of available data, the need to understand this data,

and the benefits in turning it into actionable insights, building a modeling and forecasting model

for compositional time series becomes of unprecedented significance.

Contributions: We build upon and extend the literature of compositional time series forecast-

ing by the following contributions:

• We propose to model and forecast compositional time series based on a novel PSM in

46

Chapter 3. QoS-Based Probabilistic Trust Models

which the observations are assumed to follow a generalized Dirichlet (GD) distribu-

tion.

• We transform the GD distribution of d dimensions to d Beta distributions which, in

turn, are transformed to d unidimensional Dirichlet distributions in their exponential

form. This approach partitions the modeling and forecasting of (d + 1)-dimensional

time series into d smaller problems with fewer parameters to learn.

• We evaluate our model with a new application, web service selection, in comparison

to outdated ones used in the literature.

• We compare our models forecasting performance to that of the Dirichlet-based power

steady model (DPSM) proposed in [52]. We show the outperformance of our model

via standardized residuals and mean squared error of the predictions.

3.3.2 Generalized Dirichlet Formulation

Let ~X = (X1, . . . , Xd+1) denote a vector of proportions that follows a d-dimensional GD dis-

tribution with the parameters vector ~α = (α1, β1, . . . , αd, βd). Then, the probability distribution

function of ~X is given by Equation 3.13. Since ~X follows a generalized Dirichlet and is completely

neutral, it can be transformed to d independent Beta distributions [53, 54]. Let ~Y = (Y1, . . . , Yd)

be the result of the following transformation:

Yj =

Xj , if j = 1 ,

Xj
1−X1−···−Xj−1

, if 2 ≤ j ≤ d .

The parameters vector ~α can be estimated by considering that each of the Yj has a Beta distribution

with parameters αj and βj . Therefore, the joint probability distribution of ~Y can be written as

follows:

p(~Y |~α) =
d∏
l=1

B(αl, βl)
−1yαl−1

l (1− yl)βl−1 , (3.32)

where B(αl, βl) = Γ(αl)Γ(βl)
Γ(αl+βl)

. The Beta distribution belongs to the exponential family in which

47

Chapter 3. QoS-Based Probabilistic Trust Models

each density is given by the following:

p(~Y |θ) = H(~Y)exp
(S∑
s=1

ηs(θ)Tl(~Y) + Φ(θ)
)
, (3.33)

where ηs(θ) are called the natural parameters, Tl(~Y) are the sufficient statistics, H(~Y) is a base

measure, and Φ(θ) is referred to as the log-partition function. Equation (3.32) can thus be written

as an exponential density:

p(~Y |~α) = exp
[d∑
l=1

log(B(αl, βl)
−1) + (αl − 1) log Yl + (βl − 1) log(1− Yl)

]
(3.34)

=
d∏
l=1

1

Yl(1− Yl)
exp

[d∑
l=1

log(
Γ(αl + βl)

Γ(αl)Γ(βl)
+ αl log Yl +

2d∑
l=d+1

βl log(1− Yl)
]
.

Let S = 2d, then we have:

H(~Y) =
d∏
l=1

1

Yl(1− Yl)
, (3.35)

T (Yl) =

log Yl for l = 1, . . . , d ,

log(1− Yl) for l = d+ 1, . . . , 2d ,
(3.36)

ηl(θ) =

αl for l = 1, . . . , d ,

βl for l = d+ 1, . . . , 2d ,
(3.37)

Φ(θ) =
d∑
l=1

log
(Γ(αl + βl)

Γ(αl)Γ(βl)

)
. (3.38)

In the case of exponential density functions, a conjugate prior on θ is of the following form [55]:

π(θ) ∝ exp
(S∑
s=1

ρsηs(θ) + κΦ(θ)
)
, (3.39)

where (ρ1, . . . , ρS) and κ are the prior’s hyperparameters. Therefore, the conjugate prior family

to d-dimensional GD distributions transformed to d independent Beta written in their exponential

form is given by:

π(θ) ∝ exp
[d∑
l=1

ρlαl +
2d∑

l=d+1

ρlβl + κ

d∑
l=1

log
(Γ(αl + βl)

Γ(αl)Γ(βl)

)]
. (3.40)

48

Chapter 3. QoS-Based Probabilistic Trust Models

The d Beta distributions that generate ~Y , are also simplified unidimensional Dirichlet distributions.

InK+1 dimensions, the Dirichlet density of a vector of proportions, ~Y = (Y1, . . . , YK+1), is given

by:

p(~Y |~α) =

∏K+1
j=1 Γ(αj)

Γ(
∑K+1

j=1 αj)

K+1∏
j=1

Yj
αj−1 , (3.41)

where ~α = (α1, . . . , αK+1) is the parameters vector,
∑K+1

j=1 Yj = 1 and 0 < Yj < 1. This

distribution can also be depicted by Y ∼ Dir(~α). In the exponential form, the density (3.41)

becomes:

p(~X|~θ) = exp
[

log
(

Γ

(
K+1∑
l=1

αl

)
−

K+1∑
l=1

log(Γ(αl)
)

+
K+1∑
l=1

αl log(Xl)−
K+1∑
l=1

log(Xl)
]
. (3.42)

In [52], the authors re-parametrized Equation (3.42) to separate the effects of its mean, ~θ =(
α1∑K+1
j=1 αj

, . . . , αK+1∑K+1
j=1 αj

)
, and spread τ =

∑K+1
j=1 αj . The result of this re-parametrization yielded

the following:

p(~Z|~θ, τ) = exp
[
τ ~ZT~θ + τ

∑K+1
j=1 Wj

K + 1
− log

(∏K+1
j=1 Γ(θjτ)

Γ(
∑K+1

j=1 θjτ)

)]
, (3.43)

where ~W = log(~X) and ~Z = ~W −
∑K+1
l=1 Wl

K+1
. In case K = 2, the Beta distribution of each Yj can

be written in the exponential form of a unidimensional Dirichlet as follows:

p(Yj|~θ) = exp
[

log
(Γ(α1 + α2)

Γ(α1)Γ(α2)

)
+ α2 log(1− Yj)

+ α1 log(Yj)− log(Yj)− log(1− Yj)
]
. (3.44)

Following the same re-parametrization, Equation (3.44) becomes:

p(~Z ′|~θ′, τ ′) = exp
[
τ ′(~Z ′T~θ′ +W ′

j)− log
(∏K

l=1 Γ(θ′lτ
′)

Γ(
∑K

l=1 θ
′
lτ
′)

)]
, (3.45)

where ~θ′ = (θ′1 = α1

τ ′
, θ′2 = α2

τ ′
), τ ′ = α1 + α2, W ′

j =
log(Yj)+log(1−Yj)

2
, and ~Z ′j = (log(Yj) −

W ′
j , log(1 − Yj) − W ′

j). Given these parameters, we represent the distribution of ~Y by ~Y ∼
DirBeta(τ ′~θ′). A conjugate prior family to the Dirichlet distributions in their exponential form is:

p(~θ′|σ, κ, τ ′) ∝ exp
[
σ
[
τ ′~κT ~θ′ − log

(Γ(τ ′θ′1)Γ(τ ′θ′2)

Γ(τ ′θ′1 + τ ′θ′2)

)]]
. (3.46)

49

Chapter 3. QoS-Based Probabilistic Trust Models

3.4 State Space Models

Dynamic linear models (DLM) can be represented in what is called a state space form. This

representation consists in identifying the change of an observed variable (aka observation vector)

in terms of another unobserved variable (aka state vector). The authors in [56] proposed a steady

model for DLM that is only defined for normal distributions and is equivalent to an ARIMA(0,1,1)

model. However, [57] generalized this model by redefining it across non-Gaussian distributions.

More specifically, it was generalized to cases where the conditional probability of the observations

given the states follows an exponential family distribution. The generalized model, also known as

the PSM, is defined by: {
(xt|yt) ∼ PR(ω) ,

p(xt+1|yt) ∝ p(xt|yt)k ,
(3.47)

where 0 < k < 1 and PR(ω) is the conjugate prior for the exponential family distribution of

p(yt|xt). This model was first developed to be applied to univariate observations. However, [58]

generalized the PSM of a time series to handle multivariate processes. Specifically, a symmetric

multivariate PSM in which the process evolution is defined based on the density of the param-

eter vector is proposed. This generalization was also introduced as part of a Bayesian forecast-

ing framework. However, this model undergoes some limitations when the observations follow a

Dirichlet distribution [52], which are mostly due to the fact that the PSM estimates both the dis-

persion and location of the distribution at the same time. This problem can be solved by using the

re-parametrized form of the Dirichlet distribution (Equation (3.42)) which allows the separation of

the dispersion τ and the location θ.

3.5 Generalized Dirichlet Power Steady Model (GDPSM)

This section describes the time series model that is based on the power steady model and reparametrized

generalized Dirichlet (GDPSM). Suppose a time series of multivariate observations that consists of

continuous proportions, (Xt : t = 1, . . . , T), where Xt = (Xt1, . . . , Xtd+1). Suppose that each of

these observations follows a GDD (Equation (3.13)), and that a state space model is based on these

50

Chapter 3. QoS-Based Probabilistic Trust Models

observations. Instead of dealing with the GD distribution directly, we transform the observation

data into sub-spaces in which they follow d Beta distributions as described earlier. We represent

each Beta distribution as a unidimensional Dirichlet distribution.

3.5.1 Transformations

Below is a summary of the proposed model. Given a time series of proportions denoted by X :

{Xt = (Xt1, . . . , Xtd+1)}, where t = 1, . . . , T , we first assume that each vector in this time series

follows a GD distribution Xt ∼ GD(αt1, . . . , αtd, βt1, . . . , βtd). Afterward, we apply a geometric

transform on each of these vectors [54, 59].

Geometric transformation:

Wtl =

Xtl , for l = 1 ,

(Xtl
1−Xt1−···−Xtl−1

) , for l = 2, . . . , d .
(3.48)

Using this transform, each Wtl has a Beta distribution with parameters (αtl, βtl) that defines the

GD distribution which is followed by Xt. Since Beta distributions are special cases of Dirichlet

distributions, we finally model the time series by T × d unidimensional Dirichlet distributions,

Xtl = Dir(αtl1 , αtl2). Each of the T × d distributions is then re-parametrized as per Equation

(3.44) and (3.45). Subsequently, we build T × d state space models, each of which is based on an

unobserved state ~θ′, to model each of the observations (W11, . . . ,W1d, . . . ,WT1, . . . ,WTd). These

observations are denoted by:

(Wtj|~θ′t, τ ′t) ∼ DirBeta(τ ′t
~θ′t) , (3.49)

where 1 ≤ j ≤ d and ~θ′t follows the PSM given by Equation (3.47). In other words, the conditional

probability of ~θ′t+1 given the observations W1j, . . . ,Wtj , is defined as:

p(~θ′t+1| ~Wt) ∝ p(~θ′t| ~Wt)
γ where 0 < γ < 1 . (3.50)

Equation (3.50) reveals an interesting property of the (~θ′t+1| ~Wt) and (~θ′t| ~Wt) distributions; their

modes are equal, but the dispersion of the former is greater.

51

Chapter 3. QoS-Based Probabilistic Trust Models

3.5.2 Time Series Model

The GD time series model is defined by two steps similar to those of a Gaussian Kalman filter:

a prediction and an update step. In the prediction step, p(~θ′t+1| ~Wt) is computed using Equation

(3.50). Both sides of this equation follow the conjugate prior given by Equation (3.46), each with

different parameters. Formally, this is given by:

p(~θ′t+1| ~Wt) ∼ exp
[
σt+1|t

[
τ ′t~κ

T
t+1|t

~θ′t+1 − log

(
Γ(τ ′tθ

′
t+1,1)Γ(τ ′tθ

′
t+1,2)

Γ(τ ′tθ
′
t+1,1 + τ ′tθ

′
t+1,2)

)]]
, (3.51)

p(~θ′t| ~Wt) ∼ exp
[
σt|t

[
τ ′t~κ

T
t|t
~θt
′
− log

(
Γ(τ ′tθ

′
t1)Γ(τ ′tθ

′
t2)

Γ(τ ′tθ
′
t1 + τ ′tθ

′
t2)

)]]
. (3.52)

The prediction step consists of Equation (3.54), which is a known fact and (3.55), which is derived

by taking the log of Equation (3.50), and the two equations above:

σt+1|t

[
τ ′t~κ

T
t+1|t

~θ′ − log

(
Γ(τ ′tθ

′
1)Γ(τ ′tθ

′
2)

Γ(τ ′tθ
′
1 + τ ′tθ

′
2)

)]
= γσt|t

[
τ ′t~κ

T
t|t
~θ′ − log

(
Γ(τ ′tθ

′
1)Γ(τ ′tθ

′
2)

Γ(τ ′tθ
′
1 + τ ′tθ

′
2)

)]
, (3.53)

knowing that:

~κt+1|t = ~κt|t , (3.54)

therefore,

σt+1|t = γσt|t . (3.55)

γ is a model parameter, such that 0 < γ < 1. As for the update step, we need to compute

p(~θ′t+1| ~Wt+1) which, according to Bayes’ theorem, can be written as:

p(~θ′t+1| ~Wt+1) = p(~Wt+1|~θ′t+1)× p(~θ′t+1) , (3.56)

where p(~Wt+1|~θ′t+1) is the data likelihood that follows, in this case, the GD reformulated as

DirBeta(τ ′t
~θ′t) and given by Equation (3.45). p(~θ′t+1) is the prior and is given by Equation (3.46).

Therefore, applying the log to both sides of Equation (3.56) yields the following:

σt+1|t+1 = σt+1|t + 1 , (3.57)

κt+1|t+1 =

(
1− 1

σt+1|t+1

)
κt+1|t +

1

σt+1|t+1

zt+1 . (3.58)

52

Chapter 3. QoS-Based Probabilistic Trust Models

3.5.3 Model Evaluation

We evaluate our model by the standardized residuals, the mean squared error (MSE) of the pre-

dictions, and the correlations between the residuals at lag 0. We compare our results with those of

DPSM. The standardized residuals are computed as follows [52]:

Rt =
~Zt − E[~Zt|Dt−1])

var[~Zt|Dt−1]
, (3.59)

where Dt−1 denotes all the observations available at time (t − 1). E[~Zt|Dt−1] and var[~Zt|Dt−1]

are the respective posterior mean and variance of the prediction density, formally given by:

p(~Zt+1| ~Wt) =

∫
p(~Zt+1| ~θt+1)p(~θt+1| ~Wt)d~θt+1 . (3.60)

Since there is no direct solution for this density, we use the approximation proposed in [60] and

used in [52]. Given the density p(~Zt+1| ~Wt), its mean is approximated as follows:

E[p(~Zt+1| ~Wt)] = E[p(~Zt+1|~Θ)] , (3.61)

where ~Θ = (σ, κ, τ ′). According to [52, 61], if a variable follows the Dirichlet distribution in

Equation (3.45) with the conjugate prior given by Equation (3.46), then the following equality

holds:

E[p(~Zt+1|~Θ)] = E[p(~Zt+1|σ, κ, τ ′)] = κ . (3.62)

Therefore, the posterior mean of the density in Equation (3.60) is equal to κ. The posterior variance

also lacks an exact solution and is solved in [60] by approximating each term of the following:

var[p(~Zt+1|Dt−1)] = E[p(~Zt+1|Dt−1)2]− (E[p(~Zt+1|Dt−1)])2. (3.63)

Furthermore, we compute the correlations at lag 0 between the residuals of each pair of dimen-

sions in the analyzed time series. These correlations are additional indicators of the model quality;

the weaker the correlations the better the model. Stronger correlations imply that further modeling

is necessary to better fit the time series [52].

53

Chapter 3. QoS-Based Probabilistic Trust Models

10 20 30 40 50 60 70 80 90 100

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Sequence length

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Dirichlet
GDirichlet

10 20 30 40 50 60 70 80 90 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Sequence length

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Dirichlet
GDirichlet

10 20 30 40 50 60 70 80 90 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Sequence length

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Dirichlet
GDirichlet

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

Sequence length

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Dirichlet
GDirichlet

10 20 30 40 50 60 70 80 90 100

0.16

0.18

0.2

0.22

0.24

0.26

Sequence length

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Dirichlet
GDirichlet

10 20 30 40 50 60 70 80 90 100
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Sequence length

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Dirichlet
GDirichlet

Figure 3.2: MSE of estimating positive correlations

3.6 Experiments

In this section, we assess the potency of the proposed approach with the generalized Dirichlet in

leading to accurate estimates of the trustworthiness of agent-based web services. We compare our

results with those of the model proposed in [62] which employs the Dirichlet distribution.

3.6.1 Correlation Estimation

In this experiment, we compare the accuracy of estimating the correlations among the QoS metrics

using the Dirichlet and generalized Dirichlet. The experiment setup is summarized as follows:

• We consider a five-dimensional QoS (five metrics, {M1, . . . ,M5}) for which we sam-

ple a long sequence of 100000 outcomes from a multivariate discretized probability

distribution with specified correlations. The correlation matrix calculated from the

sampled sequence is:

• We select 10 sequences of varied length starting at a random positions of the long

sequence.

54

Chapter 3. QoS-Based Probabilistic Trust Models

M1 M2 M3 M4 M5

M1 1 -0.2798 0.2695 0.3258 -0.5596
M2 -0.2798 1 0.3314 0.2199 0.2426
M3 0.2695 0.3314 1 0.4799 -0.2942
M4 0.3258 0.2199 0.4799 1 -0.3503
M5 -0.5596 0.2426 -0.2942 -0.3503 1

Table 3.8: Correlation matrix of 100000 outcomes

• For each sequence we compute ~P , Cov(~P), and the correlation between the two met-

rics using the approach proposed earlier with both Dirichlet and generalized Dirichlet.

• The mean squared errors in the correlation estimations are averaged over 100 runs.

We compare the correlations estimated using the approach described earlier with both Dirichlet

and generalized Dirichlet. Figures 3.2 and 3.3 reveal that the former distribution estimates more

accurate negative correlations while the latter provides higher accuracy when estimating positive

correlations. The strictly negative covariance matrix of the Dirichlet compromises the accuracy of

estimating positive correlations.

3.6.2 GDPSM Experiments

Application: Web Service Selection. Business applications are increasingly being deployed as

autonomous web applications that are published and used on the web (Web Services). The abun-

dance of web services that provide similar functionalities creates a competitive market while ren-

dering the selection of services that best meet the consumers requirements a challenging task.

A common solution to this problem considers the trustworthiness of services as a selection

criterion based on the outcomes of various quality of service (QoS) metrics, including response

time, throughput, reliability, availability, security, and cost. These metrics may depend on the

network bandwidth, binding and processing performance, as well as underlying hardware. It may

also depend on the invocation cost and the honesty of the corresponding provider in fulfilling its

functional and quality claims. Based on the aforementioned, we expect a dynamic evolution of the

quality of a web service during its lifetime. Therefore, we consider a scenario in which the web

service environment consists of the following components:

55

Chapter 3. QoS-Based Probabilistic Trust Models

0 20 40 60 80 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Sequence length

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Dirichlet
GDirichlet

0 20 40 60 80 100

0.1

0.15

0.2

0.25

Sequence length

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Dirichlet
GDirichlet

0 20 40 60 80 100 120

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Sequence length

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Dirichlet
GDirichlet

0 20 40 60 80 100 120
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sequence length
R

oo
t M

ea
n

S
qu

ar
e

E
rr

or

Dirichlet
GDirichlet

Figure 3.3: MSE of estimating negative correlations

Monitoring component:

This component is responsible for implementing various performance testing tools. Various meth-

ods for monitoring the QoS for web services are available in [63]. web service consumer can then

evaluate and store, after each interaction with any web service, the values of multiple QoS metrics.

Classification component:

Each vector of QoS metrics’ values is then classified into multiple, a priori defined, quality classes.

This can be achieved using different classifiers [64].

Counting component:

The last component counts, based on a predefined time interval, the number of interactions with a

web service that belong to each of the defined quality classes. For example, given a 1-minute time

interval and 3 quality classes, the output of this component is a vector of counts that specifies the

number of interactions that were classified in each of the 3 classes (information obtained from the

second component).

The first two components have been covered in various studies in the literature [63–65]. We

56

Chapter 3. QoS-Based Probabilistic Trust Models

thus assume that such components exist and can be leveraged to build a compositional time series in

the third component. The main objective is then to model the QoS-based behavior of web services

and predict their future performance to assist the web service selection process. To evaluate our

GD time series model, we run different simulations with synthetic data due to the unavailability of

real QoS data sets. We are aware of two real data sets; QWS and WS-Dream. The former includes

the averages over time of multiple QoS metrics’ measurements of 2, 507 web services monitored

over a six-day period. As such, the data set includes one quality for each of the monitored web

services. The latter reports the response time, http code, and http message of 100 web services over

a large number of invocations from 150 computers distributed in more than 20 countries. However,

the time of each invocation is not available which makes it hard to build a realistic time-series

model for each of the monitored web services. Therefore, we validate our approach with multiple

simulated data that embed time-variant processes. The different simulations are summarized as

follows:

Simulation 1: trigonometric functions

In this simulation we evaluate our model with the outcomes of a web service’s transactions that

are classified into D quality classes, that can be illustrated by adjectives such as Very Good, Good,

Average,. . . , for the sake of clarity. We make the assumption that the proportions C = {C1; ...;CD}
of each class during a specific period of time, follow a latent model that we specify using trigono-

metric functions.

We model each quality class as a function of time steps. At each time step, the number of

transactions are counted and assigned to their corresponding quality class. Their overall evolution

is modeled as oscillating functions as a web service does not function with the same performance.

For example, some web services will have a larger number of requests during certain times of

the day or night. During their peak times, the load on the servers on which the web services

are deployed will eventually increase, and due to network bandwidths limitations, the response

time of these services will inflate. These factors, among others, eventually lead to fluctuations in

the provided quality of service. We propose to use trigonometric functions as they are oscillating

functions easy to handle and to generate with various settings (mean, amplitude, frequency). These

57

Chapter 3. QoS-Based Probabilistic Trust Models

functions can be expressed in the form:

C ′i(t) = Fi + γi trigi(fi t) + νit, i = 1, . . . , D , (3.64)

where trigi(fi t) is either the cosine or sine function of frequency fi randomly taken in the range

[0.0001, 0.009]. These values keep the functions variations at a reasonable level, see Figure 3.4.

γi is a scaling factor controlling the amplitude of the number of transactions within a given class,

Ai is a translation coefficient that controls the average number of transactions of a given class per

time step, and νt is a white Gaussian noise. t represents the time steps and D the number or quality

classes (equal to 3 or 6 here). As νit is unbounded, the functions C ′i can sporadically go below 0.

These rare occurrences are individually handled by assigning a low random value to the sample,

within the predefined range [10, 50]. In our experiments, we fixed Ai = 1200 and γi = 1000 for all

i’s, and the Signal-to-Noise Ratio has been set to 20. These values can be adapted if a more realistic

model is needed without impact on the overall performance of the method presented here. All

values are rounded in order to get integers which represent the number of transactions over a given

period of time for a given quality class. The proportion vectors are finally obtained by normalizing

the C ′i functions, Ci(t) =
C′i(t)∑D
d=1 C

′
d(t)

, where the function Ci represents the proportions of requests

that have been processed in Good, Average, Poor,... standing by the web service among the total

number of requests sent during a given period of time. The algorithm takes these proportions

Ci(t), t = 1, . . . , 1000, as input data, of which the first 20 samples are only used for training

purpose and the 980 remaining samples are used as testing data.

In the first experiment, we compare GDPSM and DPSM with the data obtained from Simulation

1 for 5 different values of ~γ = {0.001 0.250 0.500 0.750 0.999}, averaged over 10 runs, for the

cases of 3 and 6 quality classes.

Three Quality Classes Results Figure 3.4 displays the data simulated in one of the 10 runs. It

also shows the patterns by which the proportions of the quality classes evolve. The standardized

residuals computed by Equation (3.59) for GDPSM and DPSM averaged over each of the d − 1

dimensions, are displayed in Table 3.9 (left). For all values of γ, our model’s residuals are slightly

smaller than the ones given by the DPSM. The correlations at lag 0 between the residuals of the

58

Chapter 3. QoS-Based Probabilistic Trust Models

first two dimensions computed by DPSM and GDPSM are −0.4529 and −0.0092, respectively.

This shows that our model explains the time series better than DPSM.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Step

Q
ua

lit
y

C
la

ss
 P

ro
po

rti
on

300 310 320 330 340 350 360 370 380 390 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Step

Q
ua

lit
y

C
la

ss
 P

ro
po

rti
on

Figure 3.4: Sample data (top) with zoom (bottom)

Dimension 1 Dimension 2
γ DPSM GDPSM DPSM GDPSM

0.001 0.665 0.632 0.647 0.639
0.250 0.666 0.631 0.653 0.645
0.500 0.673 0.637 0.663 0.658
0.750 0.670 0.667 0.696 0.698
0.999 0.855 0.838 0.899 0.900

Dimension 1 Dimension 2
γ DPSM GDPSM DPSM GDPSM

0.001 0.166 0.067 0.190 0.144
0.250 0.134 0.054 0.154 0.117
0.500 0.116 0.048 0.132 0.101
0.750 0.119 0.050 0.132 0.101
0.999 0.558 0.276 0.587 0.445

Table 3.9: Standardized residuals (left) and MSE (right) of GDPSM and DPSM (3-dimensional
data)

Furthermore, Table 3.9 (right) shows the mean squared error computed to evaluate the predic-

tions of both GDPSM and DPSM. It is clear from this table that our model yields more accurate

predictions than DPSM for both dimensions. To visualize the prediction performance of our model,

we display ~Z, the symmetric log ratio of the quality class proportions after being transformed using

Equation (3.48) (actual data) versus the predicted data (E[p(~Zt+1| ~Wt)]) in Figure 3.5. This figure

demonstrates that our model is capable of predicting the time series and providing a smoother dis-

tribution than that of the actual ones. The latter is actually due to the fact that we are using a noisy

signal. The prediction mostly fits the functional part of the model.

Six Quality Classes Results We repeat the same experiment with another set of 10 different

simulated 6-dimensional data, each of which represented by a trigonometric function as given by

59

Chapter 3. QoS-Based Probabilistic Trust Models

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

Time Step

S
ym

m
et

ric
 lo

g
ra

tio
 o

f q
ua

lit
y

cl
as

s
pr

op
or

tio
n

Actual data
Predicted data

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

Time Step

S
ym

m
et

ric
 lo

g
ra

tio
 o

f q
ua

lit
y

cl
as

s
pr

op
or

tio
n

Actual data
Predicted data

Figure 3.5: Actual versus predicted data for the first (top) and second (bottom) dimensions

Equation (3.64). This aims to further validate the efficiency of partitioning the time series model

into d simpler problems to solve and thus lead to lower prediction errors. The average of the

standardized residuals of GDPSM and DPSM over the 10 simulated data are displayed in Table

3.10. For clarity, we only present the results for γ = 0.001 which raised the best performance for

the 3-dimensional residuals (see Table 3.9). It is noteworthy to mention that other values of γ give

equivalent results with the exception of γ = 0.999 that leads to significantly degraded results. This

mostly confirms what has been observed in [52]. The correlations at lag 0 between each pair of

dimensions are given in Table 3.11.

Dimension
1 2 3 4 5

DPSM 0.642 0.625 0.669 0.705 0.693
GDPSM 0.555 0.541 0.62 0.675 0.674

Table 3.10: Standardized residuals for GDPSM and DPSM with 6-dimensional data

DPSM GDPSM
1 1
-0.242 1 -0.040 1
-0.197 -0.193 1 -0.027 -0.032 1
-0.144 -0.200 -0.160 1 -0.005 -0.014 -0.017 1
-0.195 -0.172 -0.196 -0.182 1 0.001 0.001 0.001 0.0003 1

Table 3.11: Residuals correlations at lag 0

It is very clear that our model shows better performance due to the overall smaller correla-

tions. Table 3.12 illustrates the out-performance of GDPSM in comparison to DPSM in terms of

60

Chapter 3. QoS-Based Probabilistic Trust Models

Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5
γ DPSM GDPSM DPSM GDPSM DPSM GDPSM DPSM GDPSM DPSM GDPSM

0.001 0.238 0.075 0.226 0.072 0.221 0.071 0.215 0.074 0.230 0.135
0.250 0.194 0.061 0.185 0.059 0.179 0.057 0.174 0.060 0.186 0.110
0.500 0.169 0.054 0.162 0.052 0.155 0.050 0.149 0.051 0.161 0.095
0.750 0.178 0.057 0.170 0.055 0.156 0.050 0.146 0.052 0.165 0.096
0.999 0.730 0.241 0.714 0.246 0.735 0.254 0.719 0.281 0.677 0.427

Table 3.12: MSE for GDPSM and DPSM with 6-dimensional data

goodness-of-fit. The MSE of GDPSM’s predictions for all the dimensions are two to three times

smaller than those of DPSM. Figure 3.6 reports the actual and predicted data.

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

Time Step

Sy
m

m
et

ric
 lo

g
ra

tio
n

of
 q

ua
lit

y
cl

as
s

pr
op

or
tio

n

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

Time Step

Sy
m

m
et

ric
 lo

g
ra

tio
n

of
 q

ua
lit

y
cl

as
s

pr
op

or
tio

n

Figure 3.6: Actual (left) versus predicted (right) 6-dimensional function-based data

Simulation 2: Random Data

In this simulation, we test our model with randomly generated 3 and 6 dimensional data. The qual-

ity class of a web service interactions do vary according to the time they occurred. In Simulation 1,

we showed that GDPSM is capable of modeling and forecasting time series generated from noisy

time-varying functions. However, it is equally essential for the proposed model to perform well

with random data to prove its robustness. Similar to Simulation 1, we compute the standardized

residuals, the residuals correlations, and the MSE of the predictions.

Three Quality Classes Results Table 3.13 displays the DPSM and GDPSM standardized resid-

uals (left) and MSE (right) of predictions. Figure 3.7 shows the actual and predicted data. The

61

Chapter 3. QoS-Based Probabilistic Trust Models

correlations between the residuals of the two dimensions as computed by DPSM and GDPSM are

−0.4862 and 0.0116, respectively.

Dimension 1 Dimension 2
γ DPSM GDPSM DPSM GDPSM

0.001 0.798 0.792 0.801 0.810
0.250 0.799 0.792 0.800 0.810
0.500 0.800 0.792 0.799 0.810
0.750 0.804 0.794 0.802 0.810
0.999 0.808 0.798 0.804 0.804

Dimension 1 Dimension 2
γ DPSM GDPSM DPSM GDPSM

0.001 0.126 0.071 0.126 0.097
0.250 0.101 0.056 0.102 0.078
0.500 0.084 0.047 0.085 0.065
0.750 0.072 0.040 0.073 0.055
0.999 0.064 0.036 0.064 0.049

Table 3.13: Standardized residuals (left) and MSE (right) for GDPSM and DPSM with 3-
dimensional random data

250 300 350 400 450 500

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time Step

S
ym

m
et

ric
 lo

g
ra

tio
n

of
 q

ua
lit

y
cl

as
s

pr
op

or
tio

n

Predicted data
Actual data

250 300 350 400 450 500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time Step

S
ym

m
et

ric
 lo

g
ra

tio
n

of
 q

ua
lit

y
cl

as
s

pr
op

or
tio

n

Predicted data
Actual data

Figure 3.7: Actual (left) versus Predicted (right) 3-dimensional Random data

Six Quality Classes Results We repeat the same experiment above with 6-dimensional simulated

random data. It is noteworthy to mention that we select 6 as the higher number of dimensions since

it would not realistically make sense to classify a web service quality into more than 6 classes.

Dimension
1 2 3 4 5

DPSM 0.801 0.816 0.803 0.794 0.789
GDPSM 0.802 0.81 0.811 0.795 0.799

Table 3.14: Standardized residuals for GDPSM and DPSM with 6-dimensional random data

62

Chapter 3. QoS-Based Probabilistic Trust Models

DPSM GDPSM
1 1
-0.067 1 -0.051 1
-0.011 -0.070 1 -0.101 -0.107 1
-0.300 -0.278 -0.299 1 -0.103 -0.103 -0.242
-0.169 -0.201 -0.199 -0.309 1 0.015 0.0174 0.026 0.034 1

Table 3.15: Residuals correlations at lag 0

Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5
γ DPSM GDPSM DPSM GDPSM DPSM GDPSM DPSM GDPSM DPSM GDPSM

0.001 0.137 0.046 0.203 0.075 0.175 0.077 0.494 0.203 0.314 0.158
0.250 0.111 0.037 0.162 0.060 0.140 0.062 0.394 0.162 0.252 0.127
0.500 0.093 0.031 0.135 0.050 0.117 0.051 0.327 0.135 0.210 0.105
0.750 0.079 0.027 0.116 0.043 0.100 0.044 0.280 0.115 0.180 0.090
0.999 0.069 0.023 0.102 0.038 0.088 0.038 0.245 0.101 0.158 0.080

Table 3.16: MSE for GDPSM and DPSM with 6-dimensional random data

100 110 120 130 140 150 160 170 180 190 200
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time Step

S
ym

m
et

ric
 lo

g
ra

tio
n

of
 q

ua
lit

y
cl

as
s

pr
op

or
tio

n

100 110 120 130 140 150 160 170 180 190 200
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time Step

S
ym

m
et

ric
 lo

g
ra

tio
n

of
 q

ua
lit

y
cl

as
s

pr
op

or
tio

n

Figure 3.8: Actual (left) versus Predicted (right) 6-dimensional random data

63

Chapter 4
Trustworthy Composite Web Services Using

Probablistic Approaches

A common practice in service oriented computing (SOC) is the integration of multiple services to

provide complex business processes through composite services. As defined in [66], “a composite

service is an on-demand and dynamic collaboration between autonomous Web service providers

that collectively provide a value added service”. An example of a composite service scenario is

the over-used intuitive online travel services that may include booking flights, hotels, car rentals,

cruises and insurance. Suppose a client is searching for a vacation package that combines the best

deal including the flight, hotel and possibly other services. This search function is an example of a

business process that can be designed as a composite web service. The integration of these services

creates some dependencies among them that will naturally influence the quality of the composed

service. For instance, the hotel check-in time might depend on the flight and possibly the car rental

agencies available at the airport. To optimize the service composition task, it is essential to capture

the quality of the services candidates to composition transactions and their dependencies.

In this chapter, we propose a Bayesian network approach to represent the QoS ratings of com-

posite web services. This approach is based upon the QoS model proposed in Chapter 3. Each

node in the network represent the values of the QoS ratings of one of the constituent services. We

first employ a the MDD to represent the network’s parameters. We then extend our approach by

64

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

adding a Beta-Liouville prior to learn the network’s parameters. Moreover, we construct two BN

classifiers to classify the QoS ratings of composite web services. These classifiers aim to assist the

construction of new composite services and the enhancement of existing ones.

4.1 Trustworthiness of Composite Services

A common practice in SOC is the collaboration among different organizations (service providers)

to provide composed services. As defined in [66], “a composed service is an on-demand and dy-

namic collaboration between autonomous Web service providers that collectively provide a value

added service”. A famous example of a composed services scenario is that of online travel agencies

such as Expedia, Orbitz and Travelocity. Such web sites provide multiple services which include

booking flights, hotels, car rentals, cruises and insurance. The amalgamation of these services cre-

ates some dependencies between them. For instance, the hotel check-in time might depend on the

flight and possibly the car rental agencies available at the airport. These dependency relationships

will naturally influence the quality of the composite service. Therefore, the necessity to capture

the quality of a composite service as well as the responsibility of each of its individual services

becomes essential. We will solve this problem by presenting a Bayesian network model and three

generative mixture models.

4.1.1 Bayesian Network Model

A BN is a graphical representation that uncovers the probabilistic relationships among different

variables. The strengths of employing a BN include handling missing data, learning causal rela-

tionships and avoiding over-fitted results [67]. Figure 4.1 illustrates the BN representation of one

possible composition of 4 services. This BN portrays the composition of popular real services such

as booking flights, booking hotels, car rentals, and insurance. Thus, WebService5 provides both

flights and hotels booking services while WebService6 is composed of the car rental and insurance

services. WebService7 is the service that encompasses all the aforementioned services.

The BN structure reveals the relationships between the constituent nodes (services). Each edge

65

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

WebService3 WebService4 WebService2 WebService1

WebService6 WebService5

WebService7

Figure 4.1: Bayesian network representation of an example of a composite web service.

directed from one node to another states that the former is a parent of the latter. The main strength

of BNs consists of encoding the conditional independence between the variables represented by its

nodes. To illustrate, each of the nodes in Figure 4.1 represents a variable attributed to the QoS of

the corresponding web service. The conditional independence depicted by this network states that

WebService7 (which represents the QoS of the consumer’s interaction with WebService7) depends

on WebService5 and WebService6. It also states that WebService7 is independent of the other web

services given the state of its parents (WebService5 and WebService6).

Composition structure

Given the dynamic aspect of the composition process, the arrangement of the services in a com-

position is usually unknown. Therefore, consumers mostly encounter composite services with

unknown structure. Since a composite service is represented as a BN, learning the structure of

the latter uncovers that of the former. The challenge can be restated as follows: given a set of

observations (vectors of counts) of the quality of a composite web service and its constituents (if

available), what is the structure of the BN that represents this composite service? This question

can be solved by various methods depending on the observations at hand. If the observations are

complete (the quality of all web services are observed), the BN structure can be learned using var-

ious algorithms including the one derived from the maximum weight spanning tree (MWST) [68],

K2 [69] and Markov Chain Monte Carlo [70] algorithms. In case of partial observation, the

structural-Expectation Maximization (structural-EM) [71] and MWST-EM [72] algorithms learn

66

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

the BN structure coping with incomplete data.

Complete observations

We chose the K2 algorithm to learn the structure of the BN in the case of complete data. K2 is a

Bayesian method that searches heuristically for the structure with the maximum likelihood given a

dataset. It begins with the assumption that all structures are equally likely in which case the joint

probability of a given structure S and data D is given by [69]:

P (S,D) = P (S)
n∏
i=1

pai∏
j=1

(ri − 1)!

(Nij +K − 1)!

ri∏
k=1

Nijk! (4.1)

where P (S) is the prior probability for every possible structure S. ri is the maximum number

of values a variable (which denotes a web service) in the network can be assigned to. In this

case, all the network’s variables can be given up to the maximum number of quality classes. For

instance, if the number of quality classes is K, then ri can be replaced by K. pai is the number of

configurations of the parents of the ith variable. Nijk represents the number of times the ith variable

is assigned to the kth quality class given the jth configuration of i’s parents. Nij =
∑ri

k=1 nijk

which is the number of times the ith variable is assigned to any of the ri quality classes given the

jth configuration of i’s parents. To maximize Equation 4.1, it is sufficient to maximize the second

inner product [69] as follows:

max(P (S,D)) = P (S)
n∏
i=1

max

 pai∏
j=1

(ri − 1)!

(Nij +K − 1)!

ri∏
k=1

Nijk!

 (4.2)

To solve Equation 4.2, [69] used a greedy algorithm to search for the maximum P (S,D). It

assumes, a priori, an ordering on the variables such that a node is only allowed to be a parent

of lower-ordered nodes [72]. The search starts with a node having no parents, then it adds the

parent that increases the probability of the structure (the score given by the second inner product

of equation 4.2). The algorithm converges when no addition of a parent increases that score.

67

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

Partial observations

In real interactions with composite web services, the consumers can rarely assess the QoS of its

underlying services. Therefore, it is critical to account for these cases in which consumers partially

observe the quality of the services taking part in a composition. The commonly used method to

learn the BN’s structure in case of incomplete data is known as the structural EM introduced

in [71]. It applies the standard Expectation Maximization (EM) algorithm introduced in [73] to

optimize parameters and then searches for the best structure that fits the data. Thus, at every step,

the algorithm either optimizes the parameters of a current structure or selects a new structure, hence

the name structural EM.

After defining the network’s structure, the Bayesian analysis stipulates the network’s param-

eters which consist, in the case of directed graphs, of the local probabilities at each node. Each

variable in the network can take one value of the vector [1, . . . , K], where K is the number of

quality classes. By combining the structure with the parameters of the network we can compute

the joint probability distribution of the network variables using the chain rule that is given by:

p(X) =
n∏
i=1

p(xi|pai)

where X is the set of variables (nodes), xi is the ith node, and pai denotes the parents of xi.

One of the main advantages of using BNs is the reduction of the number of parameters needed

to characterize the joint probability distribution of a set of variables. For example, having seven

variables that can take up to k values (in this case, k is the number of considered quality classes),

their joint probability distribution is defined by k7 − 1 parameters. However, using the BN in Fig-

ure 4.1, this number is reduced to 4(k−1) +3(k−1)k2. The first term 4(k−1) corresponds to the

probabilities of the single web services P (WS1), P (WS2), P (WS3), and P (WS4) (WS refers to

WebService). The second term 3(k− 1)k2 corresponds to the conditional probabilities of the com-

posite web services (P (WS5|WS1,WS2), P (WS6|WS3,WS4), and P (WS7|WS5,WS6). To

further exemplify, if k = 4, the joint probability distribution requires 47 − 1 = 16383 parameters

while this number drops to 4(4 − 1) + 3(4 − 1)42 = 156 parameters using the BN. In the QoS

context, the parameters of the BN represent the conditional probabilities of the corresponding

68

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

composite service QoS to belong to each of the k classes given the class its constituent services.

Parameters learning

Dirichlet Prior As mentioned earlier, we assume the network variables to be generated from

a K-dimensional multinomial distribution. To compute this distribution’s parameters we use the

Bayesian inference to smooth the estimates and avoid poor results by adding a Dirichlet prior

over the BN model parameters. A convenient way of assessing the Dirichlet prior is using the

equivalent sample size. The basis of this method rely on the fact that the mean of the parameters of

all variables is equal to the user’s prior probability for these variables [74]. For more details about

the equivalent sample size method, we refer the reader to [74] and [75]. Therefore,

P (θxi|pai) =
∏
xi

θ
αxi,pai−1

xi|pai , (4.3)

where αxi,pai = S qxi|pai , S > 0 is the equivalent sample size which determines the user’s confi-

dence in his assessment of the belief network qxi|pai . In [75], q was chosen to be uniform which

gives:

αxi,pai =
S

|xi||pai|
. (4.4)

We are also aware that in service-oriented environments, the consumer is not aware of the qual-

ity of all web services included in a composite web service. In other words, the quality of some web

services is not observed. Hence, we extend our model to learn from incomplete data. The EM al-

gorithm is the benchmark technique suited to handle problems of this sort. First introduced in [73],

the EM algorithm iterates between two steps: an expectation (E-step) and a maximization step (M-

step). In the former, the missing variables are expected with respect to the current estimates of the

parameters and observed variables. The latter follows and provides new estimates of the parame-

ters given the full data (observed and expected). Various inference techniques have been suggested

69

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

in the literature to solve the E-step such as the variable elimination [76] and junction tree [77] tech-

niques. Thus, we use the standard variable elimination (VE) algorithm which consists of marginal-

izing out irrelevant variables from a list of factors one at a time. For instance, considering the net-

work in Figure 4.1, the VE algorithm starts by choosing a variable ordering. For simplicity, we will

use WS to replace WebService in the variables’ names in the remaining of this section. Therefore,

an ordering example might be (WS1,WS2,WS5,WS3,WS4,WS6,WS7). Subsequently, the

factors p(WS1), p(WS2), p(WS5|WS1,WS2), p(WS3), p(WS4), p(WS6|WS3,WS4), and

P (WS7|WS5,WS6) are initialized, as well as the evidence and query. Then, the variables are

eliminated in the order chosen. To eliminate WS1, we first combine all the factors that contain

WS1 by computing the product factor P (WS5|WS1,WS2) ∗ P (WS1). Then, we marginalize

away the variable by summing over its possible values as follows m(WS1) =
∑

WS1 p(WS1) and

the resulting factor will be added to the distribution. The other variables will be eliminated in the

same fashion.

Beta-Liouville Prior The Dirichlet prior has been widely used as the most appropriate prior

in Bayesian network learning. This is based on the fact that the Dirichlet distribution is closed

under multinomial sampling. The Liouville distribution of second kind has been shown to be a

generalization of the Dirichlet distribution. Like the Dirichlet, the BLD has been used in Bayesian

analysis of count data. However, it hasn’t been applied as a prior in Bayesian networks learning.

Therefore, we extend the above BN model by considering the Beta-Liouville distribution as another

prior to the multinomial for learning the network’s parameters. We use the proposed BN to build

a classifier for the QoS of composite web services. This classifier serves as an assessment of

the quality of the collaboration among web services. The results of this classification will guide

the web service composition task as follows. If the QoS was classified in a low quality class,

then we know that one or more of the collaborating services is providing a low quality service.

Consequently, we can either try a different combination of collaborating web services, or identify

the responsibility of each web service in the quality of the composite service. In both cases, the

improvement of the quality of composite services can be achieved.

It is noteworthy to mention that the integration of a new prior distribution is challenging on

70

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

both conceptual and technical levels. First, on a conceptual level, the derived distribution has to

logically fit the type of data being handled and be more advantageous than the replaced distri-

bution. For instance, when using generalized Dirichlet in the place of Dirichlet the order of the

variables in the distribution becomes to matter and the number of parameters is bigger which gives

it more degrees of freedom to adjust the distribution. This flexibility in fitting several applications

requires the derivation of a new set of equations to estimate the parameters of the new distribution

(in this case, the multinomial generalized Dirichlet). The same applies to the Beta-Liouville prior

especially when being introduced in the Bayesian network context. Learning the parameters of

the Bayesian network is not as straightforward as learning the parameters of the distribution using

the Bayesian inference method. The structure of the network, the number and type of variables

need to be taken into consideration. While Dirichlet has d + 1 parameters, the Beta-Liouville has

one extra parameter which is introduced by the Beta function employed as part of the distribution.

Learning the new parameters also required new equations to be added to the learning algorithm

of the Bayesian network parameters. The details of these models will be thoroughly discussed

throughout the subsequent sections.

In dimension K, the Beta-Liouville has K + 2 parameters ~α = (α1, . . . , αK , α, β). Given a

vector of proportions ~X = (X1, . . . , XK+1), αi can be viewed as a pseudo-count for i = 1, . . . , K.

Then, α, β are the parameters of the Beta distribution which is, in this case, the generating function

of the Liouville distribution. The details of the methods used for assessing Dirichlet priors are

available in [74]. Moreover, various methods for assessing Beta priors have been reviewed in [78].

To assess the Beta-Liouville prior, we use the equivalent sample size method. We compute the

parameters α1, . . . , αK using the same equation used in the Dirichlet case, αxi|pai = S p((xi|pai) =

j). We choose a uniformly distributed prior belief network p((xi|pai) = j) [75], from which we

obtain:

αxi|pai =
S

C(pai)
, (4.5)

where C(pai) is the cardinality of the Cartesian product of the variables contained in the set of

parents for each xi. Then, the parameters of the Beta distribution are estimated by computing

71

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

their maximum likelihood given the sum of α1, . . . , αK parameters for each variable xi given by∑K
j=1 αxij |paij .

4.1.2 Online Bayesian Network

An additional challenge in evaluating the QoS-based trustworthiness of web services is its continu-

ously changing quality. For instance, non-functional QoS properties such as the response time and

availability may differ depending on the time the web services are called. Business related web

services are generally busier during the working hours while social web services tend to be more

occupied afterwards. This raises the need to be able to assess the trustworthiness of a web service

at any point in time and after every interaction. This capability necessitates the construction of an

online trust system to allow the updating of the QoS after each observation. In the BN context, this

requirement is known as the online learning of the networks parameters. Therefore, we propose

two online models; the first is based on a discounting window and the second employs an extension

of the EM algorithm called Voting EM [79].

Discounting Window Model

The online approach we propose consists of updating the BN parameters after each observation. It

starts with a known BN structure S, a set of discrete variables (nodes) X , and a predefined num-

ber of values each variable in X can be assigned to, which in this context, is the number of QoS

classes. Each variable in the network is then associated to a multinomial conditional probability

distribution. It is common, in the BN literature, to add a Dirichlet prior to this distribution. Instead,

our model substitutes the Dirichlet with the generalized Dirichlet distribution. Thus, the problem

becomes the estimation of MGDD parameters which, in this case, represent the conditional prob-

ability tables (CPT) entries of the BN. Each entry in the CPT, denoted by θijk, is the conditional

probability of a variable xi being equal to the QoS class k, given that the parents of xi, pai are

observed in their jth configuration. Then, the network’s parameters are updated according to the

following rule:

72

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

Algorithm 1: Online learning of BN parameters

Input: Empty dataset D, a partially observed data instance ~d, BN structure S with a set of
nodes X , initial parameters ~Θ, window size w
Add: generalized Dirichlet prior to each variable in Z
if size(D) (mod w) > 0 then

Add d to D
else
D = d

end if
for every variable xi in X do

E-Step: compute the expectations of hidden variables

p(xki , pa
j
i |D) =

1

N

N∑
n=1

p(xki , pa
j
i)

M-Step: Θnew = argmax p(Θold|D)

θijk =
p(xki , pa

j
i |D)

p(paji |D)

Update: the parameters of the generalized Dirichlet prior of xi

αk = αk +Xik

βk = βk +Xik+1 + · · ·+XiK+1

end for

Θnew = argmax p(Θold|D)

where D is set of data instances D = dn, . . . , dN , Θold and Θnew are the current and updated

parameters respectively.

To account for the dynamic nature of the QoS, we employ an updated version of discounting

window notion used in [80]. The intuition of the discounting window is to consider as many data

cases as the size of the window can accommodates. For instance, a window of size 10 will store

in D up to the 10th incoming data cases. In [80], once the 11th data case arrives, it replaces the

73

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

oldest one stored in D. However, in our version of the discounting window, upon arrival of the

11th data case, D and the window will be reset allowing the latter to starts growing again to hold

new 10 instances. After receiving a data case ~di = [dik, . . . , diK+1] the BN parameters are updated

using the EM update rule mentioned earlier. Then, the parameters (α1, . . . , αK , β1, . . . , βK) of the

generalized Dirichlet priors of each network variable are updated according to the following:

αk = αk +Xik

βk = βk +Xik+1 + · · ·+XiK+1

where Xik is the number of times the ith variable had the kth value. K + 1 is the total number of

values xi can have (in this case, this is the total number of QoS classes). When the value of xi is

not observed, it is then replaced by its expected value given by:

p(xki , pa
j
i |D) =

1

N

N∑
n=1

p(xki , pa
j
i)

The steps of our online learning algorithm of the BN parameters are summarized in Algorithm 1.

Voting-EM Model:

The Voting-EM algorithm [79] is implemented as an extension to the EM(η) algorithm proposed

by Bauer et al. in [81]. Voting EM depends on η, a learning rate that can be either fixed or dynamic.

This learning rate controls the extent to which we consider the past observations in the learning

process. In other words, past observations count less when η is close to 1. However, they count

more when η is at the proximity of 0 [79]. The learning of BN parameters consists of learning the

conditional probability tables (CPTs) entries given a current assignment of the θ̄ parameters and a

set of data cases. In online learning, the set of data cases (D) is replaced by one data case which is

an assignment of values to the network’s variables. Therefore, the goal is to build a new parameters

model θ̃ based on the old model θ̄ and a data case. In the EM(η) algorithm and assuming a batch

learning, θ̃ is computed by the maximization of the following function:

F (θ̃) = η ∗ LD(θ̃)− d(θ̃, θ̄)

74

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

where LD(θ̃) is the normalized log likelihood of D in θ̃ and is given by:

LD(θ̃) =
1

N

N∑
j=1

logPθ̃(yj)

d(θ̃, θ̄) represents the distance between the old and new models. Various distance functions have

been proposed including the Chi squared, L2-norm, and relative entropy [81]. To derive the Voting

EM maximization equation, [79] used the Chi squared distance function. As mentioned earlier, the

Voting EM is a natural extension of the EM(η) to handle the online learning. In case of complete

data, the update rule of the network’s parameters that maximizes F (θ̃) is the following:

θtijk =

θt−1
ijk + η + (1− η)θt−1

ijk for P (paji |yt) = 1 &

P (xki |yt) = 1,

(1− η)θt−1
ijk for P (paji |yt) = 1 &

P (xki |yt) = 0

θt−1
ijk otherwise.

More details about the Voting EM online learning rules and its convergence properties are available

in [79].

Afterwards, we can use the learned network parameters (CPTs) to calculate the probabilities of

the composite web service to belong to each of the quality classes. For instance, suppose that we

consider the four quality classes from Section III and a BN with WSC composed of WSA and

WSB. Then, each of WSA and WSB contains 4 entries while WSC contains 64, each of which

represents the probability of the QoS of WSC to belong to one of the 4 quality classes given one

of the 16 different configurations of its parents’ QoS classes. Thus, we end up with 4 probabilities

which provide a descriptive representation of the quality of the composite web service. Despite

the eminence of this multi-dimensional quality representation, it is of equal significance to assign

each web service a uni-dimensional trust score. This provides a straightforward means to compare

the quality of web services and a simplistic approach to assist the web service’s selection process.

Consequently, this raises the need for a function to compute the trustworthiness of a web service

after each interaction. This function aims to satisfy the following desirable properties:

75

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

1. The trust function should be continuous.

2. It should increase with the increasing probabilities of the web service to belong to high qual-

ity classes. In other words, this function should increase when the BN parameters (CPTs)

associated to high quality classes increase.

3. However, it should decrease with the increasing probabilities of the web service to belong

to low quality classes. In other words, it should decrease when the BN parameters (CPTs)

associated to low quality classes increase.

The proposed trust function is given by:

Trust =

dC2 e∑
i=1

w′ipi −
C∑

i=dC2 e+1

w′ipi (4.6)

where w′i = wi∑C
i=1 wi

which normalizes the weights and trust values to the [0, 1] interval. wi is

the weight assigned to the ith good quality class (1 ≤ i ≤
⌈
C
2

⌉
) or the ith bad quality class

(
⌈
C
2

⌉
< i ≤ C). pi is the probability of the QoS to belong to the ith quality class. 1 and C represent

the highest and lowest quality classes, respectively. It is worthy to note that we chose
⌈
C
2

⌉
to be

the divider between good and bad quality classes. The value of this divider can be increased or

decreased to make the trust function looser or stricter, respectively. For example, a slightly stricter

trust computation can be achieved by substituting
⌈
C
2

⌉
for
⌊
C
2

⌋
. The assigned weights will be

fixed during the same experiment and vary depending on the types of agents and services involved.

For instance, the truster agent might be very conservative and willing to interact with the service

having the highest quality. This might be the case with data critical services dealing with personal

and/or financial information. In this case, the probabilities associated with the low-quality classes

will be given relatively high weights to penalize the overall trust values of the web service. In

our experiments, we consider a rather lenient environment where the probabilities associated with

the high quality classes are assigned higher weights than the ones associated with the low quality

classes. We can easily prove that this function satisfies the desirable properties by showing that

its partial derivatives with respect to the weights of good classes and bad classes are positive and

negative, respectively.

76

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

4.1.3 Generative Mixture Models

In this section, we apply three mixture models to compute the trustworthiness of composite ser-

vices. A mixture model with M components is defined as:

p(~X|Θ) =
M∑
j=1

p(~X|j, ~αj)P (j), (4.7)

where P (j) are the mixing coefficients (constrained by 0 < P (j) < 1 and
∑M

j=1 P (j) = 1). Θ

refers to the entire set of parameters to be estimated, Θ = (~α1, ..., ~αM , P (1), ..., P (M)). The pro-

posed models are based on three assumptions in which p(~X|j, ~αj) is either a MDD, MGDD, or

MBLD. The learning of the mixtures for each of these assumptions have been proposed in [82],

[83], and [38] respectively. As an example, we describe the learning algorithm for the mixture of

MDD. This algorithm starts by initializing the model parameters using the fuzzy-C Means (FCM)

and method of moments (MM). After the initialization steps, the algorithm iterates, until conver-

gence, over the steps of the EM algorithm. During the E-step, the posteriori probabilities and the

complete-data log-likelihood are computed. In the M-step, the parameter estimates are updated

according to Equation 4.9. The algorithm converges when the variance of the conditional expecta-

tion of the complete-data log-likelihood between two successive iterations is less than a threshold.

Algorithm 2 shows the steps for learning the parameters of a mixture of MDD. Similar steps may

be followed to learn the parameters of mixtures of MGDD and MBLD.

4.2 Experimental Results

In order to evaluate the models presented in this proposal, we assume the following scenario:

A consumer or a software agent is willing to interact with a composite service (CS) which is

composite of two services A and B. The proposed models can very well scale to a larger number

of web services; we only used two web services for simplicity reasons. Furthermore, we adopt the

four quality class model used, for instance, in the QWS data set [84]. The QWS data set classifies

each web service in one of the following four classes; Platinum, Gold, Silver, and Bronze. The

Platinum class represents the highest quality a web service might be assigned to and the Bronze

77

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

Algorithm 2: MMDD Estimation

Input: k-dimensional data ~Xi, i = 1, ..., N and a number of components M
Apply: the Fuzzy C-means to obtain the elements, covariance matrix and mean of each component
Apply: the Method of Moments for each component j to obtain the vector of parameters ~αj
Assign: data to clusters
Converged← false
while !Converged do

E-Step: compute the posteriori probabilities

p(t)(j| ~Xi, ~αj)←
p(t−1)(~Xi|j, ~αj)P (t)(j)∑M
j=1 p

(t−1)(~Xi|j, ~αj)P (j)

llh(t) ←
N∑
i=1

log(

M∑
j=1

p(t)(~Xi|j, ~αj)P (t)(j))

M-Step: Θ̂(t) ← argmax llh(t−1)

~αj
(t) ← ~αj

(t−1) − ε δ

δ ~αj
llh(t−1)

P (t)(j) =

∑N
i=1 p

t−1(j| ~Xi, ~αj)

N

test← llh(t) − llh(t−1)

if test < ε then
Converged← true

end if
end while

represents the lowest. To the best of our knowledge, there is no data set available that captures the

ranking of a web service at different times with different load inputs. Therefore, we monitored real

web services available online at different times for three days with one hundred different load test

cases.

4.2.1 Bayesian Network Experiments

Parameters Learning

The first experiment aims to evaluate the performance of learning the BNs parameters using the

proposed approach. Therefore, we consider a simple network that consists of three nodes each of

78

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

which represents the quality of one of the three web services A, B, and CS. A and B are the parents

nodes of CS. For the purpose of these experiments, A and B represent two real web services that

provide currency conversion and IP address resolution respectively. Then, the quality values of

CS are computed by a composition function. We will consider the composition functions used

in [18] such as Switch, Sum, Product, Min, and Max. For instance, Switch computes the value of

the composite quality by choosing the value of one of its parents based on a predefined multino-

mial distribution. Sum generates the composite quality value by adding the quality values of the

corresponding children. Product computes the composite quality value by multiplying the quality

values of the corresponding children. Min assigns the composite service a quality value inherited

from the child with the lowest quality. Max assigns the composite service a quality value inherited

from the child with the highest quality. In the case of Switch, we initialize a multinomial distri-

bution with the parameters [0.8 0.2]. In other words, the quality values of CS will be chosen 80%

from A and 20% from B. At each time step, the conditional probabilities of the Bayesian network

are computed using the approach described earlier. To illustrate, below are the conditional proba-

bilities tables (CPTs) of each variable in the network (A, B, and CS) after 10 observations where

“Timestep” refers to the number of observations.

P(A=1) P(A=2) P(A=1) P(A=4)

0.1710 0.4868 0.0836 0.2585

Table 4.1: CPT of constituent service A.

P(B=1) P(B=2) P(B=1) P(B=4)

0.1775 0.1775 0.1769 0.4680

Table 4.2: CPT of constituent service B.

We run the same experiments with different priors; Dirichlet, generalized Dirichlet and Beta

Liouville as discussed earlier. To evaluate the performance of the Bayesian model in estimating

the trustworthiness of composite services, we compare it to the multinomial Naive Bayes approach

[85]. This approach naively assumes that the qualities of individual services are independent given

the class quality of the composite service. The parameters of the Naive Bayes are the class priors

79

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

B=1 B=2 B=3 B=4
P(CS=1) A=1 0.2207 0.2199 0.2209 0.1693

A=2 0.1370 0.1371 0.1379 0.0211
A=3 0.2370 0.2369 0.2370 0.2112
A=4 0.2035 0.2037 0.2183 0.1416

P(CS=2) A=1 0.2207 0.2195 0.2208 0.1693
A=2 0.3533 0.3392 0.3744 0.9298
A=3 0.2370 0.2369 0.2370 0.2112
A=4 0.2035 0.2037 0.2103 0.1576

P(CS=3) A=1 0.2207 0.2189 0.2209 0.1684
A=2 0.1385 0.1377 0.1379 0.0211
A=3 0.2370 0.2369 0.2370 0.2112
A=4 0.2035 0.2037 0.2182 0.1682

P(CS=4) A=1 0.3379 0.3416 0.3374 0.4930
A=2 0.3712 0.3860 0.3497 0.0281
A=3 0.2891 0.2894 0.2889 0.3665
A=4 0.3896 0.3889 0.3533 0.5327

Table 4.3: CPT of composite service CS

of the composite service and the conditional probabilities of the counts of the quality class of

A and B, given the quality class of CS. The class priors are computed from the actual data by:

prior(C = j) =
NCj
N

where NCj is the number of observations that belong to class Cj and N is the

total number of observations. The conditional probabilities for each of the four classes are given

by θ̂yi =
Nyi+α

Ny+αny
where Nyi is the number of times the ith feature appear in an observation that

belongs to class y. ny is the total number of times all features appear for class y. α is a smoothing

factor that we set to be equal to 1 (this is called Laplace smoothing), and n is the total number of

features.

After learning the network parameters (probabilities of CS belonging to each of the four quality

classes), we can use various weighted functions to compute the trust value of CS. The weights of

the probability of each class will vary depending on the types of agents and services involved.

To control the variance among different functions we set the range of the weights to the [1 10]

range. For instance, the truster agent might be very conservative and willing to interact with agents

belonging to the Platinum class only. This might be the case with data critical services dealing

with personal and/or financial information. In this case, the probabilities associated with the last

two classes will be given relatively high weights to emphasize low quality outcomes of a given

service. In our experiments, we assume a lenient environment where the probabilities associated

with the first two classes are assigned higher weights than the ones associated with the last two.

80

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

The trust function we used is given by:

Trust =

∑C
i=1 wipi

maxW
, (4.8)

where wi is the weight associated with the ith class and pi is the probability of the service quality

to belong to the ith class. maxW is the maximum weight that normalizes trust to be in the [0 1]

range.

Figures 4.2 and 4.3 show the estimated trust using Bayesian and naive Bayes approaches for the

Switch, Min (Figure 4.3-left) and Max (Figure 4.3-right) composition functions respectively. For a

total of 100 incomplete observations, the graph shows that with 50% of missing data, the Bayesian

approach still learns the quality of the composite service CS. However, the Naive approach, not

handling missing data well, shows a low learning accuracy of trust estimates. The EM algorithm

employed in the Bayesian approach succeeds to learn from incomplete data. At each time step, the

algorithm iteratively imputes missing values using exact inference and then uses the complete data

(observed + imputed) to update the network parameters.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Timestep (# of observations)

Tr
us

t

Actual data
Bayesian (50% missing)
Naive (50% missing)

Figure 4.2: Bayesian (Dirichlet prior) vs. Naive Bayes trust estimation for Switch composition
function

We also show in Figure 4.4 that the Bayesian approach can learn the conditional trust of a

composite service based on one of the constituent services A and B for Max and Min. In this

experiment, we observed that 61% of CS quality came from A in the case of Max and 61% from B

in the case of Min. As is shown in Figure 4.4 (left), the conditional trust in CS given A is, for the

81

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Timestep (# of observations)

Tr
us

t

Actual data
Bayesian (50% missing)
Naive (50% missing)

(a) Min composition function

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (# of observations)

Tr
us

t

Actual data
Bayesian (50% missing)
Naive (50%missing)

(b) Max composition function

Figure 4.3: Bayesian (Dirichlet prior) vs. Naive Bayes trust estimation

most part, higher than the trust and the conditional trust given B. However, the conditional trust

given B is mostly higher than both the trust and the conditional trust given A in the case of Min

figure 4.4 (right). Similar experiments were employed with a Beta-Liouville prior for which the

results are shown in figures 4.5 and 4.6.

Quality of Service Classification

We will use the BN structure from Figure 4.1 to run our classification experiments. Since real

composite services available in the industry do not often involve a large number of services, we

believe that experimenting with 7 services is pragmatic. We assume the following scenario: A

consumer is interacting with the composite web service WS7 and is interested in learning about

its trustworthiness. After every interaction, the consumer is capable of observing the QoS of this

web service which can belong to one of the four classes described earlier. It is also noteworthy

to mention that the consumer is not aware of the quality of each of the constituent web services

of WS7. This raises the necessity to deal with missing data and capture the responsibility of

all web services in the overall quality of the composite web service. As we discussed in the

previous section, we will apply the Bayesian approach with a Beta-Liouville priori distribution.

For the purpose of our experiments, we used a synthetic data set that is sampled and generated as

follows: The quality classes of the four single web services are sampled from different multinomial

82

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

0 10 20 30 40 50 60 70 80 90 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Timestep (# of observations)

Tr
us

t

Trust in CS
Trust in CS given A
Trust in CS given B

(a) Min composition function

0 10 20 30 40 50 60 70 80 90 100

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Timestep (# of observations)

Tr
us

t

Trust in CS
Trust in CS given A
Trust in CS given B

(b) Max composition function

Figure 4.4: Conditional trust estimation based on constituent services A and B

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (# of observations)

Tr
us

t

Actual data
Bayesian (50% missing)
Naive (%0% missing)

Figure 4.5: Bayesian (Beta Liouville prior) vs. Naive Bayes trust estimation for SWITCH compo-
sition function

distributions with the parameters exposed in Table 4.4.

The first column asserts that the quality of WS1 will be assigned to the first class 40% of the

times, to the second class 30% of the times, so on and so forth. The advantage of working with a

synthetic dataset and knowing the distributions’ parameters that generated it is two-fold. First, it

allows us to evaluate the learned parameters using the Bayesian approach by comparing them to

the initial ones from Table 4.4. Second, it awards us the ability to capture the responsibilities of

the constituent web services in the quality of the composite web services.

83

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (# of observations)

Tr
us

t

Actual data
Bayesian (50% missing)
Naive (50% missing)

(a) Min composition function

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (# of observations)

Tr
us

t

Actual data
Bayesian (50% missing)
Naive (50% missing)

(b) Max composition function

Figure 4.6: Bayesian (BL prior) vs. Naive Bayes trust estimation

WS1 WS2 WS3 WS4

[0.4 0.3 0.1 0.2] [0.1 0.1 0.4 0.4] [0.3 0.3 0.2 0.2] [0.2 0.2 0.3 0.3]

Table 4.4: Multinomials used to generate the classes of the four single web services.

After sampling the values of the single web services, the quality values of the three compos-

ite web services WS5, WS6, and WS7 are computed using one of the composition functions;

Switch, Sum, Product, Min, and Max that are discussed in [18]. For instance, Switch com-

putes the value of the composed quality by choosing the value of one of its parents based on a

predefined multinomial distribution. Sum generates the composite quality value by adding the

quality values of the corresponding children. Product computes the composite quality value by

multiplying the quality values of the corresponding children. Min assigns the composite service a

quality value inherited from the child with the lowest quality. Max assigns the composite service

a quality value inherited from the child with the highest quality. To complete the data needed for

training our classifiers, we will apply three Switch composition functions, one for each compos-

ite service. Therefore, we initialize three multinomial distributions with the parameters [0.8 0.2],

[0.2 0.8], and [0.7 0.3]. Each of the previous distributions is used to choose the quality of the

composite web services WS5, WS6, and WS7 respectively. In other words the quality values of

WS5 will be chosen 80% from WS1 and 20% from WS2. The same concept applies to the other

composite web services.

84

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

Classifier1 This classifier consists of applying the Bayesian approach with the Beta-Liouville

distribution as a prior to the conditional probabilities of the BN variables. The experiment begins

by the construction of the network and the initialization of the conditional probabilities. As we

mentioned before, the only observed network variable is the composite web service WS7. The

dataset which consists of 300 samples is then partitioned into two parts; a training set (200 sam-

ples) and a testing set (100 samples of which the values of WS7 are removed). Afterwards, the

network’s parameters are learned using the EM algorithm discussed earlier and the training data

set. Subsequently, the class of each data sample in the testing set is predicted as follows. At first,

the evidence (observed values) is added to the network. Then, the marginal on WS7 is computed

which devotes the probabilities of the quality of WS7 being equal to each of the predefined four

quality classes. Finally, the class with the highest probability is assigned to the corresponding data

sample. The learned parameters of the four single web services are compared in the Table 4.5 to

the initial parameters from Table 4.4. The conditional probabilities at WS5, WS6, and WS7 are

displayed in the tables 4.6, 4.7, and 4.8, respectively.

WS1 0.4086 0.2646 0.1006 0.2262

WS2 0.0868 0.0868 0.4240 0.4024

WS3 0.2795 0.3442 0.1454 0.2309

WS4 0.2009 0.2409 0.2558 0.3024

Table 4.5: CPT of WS1, WS2, WS3 and WS4.

These results prove the efficiency of the Bayesian approach in learning the conditional probabilities

corresponding to each variable despite that only the values ofWS7 were observed and the rest were

hidden.

Classifier 2 We compare the first classifier with another BN classifier that applies the Bayesian

approach with a Dirichlet prior instead of the Beta-Liouville. This experiment follows the same

steps as with the first classifier. Also, it uses the same dataset described earlier for both training

and testing phases. The learned parameters of the four single web services are displayed in the

85

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

WS2=1 WS2=2 WS2=3 WS2=4
P(WS5=1) WS1=1 0.9583 0.5882 0.8362 0.7750

WS1=2 0.0500 0.0357 0.0125 0.0104
WS1=3 0.6661 0.0500 0.0208 0.0227
WS1=4 0.0625 0.0625 0.0139 0.0132

P(WS5=2) WS1=1 0.0139 0.3214 0.0086 0.0083
WS1=2 0.8500 0.8929 0.7625 0.8021
WS1=3 0.0833 0.0500 0.0208 0.0227
WS1=4 0.0001 0.0625 0.0139 0.0132

P(WS5=3) WS1=1 0.0139 0.0357 0.1466 0.0083
WS1=2 0.0500 0.0357 0.2125 0.0104
WS1=3 0.7500 0.8500 0.9375 0.6591
WS1=4 0.0625 0.0625 0.2917 0.0132

P(WS5=4) WS1=1 0.0139 0.0357 0.0086 0.2083
WS1=2 0.0500 0.0357 0.0125 0.1771
WS1=3 0.0833 0.0500 0.0208 0.2955
WS1=4 0.8125 0.8125 0.6806 0.9605

Table 4.6: CPT of composite service WS5.

Table 4.9. The conditional probabilities assigned to WS5, WS6, and WS7 are displayed in the

tables 4.10, 4.11, and 4.12, respectively.

The mean errors of the differences between the actual parameters and those estimated using the

Bayesian approaches with Dirichlet and Beta-Liouville priors are compared in Figure 4.7. The

mean errors of the estimated parameters with the Beta-Liouville prior are less than those of the

estimated parameters with the Dirichlet prior except for the mean error of P (WS = 1), where

WS can be WS1, WS2, WS3, or WS4.

Classifier 3 To further evaluate the performance of the above classifiers, we compare them to

the state of the art naive Bayes (NB) classifier. This approach naively assumes that the features

are conditionally independent given the class labels. To evaluate the performance of the three

classifiers, we display their confusion matrices in Table 4.13 which present the true classes (rows)

versus the predicted ones (columns). Therefore, the numbers in the first diagonal show the correctly

predicted classes. The classification rate of the NB classifier (66%) is shown to be smaller than

86

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

WS4=1 WS4=2 WS4=3 WS4=4
P(WS6=1) WS3=1 0.9998 0.5882 0.6874 0.9410

WS3=2 0.5554 0.0001 0.0001 0.0001
WS3=3 0.6661 0.0002 0.0001 0.0001
WS3=4 0.2857 0.0001 0.0001 0.0001

P(WS6=2) WS3=1 0.0001 0.4117 0.0001 0.0001
WS3=2 0.4444 0.9998 0.5384 0.6362
WS3=3 0.0003 0.3999 0.0001 0.0001
WS3=4 0.0001 0.3000 0.2103 0.0001

P(WS6=3) WS3=1 0.0001 0.0001 0.3125 0.0001
WS3=2 0.0001 0.0001 0.4615 0.0001
WS3=3 0.3332 0.5997 0.9998 0.5832
WS3=4 0.0001 0.0001 0.4999 0.0001

P(WS6=4) WS3=1 0.0001 0.0001 0.0001 0.0589
WS3=2 0.0001 0.0001 0.0001 0.3636
WS3=3 0.0003 0.0002 0.0001 0.4166
WS3=4 0.7142 0.6998 0.4999 0.5327

Table 4.7: CPT of composite service WS6.

both of the classifier 1 and 2. Both BN classifiers with the Dirichlet and Beta-Liouville priors

have approximately a similar performance with the classification rate of classifier 1 (80%) being

slightly higher than that of classifier 2 (79%). This proves that the Beta-Liouville distribution can

be another effective prior to the multivariate variables of BNs.

To further validate the high classification performance of our classifiers, we run an additional

experiment with a different network structure (Figure 4.8). This network represents the composi-

tion of a more complex service with a larger number of constituents (more than double the services

from the first experiment). The confusion matrices of the three classifiers are also reported in Ta-

ble 4.14. These results show that the number of services does not compromise the classification

performance of the classifiers. In contrast, the additional data available from the added services

improved the classification accuracy of all classifiers.

Online Bayesian Network Experiments

Online parameters learning In the following experiment, we test the performance of the Voting

EM online learning by considering the following scenario. Suppose there is a composite web

87

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

WS6=1 WS6=2 WS6=3 WS6=4
P(WS7=1) WS5=1 0.9942 0.0842 0.3330 0.1741

WS5=2 0.9256 0.0019 0.0007 0.0009
WS5=3 0.8702 0.0011 0.0014 0.0017
WS5=4 0.7461 0.0038 0.0013 0.0011

P(WS7=2) WS5=1 0.0019 0.9132 0.0010 0.0007
WS5=2 0.0722 0.9942 0.1741 0.3526
WS5=3 0.0019 0.8544 0.0014 0.0017
WS5=4 0.0019 0.7423 0.0013 0.0011

P(WS7=3) WS5=1 0.0019 0.0013 0.6649 0.0007
WS5=2 0.0011 0.0019 0.8245 0.0009
WS5=3 0.1260 0.1433 0.9958 0.2224
WS5=4 0.0019 0.0038 0.9132 0.0011

P(WS7=4) WS5=1 0.0019 0.0013 0.0010 0.8245
WS5=2 0.0011 0.0019 0.0007 0.6456
WS5=3 0.0019 0.0011 0.0014 0.7741
WS5=4 0.2500 0.2500 0.0842 0.996

Table 4.8: CPT of composite service WS7.

WS1 0.3889 0.2593 0.1435 0.2083

WS2 0.1389 0.1065 0.3657 0.3889

WS3 0.2898 0.3097 0.2102 0.1903

WS4 0.1944 0.1944 0.3009 0.3102

Table 4.9: CPT of WS1, WS2, WS3 and WS4.

service C composed of the two web services A and B. The Bayesian network’s nodes represent the

quality classes of each of these web services. The quality classes (QoS ratings) are the same ones

we used in the previous experiments. We set the initial parameters of the network as follows:

CPTA = [0.1 0.3 0.4 0.2] CPTB = [0.5 0.1 0.2 0.2]

CPTC(:, :, 1) =

0.13 0.01 0.41 0.45

0.20 0.40 0.32 0.08

0.29 0.15 0.18 0.38

0.19 0.29 0.08 0.44

88

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

WS2=1 WS2=2 WS2=3 WS2=4
P(WS5=1) WS1=1 0.9583 0.5882 0.8362 0.7750

WS1=2 0.0500 0.0357 0.0125 0.0104
WS1=3 0.6661 0.0500 0.0208 0.0227
WS1=4 0.0625 0.0625 0.0139 0.0132

P(WS5=2) WS1=1 0.0139 0.3214 0.0086 0.0083
WS1=2 0.8500 0.8929 0.7625 0.8021
WS1=3 0.0833 0.0500 0.0208 0.0227
WS1=4 0.0001 0.0625 0.0139 0.0132

P(WS5=3) WS1=1 0.0139 0.0357 0.1466 0.0083
WS1=2 0.0500 0.0357 0.2125 0.0104
WS1=3 0.7500 0.8500 0.9375 0.6591
WS1=4 0.0625 0.0625 0.2917 0.0132

P(WS5=4) WS1=1 0.0139 0.0357 0.0086 0.2083
WS1=2 0.0500 0.0357 0.0125 0.1771
WS1=3 0.0833 0.0500 0.0208 0.2955
WS1=4 0.8125 0.8125 0.6806 0.9605

Table 4.10: CPT of composite service WS5.

CPTC(:, :, 2) =

0.13 0.16 0.55 0.16

0.39 0.08 0.39 0.14

0.31 0.29 0.02 0.38

0.26 0.18 0.34 0.22

CPTC(:, :, 3) =

0.06 0.34 0.22 0.38

0.11 0.29 0.22 0.38

0.28 0.25 0.18 0.29

0.25 0.17 0.03 0.55

CPTC(:, :, 4) =

0.38 0.42 0.13 0.07

0.32 0.28 0.12 0.28

0.46 0.34 0.16 0.04

0.23 0.27 0.32 0.18

Afterwards, we generate 1000 samples from the constructed network. We also build another

network with the same structure as the one above with randomly generated parameters. We run

89

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

WS4=1 WS4=2 WS4=3 WS4=4
P(WS6=1) WS3=1 0.9998 0.5882 0.6874 0.9410

WS3=2 0.5554 0.0001 0.0001 0.0001
WS3=3 0.6661 0.0002 0.0001 0.0001
WS3=4 0.2857 0.0001 0.0001 0.0001

P(WS6=2) WS3=1 0.0001 0.4117 0.0001 0.0001
WS3=2 0.4444 0.9998 0.5384 0.6362
WS3=3 0.0003 0.3999 0.0001 0.0001
WS3=4 0.0001 0.3000 0.2103 0.0001

P(WS6=3) WS3=1 0.0001 0.0001 0.3125 0.0001
WS3=2 0.0001 0.0001 0.4615 0.0001
WS3=3 0.3332 0.5997 0.9998 0.5832
WS3=4 0.0001 0.0001 0.4999 0.0001

P(WS6=4) WS3=1 0.0001 0.0001 0.0001 0.0589
WS3=2 0.0001 0.0001 0.0001 0.3636
WS3=3 0.0003 0.0002 0.0001 0.4166
WS3=4 0.7142 0.6998 0.4999 0.5327

Table 4.11: CPT of composite service WS6.

the Voting EM algorithm using the complete 1000 data samples generated 100 times. Figure 5

compares the true parameter CPTC(3,3,3) which is equal to 0.18 to the estimated parameters using

the online update rule (we show the average of the 100 runs). CPTC(3,3,3) is the conditional

probability that web service C belongs to the quality class 3 given that both web services A and

B belong to the same class 3. The straight line represents the true parameter while the thick and

the dashed curves depict the estimated parameters with η = 0.01 and η = 0.05, respectively. This

figure shows that the estimated parameters with the larger η tend to converge to the true one faster

than the ones estimated with the smaller one. However, with the smaller η the estimates are less

noisier.

Figure 6 displays the average of the estimated parameter from the 100 runs in function of the

number of samples with error bars plotted at 10 different times. The error bars are specified by the

standard deviation of the estimated parameters. It is also noteworthy to mention that the variance

of the estimated parameters decreases when the number of sample increases. The error bars are

longer with the smaller η than with the larger one. We also used the unpaired two-samples t-test

to verify the statistical significance to our results. The test revealed an h = 0 which indicates that

90

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

WS6=1 WS6=2 WS6=3 WS6=4
P(WS7=1) WS5=1 0.9942 0.0842 0.3330 0.1741

WS5=2 0.9256 0.0019 0.0007 0.0009
WS5=3 0.8702 0.0011 0.0014 0.0017
WS5=4 0.7461 0.0038 0.0013 0.0011

P(WS7=2) WS5=1 0.0019 0.9132 0.0010 0.0007
WS5=2 0.0722 0.9942 0.1741 0.3526
WS5=3 0.0019 0.8544 0.0014 0.0017
WS5=4 0.0019 0.7423 0.0013 0.0011

P(WS7=3) WS5=1 0.0019 0.0013 0.6649 0.0007
WS5=2 0.0011 0.0019 0.8245 0.0009
WS5=3 0.1260 0.1433 0.9958 0.2224
WS5=4 0.0019 0.0038 0.9132 0.0011

P(WS7=4) WS5=1 0.0019 0.0013 0.0010 0.8245
WS5=2 0.0011 0.0019 0.0007 0.6456
WS5=3 0.0019 0.0011 0.0014 0.7741
WS5=4 0.2500 0.2500 0.0842 0.996

Table 4.12: CPT of composite service WS7.

30 3 0 0
0 20 2 3
4 3 9 2
2 1 0 21

30 1 0 2
2 18 2 4
4 1 11 1
1 2 1 20

25 7 0 3
3 14 5 4
0 5 7 3
3 0 1 20

Table 4.13: Confusion Matrices: classifier1 (left) 82%, classifier2 (middle) 84%, classifier3 (right) 77%

the the null hypothesis (estimated and actual parameters have the same mean) cannot be rejected

at 5% significance level. The test statistic value returned is 0.6274 with a standard deviation equal

to 0.0296.

We further test the online algorithm by running the same simulation (100 runs and 1000 sam-

ples) with two larger networks that consists of 8 and 15 variables (nodes). The new networks

represent two composite services that are composed of more services. Aligned with the travel

example illustrated in Figure 2, the added variables represent the following services; booking hos-

tels, renting apartments, booking cruises, reserving activities, and booking vacation packages. The

error bars of the two estimated parameters using both networks are displayed in Figure 7, 8, 9 and

10. These figures confirm that even with a larger number of services, the estimated parameters still

91

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

Figure 4.7: Mean Error of parameters estimation.

31 0 0 0
0 126 0 0
1 2 13 0
1 5 9 12

31 0 0 0
0 26 0 0
1 2 11 2
1 5 5 16

30 0 0 1
1 20 3 2
3 1 5 7
1 2 2 22

Table 4.14: Confusion Matrices: classifier1 (left) 82%, classifier2 (middle) 84%, classifier3 (right) 77%

converged to the true probabilities with an increase of the number of samples at convergence. We

also applied the unpaired two-samples t-test with each of the estimated and actual parameters. For

both CPT(1,4,3) and CPT(2,1,1), the test returned h = 0, the statistic values −1.9255 and 0.8506,

and the standard deviations 0.0318 and 0.0234, respectively.

Online Computation of Trust

In this section, we design an experiment to compute the QoS-based trustworthiness of composite

web services online. Given the QoS ratings of the composing services, learning the conditional

probabilities of the QoS ratings of the composite service yields the following; prediction of the

trustworthiness of a composite service after each observation, understanding the influence of the

constituent services on the overall quality of the composite service. Thus, the preceding provides

92

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

WS1

WS2 WS3

WS4

WS15

WS10

WS13

WS11

WS14

WS8

WS6 WS5

WS9 WS12

WS7

Figure 4.8: Bayesian network representation of a more complex composite web service.

(a) True vs. estimated parameter of CPT(3,3,3) using
Voting EM.

(b) Error bars of the estimated parameter CPT(1,4,3)
using Voting EM (8 services).

Figure 4.9: Error bars of the estimated parameter CPT(1,4,3) using Voting EM (8 services).

a means to enhance the construction of composite services. Then, given a Bayesian network struc-

ture, the conditional probabilities of the network’s variables using the online learning rule of the

Voting EM algorithm are estimated. Afterwards, the trust function from Equation 4.6 will be em-

ployed to estimate the trust values of the composite web service after each observation. In this

experiment we construct a BN with the same structure as the one depicted in Figure 2 (we use WS

in lieu of WebService). Subsequently, we sample the data as follows:

• The quality values (classes) of WS1 and WS4 are sampled from a multinomial distri-

bution with the parameters [0.4 0.3 0.1 0.2].

93

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of samples

C
P

T
pa

ra
m

et
er

Estimated parameter (learn rate=0.01)
Estimated parameter (learn rate=0.05)
Actual parameter

(a) Estimated parameter CPT(1,4,3).

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of samples

C
P

T
pa

ra
m

et
er

Estimated parameter (learn rate=0.01)
Estimated parameter (learn rate=0.05)
Actual parameter

(b) Estimated parameter CPT(2,1,1).

Figure 4.10: Error bars of the estimated parameter CPT(1,4,3) and CPT(2,1,1) using Voting EM
(15 services).

• The quality values (classes) of WS2 and WS5 are sampled from a multinomial distri-

bution with the parameters [0.1 0.1 0.4 0.4].

• The quality values of WS3 are computed using the Switch composition function that

chooses the values either from WS1 or WS2 based on the multinomial distribution

with the parameters [0.8 0.2].

• The quality values of WS6 are computed using the Switch composition function that

chooses the values either from WS4 or WS5 based on the multinomial distribution

with the parameters [0.5 0.5].

• The quality values of WS7 are computed using the Switch composition function that

chooses the values either from WS5 or WS6 based on the multinomial distribution

with the parameters [0.8 0.2].

Afterwards, we take each data instance at a time and compute the CPTs of the constructed net-

work using the Voting EM update rule described earlier. These CPTs are then used to compute the

probabilities of the corresponding service to belong to each of the 4 quality classes which are then

employed to estimate a trust value using Equation 4.6. The actual trust values are computed using

the same equation. However, the probabilities, in this case, are the sufficient statistics computed

from the data. In other words, p1 is equal to the number of observations on which WebService7

belonged to class 1 over the total number of observations. Furthermore, we test our approach with

94

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

different composition operators, Max, and Min. Therefore, we follow the same steps outlined

above, however, the quality values of WS6 and WS7 are sampled using the Max and Min opera-

tors, respectively. The learned trust values with η(0.1) and η(0.4) are compared to the real ones

in Figure 4.11. This figure shows the convergence of the estimated trust values to the actual ones.

It is also noticeable that the variance of the estimates obtained with the smaller η(0.1) have less

variance than the case of larger η(0.4). These results are consistent with the convergence analysis

of the Voting EM algorithm in [79]. The closer η gets to 1 leads to faster convergence and larger

variance. However, the closer η gets to 0 yields a slower convergence and a smaller variance.

0 50 100 150 200 250 300 350 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples

Tr
us

t

Actual trust
Estimated trust values (learn rate=0.1)
Estimated trust values (learn rate=0.4)

(a) Switch composition

0 50 100 150 200 250 300 350 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples

Tr
us

t

Actual trust
Estimated trust (learn rate=0.1)
Estimated trust (learn rate=0.4)

(b) Max-Min

Figure 4.11: True vs. estimated trust scores with η = 0.1 and η = 0.4.

4.2.2 Mixture Models Experiments

To the best of our knowledge, no previous mixture models of multi-dimensional distributions have

been previously applied in the context of multi-agents computational trust. To evaluate the accu-

racy of these models, we first compare the mixture of MDD to the multinomial mixture approach.

The same experiments were developed for the MGDD and MBLD mixture models. For the data

required in these experiments, we used the quality rankings of two web services. These were used

to compute the quality rankings of the composite service according to the composition function

used. The proposed mixture models can also scale to any number of web services. Tables 4.15,

4.16, and 4.17 show the results of the MDD mixture model with each of the Switch, Min and Max,

95

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

and Product and Sum composition functions, respectively. The parameters of the actual data are

the maximum likelihood estimations computed using the Newton iteration algorithm [86]. It is

noticeable that the composition operator influences the performance of the mixture model with the

highest being associated with the Switch operator. In the case of Min and Max operators, the α

parameters estimates are not very accurate. However, the P estimates capture the responsibilities

of each of the mixture components. These estimates show that in case of Min and Max, one of

the agents has the most influence on the quality of the composite service. However, with the Sum

and Product functions we can see that these responsibilities move towards equality as both web

services contribute to the overall quality of the composite service.

SWITCH

α1 α2 α3 α4 P

Actual 0.0367 0.3250 0.5700 0.0683 0.3000

0.0384 0.1022 0.8300 0.0294 0.7000

Multinomial Mixture 0.0440 0.2865 0.6133 0.0562 0.3881

0.0342 0.0945 0.8400 0.0314 0.6119

MDD Mixture 0.0145 0.3685 0.5408 0.0762 0.3099

0.1515 0.0989 0.5883 0.1613 0.6901

Table 4.15: Estimated parameters by multinomial mixture and MDD mixture with Switch compo-
sition operator.

MIN MAX

α1 α2 α3 α4 P α1 α2 α3 α4 P

Actual 0.0390 0.3370 0.5590 0.0650 0.0380 0.2600 0.6660 0.0360

0.0251 0.1024 0.8405 0.0320 0.0410 0.3950 0.4880 0.0760

Multinomial Mixture 0.0331 0.3329 0.5401 0.0939 0.4968 0.0376 0.3088 0.6222 0.0315 0.5001

0.0252 0.0979 0.8184 0.0586 0.5032 0.0414 0.3463 0.5318 0.0805 0.4999

MDD Mixture 0.0349 0.3425 0.5283 0.0943 0.1051 0.0245 0.1015 0.8380 0.0360 0.8502

0.0234 0.0968 0.8203 0.0596 0.8949 0.0376 0.3284 0.5766 0.0574 0.1498

Table 4.16: Estimated parameters by multinomial mixture and MDD mixture with Min and Max
composition operators.

Figures 4.12 to 4.17 illustrate the results of learning the trust of a composite web service us-

ing the three proposed mixture models. We compute the quality of the composite service using

96

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

Product SUM

α1 α2 α3 α4 P α1 α2 α3 α4 P

Actual 0.0410 0.3490 0.5620 0.0480 0.0375 0.2989 0.6000 0.0636

0.0292 0.1079 0.8390 0.0239 0.0312 0.1714 0.7643 0.0330

Multinomial Mixture 0.0000 0.1674 0.8287 0.0039 0.3284 0.0294 0.2279 0.6783 0.0645 0.4999

0.0039 0.0288 0.9657 0.0017 0.6716 0.0386 0.2271 0.7057 0.0285 0.5001

MDD Mixture 0.0055 0.1301 0.8587 0.0057 0.4650 0.0379 0.3531 0.5508 0.0581 0.2765

0.0009 0.0300 0.9680 0.0011 0.5350 0.0310 0.1020 0.8330 0.0340 0.7235

Table 4.17: Estimated parameters using multinomial mixture and MDD mixture with Product and
Sum composition operators.

the different composition functions discussed earlier. After learning the mixture parameters, the

probability of each quality class is evaluated using the equations (3.4), (3.6), and (3.8) for each

of the mixture of MDD, MGDD, and MBLD respectively. The learned trust is computed using

the weighted trust function given by equation (4.8). These results show the ability of the mixture

models to learn the trust of composite services. They also capture the responsibility of each of the

constituent service in the quality of the composite service. This is very clear in the Switch graphs

in which the quality of the composite service is inherited from one of the constituent web services.

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

of observations

Tr
us

t

Actual trust
Learned trust

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of observations

Tr
us

t

Actual trust
Learned trust

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

of observations

Tr
us

t

Actual trust
Learned trust

Figure 4.12: Actual vs. learned trust using the mixture of MDD with Switch (left), Min (center),
and Max (right) composition functions

We evaluate the effectiveness of modeling the QoS using the MBLD by designing a BN clas-

sifier that employs the Bayesian approach with a Beta-Liouville prior distribution for each CPT

entry. We compare the performance of this classifier to another BN classifier with a Dirichlet prior

and to the naive Bayes classifier. We also test the Voting EM algorithm in learning the BN param-

eters online. In all the experiments, we adopt the four quality class model used in the QWS data

97

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

of observations

Tr
us

t

Actual trust
Learned trust

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

of observations

Tr
us

t

Actual trust
Learned trust

Figure 4.13: Actual vs. learned trust using the mixture of MDD with Sum (left) and Product (right)
composition functions

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

of observations

Tr
us

t

Actual trust
Learned trust

0 10 20 30 40 50 60 70 80 90 100
0.25

0.3

0.35

0.4

0.45

0.5

0.55

of observations

Tr
us

t

Actual trust
Learned trust

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

of observations

Tr
us

t

Actual trust
Learned trust

Figure 4.14: Actual vs. learned trust using the mixture of MGDD with various Switch (left), Min
(center), and Max (right) composition functions

set [84] which classifies the QoS of a web service in one of four classes; Platinum, Gold, Silver,

and Bronze. The Platinum class represents the highest quality a web service can be assigned to and

the Bronze represents the lowest. The data used in the experiments is described in the following

section.

98

Chapter 4. Trustworthy Composite Web Services Using Probablistic Approaches

0 10 20 30 40 50 60 70 80 90 100
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

of observations

Tr
us

t

Actual trust
Learned trust

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

of observations

Tr
us

t

Actual trust
Learned trust

Figure 4.15: Actual vs. learned trust using the mixture of MGDD with Sum (left) and Product
(right) composition functions

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

of observations

Tr
us

t

Actual trust
Learned trust

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

of observations

Tr
us

t

Actual trust
Learned trust

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

of observations

Tr
us

t

Actual trust
Learned trust

Figure 4.16: Actual vs. learned trust using the mixture of MGDD with various Switch (left), Min
(center), and Max (right) composition functions

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

of observations

Tr
us

t

Actual trust
Learned trust

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of observations

Tr
us

t

Actual trust
Learned trust

Figure 4.17: Actual vs. learned trust using the mixture of MBLD with Sum (left) and Product
(right) composition functions

99

Chapter 5
Reputation Aggregation and Filtering

Approaches

We described, in the previous chapters, various models in which each service consumer assesses

the trustworthiness of a web service based on their direct interactions. However, it is not always

sufficient to rely on trust scores that are subjective and personalized. For example, a consumer

might have no personal experience with a specific provider. It is then risky to interact with this

provider without having any insights about its quality. Therefore, to compensate the lack of per-

sonalized opinion about a service provider, consumers might request the public opinion. This is

referred to as the service providers reputation which is a composite evaluation of the QoS delivered

based on its interactions with a group of consumers.

5.1 Reputation Background

In QoS-based trust systems, the reputation of agents is equivalent to the estimated value(s) of a

single or multiple QoS metric(s) [18, 87]. A popular method for aggregating reputation feedback

is the summation method. However, the embraced simplicity of this method opens the door for

malevolent agents to maneuver it for their own benefits [88]. This could be achieved by deceitfully

100

Chapter 5. Reputation Aggregation and Filtering Approaches

increasing their own reputation or decreasing the reputation of others. eBay is a popular com-

mercial example of reputations systems that employ the summation method. In eBay buyers and

sellers rate each others based on their transactions as positive, neutral, or negative. The overall

reputation of a seller is mostly represented by a feedback score that is computed by summing all

the positive ratings minus all the negative ones. Eigentrust, a reputation management framework

in P2P networks, also adopted the summation method for feedback aggregation [89]. In Eigen-

trust, the truster weighs the trust feedbacks received from other peers by their corresponding trust

scores. The aggregated trust score assigned to a trustee is then the sum of the product of the trust

feedbacks and the trust scores of the feedbacks senders. PeerTrust, another P2P trust system, also

employs the summation method with various trust metrics, taking into account the credibility of

the feedbacks senders [90]. Alternatively, [91, 92] introduced multiple operators to handle different

scenarios of trust propagation in a network of interacting agents. For instance, the “Concatenation”

operator is used when computing the trust of an agent A in agent C based on the trust of agent B

in C discounted by the trust of A in B.

Driven by the uncertainty nature of trust, Bayesian reputation models, based on binary or multi-

valued ratings, compute the reputation scores by statistically updating the Beta [93] or Dirichlet

[87, 94] probability density functions, respectively. When a new rating arrives after an interaction

with a service, it is added to the previous ratings (a priori) to compute the new reputation score

(a posteriori). The Bayesian approach of updating reputation scores also follows the summation

concept. To overcome the vulnerability of the summation method, other studies exploited the

Kalman filter capabilities to aggregate the reputation feedbacks [95, 96]. These studies argued

that the Kalman-based reputation aggregation repels malicious feedbacks by keeping track of the

estimates’ variances.

However, the above methods lack the capability of dealing with the unknown correlations be-

tween reputation feedback provided by different sources. Consider the following scenario: letXabc

and Xadc be the reputation estimates of agent a supplied by agents b and d to agent c, respectively.

Suppose, c aggregates Xabc and Xadc, then supplies the result, Xacb, back to b. This scenario ex-

poses the dependency between Xacb and Xabc. Therefore, there should be a method to combine

Xabc and Xacb while taking into consideration their unknown correlation. To handle such cases, we

101

Chapter 5. Reputation Aggregation and Filtering Approaches

extend the literature by the following main contributions:

• We present a QoS-based reputation model that considers the subjectivity of interacting

agents in their QoS requirements. As such, two agents communicating with the same

service might be interested in different QoS metrics. Our model suggests a customized

aggregation of feedbacks based on the QoS requirements of the agent.

• We propose a feedback aggregation approach based on the covariance intersection (CI)

and ellipsoidal intersection (EI) data fusion methods. The former aims to handle the

aggregation of two reputation estimates in cases where the error’s ellipse of one of

the estimates is contained in the error’s ellipse of the other. The latter aggregates the

reputation estimates based on their exclusive information by introducing their mutual

mean and covariance.

In this chapter, we extend our trust models by integrating the reputation of a service provider

sP in its overall trustworthiness. this is achieved by aggregating its trust scores estimated by M

service consumers {sC1, sC2, . . . sCM} who are willing to share their experiences. We present

three reputation models:

• Model 1: The first reputation model is built upon the trust approach proposed in Chap-

ter 1. This model aggregates the reputation feedback of a web service after factoring in

the uncertainty assigned to each feedback. This model is strengthened by an extension

that captures the unfair (malicious) feedback using clustering and outlier detection

methods. Another extension was developed to apprehend various dynamic behaviors

of web services.

• Model 2: The second reputation model presents two algorithms for dynamiz aggrega-

tion of reputation feedback. These are based on two data fusion methods; Covariance

Intersection (EI) and Ellipsoidal Intersection (EI).

• Model 3: The third model considers the reputation of web services that are engaged

in Communities of Web Services (CWS). This model is based on various data mining

techniques including clustering and outlier detection.

102

Chapter 5. Reputation Aggregation and Filtering Approaches

5.2 Reputation Aggregation: Model 1

Due to the flood of web services that offer similar functionalities, service consumers are left with

a challenging selection decision. A popular approach to assist them with the service selection task

is based on the reputation of web services. However, the propagation of reputation feedback in

an open and distributed system of web services yield correlated reputation estimates. The exist-

ing web service reputation literature still lacks a system that handles the aggregation of reputation

feedback under unknown correlation. To fill this gap, we employ two data fusion algorithms, the

covariance intersection and ellipsoidal intersection, to aggregate QoS-based reputation feedback.

Our experimental results endorse the advantageous capability and scalability of the proposed meth-

ods in aggregating reputation estimates, and show an enhanced performance when compared with

the Kalman filter method.

5.2.1 QoS-Based Reputation

In this section, we propose a QoS-based reputation model that incorporates the subjectivity matter

of interacting agents and maintains a consistent representation of reputation reports.

1. We model the reputation feedback as vectors of multiple QoS metrics and their correspond-

ing values. As such, Each agent will consider the QoS metrics that fit its requirements. These

metrics are either monotonically increasing or decreasing metrics [97]. Monotonically in-

creasing and decreasing refer to QoS metrics whose values are positively and negatively

correlated with the overall quality of a service, respectively. Popular QoS metrics include

response time, throughput, availability, reliability, and cost.

2. The reported values of the QoS metrics are then scaled to different ranges each of which is

defined by two thresholds. These represent a lower and upper bounds on the values of these

metrics, Tl and Tu, respectively. The scaling of these values allows each agent to define the

ranges of values of the various QoS metrics it deals with. The scaling to the range [Tl, Tu] is

given by:

103

Chapter 5. Reputation Aggregation and Filtering Approaches

Q′mi =

Qmi if i = 1 & Tl < Qmi < Tu

Tl if i = 1 & Qmi < Tl

Tu if i = 1 & Qmi > Tu
(Tu−Tl)(Qmi−min(Qmi))

max(Qmi)−min(Qmi)
+ Tl otherwise,

(5.1)

where Qmi is the value of the observed QoS metric m after the ith interaction. min (Qmi)

and max (Qmi) are the minimum and maximum of the values of the QoS metric m up to the

ith interaction.

3. Afterwards, the scaled values are normalized to the [0, 1] range. The values of monotonically

increasing metrics are normalized by Q′′mi =
Q′mi−min (Q′mi)

max(Q′mi)−min (Q′mi)
. The normalization of the

scaled values of monotonically decreasing metrics is given byQ′′mi = 1− Q′mi−min (Q′mi)

max(Q′mi)−min (Q′mi)
.

This approach allows each agent to select and later aggregate the values of specific QoS metrics.

Scaling and normalizing the values of the QoS metrics give the agents that receive reputation

feedback the choice of aggregating the values of a selective set of QoS metrics. They also decrease

the impact of malicious feedback by restricting the values to fit within specific ranges. These

ranges could be based on prior direct interactions between the agent that requests the feedback and

the evaluated agent.

In most probability-based trust systems, the reputation is communicated through the sufficient

statistics of either the Beta or Dirichlet distributions [93, 94]. However, applying the sufficient

statistics undergoes the issue of redundant information when passing reputation among agents.

The authors in [62] proposed the partitioning of information between private and shared. The

former denotes information that has not been communicated to other agents. The latter represents

information that could have been sent to or received from other agents. Despite being attractive,

this solution requires each agent to keep track of two separate information. It also involves identity

issues of sending and receiving agents.

To overcome these shortcomings, we propose an alternative solution to the aggregation of

reputation feedback of web services. We exploit the CI and EI fusion methods commonly used for

information fusion in distributed networks. We compare the results of these methods with those of

104

Chapter 5. Reputation Aggregation and Filtering Approaches

the Kalman filter reputation models proposed in [96, 98]. The next section is dedicated to overview

the Kalman filter method for reputation aggregation.

5.2.2 Kalman Filter for Service Reputation

Kalman filter is considered a form of a Gaussian process model and a predictive filter based on

recursive algorithms [34]. Given a noisy dynamic system with unknown states, the Kalman filter

predicts the state using the dynamic model of the corresponding system. Afterwards, the predic-

tion results are corrected and updated by considering a noisy measurement in what is called the

observation model. For example, given a moving robot, the dynamic model can be employed to

estimate the robot’s position (the unknown state) at a certain time. This estimate is then updated

using the measurements of the robot’s position that are supplied by a camera (observation model).

In the web service reputation context, the unknown states represent the reputation scores of an

agents QoS metrics. The dynamic, the unknown states represent the reputation scores of an agent’s

QoS metrics. The dynamic and observation models are given by:

• Dynamic model:

xt+1 = Fxt + wt, (5.2)

where xt is the state vector at time t, wt ∼ N(0, Q) is the Gaussian noise associated

with the dynamic model at time t, and F is the state transition matrix.

• Observation model:

yt = Hxt + vt, (5.3)

where yt is the observation at time t, vt ∼ N(0, R) is the Gaussian noise associated

with the observation model at time t, and H is the observation transition matrix.

The Kalman filter iterates recursively over the following two steps to minimize the covariance of

the estimation errors:

1. Prediction: This step computes the a priori estimates of the current state by ignoring the

dynamic noise. The prediction equations are obtained by solving the dynamic model’s dif-

ferential equations, and are given by:

105

Chapter 5. Reputation Aggregation and Filtering Approaches

x̂t+1 = Fxt (5.4)

P̂t+1 = FPtF
T +Q, (5.5)

where P̂t+1 is the covariance matrix of the predicted state.

2. Correction: This is where the a priori estimates are enhanced by adding the measurements

observed at time t. The correction equations are the following:

xt+1 = x̂t+1 +K(yt − x̂t+1) (5.6)

Pt+1 = (I −KH)Pt, (5.7)

where K, the Kalman gain matrix, is given by K = PtH
T (HPtH

T +R)−1.

This model is suitable for the estimation problem of the reputation of web services and has been

employed in multiple studies such as [98] and [95]. This is due to the dynamic nature of reputation

and the possibility of modeling it by a linear function disturbed by a Gaussian noise.

5.2.3 Proposed Aggregation Methods

The main limitation of the Kalman filter is the independence assumption between the estimation

error at time t and the measurement error at time t+ 1 [99]. Let’s consider the following scenario:

Ag4 receive two feedback reports of Ag1’s reputation from both Ag2 and Ag3. Afterwards, Ag2

requests reputation feedback about Ag1. Ag4 then responds to Ag2’s request and sends the infor-

mation it formerly received from the latter as it did not have additional experience with Ag1 since

then. Using Kalman filter, when Ag2 combines this information with its own estimates of Ag1’s

reputation, the covariance matrix is unjustifiably decreased. Suppose Ag2’s estimates of the avail-

ability AV and response time RT of Ag1 are given by the state vector xt = {0.8504, 0.7154} and

106

Chapter 5. Reputation Aggregation and Filtering Approaches

the covariance matrix is given by: Pt =

(
0.0367 0.0044

0.0044 0.0367

)
. Also, let the feedback sent by Ag4

be the observation vector yt = {0.8504, 0.7154}. Moreover, let the following be the state transi-

tion and covariance matrices, and the observation transition and covariance matrices, respectively:

F =

(
1 0

0 1

)
, wt =

(
0.02 0

0 0.02

)
, H =

(
1 0

0 1

)
, vt =

(
0.03 0

0 0.03

)
. The Kalman

filter yields the same state estimates xt+1 = {0.8504, 0.7154}. However, the covariance matrix

becomes Pt+1 =

(
0.0164 0.0009

0.0009 0.0164

)
. This means the uncertainty in the corrected estimates is

reduced when it should have remained unchanged. The methods below are proposed to deal with

such scenarios.

Covariance Intersection

The CI algorithm was developed to overcome the independence assumption of the Kalman filter

and the under/overestimation of the covariance matrix. CI combines estimates (mostly Gaussian)

from different sources when the error ellipse of one estimate includes the error ellipse of the other

[100]. In a nutshell, CI creates a convex combination of the means and covariances of two estimates

to provide consistent fused estimates with appropriate covariance matrices:

P−1
f = wP−1

i + (1− w)P−1
j (5.8)

p̂f = Pf (wP
−1
i p̂i + (1− w)P−1

j p̂j) (5.9)

where p̂f and Pf are the fused mean and covariance of the unknown state and are based on the

estimates p̂i and p̂j and their respective covariances Pi and Pj . w ∈ [0, 1] is a regulating parameter.

The two equations of CI yield consistent estimates regardless of the cross-correlation errors among

the combined estimates [101]. This is achieved by having Pf include the intersection of Pi and

Pj . The CI algorithm also provides the uncertainty in the combined estimates through the new

covariance matrix Pf . More details about the derivation of the CI equations are available from

[100, 102].

107

Chapter 5. Reputation Aggregation and Filtering Approaches

Ellipsoidal Intersection

Despite solving the consistency of the covariance matrix of fused estimates, CI still considered

a combination of two local estimates without distinguishing between accurate and inaccurate es-

timates. The EI fusion method was proposed in [103] to handle the separation of the mutual

information that might be included in the two local estimates. The update of the estimates is then

only based on the exclusive information received to avoid incorrect and “over confident” estimates.

The mutual information introduces two estimates, the mutual covariance and mutual mean. The

mutual covariance is used to optimize the fused covariance by maximizing the effect of the mutual

information, Pf = (P−1
i + P−1

j − Γ−1)−1,

where Pi and Pj are the covariances of the state vector estimated by agents i and j. Γ is the

mutual covariance and is defined as Γ = SiD
0.5
i SjDΓS

−1
j D0.5

i S−1
i ,

where Si andDi contain the eigenvectors and eigenvalues of the covariance matrix Pi, respectively,

such that Pi = SiDiS
−1
i . Sj is a matrix that contains the eigenvectors of D−0.5

i S−1
i DjSiD

−0.5
i , and

DΓ is given by:

[DΓ]qr =

{
max([DΓ]qr, 1) if q = r,

0 otherwise.
(5.10)

The mutual mean aims at representing an estimate of the mean of the state vector based on

mutual information between initial estimates p̂i and p̂j , and is given by:

γ = (P−1
i + P−1

j − 2Γ−1 + 2ηI)−1 × (5.11)

((P−1
j − Γ−1 + ηI)p̂i + (P−1

j − Γ−1 + ηI)p̂j),

where ηI is added to guarantee P−1
i − Γ−1 and P−1

j − Γ−1 are both positive definite. Let H =

P−1
i + P−1

j − 2Γ−1 and λ0+(H) be the smallest eigenvalue of H , η is defined in [103] as:

η =

0, if det(H) 6= 0

c� λ0+(H), if det(H) = 0
(5.12)

Γ and γ are then employed to optimize the fusion of both estimates p̂i and p̂j:

xf = (P−1
i + P−1

j − Γ−1)−1(P−1
i p̂i + P−1

j p̂j − Γ−1γ). (5.13)

108

Chapter 5. Reputation Aggregation and Filtering Approaches

5.3 Reputation Aggregation: Model 2

In Chapter 3, we proposed a correlation-based trust model that computes a web services trust

score based on the correlations of the pairwise outcomes of its QoS metrics. Another score that

is presented in this model is the variance of the estimated trust scores. Therefore, a reputation

feedback about the service provider sP , supplied by consumer sCi, consists of the trust score

Tr(sP, sCi) (Equation (3.19)), and the variance associated with this score, V ar(Tr(sP, sCi))

(Equation (3.20)). Since the latter represents the uncertainty in the estimated score, then 1 −
V ar(Tr(sP, sCi)) represents the certainty or confidence in the trust score. Therefore, prior to ag-

gregating the trust scores estimated by of sPs consumers, we discount each score by its confidence

level. As such, Tr(sP ; sCi) becomes:

Tr(sP, sCi) = Tr(sP, sCi)(1− V ar(Tr(sP, sCi)))

5.3.1 Unfair referrals

Suppose N web services interact among themselves and each maintains a reputation of each web

service it interacts with. After a time window (W), web service sC1 sends a request to all the

other web services for referrals about the reputation of sP based on their interactions with the

latter within W . A fraction of N will respond to sC1’s request and share their experiences with

sP . However, the received referrals will be most probably contaminated by malicious ones. These

include magnified or diminished trust referrals that are dishonestly supplied to improve the repu-

tation of the sP or to bad-mouth it, respectively. Therefore, the direct aggregation of the referrals

will yield a biased and unjust reputation score. This raises the need for a technique that diminishes

the impact of unfair referrals on the final reputation score of a web service. In PeerTrust [90],

the authors introduced a credibility score that the feedback aggregator peer assigns to each referee

peer based on the similarity between its referrals about other common peers and those of the ag-

gregator. One limitation of this approach is that the number of similarity checks will increase as

the number of agents or web services increases. We propose an alternative credibility score that

is based on the own experiences of the requester (sC1 in the example). This is achieved by a test

109

Chapter 5. Reputation Aggregation and Filtering Approaches

request sent by sC1 about the reputation of another service provider sPtest with which it has a

large number of previous interactions and hence is certain about its reputation. The similarities

between the received referrals and the reputation maintained by sC1 are computed to depict the

credibility of the corresponding referees. It is noteworthy to mention that a trust referral encloses

the truster (sC), the trustee (sP), and the trust score, Tr(sP, sC). Using this approach, sC1 keeps

learning about the credibility of other web services by constantly comparing his own referrals with

theirs. Moreover, we leverage the capabilities of LDCOF [104], a local density cluster-based out-

lier factor algorithm, to further detect malicious referrals as anomalies. In our approach, we use

the LDCOF with the K-means clustering algorithm. The motivation for considering the density

factor of clustered referrals is to handle cases when the rate of malicious referees is larger than

that of honest one. In such cases, malicious referrals might outnumber honest ones and hence end

up forming a larger cluster. Moreover, malicious referees, in the majority of no-collusion cases,

tend to assign random low or high reputation scores depending on their disparate intentions for

lying. Therefore, considering the size of the cluster to be the sole discriminator between honest

and malicious referrals can be problematic. However, by considering the cluster density factor,

the algorithm assumes that honest referrals related to the same service should have small variance

and thus reside within a dense area. Malicious referrals will most probably have a larger variance

and reside in a large and dispersed area. The LDCOF score represents the minimum distance of a

reputation to a large cluster divided by the average distance between all the elements of that large

cluster and its centroid; this is given by:

LDCOF (r) =

min(d(r,Ci))
Avgd(Ci)

if r ∈ CS and Ci ∈ CL,
(d(r,Ci))
Avgd(Ci)

if r ∈ Ci ∈ CL,
(5.14)

where CS and CL refer to sets of small and large clusters, respectively, and Avgd(Ci) is defined

by:

Avgd(Ci) =

∑
j∈Ci d(j, Ci)

|Ci|
. (5.15)

The proposed approach for reducing the impact of unfair referrals on the reputation of the

referred web service is summarized in Algorithm 3.

110

Chapter 5. Reputation Aggregation and Filtering Approaches

Algorithm 3: Reputation aggregation of sP feedback
Data: Two sets TsP = {Tr(sP, sC1), . . . , T r(sP, sCn)} and

TsPt = {Tr(sPt, sC1), . . . , T r(sPt, sCm)}
Result: Aggregated reputation of sP
foreach sC ∈ (TsPt ∩ TsP) do

Cr(sC)← 1− |Tr(sPt, sC)|;
end
C ← Xmeans(TsP);
foreach c ∈ C do

for i← 1 to |c| do
outlier score(sCi)← LDCOF (sCi);
if outlier score(sCi) > 1 and Cr(sCi) > threshold then

Remove sCi from TsP ;
end

end
end

Rep(sP) =
∑
sC∈TsP

Cr(sC)Tr(sP,sC)∑
sC∈TsP

Cr(sC)
;

5.3.2 Dynamic Behavior

The dishonest behavior of web services discussed in the previous section revolves around reporting

malicious feedback about the quality of other service providers. Algorithm 3 suggests a series of

steps to handle such behavior and diminish its impact on the web services reputation. However,

service providers could also be malicious by providing non-consistent quality during their inter-

actions with service consumers. The authors in [90] described three strategic manners by which

service providers change their quality of service:

• Milking reputation: The web service performs well for a long time to have a good

reputation and then starts to degrade its performance.

• Building reputation: The web service improves its performance and shifts from bad

quality service to good quality one.

• Oscillating reputation: The web service oscillates between the previous strategies;

milking and building its reputation.

111

Chapter 5. Reputation Aggregation and Filtering Approaches

To handle such behaviors, an adaptive algorithm, PeerTrust adaptive, was introduced in [90]

that implements the following logic. The trust of a peer is computed twice; the first is based on all

the feedback received within a time window and the second considers the feedback from a smaller

time window. If the second trust value is smaller than the first by a threshold, then the peer is

assigned the former, and the latter otherwise. This approach harshly penalizes any web service

that drops its quality even if unintentionally and due to an exceptional failure of some sort. In such

cases, if the quality drops at time t and picks up at t + 1, the adaptive algorithm requires a large

number of good quality interactions before it builds the reputation of the corresponding service

provider back up.

We propose a simplistic approach that avoids such harsh punishments while staying conserva-

tive in cases of quality drops and elevations. This approach complements Algorithm 3 by assigning

a time decreasing weight to each of the reputation feedback within a time window. As such, this

follows the intuitive assumption that older feedback weigh less than newer ones. The weight, Wt

of Trt(SP, sC), a feedback about an interaction that occurs at time t, is given by:

Wt =
t+ 1

|Win| − t+ 1
, (5.16)

where |Win| is the size of the considered time window. The reputation of a service provider at

time t, Rep(sPt), as given in Algorithm 1 is computed by Equation 5.17. For simpler notation,

we substitute Crt(sC) by Crt to represent the credibility of the service provider sP at time t. We

also refer to the feedback given by sC at time t by Trt rather than Trt(SP, sC). Thus, Rep(sPt)

is defined as follows:

Rep(sPt) =

∑
sC∈TsP CrtTrtWt∑
sC∈TsP CrtWt

(5.17)

5.4 Reputation Aggregation: Model 3

We present in this Section a reputation model for agent-based web services grouped into com-

munities by their equivalent functionalities. The reputation of each web service is based on the

non-functional properties of its interactions with other web services from the same community.

112

Chapter 5. Reputation Aggregation and Filtering Approaches

We exploit various clustering and anomaly detection techniques to analyze and identify the qual-

ity patterns provided by each service. This enables the master of each community to allocate the

requests it receives to the web service that best fulfill the quality requirements of the service con-

sumers. Our experiments present realistic scenarios based on synthetic data that characterizes the

reputation feedback of the quality provided by a web service at different times. The results show-

case the capability of our reputation model in portraying the quality of web services that reside in

a community and characterizing their fair and unfair feedback reports.

Communities of web services (CWS) were introduced to group web services with the ultimate

goal of enhancing the discovery, selection, and composition of web services. The notion of com-

munity in the context of web services has been handled from various perspectives. In [105], a

community groups agents that share “similar interests and judgment criteria” to build a consistent

web service community-based reputation model which aims to improve the web service selection

process. We follow the definition in [106] by which a community groups web services that provide

the same functionality. However, services within the same community could be distinguished by

their non-functional properties also referred to as quality of service (QoS) properties [107].

Each community is managed by a master that is responsible for marketing its community to

attract more web services, distributing and allocating users’ requests to specific web services, and

identifying web services to be part of a composition. The master can be one of the web services

in a community promoted to hold the master’s role. The other web services, referred to as slaves,

compete and collaborate to fulfill users’ requests. The advantages of being part of a community

include, among others, gaining exposure to a wider spectrum of users as well as participating in

a larger number of compositions. The “concepts” and “operations” of web service communities

are detailed in [106]. Various studies have exploited the architecture and communication protocols

involved in CWS to address the community building aspects and the reputation of these communi-

ties [108, 109].

Trust and reputation have been extensively considered in the multiagent systems and web ser-

vices research communities [10, 110]. One of the main challenges in trust and reputation models is

estimating the trustworthiness of new agents entering a system. In such cases, the quality provided

by this agent is unknown and the majority of trust systems assume equal a priori trust for all agents.

113

Chapter 5. Reputation Aggregation and Filtering Approaches

However, [111] characterized trustworthy and untrustworthy agents by discovering patterns using

graph mining and knowledge representation. These patterns are then employed to train a regres-

sion model for the agents’ trustworthiness. This model would be interesting to be considered in

the formation of CWS which is outside the scope of this paper.

Concerning the reputation of web services, CWS were utilized in [112] to maintain high avail-

ability and overall web service quality that is up to the users’ standards. The authors proposed that

the community’s master keeps track of the number of services within the community and that of the

users’ requests. If the former is less than a threshold and the latter is higher than another threshold,

then the master invites more services to join its community. When the opposite scenario occurs,

the master excludes the web services with low performances. The authors in [113] defined various

quality metrics that characterize a community from the user and service provider’s perspectives.

Three metrics were identified to matter for users who are trying to select a community based on

its reputation; the responsiveness, indemand, and satisfaction metrics. The first assesses the time

the master of a community spends to select a web service to fulfill a user’s request. The second

metric evaluates the popularity of a community in comparison to other communities, and the third

captures the users’ opinions about a community. The authors in [114] considered the same metrics

described previously. They also proposed an aggregation approach to combine these metrics and

proposed an extended CWS architecture to to ensure a reliable logging mechanism. This extension

allows the detection of fake user feedback and protects the reputation of the communities.

Nevertheless, the aforementioned reputation models either handle one quality metric of the

slave web services in a community or focus on the reputation of the community as a whole. In

this paper, we propose a reputation model that is specific to each individual web service in a

community. This enables the community’s master to be aware of the quality of the web services

in its community, alert the ones that show unstable or low QoS patterns, and allocate the incoming

requests to the ones the are best suitable to the users’ QoS requirements.

5.4.1 Gaussian Reputation

Since web services within the same community provide similar functionalities, delegating one of

them to fulfill a user’s request based on non-functional requirements sounds rational. It is very

114

Chapter 5. Reputation Aggregation and Filtering Approaches

common for service consumers to have certain constraints that translate into quality prerequisites

to be met by the prospective web service. For instance, a time-critical application demands highly

available and responsive services, and a data-critical system calls for reliable and secure services.

To enable the selection, from communities of web services, of the ones that best match the quality

requirements of service consumers requests, we propose that each web service maintains a rep-

utation model of all the services it interacts with. This model consists of multivariate Gaussians

which attributes represent various QoS metrics. The QoS-based reputation literature examined and

dealt with a wide range of QoS metrics that are also referred to as QoS attributes or properties. The

following is a partial list of the most prominent metrics:

One of two interacting web services in a community is the consumer and the other is the

provider. After each interaction, the former can measure the RT, LA, and CO of the latter as

well as report whether it received a valid response. After a number of interactions with the same

service, the service consumer can compute the values of all the QoS metric mentioned above. For

example, RT, LA, and CO would be equal to the average of the response time, latency, and cost of

all the interactions, respectively. TH is then the number of requests handled by the service provider

between the first and the last interaction per unit of time, AV is the total number of responses over

the total number of requests the service consumer has sent, and RE is the number of valid responses

over the total number of responses received by the consumer.

It is noteworthy to mention that the details of monitoring the various QoS metrics are outside

the scope of this thesis. We assume that the web services agree on the monitoring approaches to be

used within a community. They can also decide on the degree of invasiveness of these approaches

that can also affect their performance. According to [115] an invasive approach is one in which the

execution of a service and the monitoring activities are closely connected. When the monitoring

occurs independently of the service execution process, it is then considered less invasive. For

further details on current monitoring approaches and their characteristics, we refer the readers

to [115].

Aside from the monitoring approach deployed, the reputation of a web service j as evaluated

by a web service i can be modeled by a multivariate Gaussian:

Reptij = {RT, TH,LA,AV,RE,CO, SE},

115

Chapter 5. Reputation Aggregation and Filtering Approaches

where t is the time at which the QoS metrics were computed after the same predefined number of

interactions with the web service j.

Modeling the reputation of web services as QoS-based Gaussians empowers the master of a

community with the capability of learning and analyzing the quality of the web services in its

community. It then enables the detection of the quality patterns of each of the community’s web

services. These patterns could be exploited to match a service consumer request with the service

which quality patterns best fit this request’s quality requirements.

5.4.2 Web Service QoS profile

The behavior (quality) of web services may change during its life time due to many factors. These

include operational factors such as the addition/removal of certain parameters to/from the web

services methods and the change in their deployment strategies. Other factors may be related to

the lack of resources allocated to handle the service consumers requests. The reputation approach

based on the QoS described in the previous section allows the modeling of reputation profile for

each of the web services in a community. This could be achieved by training a model based on

the values of the QoS metrics of the interactions between all the web services in a community.

Figure 5.1 illustrates a use case diagram of the QoS-based reputation model whose steps can be

summarized as follows:

The reputation of each web service is associated with multiple feedback reports each of which

is supplied by a different service consumer (in this case, another web service in the community).

These reports are then analyzed to detect possible outliers, QoS measurements that don’t follow

their prominent distribution(s). Many outliers detection techniques have been proposed in the lit-

erature [116]. For our purposes, we employ a clustering-based outlier detection algorithm that

computes an outlier score for each of the data points based on the clustering results. First, the

reported QoS values are normalized to the [0, 1] range, so it can be modeled by a Gaussian distri-

bution. We then cluster the normalized data using the Expectation-Maximization (EM) algorithm,

an unsupervised approach that is widely used in clustering data by fitting it to a mixture model of

multiple distributions. Formally, let REP = [Reptij, Rep
t+1
ij , . . . , Rept+nij] represents all the out-

comes of the reputation of web service i evaluated by web service j from the time t until t+ n (n

116

Chapter 5. Reputation Aggregation and Filtering Approaches

Reputation System

Master Agent

Collect reputation
feedback

Slave WS1

Slave WSN

Request reputation
feedback

«uses»

Detect Outliers

Cluster reputation
feedback

«extends»

«uses»
Build WS

reputation model

Figure 5.1: UML Use Case diagram of the proposed Reputation system

is the number of interactions of j with i). We assume that REP is generated by a k-component

mixture of Gaussian, hence, its probability density function is given by:

p(Rep|θ) =
k∑

m=1

πmp(Rep|θm), (5.18)

where π1, . . . , πk are the mixing coefficients, θm is the set of parameters of the mth component,

θ is the set of parameters that defines the mixture model. p(Rep|θm) is the density function asso-

ciated with the mth component. More details about mixture models are available in [117]. The

clustering results can be expected to vary according to different scenarios:

• Scenario 1: The web service exhibits a reliable and stable QoS behavior. Formally,

the QoS measurements of the web service follow one distribution.

• Scenario 2: The web service’s behavior is not steady, hence, it provides QoS measure-

ments that may be generated from different distributions. Therefore, multiple clusters

with disparate number of data points will be returned.

In both scenarios, the clustering challenge is two fold; determining the best number of clusters

and deciding whether each of them represents a real QoS behavior of the service. It can occur

that the reputation feedback includes falsified QoS measurements contained in one or more of

the clusters. This is known in the trust and reputation literature as unfair feedback which is best

described as augmented feedback to promote a friend or reduced feedback to weaken a foe.

117

Chapter 5. Reputation Aggregation and Filtering Approaches

To determine the best number of clusters, the EM algorithm starts with a relatively large num-

ber of clusters and remove, after each iteration, the ones that contain few data points. However,

given the first scenario, one would assume that the data follows one distribution rather than a mix-

ture model. Depending on the convergence criteria of the EM algorithm, the model might fail

to converge to 2 clusters if the data is actually generated from one distribution. If the algorithm

converges, we end up with two components (clusters) that contain, approximately, equal number

of data points.

Other clustering techniques that are capable of determining the number of clusters could be

also used. For instance, an extended version of K-means [118], X-means, estimates the number of

clusters (k) that best represent the data. X-means take a data and a range for the number of clusters

as input, and returns a set of centroids with the best k, optimized by the Bayesian Information

Criterion (BIC) model selection technique. This algorithm starts with k at the lower bound of the

specified range and proceeds by recursively splitting each cluster. The BIC scores are then em-

ployed to decide upon keeping or discarding a split. The BIC formula used in [118] is also known

as the Schwarz criterion and defined in [119] as the approximation of the posterior probabilities of

each cluster model (with different k):

BIC(Mj) = lj(D)−
|θMj
|

2
log(|D|), (5.19)

where Mj is the jth cluster model associated with a specific k and |θMj
| is the number of

parameters in Mj . D is the set of |D| data points in the analyzed feedback reports and lj(D) is the

log-likelihood of D according to Mj . lj(D) is given by the sum of the log-likelihood of the set of

points that belong to each of the centroids in Mj ,
∑k

c=1 l(Dc), where l(Dc) is given by:

l(Dc) = −|Dc|
2

log(2Π)− |Dc|
d

log(σ̂)− |Dc| − k
2

+ |Dc| log(|Dc|)− |Dc| log(|D|), (5.20)

whereDc is the set of |Dc| data points associated with the centroid c. d is the number of dimensions

in D and σ̂ is the maximum likelihood of the variance defined by the following equation:

118

Chapter 5. Reputation Aggregation and Filtering Approaches

σ̂ =
1

|D| − k
∑
i

(xi − µi)2, (5.21)

where µi is the centroid to which the data point xi is associated.

The X-means clustering algorithms could be used to validate the results obtained by the EM-

based clustering. It can also be used as a prior step to define the number of clusters that best

define a given data. Since the lower bound of the range in which k resides is greater or equal to

2, we are certain to end up with at least 2 clusters. In the QoS-based reputation context, having

2 clusters means that the analyzed web service provides a QoS with a pattern that displays 2

different behaviors. However, the 2 clusters might be too close if the data is actually generated

by one distribution only. Therefore, there is still a need to assess how close these 2 clusters are to

decide upon keeping both clusters or grouping them in one cluster.

The similarity/distance between the 2 distributions of the corresponding components can be

measured by the Kullback-Leibler (KL) divergence metric, also referred to as the relative entropy.

The KL-divergence is widely used to compute the similarity between two density distributions.

Since we are dealing with Gaussian distributions, the KL-divergence is expressed as follows:

KL(p|q) =
1

2

(
Tr(Σ−1

q Σp) + log
det(Σq)

det(Σp)
− d+ (µq − µp)Σ−1

q (µq − µp)
)
, (5.22)

where p and q are two Gaussian distributions each of which are related to one component of the

mixture model. µp and Σp are the respective mean and covariance of the distribution p. Tr(A) is

the trace of the matrix A, which is equal to the sum of its diagonal entries as well as the sum of

its eigenvalues. det(A) is the determinant of the matrix A. The KL-divergence may be interpreted

with the concepts of maximum likelihood and likelihood ratios. As such, this measure explains

the lack of fit between a data generated by one distribution and model that encodes this data. In

other words, KL(p|q) = 0 if and only if p = q, and it is greater than zero otherwise. It is also

noteworthy to mention that the KL-divergence metric is not symmetric; KL(p|q) 6= KL(q|p).

The larger KL(p|q), the further apart are p and q. Using the KL-divergence enables, for our

purposes, to fuse the mixture component which distributions are shown to be very close, i.e, their

KL-divergence is very small (less than a predefined value).

119

Chapter 5. Reputation Aggregation and Filtering Approaches

After having the final number of clusters, the clustered data could be further analyzed to de-

tect and remove all possible outliers. [120] overviews various anomaly detection approaches and

dedicates a section for clustering-based anomaly detection techniques. According to the authors

of this survey, three main assumptions govern these techniques; the first considers anomalies (or

outliers) do not belong to any cluster, the second claims that outliers are far from the centroid of

their closest cluster, and the third expects outliers to form small or sparse clusters. Following the

first assumption, many clustering algorithms were proposed to assign normal data to clusters and

exclude outliers from any cluster. These include ROCK [121], FindOut [122], and SNN [123].

However, such algorithms focus on the clustering task more than on the outlier detection.

Therefore, other techniques were proposed under the umbrella of the second assumption to op-

timize the outlier detection performance. After a clustering step, these techniques compute the

distance between each data point and the centroid of its closest cluster; this is referred to as the

anomaly or outlier score. Further details about the different types of anomaly detection techniques,

their advantages, and disadvantages are available in [120]. Among the algorithms that follow the

third assumption is FindCBLOF [124], that considers two main factors in assigning a data point

an outlier score; the size of its cluster and its distance to the centroid of this cluster. The distance

measure could be the same one used in the clustering algorithm. Popular measures include the

Euclidean distance, Manhattan distance, and cosine similarity. In this paper, we use the clustering-

based multivariate Gaussian outlier score (CMGOS) algorithm. CMGOS is an anomaly detection

operator available in RapidMiner, a comprehensive open-source software platform for data mining

and machine learning techniques. This algorithm calculates the outlier score of a data point by

computing the covariance matrix of the cluster to which it was assigned. The sensitivity of the

covariance matrix to outliers is the basis of the computed score. As described by RapidMiner’s

documentation, this algorithm could be perceived as a multivariate Grubb’s Test [125], a statistical

test to detect outliers from univariate normally distributed data.

This approach allows the analysis of the QoS behavior of a web service based on the quality

it provided to all its colleagues in a community. The number of clusters is a first indicator of the

stability of the quality granted by a web service. The higher the number of clusters, the less reliable

the quality of the service. Afterwards, each cluster should be validated as a fair representative of

120

Chapter 5. Reputation Aggregation and Filtering Approaches

the QoS behavior patterns of the service.

5.5 Experimental Evaluation

5.5.1 Model 1 Experiments

In this section, we evaluate the performance of CI and EI by running two simulations. The first

implements the scenario discussed earlier in which we model the aggregation of Ag4’s reputation

feedback sent by Ag2 and Ag3 to Ag1. The second simulation extends the same scenario to the case

of 100 agents rather than 4. These simulations were executed with the following three estimators.

The first, KF, consists of a regular Kalman filter reputation model. In this estimator, Ag1 receives

the reputation observations of Ag4 provided by Ag2 and Ag3 based on which a Kalman filter is

employed to predict and correct the reputation estimation. This is similar to the models proposed

in [96, 98]. The second estimator, KFCI, encompasses two modules the first of which is a local

Kalman filter (LKF) applied to obtain the reputation estimations of Ag2 and Ag3. The second

module employs the CI algorithm to fuse the LKF estimation with each of the estimations sent by

Ag2 and Ag3. The third estimator, KFEI, is similar to the second except CI is substituted by the EI

in the second module.

The simulation setup consists of various parameters that are defined as follows. First, we

assume a two dimensional reputation where each dimension represents one QoS metric, R =

{QoS1, QoS2}. In real settings, the values of these metrics are scaled and normalized to the [0, 1]

range as discussed in the QoS-based Reputation Section. In this simulation, the dynamic model

that represents the reputation of Ag4 is assumed to be a vector of two time varying linear functions,

one for each of QoS1 and QoS2. We employ the functions used in the Kalman feedback model

proposed in [98]: R = {log100(0.02 ∗ t + n), log100(0.03 ∗ t + n)}, where t is the time step and n

is a random number between 15 and 30. We used n rather than a constant to reflect the fluctuating

(increasing and decreasing) nature of QoS metrics. Thus, the model consists of two unknown states

that will be estimated. It also requires observations of the values of the two states supplied by Ag2

and Ag3. The state and observation matrices are both set to 2× 2 identity matrices.

121

Chapter 5. Reputation Aggregation and Filtering Approaches

The system covariance is set to 0.02 and the observations covariances are set to 0.01 and 0.03

for Ag2 and Ag3, respectively. Figure 5.2 showa the aggregated reputation scores given by the three

estimators for each of QoS1 and QoS2 at 100 time steps. The reputation estimates of KFCI and

KFEI are much smoother and more accurate than those of KF. The accuracy aspect is confirmed

by the mean square errors (MSE) of the three estimators displayed in the first two columns of Table

5.1.

Figure 5.2: QoS1 (left) and QoS2 (right) Reputation scores (4 agents).

4 agents 100 agents
Estimator QoS1 QoS2 QoS1 QoS2

KF 0.96 0.928 1.87 1.84
KFCI 0.525 0.526 1.17 1.5
KFEI 0.499 0.572 0.97 1.23

Table 5.1: MSE of the three estimators with 4 and 100 agents

To demonstrate the scalability of our approach, we run the same experiment with 100 agents.

In this simulation, 98 agents send reputation feedback of the 99th agent to the 100th that aggregates

them using each of KF, KFCI, and KFEI. Furthermore, to evaluate the robustness of these estima-

tors, we increase the number of feedback sessions to 300 and have the dynamic model of the 99th

agent’s reputation drop significantly half way through these sessions. The results of this simulation

are displayed in Figure 5.3 and the last two columns of Table 5.1. For clarity purposes, we only

show the estimations between the time steps 100 and 200. The smoothness of the KFCI and KFEI

122

Chapter 5. Reputation Aggregation and Filtering Approaches

curves is noticeable in comparison with that of KF. These figures also show that KFEI detects the

drop in the reputation scores faster than KFCI which is more conservative in changing the aggre-

gated estimates. Table 5.1 (last 2 columns) shows that KFEI has the smallest MSE followed by

KFCI and KF.

Figure 5.3: QoS1 (left) and QoS2 (right) Reputation scores (100 agents).

It is worthy to mention that the challenge of the CI algorithm is the selection of an appropriatew for

Equations 5.8 and 5.9. We set w to Tr(Pb)
Tr(Pa)+Tr(Pb)

as proposed in [101]. As for the EI algorithm, one

drawback is the extensive inversion of matrices involved in its equations. To avoid the inversion of

singular matrices, we used an approximate inversion function which gave better results than those

of the Kalman filter estimator.

5.5.2 Model 2 Experiments

In the following experiments, we compare our reputation aggregation approach with, PeerTrust

PSM, an algorithm proposed in [90] and is based on a personalized similarity measure (PSM). In

PeerTrust PSM, a peer p1 that is evaluating the reputation of another peer p2 computes the credi-

bility of every peer in the system. As such, the credibility of a peer p3 is based on the similarity

between the feedback about all other peers with which both p1 and p3 have interacted with. Two

experiments have been conducted to evaluate the effectiveness of our reputation aggregation ap-

proach represented by Algorithm 3. The first evaluates the accuracy of the aggregated reputation

123

Chapter 5. Reputation Aggregation and Filtering Approaches

when dealing with a variable number of dishonest web services. In this experiment, a dishonest

web service reports a malicious feedback 100% of the times it responds to a reputation request. If

the quality of the evaluated service provider is high, the dishonest web services report a low feed-

back and vice versa. The second experiment further evaluates the performance of our approach in

dealing with dishonest web services by varying the rate by which these web services report mali-

cious feedback. Due to the lack of real world datasets that report the QoS of real web services, we

test our approach with a synthetic data. The simulation setup is summarized as follows:

2 4 6 8
0

0.2

0.4

Ratio of dishonest web services (over 10)

M
ea

n
E

rr
or

(a) 100% mali-
cious feedback

20 40 60 80

0.1

0.15

0.2

0.25

Percentage of malicious feedback

(b) 10% malicious
web services

20 40 60 80
0.1

0.15

0.2

0.25

Percentage of malicious feedback

(c) 20% malicious
web services

20 40 60 80

0.12

0.14

0.16

0.18

0.2

0.22

Percentage of malicious feedback

(d) 30% malicious
web services

20 40 60 80

0.16

0.18

0.2

0.22

Percentage of malicious feedback

(e) 40% malicious
web services

20 40 60 80
0.21

0.215

0.22

0.225

0.23

Percentage of malicious feedback

(f) 50% malicious
web services

20 40 60 80
0.2

0.25

0.3

0.35

Percentage of malicious feedback

(g) 60% malicious
web services

20 40 60 80
0.2

0.25

0.3

0.35

0.4

Percentage of malicious feedback

(h) 70% malicious
web services

0 20 40 60 80 100
0.2

0.25

0.3

0.35

0.4

0.45

Percentage of malicious feedback

(i) 80% malicious
web services

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

Percentage of malicious feedback

(j) 90% malicious
web services

Figure 5.4: Reputation aggregation with varied ratio of malicious web services and reputation
feedback

• Number of interacting web services is set to 100.

• Percentage of dishonest web services varies, in the first experiment, between 10% and

90%. In the second experiment, this is fixed to 50%.

• Percentage of malicious feedback from dishonest web services is set to 100% in the

first experiment and varies between 10% and 90% in the second.

• In both experiments, we report the estimation error of the reputation of one web service

as aggregated by another web service.

• We simulate the reputation of the 100 web services in 500 different time steps. At each

time step, a random number of interactions occur with each of the web services.

124

Chapter 5. Reputation Aggregation and Filtering Approaches

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Interactions

Re
pu

tat
ion

Actual reputation
PeerTrustPSM

PeerTrustAdaptive
Our approach

(a) Milking behavior

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Interactions

Re
pu

tat
ion

Actual reputation
PeerTrustPSM

Our approach
PeerTrustAdaptive

(b) Building behavior

100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Interactions

Re
pu

tat
ion

Actual reputation
PeerTrustPSM

PeerTrustAdaptive

Our approach

(c) Low frequency oscillating behavior

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Interactions

Re
pu

tat
ion

(d) High frequency oscillating behavior

Figure 5.5: Reputation with dynamic behaviors

• The reputation is aggregated based on the feedback of interactions within a time win-

dow. We set the time window to include 5 time steps.

• The reported results are averaged over 100 runs of the experiments.

Figure 5.4 (a) displays the mean errors of the reputation aggregation based on feedback from 99

web services with varied ratio of dishonest ones. A noteworthy observation is that PeerTrustPSM
performs slightly better than our approach when the ratio of dishonest web services is less than

40% of the total number of web services. This out-performance is not actually affected by this

ratio; it is rather related to the time needed by the evaluating web service to learn the credibility

of all the web services in the system. It also compares both approaches while keeping the ratio of

dishonest web services fixed at 30% to 90% (b) to (j), and varying the ratio of malicious feedback

provided by these web services. In cases where less than 40% of the web services exhibit malicious

behavior ((b) to (e)), PeerTrustPSM has smaller errors than our approach. However, our approach

performed better regardless of the ratio of malicious feedback in the other cases ((f) to (j)).

125

Chapter 5. Reputation Aggregation and Filtering Approaches

100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Interactions

Re
pu

tat
ion

Actual reputation
PeerTrustPSM

PeerTrustAdaptive

Our approach

(a) Building behavior with th = 0.01

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Interactions

Re
pu

tat
ion

Actual reputation
PeerTrustPSM

Our approach
PeerTrustAdaptive

(b) Building behavior with th = 0.05

100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Interactions

Re
pu

tat
ion

Actual reputation
PeerTrustPSM

PeerTrustAdaptive

Our approach

(c) Milking behavior with th = 0.01

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Interactions

Re
pu

tat
ion

Actual reputation
PeerTrustPSM

PeerTrustAdaptive

Our approach

(d) Milking behavior with th = 0.05

Figure 5.6: Reputation with dynamic behaviors

The third experiment evaluates the reputation computation of our approach when the trustee

web service follows a dynamic behavior. Therefore, we compare our time-based decaying weights

approach to PeerTrustPSM and PeerTrustAdaptive algorithms. For the latter, we employ a thresh-

old th = 0.1 to decide which trust value to be returned; the one based on the larger (Twinl) or

smaller (Twins) window. Therefore, if Twinl − Twins > th, then Twins is returned, and Twinl is

returned otherwise. We set the threshold to 0.1 because the authors of PeerTrustAdaptive used

the epsilon symbol to represent this threshold. The objective of this threshold is to increase the

sensitivity of the reputation model to precipitous drops in reputation values. Thus, in cases of

steep reputation declines, setting the threshold to any value below 0.1 yields comparable results.

The same experiment is run 4 times to handle each of the behavioral strategies discussed above

with the oscillating behavior being examined twice with different quality change frequencies. The

results are displayed in Figure 5.5; Figure 5.5 (a) represents the milking behavior and shows that

our time decreasing weights approach captures the drop in the reputation as it happens like the

2 PeerTrust algorithms. However, PeerTrustPSM takes 100 interactions before it decreases the

126

Chapter 5. Reputation Aggregation and Filtering Approaches

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Interactions

Re
pu

tat
ion

Actual reputation
PeerTrustPSM

PeerTrustAdaptive

Our approach

(a) Oscillating Behavior (low frequency) with th =
0.01

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Interactions

Re
pu

tat
ion

Actual reputation
PeerTrustPSM

PeerTrustAdaptive

Our approach

(b) Oscillating Behavior (low frequency) with th =
0.05

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Interactions

Re
pu

tat
ion

(c) Oscillating Behavior (high frequency) with th =
0.01

100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Interactions

Re
pu

tat
ion

(d) Oscillating Behavior (high frequency) with th =
0.05

Figure 5.7: Reputation with dynamic behaviors

reputation to the actual one. PeerTrustAdaptive decreases the reputation down to the actual one

shortly after the drop. Our approach minimizes the reputation to a low level also shortly after the

collapse without going down to the lowest level of the actual reputation. This is a fair model that

gives the chance for non-strategic drops to pick up faster. Figure 5.5 (b) shows the reputation of

a web service that starts by providing low quality services and picks up after 250 interactions to

build a higher reputation. Both PeerTrust algorithms perform similarly as their curves are coinci-

dent, and wait around 100 interactions to pick the reputation of the evaluated web service up. This

is explained by the adaptive algorithm making a difference when the trust value from the smaller

time window is smaller than the one from the larger time window. In the case of building repu-

tation, 5.5 (b), the trust from the small time window is always higher which makes the adaptive

and regular algorithms of PeerTrust similar. In contrast, our approach elevates the reputation of the

web service shortly after it picks up its quality without reaching as high as the actual reputation.

127

Chapter 5. Reputation Aggregation and Filtering Approaches

Figure 5.5 also compares the reputation scores estimated by different approaches in case of low

(c) and high (d) oscillating frequencies. In both cases, PeerTrustAdaptive captures the drop in the

reputation value and approaches the new values within 10 to 15 interactions. Figure 5.5 (c) shows

that PeerTrustPSM requires approximately 100 interactions before its estimations approach the

actual reputation values. This algorithm fails to follow the dynamic behavior when it oscillates

with high frequencies (as illustrated in Figure 5.5 (d)). In contrast, our approach was able, in both

cases, to capture the drops immediately after their occurrence. It was also less harsh in penalizing

the web service by waiting more than 15 interactions before decreasing the estimated reputation

values to the lowest actual ones. However, both PeerTrustAdaptive and PeerTrustPSM gradually

increment their estimations to reach the actual reputation value after 100 interactions when deal-

ing with a hasty increase in the reputation value (Figure 5.5 (c)). Instead, our approach promptly

follows the rise of the reputation value without reaching the actual abrupt peak. Similar observa-

tions can be marked when the oscillating frequency is every 50 interactions instead of 150 (Figure

5.5 (d)). The only difference is that PeerTrustPSM failed to update its estimations after the first

drop in the reputation value. To further illustrate the differences between the compared approaches

we use the mean absolute percentage error (MAPE) of the estimated reputations. Specifically, we

compute two MAPE for each approach; one for reputations that are bigger than 0.7 and another

for reputations that are smaller than 0.3. In the former case, our approach has the smallest MAPE

(17.6%) while the MAPE of PeerTrustAdaptive and PeerTrustPSM are 31.2% and 28.9%, respec-

tively. However, in the latter, PeerTrustAdaptive has the smallest MAPE (55.2%). The MAPE of

PeerTrustPSM is 163.3% and the MAPE of our approach is 72.2%. The MAPE evaluation shows

that our approach is less harsh in penalizing the oscillating behavior by following a reputation in-

crease faster than the PeerTrust approaches. Also, after a sudden drop in the reputation value,

our approach takes a longer time to bring its estimates to the lowest reputation values. This gives

the web service the benefit of the doubt that the drop might possibly not be related to malicious

intentions. Furthermore, it is worth to note that the estimations using the PeerTrust algorithms

are smoother than the ones computed by our approach. The oscillatory aspect of the estimated

reputation curve using our approach is, in part, due to the actual reputation values that don’t follow

128

Chapter 5. Reputation Aggregation and Filtering Approaches

a smooth curve. This is also caused by the time-based decaying weight that we used to empha-

size newer reputation values and depreciate older ones. Since the actual reputation is continuously

changing, the estimated values are following the same changing patterns. Moreover, our approach

employs a small window to enclose the past reputation values used in the estimation of the current

reputation value. The larger the window’s size, the smoother the estimation curve. We repeated

the same experiments with different thresholds 0.01 and 0.05 to evaluate their impact on the per-

formance of PeerTrustAdaptive. Figures 5.6, and 5.7 show that no significant difference can be

observed between the results obtained with th = 0.01 and th = 0.05.

5.5.3 Model 3 Experiments

We evaluate, in this section, the cluster-based outlier detection approach in modeling the reputation

of slave web services in a CWS. Due to the absence of real datasets with the QoS values of web

services at different times, we employ synthetic data for testing purposes. We examine one CWS

that groups 100 web services that interact among each other as well as with users from outside the

community. However, only the quality of interactions with the services from the same community

are considered in the reputation model of each web service. Let us assume that the Master of

this community requests the feedback each web service maintains about its history of interactions

with the other services. The amalgamation of the sampled data is clustered using EM algorithm

that group data points according the most likely distribution from which they were generated. We

initialize the number of clusters using the X-means clustering algorithm. Afterwards, the pairwise

KL-divergence of the returned clusters are computed, and the ones with a small KL-divergence are

fused. Finally, the clustered data is submitted to the CGMOS algorithm to assign each of the data

points an outlier score.

Scenario 1

In this scenario, we analyze the reputation of WS, one of the 100 web services, based on feedback

of all the remaining 99 web services. We also assume that WS exhibits a stable behavior and

all the other web services are honest and submit fair QoS values. Therefore, we sample these

129

Chapter 5. Reputation Aggregation and Filtering Approaches

Figure 5.8: Data based on stable QoS behavior and fair feedback reports

RT TH LA AV RE CO SE
Component 1 (C1) 0.8006 0.7005 0.7994 0.7283 0.7001 0.6000 0.9001
Component 2 (C2) 0.8001 0.7000 0.8004 0.6806 0.6998 0.6001 0.9000

Table 5.2: Means of the mixture components - scenario 1

feedback from the same normal distribution each of which with a random number of samples from

the [50, 500] range (each service has a different number of interactions with WS). To visualize the

data, we use the principal component analysis (PCA) procedure to reduce its dimensionality from

7 to 3. The mapped data is illustrated in the Figure 5.8.

The EM algorithm revealed 2 mixture components with the means displayed in Table 5.2. This

shows that these components are very similar, which is validated by calculating the KL-divergence

between both components using equation 5.22;KL(C1|C2) = 2.7465 andKL(C2|C1) = 7.1937.

These small values confirm the similarity between the 2 components which can be grouped in one

cluster that represents the reputation profile of the analyzed web service.

Scenario 2

Let us assume a scenario similar to the one above with one main difference; the feedback provided

one or more web services are not fair. This might occur when a web service is acting maliciously

to elevate or degrade the reputation of its counterparts. Detecting a malicious behavior of a web

service can be a challenging task especially that it might be acted according to the various scripts:

130

Chapter 5. Reputation Aggregation and Filtering Approaches

Figure 5.9: Data based on stable QoS behavior and both fair and unfair feedback reports

RT TH LA AV RE CO SE
Component 1 (C1) 0.5932 0.4933 0.4949 0.3958 0.4964 0.3966 0.5941
Component 2 (C2) 0.8001 0.6999 0.8000 0.6999 0.7000 0.5998 0.8999

Table 5.3: Means of the mixture components - Scenario 2a

• a) Malicious web services report sequences of fair feedback followed by others of

unfair feedback. A loop over the same script might be observed. Alternatively, they

might report unfair feedback by randomly altering the values of all QoS metrics.

• b) Malicious web services report unfair feedback by altering the values of specific QoS

metrics.

The sampled data for the purpose of this scenario is displayed in Figure 5.9 after being mapped

to 3 dimensions using the PCA procedure. Running the EM algorithm on this data yielded two

mixture components with the means displayed in Table 5.3.

Table 5.3 affirms that the 2 components are distinct and generated from 2 distributions. The KL-

divergence between C1 and C2 are KL(C1|C2) = 283.1887 and KL(C2|C1) = 23.8829, which

confirms the observation of two clusters in figure 5.9. However, the dispute becomes whether the

web service behaves in two distinct ways or one of the cluster only exists due to unfair feedback.

In reality, a web service might provide different quality depending on certain factors such as the

availability of its resources, the time of the day, and the number of requests it is handling. One

could argue that the size of the cluster is an indicator of the nature of its data points. As such, a large

cluster represents fair feedback and a relatively very small cluster groups unfair feedback (which

131

Chapter 5. Reputation Aggregation and Filtering Approaches

Figure 5.10: Data based on unstable QoS and both fair and unfair feedback reports

are considered outliers). However, in real scenarios, web services could behave in a consistent

manner with the exception of few times due to the factors mentioned earlier. C2 contains the

majority of the data points, 25407 (95.06%), leaving only 1320 (4.94%) in C1. One way to deal

with this conflict would be by checking the source of the data points in the small cluster. If they

were supplied by the majority of the web services then it is most probable that both cluster represent

real feedback. However, if only the minority provided all the points in the small cluster, one could

assume a malicious behavior. This requires adding the id of the web service to the attributes of

its reputation feedback. Feeding the clustered data to the CMGOS algorithm is another validation

approach. In this experiment, the outlier scores assigned to all the data points belong to the range

[0.012, 16.585]. The top 5% outliers consist of 1319 data points from C1, which means that all the

data points in C1 with the exception of one were detected as outliers.

Finally, we sample a data set in which 25% of the web services partially falsify their feedback

reports. In other words, they alter the values of some QoS metrics leaving the remaining ones

unchanged. In this experiment, the web service is assumed to behave inconsistently providing, at

different times, low and high QoS values. The distribution of the sampled data after being mapped

to 3 dimensions is displayed in Figure 5.10. The centroids of the three components given by the

EM algorithm are shown in Table 5.4 and Figure 5.11.

Table 5.4 and Figure 5.11 show that the analyzed web service exhibits two different behaviors

depicted by C1 (red line) and C2 (green line). The red and green lines follow the same pattern

with the former being higher than the latter. Contrarily, the blue line show that the means of the

132

Chapter 5. Reputation Aggregation and Filtering Approaches

RT TH LA AV RE CO SE
Component 1 (C1) 0.7738 0.5946 0.7997 0.5951 0.7002 0.5999 0.5000
Component 2 (C2) 0.5000 0.3998 0.3999 0.3000 0.4997 0.3999 0.3001
Component 3 (C3) 0.1999 0.6996 0.8001 0.2994 0.6998 0.6000 0.9000

Table 5.4: Means of the mixture components - scenario 2b

Figure 5.11: Centroids plot view

RT and SE QoS metrics have been significantly altered. It is noteworthy to mention that C1 and

C2 are close in size with the former having 12489 data points and 11567 in the latter. C3 only

contains 5478 data points. Table 5.5 shows the high values of the pairwise Kl-divergence between

the 3 components.

C1 C2 C3
C1 0 331.9950 357.6906
C2 196.9144 0 453.6297
C3 349.7278 459.2957 0

Table 5.5: KL-divergence between the 3 components

133

Chapter 6
Conclusions

This thesis presented various solutions to the web service selection problem based on probabilistic

trust and reputation approaches. Chapter 1 described the web service environment and the web

service selection problem. The literature of trust and reputation systems was reviewed in Chapter

2 with a focus on probabilistic approaches. The remaining chapters proposed different trust and

reputation models that are based on probabilistic approaches. These models are mainly motivated

by the Bayesian learning of proportional or count data, especially the employment of different

conjugate priors such as Dirichlet, generalized Dirichlet and Beta-Liouville. The main conclusions

drawn in this thesis are:

QoS-Based Trust Models The trust models proposed in this thesis are based on the probabilistic

modeling of the outcomes of various QoS metrics. Three composite distributions were introduced

to represent the quality classes of the web services outcomes; multinomial Dirichlet, multinomial

generalized Dirichlet, and multinomial Beta Liouville. The Bayesian inference method was then

employed to estimate the probability that the quality of the evaluated web service belong to each of

the considered classes. Using these probabilities, a weighted function was employed to compute

the trustworthiness of this web service.

Correlation Model We further extended our trust model to incorporate the correlations among

the QoS metrics. This extension allows the model to provide, along the computed trust scores,

134

Chapter 6. Conclusions

accurate estimates of the uncertainties in these scores. Using two real data sets of web services

QoS, we demonstrated and evaluated the correlations that exist between various pairs of metrics.

Afterwards, we introduced a hybrid trust model that captures the correlations among the QoS met-

rics based on two conjugate priors to the multinomial that represents the pair-wise combined QoS

outcomes; generalized Dirichlet and Dirichlet distributions. The former was shown to better model

positive correlations while the latter yields better modeling of negative correlations. The empiri-

cal results endorse the effectiveness of our approach. We then presented an algorithm inspired by

anomaly detection algorithms to aggregate reputation feedback and deal with unfair referrals. We

further extended this algorithm by adding time decreasing weights to the reputation feedback to

capture the dynamic behavior of some web services. In comparison to a well-known reputation

system, PeerTrust, our algorithm showed very promising results. We will extend, in a future work,

the pairwise correlations modeling to multi-dimensional correlations at a time rather than pairwise

correlations.

Bayesian Network Models We also proposed a BN model for a QoS-based classification of

composite web services. We employed new priors to the distributions of the networks variables;

generalized Dirichlet and Beta-Liouville. The BN classifier with the Beta-Liouville prior also

provided a relatively high classification accuracy which is slightly higher than the accuracy of

the BN classifier with a Dirichlet prior. This classification provides a way to assess the quality

of composite web services during the composition task based on the quality of the constituent

services.

Online Trust Models Two online approaches were introduced to deal with the estimation of

QoS-based trust scores. The first is a time-series approach built upon a generalized-Dirichlet state

space model to predict the future QoS ratings of web services based on their last ratings. Substitut-

ing the the Dirichlet time series model by a generalized-Dirichlet model, that is transformed into

multiple Dirichlet model in lower dimensional space, proved to enhance the predictions in terms

of standardized residuals and predictions MSE. This approach was tested with simulated data due

to unavailability of QoS ratings in the form of compositional time-series. An extension of this

135

Chapter 6. Conclusions

approach would be to first test it with real data that could be collected by monitoring the QoS

performance of real web services over a significant period of time (one week). Another extension

might include the addition of new parameters to model the time-series trends and covariates. The

second online model is based on a BN model that applied the Voting EM update rule to learn the

conditional probabilities of the networks variables based one data instance. This models exper-

imental results showed the convergence of the learned parameters to the true probabilities. We

acknowledge the limitation of the online approach in learning the BN parameters when the QoS

ratings of the web services are not completely observable. Also, since the choice of the learning

rate is not trivial, a variable learning rate can be adopted instead.

Reputation Models This thesis proposed three different reputation aggregation models. The

first is designed to deal with unfair referrals and web services dynamic behaviors. It considers the

credibility of the feedback senders as an additional criterion to confirm the outliers detected by an

LDCOF algorithm. The model also handles four different malicious behaviors a web service may

exhibit to maximize its own interests. This is achieved using a time window that will assign higher

weights to newer transactions. As such, any abrupt drop or rise in the delivered quality is penalized

by reflecting them in the computed trust scores. The second model aims to aggregate reputation

feedback while ensuring consistent estimates. Two data fusion method were employed for this pur-

pose, namely, the covariance and ellipsoidal intersection. These methods will avoid over and under

estimated confidence in the combined reputation estimates. The third is a QoS-based reputation

model for web services grouped into communities that administer homogeneous functionalities.

This model implements various clustering and anomaly detection algorithms to grant the masters

of these communities the capability of characterizing the quality of their web services. We argue

that this approach improves the satisfaction of the service consumers by assigning their requests to

the ones that best suit their quality requirements. This approach could be further validated through

experiments with real data and comparisons with other approaches in a future work.

136

List of References

[1] Babak Khosravifar, Jamal Bentahar, and Ahmad Moazin. Analyzing the relationships be-

tween some parameters of web services reputation. In Proceedings of the IEEE Interna-

tional Conference on Web Services (ICWS), pages 329–336, 2010.

[2] Babak Khosravifar, Jamal Bentahar, Ahmad Moazin, Zakaria Maamar, and Philippe Thi-

ran. Analyzing communities vs. single agent-based web services: Trust perspectives. In

Proceedings of the IEEE International Conference on Services Computing (SCC), pages

194–201, 2010.

[3] Kwang Mong Sim. Agent-based cloud computing. IEEE Transactions on Services Com-

puting, 5(4):564–577, 2012.

[4] Minder Chen, Andrew N. K. Chen, and Benjamin B. M. Shao. The implications and impacts

of web services to electronic commerce research and practices. J. Electron. Commerce Res.,

pages 128–139, 2003.

[5] Sarvapali D. Ramchurn, Dong Huynh, and Nicholas R. Jennings. Trust in multi-agent sys-

tems. Knowl. Eng. Rev., 19:1–25, March 2004.

[6] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Donald F. Fer-

guson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-

BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River, NJ,

137

References

USA, 2005.

[7] Shirin Sohrabi and Sheila A. McIlraith. Preference-based web service composition: A mid-

dle ground between execution and search. In Proceedings of the 9th International Semantic

Web Conference on The Semantic Web - Volume Part I, ISWC’10, pages 713–729, Berlin,

Heidelberg, 2010. Springer-Verlag.

[8] Hamdi Yahyaoui. A trust-based game theoretical model for web services collaboration.

Knowledge-Based Systems, 27:162–169, 2012.

[9] Yonghong Wang and Munindar P. Singh. Formal trust model for multiagent systems. In

Proceedings of the 20th international joint conference on Artifical intelligence, pages 1551–

1556, San Francisco, CA, USA, 2007.

[10] Sarvapali D. Ramchurn, Dong Huynh, and Nicholas R. Jennings. Trust in multi-agent sys-

tems. Knowl. Eng. Rev., 19(1):1–25, March 2004.

[11] Lik Mui, Mojdeh Mohtashemi, and Ari Halberstadt. Notions of reputation in multi-agents

systems: a review. In Proceedings of the international conference on AAMAS, pages 280–

287, 2002.

[12] Yao Wang and Julita Vassileva. Toward trust and reputation based web service selection: A

survey, 2007.

[13] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation systems for

online service provision. Decision Support Systems, 43(2):618–644, 2006.

[14] Donovan Artz and Yolanda Gil. A survey of trust in computer science and the semantic

web. Web Semant., 5(2):58–71, 2007.

[15] Jordi Sabater and Carles Sierra. Review on computational trust and reputation models.

Artificial Intelligence Review, 24:33–60, 2005.

[16] Isaac Pinyol and Jordi Sabater-Mir. Computational trust and reputation models for open

multi-agent systems: a review. Artificial Intelligence Review, July 2011.

138

References

[17] T. Balke, S. Knig, and T. Eymann. A survey on reputation systems for artificial societies.

Bayreuth Reports on Information Systems Management, 2009.

[18] Chung-Wei Hang and Munindar P. Singh. Trustworthy service selection and composition.

ACM Transactions on Autonomous and Adaptive Systems, 6(1):5:1–5:17, 2011.

[19] Yao Wang and Julita Vassileva. Bayesian network trust model in peer-to-peer networks. In

In Proceedings of Second International Workshop Peers and Peer-to-Peer Computing, pages

23–34, 2003.

[20] Achim Rettinger, Matthias Nickles, and Volker Tresp. Statistical relational learning of trust.

Machine Learning, 82(2):191–209, 2010.

[21] W. T. Luke Teacy, Jigar Patel, Nicholas R. Jennings, Michael Luck, and Multiagent Sys-

tems. Coping with inaccurate reputation sources: Experimental analysis of a probabilistic

trust model. In AAMAS 05: Proceedings of the fourth international joint conference on

Autonomous agents and multiagent systems, pages 997–1004, 2005.

[22] Lei Li and Yan Wang. A subjective probability based deductive approach to global trust

evaluation in composite services. In ICWS, pages 604–611. IEEE Computer Society, 2011.

[23] Giorgos Zacharia, Alexandros Moukas, Ros Moukas, and Pattie Maes. Collaborative repu-

tation mechanisms in electronic marketplaces. In in HICSS, page 8026, 1999.

[24] L.H Vu, Manfred Hauswirth, and Karl Aberer. Qos-based service selection and ranking with

trust and reputation management. In Proceedings of the Cooperative Information System

Conference, pages 446–483, 2005.

[25] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual communities.

Hawaii International Conference on System Sciences, 6:6007, 2000.

[26] Babak Esfandiari and Sanjay Chandrasekharan. On how agents make friends: Mechanisms

for trust acquisition, 2001.

139

References

[27] Bin Yu and Munindar P. Singh. Detecting deception in reputation management, 2003.

[28] Mao Chen. Computing and using reputations for internet ratings. In In Proceedings of the

3rd ACM Conference on Electronic Commerce, pages 154–162. ACM Press, 2001.

[29] Chrysanthos Dellarocas Sloan. Immunizing online reputation reporting systems against

unfair ratings and discriminatory behavior, 2000.

[30] Andrew Whitby, Audun Jsang, and Jadwiga Indulska. Filtering out unfair ratings in

bayesian reputation systems. 2004.

[31] Fabrizio Cornelli, Ernesto Damiani, Sabrina De Capitani, Stefano Paraboschi, and

Pierangela Samarati. Choosing reputable servents in a p2p network. In In Proceedings

of the 11th World Wide Web Conference, pages 376–386, 2002.

[32] Xiaofeng Wang, Ling Liu, and Jinshu Su. Rlm: A general model for trust representation

and aggregation. IEEE Transactions on Services Computing, 5(1):131–143, 2012.

[33] Ehsan Khosrowshahi Asl, Jamal Bentahar, Hadi Otrok, and Rabeb Mizouni. Efficient coali-

tion formation for web services. In Proceedings of the 2013 IEEE International Confer-

ence on Services Computing, SCC ’13, pages 737–744, Washington, DC, USA, 2013. IEEE

Computer Society.

[34] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[35] N. Bouguila. Clustering of count data using generalized dirichlet multinomial distributions.

Knowledge and Data Engineering, IEEE Transactions on, 20(4):462 –474, april 2008.

[36] Rasmus E. Madsen, David Kauchak, and Charles Elkan. Modeling word burstiness using

the dirichlet distribution. In Proceedings of the 22nd international conference on Machine

learning, pages 545–552, New York, NY, USA, 2005.

[37] James E. Mosimann. On the compound multinomial distribution, the multivariate - distri-

bution, and correlations among proportions. Biometrika, 49(1/2):pp. 65–82, 1962.

140

References

[38] N. Bouguila. Count data modeling and classification using finite mixtures of distributions.

Neural Networks, IEEE Transactions on, 22(2):186 –198, feb. 2011.

[39] Robert H. Lochner. A generalized dirichlet distribution in bayesian life testing. Journal of

the Royal Statistical Society. Series B (Methodological), 37(1):pp. 103–113, 1975.

[40] Robert J. Connor and James E. Mosimann. Concepts of independence for proportions with a

generalization of the dirichlet distribution. Journal of the American Statistical Association,

64(325):pp. 194–206, 1969.

[41] N. Bouguila, D. Ziou, and E. Monga. Practical bayesian estimation of a finite beta mixture

through gibbs sampling and its applications. Statistics and Computing, 16(2):215–225,

2006.

[42] Mohamad Mehdi, Nizar Bouguila, and Jamal Bentahar. Trustworthy web service selection

using probabilistic models. In ICWS, pages 17–24. IEEE, 2012.

[43] David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John Lafferty. Latent dirichlet allo-

cation. Journal of Machine Learning Research, 3:2003, 2003.

[44] N. Bouguila, D. Ziou, and J. Vaillancourt. Unsupervised learning of a finite mixture model

based on the dirichlet distribution and its application. Image Processing, IEEE Transactions

on, 13(11):1533 –1543, nov. 2004.

[45] J. Aitchison. The Statistical Analysis of Compositional Data. Journal of the Royal Statisti-

cal Society. Series B (Methodological), 44(2):139–177, 1982.

[46] Brunsdon Teresa M. and Smith T.M.F. The time series analysis of compositional data.

Journal of Official Statistics, 14(3):pp. 237–253, 1998.

[47] G. C. Tiao and G. E. P. Box. Modeling multiple times series with applications. Journal of

the American Statistical Association, 76(376):pp. 802–816, 1981.

[48] J. M. Quintana and M. West. Time series analysis of compositional data. Bayesian Statistics

3, 1988.

141

References

[49] Huiwen Wang, Qiang Liu, Henry M. K. Mok, Linghui Fu, and Wai Man Tse. A hyper-

spherical transformation forecasting model for compositional data. European Journal of

Operational Research, 179(2):459–468, 2007.

[50] Amitabha Bhaumik, Dipak K. Dey, and Nalini Ravishanker. Joint statistical meetings-

bayesian statistical science time series analysis of compositional data using a dynamic linear

model approach, 1999.

[51] Jan G De Gooijer and Rob J Hyndman. 25 years of time series forecasting. International

Journal of Forecasting, 2006.

[52] Gary K. Grunwald, Adrian E. Raftery, and Peter Guttorp. Time Series of Continuous Pro-

portions. Journal of the Royal Statistical Society, Series B, 55:103–116, 1993.

[53] Tzu-Tsung Wong. Parameter estimation for generalized Dirichlet distributions from the

sample estimates of the first and the second moments of random variables. Computational

Statistics and Data Analysis, 54(7):1756 – 1765, 2010.

[54] N. Bouguila and D. Ziou. High-dimensional unsupervised selection and estimation of a fi-

nite generalized dirichlet mixture model based on minimum message length. Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on, 29(10):1716–1731, Oct 2007.

[55] Christian P. Robert. The Bayesian Choice: From Decision-Theoretic Foundations to Com-

putational Implementation. Springer, 2nd edition, May 2007.

[56] P. J. Harrison and C. F. Stevens. Bayesian forecasting. Journal of the Royal Statistical

Society. Series B (Methodological), 38(3):pp. 205–247, 1976.

[57] J. Q. Smith. A generalization of the bayesian steady forecasting model. Journal of the

Royal Statistical Society. Series B (Methodological), 41(3):pp. 375–387, 1979.

[58] J. Q. Smith. The multiparameter steady model. Journal of the Royal Statistical Society.

Series B (Methodological), 43(2):pp. 256–260, 1981.

142

References

[59] S. Boutemedjet, N. Bouguila, and D. Ziou. A hybrid feature extraction selection approach

for high-dimensional non-gaussian data clustering. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 31(8):1429–1443, Aug 2009.

[60] Luke Tierney and Joseph B. Kadane. Accurate Approximations for Posterior Moments and

Marginal Densities. Journal of the American Statistical Association, 81(393):82–86, March

1986.

[61] P. Diaconis and D. Ylvisaker. Conjugate Priors for Exponential Families. The Annals of

Statistics, 7(2), 1979.

[62] Steven Reece, Alex Rogers, Stephen Roberts, and Nicholas R. Jennings. Rumours and

reputation: evaluating multi-dimensional trust within a decentralised reputation system. In

Proceedings of the 6th international joint conference on Autonomous agents and multiagent

systems, AAMAS ’07, pages 165:1–165:8, New York, NY, USA, 2007. ACM.

[63] Liangzhao Zeng, Hui Lei, and Henry Chang. Monitoring the qos for web services. In

Proceedings of the 5th International Conference on Service-Oriented Computing, ICSOC

’07, pages 132–144, Berlin, Heidelberg, 2007. Springer-Verlag.

[64] Mohamad Mehdi, Nizar Bouguila, and Jamal Bentahar. Probabilistic approach for qos-

aware recommender system for trustworthy web service selection. Applied Intelligence,

41(2):503–524, 2014.

[65] Molood Makhlughian, Seyyed Mohsen Hashemi, Yousef Rastegari, and Emad Pejman.

Web service selection based on ranking of qos using associative classification. CoRR,

abs/1204.1425, 2012.

[66] Xumin Liu, Athman Bouguettaya, Qi Yu, and Zaki Malik. Efficient change management in

long-term composed services. Serv. Oriented Comput. Appl., 5:87–103, June 2001.

[67] David Heckerman. A tutorial on learning with bayesian networks. Technical report, Learn-

ing in Graphical Models, 1995.

143

References

[68] C. I¡. Chow, Sexior Member, and C. N. Liu. Approximating discrete probability distribu-

tions with dependence trees. IEEE Transactions on Information Theory, 14:462–467, 1968.

[69] Gregory F. Cooper and Tom Dietterich. A bayesian method for the induction of probabilistic

networks from data. In Machine Learning, pages 309–347, 1992.

[70] Kevin P. Murphy. Active learning of causal bayes net structure. Technical report, 2001.

[71] Nir Friedman. The bayesian structural em algorithm, 1998.

[72] Olivier François. Bayesian network structural learning and incomplete data, 2005.

[73] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data

via the em algorithm. Journal of the royal statistical society, series B, 39(1):1–38, 1977.

[74] D. Heckerman, D. Geiger, and D.M. Chickering. Learning bayesian networks: The combi-

nation of knowledge and statistical data. 1994.

[75] Wray Buntine. Theory refinement on bayesian networks. pages 52–60. Morgan Kaufmann,

1991.

[76] N L Zhang and D Poole. A simple approach to bayesian network computations. In Proceed-

ings of the Tenth Canadian Conference on Artificial Intelligence, pages 171–178, Canada,

1994.

[77] F V Jensen, S L Lauritzen, and K G Olesen. Bayesian updating in causal probabilistic

networks by local computations. Computational Statistics Quarterly, 4(4):269–282, 1990.

[78] R.L. Winkler. The assessment of prior distributions in bayesian analysis. Journal of the

American Statistical association, page 776800, 1967.

[79] Re Bronstein, Ira Cohen, Fabio G. Cozman, Fabio G. Cozman, Escola Politecnica, and

Alexandre Bronstein Fabio. Adaptive online learning of bayesian network parameters,

2001.

144

References

[80] Chung-Wei Hang, Anup K. Kalia, and Munindar P. Singh. Behind the curtain: Service se-

lection via trust in composite services. In Proceedings of the IEEE International Conference

on Web Services (ICWS), pages 9–16, Honolulu, HI, June 2012.

[81] Eric Bauer, Daphne Koller, and Yoram Singer. Update rules for parameter estimation in

bayesian networks. In Proceedings of the 13th Conference on Uncertainty in Artificial

Intelligence (UAI), pages 3–13. Morgan Kaufmann, 1997.

[82] N. Bouguila and D. Ziou. Improving content based image retrieval systems using finite

multinomial dirichlet mixture. In Machine Learning for Signal Processing, 2004. Proceed-

ings of the 2004 14th IEEE Signal Processing Society Workshop, pages 23 –32, 29 2004-oct.

1 2004.

[83] N. Bouguila. Clustering of count data using generalized dirichlet multinomial distributions.

Knowledge and Data Engineering, IEEE Transactions on, 20(4):462–474, 2008.

[84] E. Al-Masri and Q.H. Mahmoud. Qos-based discovery and ranking of web services. In

Proc. 16th International Conference on Computer Communications and Networks (ICCCN’

2007), pages 529–534, Honolulu, HI, August 2007.

[85] Andrew McCallum and Kamal Nigam. A comparison of event models for naive bayes text

classification. In In AAAI-98 Workshop On Learning For Text Categorization, pages 41–48,

1998.

[86] T. Minka. Estimating a Dirichlet distribution. Technical report, MIT, 2000.

[87] M. Mehdi, N. Bouguila, and J. Bentahar. A qos-based trust approach for service selection

and composition via bayesian networks. In Web Services (ICWS), 2013 IEEE 20th Interna-

tional Conference on, pages 211–218, 2013.

[88] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of attack and defense

techniques for reputation systems. ACM Comput. Surv., 42(1):1:1–1:31, December 2009.

145

References

[89] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust algo-

rithm for reputation management in p2p networks. In Proceedings of the 12th International

Conference on World Wide Web, WWW ’03, pages 640–651, New York, NY, USA, 2003.

ACM.

[90] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust for peer-to-peer elec-

tronic communities. IEEE Transactions On Knowledge And Data Engineering, 16:843–

857, 2004.

[91] Yonghong Wang and Munindar P. Singh. Trust representation and aggregation in a dis-

tributed agent system. In Proceedings of the 21st National Conference on Artificial Intelli-

gence - Volume 2, AAAI’06, pages 1425–1430. AAAI Press, 2006.

[92] Chung-Wei Hang, Yonghong Wang, and Munindar P. Singh. Operators for propagating trust

and their evaluation in social networks. In Proceedings of The 8th International Conference

on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’09, pages 1025–1032,

Richland, SC, 2009.

[93] Bled Electronic Commerce, Audun Jøsang, and Roslan Ismail. The beta reputation system.

In In Proceedings of the 15th Bled Electronic Commerce Conference, 2002.

[94] Audun Josang and Jochen Haller. Dirichlet reputation systems. In Proceedings of the The

Second International Conference on Availability, Reliability and Security, ARES ’07, pages

112–119, Washington, DC, USA, 2007. IEEE Computer Society.

[95] Bo Ye, Anjum Pervez, Mohammad Ghavami, and Maziar Nekovee. A trust-based model

for quality of web service. In International Conference on Advanced Service Computing,

pages 39–45, Valencia, Spain, 2013.

[96] Xiaofeng Wang, Ling Liu, and Jinshu Su. Rlm: A general model for trust representation

and aggregation. IEEE Transactions on Service Computing, 5(1):131–143, January 2012.

146

References

[97] Ziqiang Xu, Patrick Martin, Wendy Powley, and Farhana H. Zulkernine. Reputation-

enhanced qos-based web services discovery. In ICWS, pages 249–256. IEEE Computer

Society, 2007.

[98] Huan Zhou, Xiaofeng Wang, and Jinshu Su. A general self-adaptive reputation system

based on the kalman feedback. In International Conference on Service Sciences, pages

7–12, Los Alamitos, CA, USA, 2013.

[99] Lingji Chen, Pablo O. Arambel, and Raman K. Mehra. Estimation under unknown cor-

relation: covariance intersection revisited. IEEE Transactions on Automatic Control,

47(11):1879–1882, 2002.

[100] Simon J. Julier and Jeffrey K. Uhlmann. A non-divergent estimation algorithm in the pres-

ence of unknown correlations. In In Proceedings of the American Control Conference,

pages 2369–2373, 1997.

[101] W. Niehsen. Information fusion based on fast covariance intersection filtering. In Proceed-

ings of the Fifth International Conference on Information Fusion, volume 2, pages 901–904,

2002.

[102] S. J. Julier and J. K. Uhlmann. General Decentralized Data Fusion with Covariance Inter-

section. Handbook of Multisensor Data Fusion. CRC Press, Boca Raton, FL, 2001.

[103] J. Sijs, M. Lazar, and P.P.J. v.d.Bosch. State fusion with unknown correlation: Ellipsoidal

intersection. In American Control Conference (ACC), 2010, pages 3992–3997, 2010.

[104] N. Amer and M. Goldstein. Nearest-neighbor and clustering based anomaly detection al-

gorithms for rapidminer. In Proceedings of the 3rd RapidMiner Community Meeting and

Conference (RCOMM), pages 1–12, 2012.

[105] Yao Wang, Jie Zhang, and Julita Vassileva. Effective web service selection via communities

formed by super-agents. In Jimmy Xiangji Huang, Irwin King, Vijay V. Raghavan, and

Stefan Rueger, editors, Web Intelligence, pages 549–556. IEEE, 2010.

147

References

[106] Zakaria Maamar, Mohammed Lahkim, Djamal Benslimane, Philippe Thiran, and Sat-

tanathan Subramanian. Web services communities - concepts & operations. In Joaquim

Filipe, Jos Cordeiro, Bruno Encarnao, and Vitor Pedrosa, editors, WEBIST (1), pages 323–

327. INSTICC Press, 2007.

[107] Jamal Bentahar, Zakaria Maamar, Wei Wan, Djamal Benslimane, Philippe Thiran, and Sat-

tanathan Subramanian. Agent-based communities of web services: an argumentation-driven

approach. Service Oriented Computing and Applications, 2(4):219–238, 2008.

[108] Zakaria Maamar, Sattanathan Subramanian, Philippe Thiran, Djamal Benslimane, and Jamal

Bentahar. An approach to engineer communities of web services: Concepts, architecture,

operation, and deployment. IJEBR, 5(4):1–21, 2009.

[109] Abdelghani Benharref, M. Adel Serhani, Salah Bouktif, and Jamal Bentahar. A new ap-

proach for quality enforcement in communities of web services. In Proceedings of the 2011

IEEE International Conference on Services Computing, SCC ’11, pages 472–479, Wash-

ington, DC, USA, 2011. IEEE Computer Society.

[110] Yao Wang and J. Vassileva. A review on trust and reputation for web service selection. In

Distributed Computing Systems Workshops, 2007. ICDCSW ’07. 27th International Confer-

ence on, pages 25–25, June 2007.

[111] Murat Sensoy, Burcu Yilmaz, and TimothyJ. Norman. Discovering frequent patterns to

bootstrap trust. In Longbing Cao, Yifeng Zeng, AndreasL. Symeonidis, VladimirI. Gorodet-

sky, PhilipS. Yu, and MunindarP Singh, editors, Agents and Data Mining Interaction, vol-

ume 7607 of Lecture Notes in Computer Science, pages 93–104. Springer Berlin Heidelberg,

2013.

[112] Erbin Lim and Philippe Thiran. Sustaining high-availability and quality of web services.

In Florian Daniel and FedericoMichele Facca, editors, Current Trends in Web Engineer-

ing, volume 6385 of Lecture Notes in Computer Science, pages 560–565. Springer Berlin

Heidelberg, 2010.

148

References

[113] Said Elnaffar, Zakaria Maamar, Hamdi Yahyaoui, Jamal Bentahar, and Philippe Thiran.

Reputation of communities of web services - preliminary investigation. In AINA Workshops,

pages 1603–1608. IEEE Computer Society, 2008.

[114] B. Khosravifar, J. Bentahar, P. Thiran, A. Moazin, and A. Guiot. An approach to incentive-

based reputation for communities of web services. In Web Services, 2009. ICWS 2009.

IEEE International Conference on, pages 303–310, July 2009.

[115] Carlo Ghezzi and Sam Guinea. Run-time monitoring in service-oriented architectures. Test

and Analysis of Web Services, pages 237–264, 2007.

[116] Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. Outlier detection for tem-

poral data: A survey. IEEE Transactions on Knowledge and Data Engineering, 99:1–20,

2013.

[117] G.J. McLachlan and K.E. Basford. Mixture Models: Inference and Applications to Cluster-

ing. Marcel Dekker, New York, 1988.

[118] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with efficient estimation

of the number of clusters. In Proceedings of the Seventeenth International Conference on

Machine Learning, ICML ’00, pages 727–734, San Francisco, CA, USA, 2000. Morgan

Kaufmann Publishers Inc.

[119] Robert E. Kass and Larry Wasserman. A reference bayesian test for nested hypotheses and

its relationship to the schwarz criterion. Journal of the American Statistical Association,

90(431):928–934, 1995.

[120] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM

Comput. Surv., 41(3):15:1–15:58, July 2009.

[121] Rock: A robust clustering algorithm for categorical attributes. In Proceedings of the 15th

International Conference on Data Engineering, ICDE ’99, pages 512–, Washington, DC,

USA, 1999. IEEE Computer Society.

149

References

[122] Dantong Yu, Gholamhosein Sheikholeslami, and Aidong Zhang. Findout: Finding outliers

in very large datasets. Knowl. Inf. Syst., 4(4):387–412, October 2002.

[123] Levent Ertöz, Michael Steinbach, and Vipin Kumar. Finding topics in collections of doc-

uments: A shared nearest neighbor approach. In Clustering and Information Retrieval,

volume 11 of Network Theory and Applications, pages 83–103. Springer US, 2004.

[124] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers.

Pattern Recognition Letters, 24(910):1641 – 1650, 2003.

[125] Frank E. Grubbs. Procedures for detecting outlying observations in samples. Technomet-

rics, 11(1):1–21, February 1969.

150

