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Abstract

Background: Using hybrid approach for gene selection and classification is common as results obtained are generally better
than performing the two tasks independently. Yet, for some microarray datasets, both classification accuracy and stability of
gene sets obtained still have rooms for improvement. This may be due to the presence of samples with wrong class labels
(i.e. outliers). Outlier detection algorithms proposed so far are either not suitable for microarray data, or only solve the
outlier detection problem on their own.

Results: We tackle the outlier detection problem based on a previously proposed Multiple-Filter-Multiple-Wrapper (MFMW)
model, which was demonstrated to yield promising results when compared to other hybrid approaches (Leung and Hung,
2010). To incorporate outlier detection and overcome limitations of the existing MFMW model, three new features are
introduced in our proposed MFMW-outlier approach: 1) an unbiased external Leave-One-Out Cross-Validation framework is
developed to replace internal cross-validation in the previous MFMW model; 2) wrongly labeled samples are identified
within the MFMW-outlier model; and 3) a stable set of genes is selected using an L1-norm SVM that removes any redundant
genes present. Six binary-class microarray datasets were tested. Comparing with outlier detection studies on the same
datasets, MFMW-outlier could detect all the outliers found in the original paper (for which the data was provided for
analysis), and the genes selected after outlier removal were proven to have biological relevance. We also compared MFMW-
outlier with PRAPIV (Zhang et al., 2006) based on same synthetic datasets. MFMW-outlier gave better average precision and
recall values on three different settings. Lastly, artificially flipped microarray datasets were created by removing our
detected outliers and flipping some of the remaining samples’ labels. Almost all the ‘wrong’ (artificially flipped) samples
were detected, suggesting that MFMW-outlier was sufficiently powerful to detect outliers in high-dimensional microarray
datasets.
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Introduction

Classification is one of the major goals in microarray data

analysis [1–7]. However, the quality of classifier depends critically

on the correct labelling of the training data [8]. There are chances

that some samples in a microarray data are given wrong class

labels (due to subjective labelling, imperfectness in experiments or

heterogeneity of data [9]. The presence of such mislabelled

samples, even a small number of them, could severely degrade the

performance of the classifier [8]. As reported in different studies

using an unbiased validation model, perfect leave-one-out cross-

validation (LOOCV) accuracies cannot be achieved in many

microarray datasets [10–11] even though many gene selection

tools have been combined with classifiers of different natures in

various experiments. This suggests something wrong about these

datasets which may be caused by the presence of wrongly labelled

samples. We call these samples ‘outliers’. Their existence can only

degrade the classification performance of any model. Previous

work has reported the adverse impact of mislabelled samples on

the performance of classification [8]. If no outlier detection and

removal process is done either prior to or in conjunction with gene

selection and classification, results obtained from the classification

task can be seriously affected by the presence of these outliers.

Consequently a promising outlier detection algorithm is essential

for the microarray data analysis process.

Gene selection is another major goal in microarray data

analysis; it is not only necessary for efficient classification, but also

important for biomarker identification [12–14]. For microarray

classification problems, evaluation on stability of gene sets is often

neglected. Concern has recently been expressed regarding the fact

that different studies reveal different gene sets for predicting the

prognosis of breast cancer [15–16]. It is crucial to check whether
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the selected gene sets are stable or not, as a concise and stable gene

set is easier to interpret. Besides, as the selected genes will be used

for prognosis, a small set of genes is much cheaper and easier to be

applied to large-scale dataset than long gene lists. The stability of

selected genes refers to whether the same set of genes is chosen

when perturbation of data occurs. Ideally, if only a small portion of

training samples in two datasets is different, the sets of genes

selected from these two datasets should not vary significantly. If

large variations in selected gene sets are observed, this signifies

something unusual among the samples in the data [17]. Note that

stability only indicates the sensitivity of the gene selection

algorithm with respect to perturbation of data, and does not

necessarily have a bearing on the performance of selected genes.

Various studies have proposed different ways of ‘stabilizing’ the

gene selection process [18–19]. As different sets of genes are

selected corresponding to different perturbations, the selected

genes can be ranked by their frequency of selection. A gene is most

certain to be relevant to the classification task if it is selected most

of the time. Gene set stability is often evaluated by LOOCV to see

how consistent the selected gene set is when different samples are

left out. It is possible that the selected gene sets are fairly stable,

except when the left-out sample is an outlier. This is because for all

training datasets containing the outlier, the outlier affects each of

these training datasets in a similar way resulting in a ‘stable and

consistent’ set of genes to be selected. But once the outlier is

removed from the training dataset, its influence is lost and so the

selected gene set may be quite different. Hence, it is crucial that

outliers be removed for gene stability to be taken as a useful

measure.

Outlier detection is a process to search for samples that do not

obey the general rules of the majority portion of the data of the

same class. Many outlier detection algorithms have been proposed,

yet most of them [20–22] attempt to detect outliers by computing

the distances in the full dimensional space. As microarray data is of

high dimensional space, and due to the sparse nature of distance

distributions, the concept of similarity may not be meaningful [20–

21]. Since outlier detection algorithms developed for other

domains are not suitable for microarray data, tailor-made outlier

detection methods for detecting wrong-labelled samples are

proposed. Furey et al. applied SVM on microarray datasets with

reduced set of genes. Samples which have been consistently

misclassified in all tests are identified as suspects [9]. Kadota et al.

proposed a method based on Akaike’s Information Criterion to

detect outliers in the colon data [23]. In the study conducted by Lu

et al., outliers are detected using support vector machine (SVM) in

a re-validation framework [24]. Zhang et al. introduced the

misclassification probability which is estimated for each sample in

the training set [25]. Unger and Chor developed a method for

finding all pairs of genes that induce a linear separation of the two

sample classes. If no gene pairs can separate the two classes

distinctly, then the dataset contains outliers [26]. In the study by

Malossini et al. [8], two algorithms are designed for detecting

possible mislabelled samples: a Classification-stability (CL-stability)

algorithm and a Leave-One-Out-Error-sensitivity (LOOE-sensi-

tivity) algorithm. The CL-stability algorithm evaluates the stability

of classification of a sample by perturbing a small amount of

samples, whereas LOOE-sensitivity is based on the idea that the

classification accuracy should be improved after flipping the label

of a mislabelled sample. In 2011, Zhou et al. modified the CL-

stability approach. Their goal was to detect outlier samples and

automatically correct them, and their proposed method was called

Fast Outlier Samples Detection (FOSD) [27].

The aims in all the above studies are to design an outlier

detection algorithm on their own. A distinctive feature of our

proposed MFMW-outlier framework is that outlier detection is

integrated within a proposed hybrid approach. This ‘three-in-one’

approach performs gene selection, classification and outlier

detection simultaneously, which is particularly suitable for high-

dimensional microarray datasets.

Materials and Methods

Datasets
Our aim was to identify any wrongly labelled samples present in

a high dimensionality data, such as microarray. Six benchmark

binary-class datasets on cancers were selected for evaluation using

the algorithm proposed. With the help of synthetic datasets, the

effectiveness of MFMW-outlier could be demonstrated despite the

absence of ground truth information for which samples are

outliers.

1. Microarray datasets. The six chosen binary-class datasets,

all generated using Affymetrix chips, were: LEU, COL, BRE,

LYM, PROS and LUNG. They were pre-processed according to

the instructions published in the original paper. In addition,

each sample was normalized to have mean zero and unit

variance. Table 1 summarizes the data we used.

2. Synthetic datasets. Synthetic datasets were more reliable as

the class labels for all samples were known. Experimental

results obtained from these datasets could therefore reflect the

true performance of the proposed algorithm. In a recent study

on detecting outliers in microarray data [25], artificial datasets

were generated as part of their experiments. The number and

characteristics of samples and features included in our synthetic

datasets were the same as theirs. Although microarray datasets

may have different characteristics, e.g. varied number of genes,

varied proportion of samples in each class or varied number of

classes, our main objective here is to compare MFMW-outlier

with the performance in [25] using the same datasets. Each of

our synthetic binary-class datasets contained 30 samples, with

equal number of samples in each class. Each of the samples was

given a class label of +1 or 21. A total of 10,000 features

(typical number of genes on microarray) were randomly

generated, of which 5 were discriminating ones created based

on Gaussian Distributions. m and s are the mean and standard

deviations of the discriminatory features. For class 1, m= 23

and s= 1 while for class 2, m= 23 and s= 3. The remaining

features were generated as Gaussian noise. A total of 3 different

synthetic datasets were created based on the above character-

istics. They differed only in the number of mislabeled samples

present: 4 (Test 1), 6 (Test 2) and 10 (Test 3). These

corresponded to Test 1–3 generated by Zhang et al. [25].

Table 2 summarizes the synthetic datasets we used.

Table 1. Summary of the six binary-class microarray datasets.

Dataset No. of samples No. of genes References

LEU 38 ALL, 34 AML 7129 [1]

COL 40 cancer, 22 normal 2000 [2]

BRE 25 ER+, 24 ER2 7129 [3]

LYM 58 DLBCL, 19 FL 7129 [4]

PROS 50 normal, 52 cancer 12000 [5]

LUNG 150 ADCA, 31 MPM 12600 [6]

doi:10.1371/journal.pone.0046700.t001
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Methods
Our proposed integrated MFMW-outlier approach is built on

top of the MFMW model proposed in [28]. However, to address

the limitations, we propose here three major modifications to

MFMW, and will refer to the new model as N-MFMW:

1. The optimal number of genes selected in the multiple-wrapper

step in MFMW-outlier is determined using an L1-norm SVM,

whereas those selected in earlier approach was based on a

threshold, i.e. a fixed number of genes.

2. The entire gene selection and classifier procedure of MFMW-

outlier is built within a fully unbiased LOOCV framework (i.e.

external LOOCV) in our present approach, as opposed to

applying LOOCV only to the classification part only in [28].

3. Identifying wrongly labelled samples is made possible through

the use of external LOOCV, as each sample is left out

completely from start, including the gene selection process.

Since the present approach is based on the MFMW model

developed in [28], in the following we only discuss the new features

introduced here beyond the framework already developed in [28].

We refer to this new model as N-MFMW. Interested readers are

referred to the paper [28] for more details on the original MFMW.

1. MFMW Model under External LOOCV. (This is a

modification of the original MFMW). Let S~ Sk Dk~1, . . . ,Kf g
be a dataset of samples. The N-MFMW model in an external

LOOCV framework is illustrated in Figure 1. LOOCV is

performed in the outermost loop (together with the boxes

highlighted in blue), whereby each sample Sk is left out in turn

before N-MFMW is applied to the training set Sk~S{ Skf g.
Note that all subsequent symbols with subscript k refer to data

generated after leaving out sample Sk.

Multiple-Filter part. The same three filters were used as in

MFMW. One hundred and fifty genes are selected by each filter

and the three gene lists are then combined by taking their union.

Multiple-Wrapper part. The same three wrappers were

used in MFMW. Please refer to [28] for details.

L1-SVM for incremental gene selection. (This is a

modification of the original MFMW) Suppose the set of samples

S are represented by points xi[Rd where each xi belongs to one of

two classes with label yi[ {1,1f gD. An SVM is constructed by

computing a classifier function f xð Þ~sgn wT xizbð Þ, where the

parameters w and b are determined by optimization:

min
w,b

wk k1zC
X

i

ji subject to yi Sxi,wTzbð Þ§1{ji,

ji§0, 1ƒiƒK

ð1Þ

The parameter C is a cost parameter and is provided as an input.

In the above optimization, we seek to minimize wk k1 instead of

the usual L2-norm wk k2
2 in traditional SVM. Minimizing wk k1

tends to give sparser solutions, which imply better dimension

reduction yielding classifiers of greater robustness [29].

In N-MFMW model, the number of genes selected at each level

of the wrapper part is ‘optimized’ using L1-SVM. Instead of taking

Table 2. Design of our synthetic datasets.

Dataset No. of samples No. of genes
No. of mislabeled
samples

Test 1 15 Class 1, 15 Class 2 10000 4

Test 2 15 Class 1, 15 Class 2 10000 6

Test 3 15 Class 1, 15 Class 2 10000 10

doi:10.1371/journal.pone.0046700.t002

Figure 1. N-MFMW model in an external LOOCV framework.
doi:10.1371/journal.pone.0046700.g001
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one/all gene(s) at the same level, the number of genes selected is

based on the wi scores outputted by the L1-SVM. The reason why

L1-SVM is chosen is due to its singularity nature. This nice

property allows the automatic selection of relevant genes with

respect to class labels of samples when there are several highly

correlated genes. The larger the wi score, the more informative

and less redundant the gene is, as compared to other genes of the

same level. A cut-off threshold is required for choosing a certain

number of genes. This is determined by finding the largest

difference between these wi values. By picking only a few genes

and removing the rest, L1-SVM selects a small subset of genes

from all the genes that have the same number of ‘W ’ and ‘I ’ [30].

Instead of selecting a pre-defined number of genes (as proposed in

[28,31]), the final number of selected genes is determined by wi

values in N-MFMW, which is data dependent.
External LOOCV and the final classification model. The

entire N-MFMW process is repeated for every sample Sk. At the

kth round of the LOOCV, after the incremental gene selection

process stops, we obtain the final gene set Pk and the

corresponding classification model Mk, which is composed of

the feature set Pk, the group of classifiers used as multiple

wrappers, and the voting scheme. The final model is trained again

using final gene set Pk and the sample set Sk to give the best

training accuracy. The trained model Mk is then used to test the

left-out sample Sk, yielding the test accuracy for Sk. Finally, the

LOOCV accuracy is computed as the percentage of correctly

classified test samples, and the gene stability measure Frequency

Of Occurrence (FOO) of a particular gene is calculated as the

number of times that gene is found on the list Pk k~1, . . . ,Kð Þ
outputted by the N-MFMW algorithm, divided by K .

2. Outlier Detection part. We now propose to incorporate

outlier detection into the N-MFMW model with external

LOOCV, as shown in Figure 2, which may be regarded as an

expansion of Figure 1 by introducing additional steps (highlighted

in blue) for outlier detection. As shown in Figure 2, a test sample

Sk is marked as an outlier if it is misclassified by all three classifiers

of the model Mk trained by N-MFMW based on Sk. This is a

highly convincing condition as it requires all classifiers, each based

on all samples other than the one under testing, to agree

unanimously that Sk ‘acts’ as if it has a label of the opposite

class. Such samples marked as outliers are removed only after one

complete cycle of LOOCV is performed. Since the removal of any

outlier(s) may have a significant impact on gene selection and

hence the N-MFMW training process, the entire LOOCV exercise

has to be repeated after outliers are removed.

Finally, the LOOCV accuracy and the gene stability measure

FOO can be computed based on a reduced dataset that has been

cleansed of outliers. The set of genes can then be ranked according

to their FOO scores from the largest to smallest, with a cut-off

threshold set for FOO values. The complete algorithm that

integrates all three components of gene selection, optimization of

classification accuracy and outlier detection, is given below.

MFMW-outlier – Outlier Detection under N-MFMW with

External LOOCV:

(1) Start with k~1.

(2) Define Training set Sk~S{ Skf g.
(3) Apply ‘Multiple Filters’ algorithm to Sk to get filtered gene list

Gk; apply ‘Multiple Wrappers’ algorithm to get gene set Pk

and train model Mk to give best accuracy for Sk. Record Pk

for computation of gene stability measure FOO.

(4) Apply Mk to test sample Sk; if the classification result is ‘W ’,

mark Sk as an outlier, otherwise the classification result is

recorded for computation of LOOCV accuracy.

(5) Repeat steps 2–4 for all Sk[S.

(6) If there are no samples marked as outliers, proceed to the next

step, otherwise remove all samples Sk marked as outliers from

S, update K~n Sð Þ, and repeat steps 1–5.

(7) Output:

(i) LOOCV accuracy based on test results for each Sk;

(ii) FOO of genes in P~UK
k~1Pk;

(iii) Set of outlier samples.

The proposed MFMW-outlier is a significant modification of

the MFMW model proposed in [28,31] in that it represents a

‘three-in-one’ approach integrating all three components of gene

Figure 2. MFMW-outlier: Integrating outlier detection into N-
MFMW model with external LOOCV.
doi:10.1371/journal.pone.0046700.g002
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selection, classification and outlier detection in an unbiased

external LOOCV framework. Like MFMW, the underlying idea

of N-MFMW models is to first use multiple filters with

complementary characteristics to select genes, which are then

merged to provide a filtered subset of (several hundreds of) genes.

Different filters select genes with different statistical properties

across the classes under study. Therefore the use of multiple filters

of different natures ensures that potential biomarkers are unlikely

to be screened out by one specific filter criterion in an initial stage.

After gene screening by multiple filters, multiple wrappers are used

for incremental gene selection based on training accuracy. The use

of multiple wrappers, together with a unanimous voting scheme, is

for enhancing the robustness of the training accuracy by means of

consensus. Though one of the toughest issues for the wrapper

methods is computational complexity [32], our approach handles

this problem in two ways: 1) restricting the number of genes to be

included, largely by the use of multiple filters, which is in turn

determined by the number of genes picked up by each filter (in our

experiment we used 20); 2) choosing a simple classifier: e.g. k-NN

will perform much faster than neural network, genetic algorithms

or other classifiers that require optimization of lots of parameters.

An external LOOCV is then performed to evaluate the

performance of the classifier. More importantly, the use of

external LOOCV in the N-MFMW framework allows a natural

outlier detection and gene set stability evaluation. LOOCV is

chosen instead of other model estimation methods (like boot-

strapping) as a score can be assigned to each sample specifically for

the determination of whether it is an outlier or not. This score can

be easily obtained if only one sample is left out each time. When

multiple samples are left out (as in the case of bootstrapping or

other cross-validation tools), each time certain portions of samples

are used in testing, and the final score for outlier detection will be

dependent on the results from several runs. There are two

disadvantages of doing so: 1) including several samples together as

a test set will obscure the signal of an outlier (if any); 2) additional

steps are required to combine the scores from different runs.

Though cross validation should be normally performed to

evaluate the performance of a classifier, in previous microarray

studies, the most common misuse of validation involves selecting

genes using the full dataset, called internal cross-validation, rather

than performing gene selection from scratch within each loop of

the cross-validation [33]. MFMW was built upon this and this is

the major limitation [28,31]. Internal cross-validation may

favourably bias the performance of the classifier, as the training

and testing parts of the dataset are not independent of each other

[34]. Studies have shown that this may lead to very optimistic

estimates of the error rate [35–36]. To address this, we employ

external LOOCV in N-MFMW where gene selection is performed

without the benefit of knowledge of the test sample.

Results and Discussion

Results on six microarray datasets
We first applied MFMW-outlier on the six microarray datasets.

These selected datasets are the most ‘well-studied’ ones in the

microarray community. The first three datasets used in our

current study [8,25–27,37] have also been used in other newly

proposed outlier detection methodologies, and for comparison

purpose, they are included here. For most microarray datasets in

public domains, there is no available information as to which of

the samples might possibly be an outlier. The lack of ground truth

makes these less suitable for the present study.

Table 3 summarizes all the removed outliers in each iteration in

the external LOOCV. For five out of the six microarray datasets

we worked on, different number of outliers were removed in each

iteration. For LUNG data, no outlier was detected.

Comparison with other proposed outlier detection methodolo-

gies on microarray datasets were made [8,25–27,37]. For LEU

data, the only outlier being detected in every algorithm is Sample

66. Tables 4 and 5 compare the outlier detection results using

different methods on the other two datasets: COL and BRE.

Table 3. Sample(s) removed as outliers in each iteration of MFMW-outlier for all the six microarray datasets.

Dataset Iteration Samples left (#) Suspected outlier (sample ID)

LEU 1st 72 66

2nd 71 NIL

COL 1st 62 T33, T36, T37, N20

2nd 58 T2, T30

3rd 56 N2, N8, N18

4th 53 NIL

BRE 1st 49 Marks206, Marks213, Nevins24, Nevins26, Marks219,
Marks220

2nd 43 Marks204, Marks216, Nevins21

3rd 41 NIL

LYM 1st 77 DLBC26, FSCC12, FSCC13, FSCC16

2nd 73 DLBC29, DLBC36 and FSCC18

3rd 70 NIL

PROS 1st 102 N35_normal, N38_normal, T39_tumor, T49_tumor,
T54_tumor

2nd 97 N06_normal, T17_tumor, T37_tumor

3rd 94 NIL

LUNG 1st 181 NIL

doi:10.1371/journal.pone.0046700.t003

Identify Wrongly Labelled Samples When Classifying
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In both Tables 4 and 5, MFMW-outlier was the only method

that can detect all the outliers (mislabelled samples) claimed in the

original paper (for which the datasets were provided for analyses).

This shows MFMW-outlier was the most consistent with the

‘ground truth’. For other methods, both false positives and false

negatives were found in both COL and BRE datasets.

At the end of MFMW-outlier, a set of stable genes was selected.

Table 6 shows the gene sets chosen for each of the six datasets.

Genes selected by MFMW-outlier were quite different from other

published results including our MFMW model [28]. This is due to

the fact genes in Table 6 were selected after all susceptible outliers

were removed, which means they are of better confidence as they

are not affected by the possible contaminations underlying the

samples. Also the genes selected here are from a fully unbiased

cross-validation model. Selected genes from Table 6 with

biological significances in the published literatures are discussed

as follows:

N LEU

N CST3 is related to AML [38].

N MGST3 was linked indirectly with GSTM1 according to

BioGraph [39]. Polymorphism in GSTM1 was shown to

have effect on the ALL patients. [40].

N By BioGraph [39], PSMB8 was indirect related to a number

of genes (PTPN1, BAD, PRAME, BIRC2, CFLAR and

MLL) causing AML and it was a gene target for a study

using high-throughput gene mutation analysis in AML [41].

N The relationship of MYB with acute leukemias has been

shown [42].

N COL

N VIP has been shown to regulate the growth of colonic

adenocaricinoma cells [43].

N BRE

N DSC3 expression was down-regulated in more than half of

breast cancers [44].

N ETV1, also known as ER81, was shown to be collaborated

with the oncoprotein HER2/Neu to activate Smad7

transcription in breast cancer cell lines [45].

N LYM

N Transgenic mice overexpressing HMGA1 gene was shown to

develop natural killer cell lymphomas [46] and by BioGraph

[39], HMGA1 was directly related to mir16-1, which is a

lymphoma causing miRNA [47].

N The updated annotation for JTV-1 is AIMP2 gene, which is

shown to have protein interaction with RARS gene, which

has direct relationship to mir16-1 by BioGraph [48].

N PROS

N HPN is a potentially important candidate gene involved in

prostate cancer susceptibility [49].

N NELL2 mRNA expression was predominantly localized in

basal cells of the epithelium in situ hybridization analysis of

hyperplastic prostate specimens [50]

N LUNG

N According to BioGraph [39], KLK3 is interacting with

PTHLH, which is a disease causing gene for non-small cell

lung carcinoma [51].

N By Biograph [39], PTRF is transcriptionally regulating

ERCC6 gene, which is a disease causing gene of lung

carcinoma [52].

N Similarly, SERPINH1 is interacting with CD9 gene, which is

a disease causing gene of non-small cell lung carcinoma [53].

Results on three synthetic datasets
Besides microarray datasets, MFMW-outlier was also evaluated

upon using three synthetic datasets (Tests 1–3 in Table 2). We

compared our results with PRAPIV [25]. To determine the ability

of detecting the outliers of the two algorithms, mean precision and

recall values were used for evaluation and were summarized in

Table 7. Precision is defined as the portion of true outliers in all

Table 4. List of outliers detected by different proposed
methods on COL.

Original
CL-
Stability PRAPIV FOSD

MFMW-
outlier

Sample
ID. [2] [8] [25] [27] NA

T2 Y Y - Y Y

T30 Y Y Y Y Y

T33 Y Y Y Y Y

T36 Y Y Y Y Y

T37 Y - Y Y Y

N8 Y - Y Y Y

N12 Y - - - Y

N34 Y Y Y Y Y

N36 Y Y Y Y Y

Others NA N2, N28 N2, N28 N2, N28 NA

doi:10.1371/journal.pone.0046700.t004

Table 5. List of outliers detected by different proposed
methods on BRE.

Original
CL-
Stability PRAPIV FOSD

MFMW-
outlier

Sample ID. [3] [8] [25] [27] NA

Nevins21 Y - - - Y

Nevins24 Y Y - Y Y

Nevins26 Y Y Y Y Y

Marks204 Y Y Y Y Y

Marks206 Y - - - Y

Marks213 Y - Y Y Y

Marks216 Y Y Y Y Y

Marks219 Y Y - Y Y

Marks220 Y - - - Y

Others NA 47 19 NA NA

doi:10.1371/journal.pone.0046700.t005
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the detected outliers, while recall is defined as the portion of

detected outliers in all the ground truth outliers.

Table 7 shows that MFMW-outlier gave much better precision

and recall values across all three synthetic datasets, demonstrating

the robustness of MFMW-outlier. Regardless of the number of

outliers present in the data, MFMW-outlier could detect almost all

of them.

Results on artificially flipped microarray datasets
It’s almost impossible to know which samples are wrongly

labelled in typical microarray datasets. According to microarray

studies on Colon cancer [2] and Breast cancer [3], the samples

under column ‘Original’ in Tables 4 and 5 were identified as

outliers with biological evidences. Similar to what Zhang et al. have

performed [25], these two datasets were selected for constructing

artificially flipped datasets. After removing the outliers under the

‘Original’ column, six samples were randomly selected from the

reduced dataset and their class labels were flipped. We then

applied MFMW-outlier to these datasets, with an aim to identify

these six samples. Experiments were performed on each dataset

(reduced-COL and reduced-BRE respectively) 50 times. We report

how accurate we were able to detect the six artificially labelled

samples, with comparison to PRAPIV [25], in terms of mean

precision and recall values as summarized in Table 8. The results

demonstrated that MFMW-outlier yielded much better precision

and recall values for both flipped datasets, as compared to

PRAPIV.

If an algorithm reports N outliers, denote p as precision and r as

recall, we expect that there are 1{pð ÞN false positives (FP) and

1

r{1

� �
pN false negatives (FN). Assume that these mean precision

and recall obtained from flipped microarray datasets also apply to

the real microarray dataset, through simple calculation, for

MFMW-outlier there should be 0.28 FP and 0.15 FN in COL

and 0.41 FP and 0.50 FN in BRE, which corroborate with the

results shown in Tables 4 and 5, demonstrating that the excellent

result obtained for the two real datasets are highly reliable rather

than just by chance. As a comparison, for PRAPIV there should

be 2.56 FP and 0.91 FN in COL and 0.58 FP and 0.41 FN in BRE,

which is over optimistic when compared to the real values shown

in Tables 4 and 5, further demonstrating the superior robustness of

MFMW-outlier.

Effects of filters and wrappers on MFMW-outlier model
We are also interested in how classification performance

changes when different number of filters and wrappers are used

in our MFMW-outlier model. Consider varying the number of

filters in the model. If too few filters are used, inadequate genes of

dissimilar characteristics are selected. If too many filters are used,

some of the selected genes across the different gene lists are

redundant in nature. To investigate how many filters should be

included, we check if the biological significant genes discussed in

the previous session are all present in all gene lists produced by

different filters. The gene lists are obtained by setting n = 200 genes

for each filter. Table 9 below shows the presence (Y) or absence

(N) of each gene within the top ranked 200 genes selected by the

three filters we used.

The following conclusions can be drawn from results in Table 9:

N SNR and TS select almost the same set of genes, except for

CST3 in LEU, and hence if SNR is not included as one of the

filter, this gene would be missed out

N Similar for the case of NELL2 in PROS, and so TS is an

important filter.

N There are two genes: ETV1 in BRE and HMGA1 in LYM

which are only selected by AUC, but not by the other two

filters. This suggests that AUC is an important filter.

Next, we investigate if the number of wrappers (and if possible,

choice of wrappers) used in the MFMW-outlier model would result

in variations in the classification performance of the model. By the

basic idea of the multiple wrapper approach, there has to be more

than two wrappers. On the other hand, using too many wrappers

of similar nature does not provide more information for the

decision process. Therefore, the number of wrappers employed in

the following experiment varies from two to four. In addition to

the three wrappers we used, the extra wrapper chosen is Naı̈ve

Bayes (NB). This wrapper is selected because it is one of the most

Table 6. Final stable set of genes (gene symbols shown)
obtained from performing MFMW-outlier (after removal of
outliers) on six microarray datasets.

LEU COL BRE LYM PROS LUNG

CST3 VIP UBE3A HLA-A HPN KLK3

MGST3 GSTM4 DSC3 HMGA1 LMO3 PTRF

PSMB8 ETV1 JTV-1 NELL2 SERPINH1

MYB ENO1 MTHFD2

TCRB

doi:10.1371/journal.pone.0046700.t006

Table 7. Comparison of the mean precision and recall values on the synthetic datasets.

Test1 Test 2 Test 3

PRAPIV MFMW-outlier PRAPIV MFMW-outlier PRAPIV MFMW-outlier

Precision 83.41% 98.15% 76.44% 96.39% 54.84% 96.86%

Recall 91.50% 98.91% 83.33% 96.77% 59.00% 97.34%

doi:10.1371/journal.pone.0046700.t007

Table 8. Comparison of the mean precision and recall values
on flipped microarray datasets.

Reduced-COL Reduced-BRE

PRAPIV MFMW-outlier PRAPIV MFMW-outlier

Precision 71.61% 96.87% 88.44% 95.49%

Recall 87.65% 98.28% 91.46% 94.54%

doi:10.1371/journal.pone.0046700.t008
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popular classifiers used in microarray experiments. In each

experiment, 200 genes are first selected by each of the three

filters. Experiments with different number of wrappers are then

performed on the LYM dataset.

Using genes selected by three filters, Table 10 shows the

experimental results obtained from MFMW-outlier models

consisting of two wrappers. As four wrappers are available, there

are a total of 4C2 = 6 experiments. For each experiment, we select

the final gene sets with the smallest values of ‘W ’ and ‘I ’. Very

often there are multiple gene sets of this characteristic. These set(s)

of genes are then evaluated and biased LOOCV accuracies are

obtained. Only when the gene set gives a perfect LOOCV

accuracy is its result recorded in the table. ‘# of genes’ is the size of

gene set selected by each MFMW-outlier models. ‘# of subsets

giving perfect LOOCV accuracy’ is the number of gene sets that

output a perfect biased LOOCV accuracy. From Table 10, the

best sets of wrappers (of size two) are ‘WV+k-NN’, ‘WV+SVM’

and ‘WV+NB’. All three models use an equally small set of eight

genes for perfect LOOCV performance. Although the two models

‘k-NN+SVM’ and ‘k-NN+NB’ both select eight genes in the final

gene set, the variations in terms of selected genes are too large to

allow one to decide on which gene set should be chosen finally.

Therefore they are not selected as the best models.

Using genes selected by three filters, Table 11 shows the

experimental results obtained from MFMW-outlier models built

by three or four wrappers. There are altogether 4C3 = 4

experiments built using three wrappers. The best set of wrappers

of size three is ‘WV+k-NN+SVM’, which is the same as the one we

presented earlier. Also, MFMW-outlier models built by using four

wrappers are not as good as that built by using three wrappers.

Hence, for the LYM dataset, using three wrappers for the

MFMW-outlier is most appropriate. Similar results (details not

shown here) have been obtained for other datasets. Note that the

size of gene set selected using MFMW-outlier based on three

wrappers is six, which is smaller than that (i.e., eight) selected using

two wrappers. As a smaller set of genes is able to give the same

biased LOOCV accuracy, we would recommend using the three

wrappers ‘WV+k-NN+SVM’ in MFMW-outlier model.

Extension for multiclass datasets
The proposed method can be extended to the case of multiclass

setting involving datasets with more than two classes. The straight

forward way is to build a classification model for each class that

separates this particular class from the remaining classes. This is a

one-versus-all (OVA) classification approach. Another possibility is

to train the classification model for every pair of classes in the

multiclass dataset. This is a one-versus-one (OVO) classification

approach. The challenge for the latter method is that an outlier

detected in an OVO model may not be a true outlier, as it may be

a sample that belongs to a class other than the two classes used for

building the OVO model. We would therefore recommend

building MFMW-outlier in an OVA manner. Other than this,

integrating MFMW-outlier with other multiclass methods like

error-correcting-codes approach will require more efforts, as such

approaches require the design of codes for classification beyond

the usage of just binary-class classifiers.

Conclusions

The main contribution of this paper is to integrate outlier

detection into an existing hybrid model, while making two

significant modifications to the hybrid model to address issues

on optimal gene selection and the problem of bias in internal cross

validation. The new ‘three-in-one’ MFMW-outlier model can

handle gene selection, sample classification and outlier detection

simultaneously. MFMW-outlier was evaluated using both micro-

array and synthetic datasets. All results showed that we were able

to detect the outlying samples present in high dimensional data.

When comparing with ‘ground truth’ obtained from original

paper, we were able to detect all the mislabelled samples, whereas

other methods may result in some FP and FN. The fact that the

selected genes were biologically confirmed was a strong indication

that we have removed the wrong samples correctly.

Table 9. Presence or absence of biological significant genes
as selected by different filters (n = 200).

SNR TS AUC

LEU CST3 Y N Y

MGST3 Y Y Y

PSMB8 Y Y N

MYB Y Y Y

COL VIP Y Y Y

BRE DSC3 Y Y Y

ETV1 N N Y

LYM JTV-1 Y Y N

HMGA1 N N Y

PROS HPN Y Y Y

NELL2 N Y Y

LUNG KLK3 Y Y Y

PTRF Y Y Y

SERPINH1 Y Y Y

doi:10.1371/journal.pone.0046700.t009

Table 10. MFMW-outlier results obtained from using three
filters (n = 200) and two wrappers for LYM dataset.

Wrappers # of genes # of subsets

WV+k-NN 8 1

WV+SVM 8 1

WV+NB 8 2

k-NN+SVM 8 20

k-NN+NB 8 18

SVM+NB 6 0

doi:10.1371/journal.pone.0046700.t010

Table 11. MFMW-outlier results obtained from using three
filters (n = 200) and three/four wrappers for LYM dataset.

Wrappers # of genes # of subsets

WV+k-NN+SVM 6 1

WV+k-NN+NB 6 2

WV+SVM+NB 6 4

k-NN+SVM+NV 6 2

WV+k-NN+SVM+NB 8 3

doi:10.1371/journal.pone.0046700.t011

Identify Wrongly Labelled Samples When Classifying

PLOS ONE | www.plosone.org 8 October 2012 | Volume 7 | Issue 10 | e46700



To conclude, we have demonstrated the feasibility of integrating

outlier detection into a hybrid model. The model is shown to have

very high robustness with respect to the number of outliers in the

dataset. We have implemented the proposed algorithm in

MATLABH and the software is available at http://people.pcbi.

upenn.edu/,yyee/MFMW-outlier/.
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Epigenetic silencing of DSC3 is a common event in human breast cancer. Breast

Cancer Res 7: R669–680.

45. Dowdy SC, Mariani A, Janknecht R (2003) HER2/Neu- and TAK1-mediated

up-regulation of the transforming growth factor beta inhibitor Smad7 via the

ETS protein ER81. J Biol Chem 278:44377–44384.

46. Fedele M, Pentimalli F, Baldassarre G, Battista S, Klein-Szanto AJ et al. (2005)

Transgenic mice overexpressing the wild-type form of the HMGA1 gene

develop mixed growth hormone/prolactin cell pituitary adenomas and natural

killer cell lymphomas. Oncogene 24:3427–3435.

47. Chen RW, Bemis LT, Amato CM, Myint H, Tran H, et al. (2008) Truncation in

CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood

112:822–829.

48. Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, et al. (2007)

MicroRNA gene expression during retinoic acid-induced differentiation of

human acute promyelocytic leukemia. Oncogene 26:4148–4157.

49. Pal P, Xi H, Kaushal R, Sun G, Jin CH, et al. (2006) Variants in the HEPSIN

gene are associated with prostate cancer in men of European origin. Hum Genet

120: 187–192.

Identify Wrongly Labelled Samples When Classifying

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e46700



50. DiLella AG, Toner TJ, Austin CP, Connolly BM (2001) Identification of genes

differentially expressed in benign prostatic hyperplasia. J Histochem Cytochem
49:669–70.

51. Manenti G, De Gregorio L, Pilotti S, Falvella FS, Incarbone M, et al. (1997)

Association of chromosome 12p genetic polymorphisms with lung adenocarci-
noma risk and prognosis. Carcinogenesis 18:1917–1920.

52. Ma H, Hu Z, Wang H, Jin G, Wang Y, et al. (2009) ERCC6/CSB gene

polymorphisms and lung cancer risk. Cancer Lett 273:172–176.

53. Adachi M, Taki T, Konishi T, Huang CI, Higashiyama M, et al. (1998) Novel

staging protocol for non-small-cell lung cancers according to MRP-1/CD9 and

KAI1/CD82 gene expression. J Clin Oncol 16:1397–1406.

Identify Wrongly Labelled Samples When Classifying

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e46700


