1,161 research outputs found

    A new stochastic spatio-temporal propagation model (SSTPM) for mobile communications with antenna arrays

    Get PDF

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Millimeter wave radio channels: properties, multipath modeling and simulations

    Get PDF
    Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modeling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, millimeter wave (mmWave) system properties such as a high antenna directivity and system bandwidth are shown to have a great influence on the channel model definition. In this thesis, a fundamental assumption made in the state-of-the-art millimeter wave wireless channel models is challenged. It has been shown that Rayleigh-Rice fading assumption made in the state-of-the-art channel models for resolvable channel taps does not remain valid. This is mainly due to the sparse multipath illumination caused by high antenna directivity and high bandwidth of a mmWave system.Studies presented in this thesis are based on the characterization of realistic radio channels obtained from exhaustive channel sounding campaigns. Mainly, three fundamental problems of wireless channel modelling have been investigated for millimetre wave (mmWave) radio channel modelling application, namely (i) Frequency dependence of propagation, (ii) Impact of antenna directivity on the channel model definition, and (iii) Impact of system bandwidth on the radio channel modelling. A detailed description of these problems is as follows: (i) Frequency Dependence of Propagation. Multi-band measurement campaigns arecarried out using directional antennas which do an omni-directional scan of the propagation environment. During the measurements, Tx-Rx systems are placed at fixed positions and the propagation environment remained as static as possible. Using synthesized omni-directional power delay profiles (PDPs), we aim to investigate if there exists a frequency dependency in the multipath dispersion statistics, e.g. delay and angular spreads. (ii) Impact of Antenna Directivity on the Channel Model Definition. Small-scale fading measurements are carried out which emulate a scenario, where a radio communication link is established through a single multipath cluster which is illuminated using antennas with different Half Power Beam Widths (HPBW). The major goal here is to investigate the impact of spatial multipath filtering on the small-scale fading due to high antenna directivity. In particular, the impact on variations in the receive signal strength and the validity of narrowband wide-sense stationary assumption (both in time and frequency domains) is investigated. (iii) Impact of System Bandwidth on the Radio Channel Modelling. Small-scale fading measurements are used to illuminate multipath clusters in a lecture room scenario. The primary objective is to investigate the impact of high system bandwidth on variations in the receive signal strength, randomness in the cross-polarization power ratio (XPR) and richness of the multipath scattering. Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modelling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, mmWave system properties such as a high antenna directivity and system bandwidth are shown to have a high influence on the channel model definition. In general, fade depth scaling as a function of system bandwidth is quite well understood. We demonstrate that, the high antenna directivity of mmWave systems result in a further reduction in the fading depth. In addition, we explore some new directions to this line of research which are based on the second-order statistical analysis of the channel impulse response (CIR) vector. Our results emphasize that, fading statistics of resolvable channel taps in a mmWave radio channel cannot be modelled as Rayleigh-Rice distributed random variables. This is primarily due to the fact that channels with sparse scattering conditions are illuminated due to high antenna directivity and bandwidth of mmWave systems. Consequently, the complex Gaussian random variable assumption associated with Rayleigh-Rice fading distributions does not remain valid. Further, it has been demonstrated that, high antenna directivity and bandwidth of mmWave systems also raise a question mark on the validity of wide-sense stationary (WSS) assumption in the slow-time domain of mmWave radio channels. Results presented in this contribution are novel and they provide theoretically consistent insights into the measured radio channel.In dieser Arbeit werden drei grundlegende Probleme der Modellierung von Drahtloskanalen fur die Anwendung bei der Funkkanalmodellierung im Millimeterwellenbereich (mmWave) untersucht, namlich (i) die Frequenzabhangigkeit der Ausbreitung, (ii) der Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells und (iii) der Einfluss der Systembandbreite auf die Funkkanalmodellierung. Die detaillierte Beschreibung dieser Probleme lautet wie folgt: (i) Frequenzabhangigkeit der Ausbreitung. Mehrband-Messkampagnen werden mitRichtantennen durchgefuhrt, die eine omnidirektionale Abtastung der Ausbreitungsumgebung vornehmen. Wahrend der Messungen werden die Tx-Rx-Systeme an festen Positionen platziert und die Ausbreitungsumgebung bleibt so statisch wie moglich. Mit Hilfe von synthetisierten omnidirektionalen Verzogerungs-Leistungsprofilen soll untersucht werden, ob es eine Frequenzabhangigkeit in der Mehrwegeausbreitungsstatistik gibt, z.B. in der Verzogerung und der Winkelspreizung. (ii) Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells. Es werden Messungen des schnellen Schwunds durchgefuhrt, die ein Szenario emulieren, bei dem eine Funkverbindung uber ein einzelnes Mehrwege-Cluster aufgebaut wird, das mit Antennen mit unterschiedlichen Strahlbreiten ausgeleuchtet wird. Das Hauptzielist hier die Untersuchung des Einflusses der raumlichen Filterung auf den schnellen Schwund aufgrund der hohen Antennenrichtwirkung. Insbesondere wird die Auswirkung auf Variationen der Empfangssignalstarke und die Gultigkeit der Annahme der schmalbandigen Stationaritat im weiteren Sinne (sowohl im Zeit- als auch im Frequenzbereich) untersucht. (iii) Einfluss der Systembandbreite auf die Funkkanalmodellierung. Messungen desschnellen Schwunds werden verwendet, um Mehrwege-Cluster in einem Horsaal-Szenario auszuleuchten. Das primare Ziel ist es, den Einfluss einer hohen Systembandbreite auf die Variationen der Empfangssignalstarke, die Zufalligkeit des Kreuzpolarisationsverhaltnisses und die Reichhaltigkeit der Mehrwegstreuung zu untersuchen. Basierend auf der Charakterisierung realistischer Funkkanäle führen die in dieser Dissertation vorgestellten Ergebnisse zu dem Verständnis, dass beim Ubergang zu höheren Frequenzen die Frequenz x selbst keine signifikante Rolle bei der Definition der Kanalmodellierungsmethodik spielt. Vielmehr ist es von grundlegender Bedeutung, wie ein Ausbreitungskanal ausgeleuchtet wird. Daher zeigt sich, dass mmWave-Systemeigenschaften wie eine hohe Antennenrichtcharakteristik und Systembandbreite einen hohen Einfluss auf die Definition des Kanalmodells haben. Im Allgemeinen ist die Skalierung der Schwundtiefe als Funktion der Systembandbreite ziemlich gut verstanden. Wir zeigen, dass die hohe Antennenrichtwirkung von mmWave-Systemen zu einer weiteren Reduzierung der Schwundtiefe führt. Zusätzlich erforschen wir einige neue Richtungen in diesem Forschungsbereich, die auf der Analyse der Statistik zweiter Ordnung des Kanalimpulsantwort-Vektors basieren. Unsere Ergebnisse unterstreichen, dass die Schwund-Statistiken der auflösbaren Kanalabgriffe in einem mmWave-Funkkanal nicht als Rayleigh-Rice-verteilte Zufallsvariablen modelliert werden können. Dies liegt vor allem daran, dass durch die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen Kanale mit spärlichen Streubedingungen ausgeleuchtet werden. Folglich ist die Annahme komplexer Gaus’scher Zufallsvariablen, die mit Rayleigh-Rice Schwundverteilungen verbunden ist, nicht mehr gültig. Des Weiteren wird gezeigt, dass die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen auch die Gültigkeit der Annahme von Stationarität im weiteren Sinne im Slow-Time-Bereich von mmWave-Funkkanälen in Frage stellt. Die in diesem Beitrag vorgestellten Ergebnisse sind neuartig und bieten theoretisch konsistente Einblicke in den gemessenen Funkkanal

    An indoor variance-based localization technique utilizing the UWB estimation of geometrical propagation parameters

    Get PDF
    A novel localization framework is presented based on ultra-wideband (UWB) channel sounding, employing a triangulation method using the geometrical properties of propagation paths, such as time delay of arrival, angle of departure, angle of arrival, and their estimated variances. In order to extract these parameters from the UWB sounding data, an extension to the high-resolution RiMAX algorithm was developed, facilitating the analysis of these frequency-dependent multipath parameters. This framework was then tested by performing indoor measurements with a vector network analyzer and virtual antenna arrays. The estimated means and variances of these geometrical parameters were utilized to generate multiple sample sets of input values for our localization framework. Next to that, we consider the existence of multiple possible target locations, which were subsequently clustered using a Kim-Parks algorithm, resulting in a more robust estimation of each target node. Measurements reveal that our newly proposed technique achieves an average accuracy of 0.26, 0.28, and 0.90 m in line-of-sight (LoS), obstructed-LoS, and non-LoS scenarios, respectively, and this with only one single beacon node. Moreover, utilizing the estimated variances of the multipath parameters proved to enhance the location estimation significantly compared to only utilizing their estimated mean values

    Pogodnosti i izazovi deterministiÄŤkog referentnog modela radijskog kanala

    Get PDF
    The paper introduces a new paradigm for reference channel models. Current reference channel models are designed as platforms that generate radio channels for testing using random values for their parameters. These parameters follow some pre-established distribution based on process called parameterization, i.e. statistical processing of previous real measurements or accurate ray tracing simulations. The paper argues that random generated channels give either no new insight or even delusive information and should be replaced with the initial set of radio channels that was used for parameterization. Therefore a deterministic reference channel model, as an emulator of previously recorded real radio channels, is proposed and its potential elaborated.U radu se uvodi nova paradigma za referentni model radijskog kanala. Postojeći referentni modeli radijskog kanala dizajnirani su kao platforma koja generira radio kanale za testiranje pomoću slučajnih vrijednosti za svoje parametre. Ovi parametri prate neke unaprijed utvrđene raspodjele koje potječu iz procesa parametrizacije, odnosno statističke obrade prethodnih mjerenja ili točnih simulacija metodom slijeđenja zrake. U radu se tvrdi da slučajno generirani kanali ili ne daju nove uvide ili čak daju obmanjujuće informacije i valja ih zamijeniti s početnim skupom radijskih kanala koji je korišten za parametrizaciju. Stoga je predložen deterministički referentni model radijskog kanala, kao emulator prethodno snimljenih stvarnih radio kanala, te je njegov potencijal razrađen

    Millimeter wave and UWB propagation for high throughput indoor communications

    Get PDF
    Millimeter-wave systems at 60 GHz and ultra-wideband (UWB) systems in the microwave range of 3-10 GHz have been received with great interest for their high data rate wireless communications. In design, test and optimization of future wireless systems, channel models featuring the relevant characteristics of radiowave propagation are required. Furthermore, detailed understanding of the propagation channel and its interaction with system, creates insights into possible solutions. In this work, both theoretical (ray-tracing) and statistical models of the 60 GHz and UWB channels are studied. Propagation characteristics of the 60 GHz and UWB indoor channels are also compared for providing useful information on design of radio systems. More specifically, based on real-time channel sounder measurements performed in the 60 GHz band, propagation mechanisms including person blocking effect are concluded. Ray-based models in LOS and NLOS indoor corridors are proposed. Multipath power distributions in the 60 GHz band are studied first time. Moreover, propagation interdependencies of path loss, shadowing, number of paths, Rice K-factor and cross polarization discrimination (XPD) with channel delay spread are established. In the UWB propagation channel, frequency- and bandwidth- dependencies are investigated. Multipath and clustering propagation characteristics are analyzed. A new cluster model is proposed and compared with the classical Saleh-Valenzuela model for gaining more understanding of channel general properties. Finally, the performance and capacities of the 60 GHz UWB and MIMO (multiple-in and multiple-out) systems are analyzed for providing reliable parameters for system design and useful information for standardization groups

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Empirical multi-band characterization of propagation with modelling aspects for communictions

    Get PDF
    Diese Arbeit präsentiert eine empirische Untersuchung der Wellenausbreitung für drahtlose Kommunikation im Millimeterwellen- und sub-THz-Band, wobei als Referenz das bereits bekannte und untersuchte sub-6-GHz-Band verwendet wird. Die großen verfügbaren Bandbreiten in diesen hohen Frequenzbändern erlauben die Verwendung hoher instantaner Bandbreiten zur Erfüllung der wesentlichen Anforderungen zukünftiger Mobilfunktechnologien (5G, “5G and beyond” und 6G). Aufgrund zunehmender Pfad- und Eindringverluste bei zunehmender Trägerfrequenz ist die resultierende Abdeckung dabei jedoch stark reduziert. Die entstehenden Pfadverluste können durch die Verwendung hochdirektiver Funkschnittstellen kompensiert werden, wodurch die resultierende Auflösung im Winkelbereich erhöht wird und die Notwendigkeit einer räumlichen Kenntnis der Systeme mit sich bringt: Woher kommt das Signal? Darüber hinaus erhöhen größere Anwendungsbandbreiten die Auflösung im Zeitbereich, reduzieren das small-scale Fading und ermöglichen die Untersuchung innerhalb von Clustern von Mehrwegekomponenten. Daraus ergibt sich für Kommunikationssysteme ein vorhersagbareres Bild im Winkel-, Zeit- und Polarisationsbereich, welches Eigenschaften sind, die in Kanalmodellen für diese Frequenzen widergespiegelt werden müssen. Aus diesem Grund wurde in der vorliegenden Arbeit eine umfassende Charakterisierung der Wellenausbreitung durch simultane Multibandmessungen in den sub-6 GHz-, Millimeterwellen- und sub-THz-Bändern vorgestellt. Zu Beginn wurde die Eignung des simultanen Multiband-Messverfahrens zur Charakterisierung der Ausbreitung von Grenzwert-Leistungsprofilen und large-scale Parametern bewertet. Anschließend wurden wichtige Wellenausbreitungsaspekte für die Ein- und Multibandkanalmodellierung innerhalb mehrerer Säulen der 5G-Technologie identifiziert und Erweiterungen zu verbreiteten räumlichen Kanalmodellen eingeführt und bewertet, welche die oben genannten Systemaspekte abdecken.This thesis presents an empirical characterization of propagation for wireless communications at mm-waves and sub-THz, taking as a reference the already well known and studied sub-6 GHz band. The large blocks of free spectrum available at these high frequency bands makes them particularly suitable to provide the necessary instantaneous bandwidths to meet the requirements of future wireless technologies (5G, 5G and beyond, and 6G). However, isotropic path-loss and penetration-loss are larger with increasing carrier frequency, hence, coverage is severely reduced. Path-loss can be compensated with the utilization of highly directive radio-interfaces, which increases the resolution in the angular domain. Nonetheless, this emphasizes the need of spatial awareness of systems, making more relevant the question “where does the signal come from?” In addition, larger application bandwidths increase the resolution in the time domain, reducing small-scale fading and allowing to observe inside of clusters of multi-path components (MPCs). Consequently, communication systems have a more deterministic picture of the environment in the angular, time, and polarization domain, characteristics that need to be reflected in channel models for these frequencies. Therefore, in the present work we introduce an extensive characterization of propagation by intensive simultaneous multi-band measurements in the sub-6 GHz, mm-waves, and sub-THz bands. Firstly, the suitability of the simultaneous multi-band measurement procedure to characterize propagation from marginal power profiles and large-scale parameters (LSPs) has been evaluated. Then, key propagation aspects for single and multi-band channel modelling in several verticals of 5G have been identified, and extensions to popular spatial channel models (SCMs) covering the aforementioned system aspects have been introduced and evaluated

    Stochastic Multipath Model for the In-Room Radio Channel based on Room Electromagnetics

    Get PDF
    We propose a stochastic multipath model for the received signal for the case where the transmitter and receiver, both with directive antennas, are situated in the same rectangular room. This scenario is known to produce channel impulse responses with a gradual specular-to-diffused transition in delay. Mirror source theory predicts the arrival rate to be quadratic in delay, inversely proportional to room volume and proportional to the product of the antenna beam coverage fractions. We approximate the mirror source positions by a homogeneous spatial Poisson point process and their gain as complex random variables with the same second moment. The multipath delays in the resulting model form an inhomogeneous Poisson point process which enables derivation of the characteristic functional, power/kurtosis delay spectra, and the distribution of order statistics of the arrival delays in closed form. We find that the proposed model matches the mirror source model well in terms of power delay spectrum, kurtosis delay spectrum, order statistics, and prediction of mean delay and rms delay spread. The constant rate model, assumed in e.g. the Saleh-Valenzuela model, is unable to reproduce the same effects.Comment: 14 pages, Manuscript Submitted to IEEE Transaction on Antennas and Propagatio
    • …
    corecore