68 research outputs found

    Clustering in Conjunction with Wrapper Approach to Select Discriminatory Genes for Microarray Dataset Classification

    Get PDF
    With the advent of microarray technology, it is possible to measure gene expression levels of thousands of genes simultaneously. This helps us diagnose and classify some particular cancers directly using DNA microarray. High-dimensionality and small sample size of microarray datasets has made the task of classification difficult. These datasets contain a large number of redundant and irrelevant genes. For efficient classification of samples there is a need of selecting a smaller set of relevant and non-redundant genes. In this paper, we have proposed a two stage algorithm for finding a set of discriminatory genes responsible for classification of high dimensional microarray datasets. In the first stage redundancy is reduced by grouping correlated genes into clusters and selecting a representative gene from each cluster. Maximal information compression index is used to measure similarity between genes. In the second stage a wrapper based forward feature selection method is used to obtain a set of discriminatory genes for a given classifier. We have investigated three different techniques for clustering and four classifiers in our experiments. The proposed algorithm is tested on six well known publicly available datasets. Comparison with the other state-of-the-art methods show that our proposed algorithm is able to achieve better classification accuracy with less number of genes

    An integrated method for cancer classification and rule extraction from microarray data

    Get PDF
    Different microarray techniques recently have been successfully used to investigate useful information for cancer diagnosis at the gene expression level due to their ability to measure thousands of gene expression levels in a massively parallel way. One important issue is to improve classification performance of microarray data. However, it would be ideal that influential genes and even interpretable rules can be explored at the same time to offer biological insight

    An Evolutionary Method for Combining Different Feature Selection Criteria in Microarray Data Classification

    Get PDF
    The classification of cancers from gene expression profiles is a challenging research area in bioinformatics since the high dimensionality of microarray data results in irrelevant and redundant information that affects the performance of classification. This paper proposes using an evolutionary algorithm to select relevant gene subsets in order to further use them for the classification task. This is achieved by combining valuable results from different feature ranking methods into feature pools whose dimensionality is reduced by a wrapper approach involving a genetic algorithm and SVM classifier. Specifically, the GA explores the space defined by each feature pool looking for solutions that balance the size of the feature subsets and their classification accuracy. Experiments demonstrate that the proposed method provide good results in comparison to different state of art methods for the classification of microarray data

    Dimensionality Reduction Approach using Attributes Extraction and Attributes Selection in Gene Expression Databases

    Get PDF
    The gene expression databases are formed by a high number of attributes. To deal with this amount, data dimensionality reduction is used in order to minimize the volume of data to be treated regarding the number of attributes, and to increase the generalization capability of learning methods by eliminating irrelevant and/or redundant data. This paper proposes an approach to means of dimensionality reduction, which joins attribute extraction and attributes selection. For this, we used the Random Projection method and the filter and wrapper approaches for the attribute selection. The experiments are realized in five gene expression microarray databases. The results of the experiments showed that join of those approaches can provide promising results

    Evolutionary approaches for feature selection in biological data

    Get PDF
    Data mining techniques have been used widely in many areas such as business, science, engineering and medicine. The techniques allow a vast amount of data to be explored in order to extract useful information from the data. One of the foci in the health area is finding interesting biomarkers from biomedical data. Mass throughput data generated from microarrays and mass spectrometry from biological samples are high dimensional and is small in sample size. Examples include DNA microarray datasets with up to 500,000 genes and mass spectrometry data with 300,000 m/z values. While the availability of such datasets can aid in the development of techniques/drugs to improve diagnosis and treatment of diseases, a major challenge involves its analysis to extract useful and meaningful information. The aims of this project are: 1) to investigate and develop feature selection algorithms that incorporate various evolutionary strategies, 2) using the developed algorithms to find the “most relevant” biomarkers contained in biological datasets and 3) and evaluate the goodness of extracted feature subsets for relevance (examined in terms of existing biomedical domain knowledge and from classification accuracy obtained using different classifiers). The project aims to generate good predictive models for classifying diseased samples from control

    Individualized markers optimize class prediction of microarray data

    Get PDF
    BACKGROUND: Identification of molecular markers for the classification of microarray data is a challenging task. Despite the evident dissimilarity in various characteristics of biological samples belonging to the same category, most of the marker – selection and classification methods do not consider this variability. In general, feature selection methods aim at identifying a common set of genes whose combined expression profiles can accurately predict the category of all samples. Here, we argue that this simplified approach is often unable to capture the complexity of a disease phenotype and we propose an alternative method that takes into account the individuality of each patient-sample. RESULTS: Instead of using the same features for the classification of all samples, the proposed technique starts by creating a pool of informative gene-features. For each sample, the method selects a subset of these features whose expression profiles are most likely to accurately predict the sample's category. Different subsets are utilized for different samples and the outcomes are combined in a hierarchical framework for the classification of all samples. Moreover, this approach can innately identify subgroups of samples within a given class which share common feature sets thus highlighting the effect of individuality on gene expression. CONCLUSION: In addition to high classification accuracy, the proposed method offers a more individualized approach for the identification of biological markers, which may help in better understanding the molecular background of a disease and emphasize the need for more flexible medical interventions

    A framework for feature selection in high-dimensional domains

    Get PDF
    The introduction of DNA microarray technology has lead to enormous impact in cancer research, allowing researchers to analyze expression of thousands of genes in concert and relate gene expression patterns to clinical phenotypes. At the same time, machine learning methods have become one of the dominant approaches in an effort to identify cancer gene signatures, which could increase the accuracy of cancer diagnosis and prognosis. The central challenges is to identify the group of features (i.e. the biomarker) which take part in the same biological process or are regulated by the same mechanism, while minimizing the biomarker size, as it is known that few gene expression signatures are most accurate for phenotype discrimination. To account for these competing concerns, previous studies have proposed different methods for selecting a single subset of features that can be used as an accurate biomarker, capable of differentiating cancer from normal tissues, predicting outcome, detecting recurrence, and monitoring response to cancer treatment. The aim of this thesis is to propose a novel approach that pursues the concept of finding many potential predictive biomarkers. It is motivated from the biological assumption that, given the large numbers of different relationships which are possible between genes, it is highly possible to combine genes in many ways to produce signatures with similar predictive power. An intriguing advantage of our approach is that it increases the statistical power to capture more reliable and consistent biomarkers while a single predictor may not necessarily provide important clues as to biological differences of interest. Specifically, this thesis presents a framework for feature selection that is based upon a genetic algorithm, a well known approach recently proposed for feature selection. To mitigate the high computationally cost usually required by this algorithm, the framework structures the feature selection process into a multi-step approach which combines different categories of data mining methods. Starting from a ranking process performed at the first step, the following steps detail a wrapper approach where a genetic algorithm is coupled with a classifier to explore different feature subspaces looking for optimal biomarkers. The thesis presents in detail the framework and its validation on popular datasets which are usually considered as benchmark by the research community. The competitive classification power of the framework has been carefully evaluated and empirically confirms the benefits of its adoption. As well, experimental results obtained by the proposed framework are comparable to those obtained by analogous literature proposals. Finally, the thesis contributes with additional experiments which confirm the framework applicability to the categorization of the subject matter of documents

    Multivariate feature ranking of gene expression data

    Full text link
    Gene expression datasets are usually of high dimensionality and therefore require efficient and effective methods for identifying the relative importance of their attributes. Due to the huge size of the search space of the possible solutions, the attribute subset evaluation feature selection methods tend to be not applicable, so in these scenarios feature ranking methods are used. Most of the feature ranking methods described in the literature are univariate methods, so they do not detect interactions between factors. In this paper we propose two new multivariate feature ranking methods based on pairwise correlation and pairwise consistency, which we have applied in three gene expression classification problems. We statistically prove that the proposed methods outperform the state of the art feature ranking methods Clustering Variation, Chi Squared, Correlation, Information Gain, ReliefF and Significance, as well as feature selection methods of attribute subset evaluation based on correlation and consistency with multi-objective evolutionary search strategy

    Comparison of Filter Techniques for Two-Step Feature Selection

    Get PDF
    In the last decade, the processing of the high dimensional data became inevitable task in many areas of research and daily life. Feature selection (FS), as part of the data processing methodology, is an important step in knowledge discovery. This paper proposes nine variation of two-step feature selection approach with filter FS employed in the first step and exhaustive search in the second step. The performance of the proposed methods is comparatively analysed from the stability and predictive performance point of view. As the obtained results indicate the choice of the filter FS in the first stage has strong influence on the resulting stability. Here, the choice of univariate Pearson correlation coefficient based FS method appears to provide the most stable results
    corecore