3,745 research outputs found

    Improved Fruit Fly Optimization Algorithm-based density peak clustering and its applications

    Get PDF
    Kao algoritam temeljen na gustoći, algoritam grupiranja na osnovu najviše gustoće (Density Peak Clustering - DPC) superioran je u grupiranju pronalaženjem vršne gustoće. No, smanjena udaljenost i središta grupiranja trebaju se postaviti slučajno, što bi utjecalo na rezultate grupiranja. Voćne mušice pronalaze najbolju hranu lokalnim pretraživanjem i globalnim pretraživanjem. Pronađena hrana je ekstremna vrijednost parametra izračunata algoritmom optimizacije voćne mušice (Fruit Fly Optimization Algorithm - FOA). Na osnovu brze pretrage i superiornosti brze konvergencije FOA-e, moguće je nadoknaditi slučajnost DPC-a. Poboljšana vršna gustoća grupiranja voćnih mušica, temeljena na algoritmu optimizacije, predložena je kao FOA-DPC. Taj bi algoritam trebao biti efikasniji i učinkovitiji od DPC algoritma. Rezultati sedam simulacijskih eksperimenata na UCI nizovima podataka potvrdili su da predloženi algoritam nije imao samo bolju performansu grupiranja već je bio bliži pravim brojevima grupiranja. Nadalje, FOA-DPC primijenjen je i u analizi financijskih podataka i pokazao se vrlo učinkovitim.As density-based algorithm, Density Peak Clustering (DPC) algorithm has superiority of clustering by finding the density peaks. But the cut-off distance and clustering centres had to be set at random, which would influence clustering outcomes. Fruit flies find the best food by local searching and global searching. The food found was the parameter extreme value calculated by Fruit Fly Optimization Algorithm (FOA). Based on the rapid search and fast convergence superiorities of FOA, it is possible to make up the casualness of DPC. An improved fruit fly optimization-based density peak clustering algorithm was proposed as FOA-DPC. The FOA-DPC algorithm would be more efficient and effective than DPC algorithm. The results of seven simulation experiments in UCI data sets validated that the proposed algorithm did not only have better clustering performance, but also were closer to the true clustering numbers. Furthermore, FOA-DPC was applied to practical financial data analysis and the conclusion was also effective

    Combinatorial persistency criteria for multicut and max-cut

    Full text link
    In combinatorial optimization, partial variable assignments are called persistent if they agree with some optimal solution. We propose persistency criteria for the multicut and max-cut problem as well as fast combinatorial routines to verify them. The criteria that we derive are based on mappings that improve feasible multicuts, respectively cuts. Our elementary criteria can be checked enumeratively. The more advanced ones rely on fast algorithms for upper and lower bounds for the respective cut problems and max-flow techniques for auxiliary min-cut problems. Our methods can be used as a preprocessing technique for reducing problem sizes or for computing partial optimality guarantees for solutions output by heuristic solvers. We show the efficacy of our methods on instances of both problems from computer vision, biomedical image analysis and statistical physics

    Parameter identification of BIPT system using chaotic-enhanced fruit fly optimization algorithm

    Get PDF
    Bidirectional inductive power transfer (BIPT) system facilitates contactless power transfer between two sides and across an air-gap, through weak magnetic coupling. Typically, this system is nonlinear high order system which includes nonlinear switch components and resonant networks, developing of accurate model is a challenging task. In this paper, a novel technique for parameter identification of a BIPT system is presented by using chaotic-enhanced fruit fly optimization algorithm (CFOA). The fruit fly optimization algorithm (FOA) is a new meta-heuristic technique based on the swarm behavior of the fruit fly. This paper proposes a novel CFOA, which employs chaotic sequence to enhance the global optimization capacity of original FOA. The parameter identification of the BIPT system is formalized as a multi-dimensional optimization problem, and an objective function is established minimizing the errors between the estimated and measured values. All the 11 parameters of this system (Lpi, LT, Lsi, Lso, CT, Cs, M, Rpi, RT, Rsi and Rso) can be identified simultaneously using measured input–output data. Simulations show that the proposed parameter identification technique is robust to measurements noise and variation of operation condition and thus it is suitable for practical application

    Finding mesoscopic communities in sparse networks

    Full text link
    We suggest a fast method to find possibly overlapping network communities of a desired size and link density. Our method is a natural generalization of the finite-TT superparamegnetic Potts clustering introduced by Blatt, Wiseman, and Domany (Phys. Rev. Lett. v.76, 3251 (1996) and the recently suggested by Reichard and Bornholdt (Phys. Rev. Lett. v.93, 21870 (2004)) annealing of Potts model with global antiferromagnetic term. Similarly to both preceding works, the proposed generalization is based on ordering of ferromagnetic Potts model; the novelty of the proposed approach lies in the adjustable dependence of the antiferromagnetic term on the population of each Potts state, which interpolates between the two previously considered cases. This adjustability allows to empirically tune the algorithm to detect the maximum number of communities of the given size and link density. We illustrate the method by detecting protein complexes in high-throughput protein binding networks.Comment: 8 pages, 2 figure, typos corrected, 1 figure adde

    Penalized Clustering of Large Scale Functional Data with Multiple Covariates

    Full text link
    In this article, we propose a penalized clustering method for large scale data with multiple covariates through a functional data approach. In the proposed method, responses and covariates are linked together through nonparametric multivariate functions (fixed effects), which have great flexibility in modeling a variety of function features, such as jump points, branching, and periodicity. Functional ANOVA is employed to further decompose multivariate functions in a reproducing kernel Hilbert space and provide associated notions of main effect and interaction. Parsimonious random effects are used to capture various correlation structures. The mixed-effect models are nested under a general mixture model, in which the heterogeneity of functional data is characterized. We propose a penalized Henderson's likelihood approach for model-fitting and design a rejection-controlled EM algorithm for the estimation. Our method selects smoothing parameters through generalized cross-validation. Furthermore, the Bayesian confidence intervals are used to measure the clustering uncertainty. Simulation studies and real-data examples are presented to investigate the empirical performance of the proposed method. Open-source code is available in the R package MFDA

    Multi-resolution Tensor Learning for Large-Scale Spatial Data

    Get PDF
    High-dimensional tensor models are notoriously computationally expensive to train. We present a meta-learning algorithm, MMT, that can significantly speed up the process for spatial tensor models. MMT leverages the property that spatial data can be viewed at multiple resolutions, which are related by coarsening and finegraining from one resolution to another. Using this property, MMT learns a tensor model by starting from a coarse resolution and iteratively increasing the model complexity. In order to not "over-train" on coarse resolution models, we investigate an information-theoretic fine-graining criterion to decide when to transition into higher-resolution models. We provide both theoretical and empirical evidence for the advantages of this approach. When applied to two real-world large-scale spatial datasets for basketball player and animal behavior modeling, our approach demonstrate 3 key benefits: 1) it efficiently captures higher-order interactions (i.e., tensor latent factors), 2) it is orders of magnitude faster than fixed resolution learning and scales to very fine-grained spatial resolutions, and 3) it reliably yields accurate and interpretable models

    Predictability and hierarchy in Drosophila behavior

    Full text link
    Even the simplest of animals exhibit behavioral sequences with complex temporal dynamics. Prominent amongst the proposed organizing principles for these dynamics has been the idea of a hierarchy, wherein the movements an animal makes can be understood as a set of nested sub-clusters. Although this type of organization holds potential advantages in terms of motion control and neural circuitry, measurements demonstrating this for an animal's entire behavioral repertoire have been limited in scope and temporal complexity. Here, we use a recently developed unsupervised technique to discover and track the occurrence of all stereotyped behaviors performed by fruit flies moving in a shallow arena. Calculating the optimally predictive representation of the fly's future behaviors, we show that fly behavior exhibits multiple time scales and is organized into a hierarchical structure that is indicative of its underlying behavioral programs and its changing internal states

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen
    • …
    corecore