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Stochastic Multipath Model for the In-Room Radio
Channel based on Room Electromagnetics

Troels Pedersen

Abstract—We propose a stochastic multipath model for the
received signal for the case, where the transmitter and receiver,
both with directive antennas, are situated in the same rectangular
room. This scenario is known to produce channel impulse
responses with a gradual specular-to-diffuse transition in delay.
Mirror source theory predicts the arrival rate to be quadratic in
delay, inversely proportional to room volume, and proportional
to the product of the antenna beam coverage fractions. We
approximate the mirror source positions by a homogeneous
spatial Poisson point process and their gain as complex random
variables with the same second moment. The multipath delays
in the resulting model form an inhomogeneous Poisson point
process, which enables derivation of the characteristic functional,
power/kurtosis delay spectra, and the distribution of order
statistics of the arrival delays in closed form. We find that the
proposed model matches the mirror source model well in terms of
power delay spectrum, kurtosis delay spectrum, order statistics,
and prediction of mean delay and rms delay spread. The constant
rate model, assumed in e.g. the Saleh-Valenzuela model, is unable
to reproduce the same effects.

Index Terms—Radio propagation, Channel models, Multipath
channels, Indoor environments, Reverberation, Directional an-
tennas, Stochastic processes.

I. INTRODUCTION

STOCHASTIC models for multipath channels are useful
tools for the design, analysis and simulation of systems for

radio localization and communications. These models allow
for tests via Monte Carlo simulation, and in many cases
provide analytical results useful for system design. Numerous
such models exist for the complex baseband representation of
the signal at the receiver antenna (omitting any additive terms
due to noise or interference)

y(τ) =
∑
k

αks(τ − τk), (1)

where s(t) is the complex baseband representation of the
transmitted signal, and the term due to path k has complex
gain αk and delay τk. The received signal is fully described
as a marked point process

X = {(τ0, α0), (τ1, α1), (τ2, α2), . . . }. (2)

As an example, Turin’s model [1] in which X can be seen
as a marked Poisson point process, specified by parameters
determining the arrival rate λ(τ) and the mark density p(α|τ).
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Although Turin’s model was originally intended for urban
radio channels, it has since been taken as a the basis for a wide
range of models for outdoor and indoor channels, including
the clustered models by Suzuki [2], Hashemi [3], Saleh and
Valenzuela [4], Spencer et al. [5] and Zwick et al. [6], [7].
More recently, this type of statistical channel models has
been considered for ultrawideband [8], [9] and for millimeter-
wave spectrum [10]–[12] systems. To make use of the model,
the arrival rate and mark density should be specified. These
settings are critical, since they determine parameters relevant
for system design, including the distribution of instantaneous
mean delay and rms delay spread.

The arrival rate (within a cluster) is commonly assumed
constant, while the second moment of the mark density is
assumed to follow an exponential decay [4]–[12]. The “con-
stant rate” model is appealing since it requires only one single
parameter, i.e. the arrival rate, to be determined empirically.
Usually a two-step procedure is followed: first, the points of
the hidden process X are estimated from observations of y(t),
and then the arrival rate is estimated from there (e.g. relying
on interarrival times). The first step prone to censoring effects
[13]: When noise is present, weaker components may be un-
detected. Similarly, a similar effect occurs if the measurement
bandwidth is insufficient to distinguish signal components
with short interarrival times. If unaccounted for, both of these
censoring effects lead to underestimation of the arrival rate. As
noted in [14], several authors justify the constant rate assump-
tion qualitatively, as a “convenient compromise” between the
increasing number of possible multipath components, and the
increasing shadowing probability. Nevertheless, there seems
to be no principal reason that the effects should balance each
other out, to produce exactly a constant rate.

In some cases, stochastic multipath models, relying on the
constant rate model, do not agree well with measurements at
all. This is particularly true for inroom propagation channel,
which has been explored in a number of works including [15]–
[23]. There the received signal exhibits a gradual diffusion
from specular at early delays to diffuse at later delays. This
effect is not captured in the constant rate model. Moreover, in
clustered models, the cluster arrival rate is assumed constant
yielding a total path arrival rate, which increases linearly with
delay [24]. This increase is, however, too slow compared to the
power decay, to account for the specular-to-diffuse transition.

For the inroom scenario, an alternative to the constant
rate assumption was proposed in [23]. The model is based
on mirror source analysis of the case, where the transmitter
and receiver antennas are both directive, and sit within the
same rectangular room with flat walls. For this setup, the
arrival rate (averaged over uniformly distributed transmitter
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antenna positions and orientations) was found to be inversely
proportional to room volume, to depend on antenna directivity,
and to increase quadratically with delay, and thus accounting
for the specular-diffuse transition. The power delay spectrum
decays exponentially in delay and the reverberation time
(decay rate) is predicted very accurately by the Eyring model
[15], [25], [26] applying Kuttruff’s correction factor [27]. The
power delay spectrum is of the same form as studied and
experimentally validated in [26], [28]. The analysis in [23]
further revealed that, while the arrival rate was easy to derive,
higher order moments for the arrival process are very difficult
to obtain from the mirror source theory.

In the present contribution, we propose to approximate the
mirror source model in [23] using a spatial Poisson process,
which is more analytically tractable. The obtained model is
of the same type as Turin’s model, but has the same arrival
rate and power delay spectrum as the mirror source process.
The approximation model permits derivation of moments.
Here, we derive the power (second moment) and kurtosis
(ratio of fourth moment and squared second moment) of the
received signal as a function of delay. The kurtosis is related
to the arrival rate: in the simplifying large bandwidth case, the
arrival rate is inversely proportional to the excess kurtosis of
the received signal. For the proposed inhomogeneous model,
the distribution of interarrival times, which has been widely
studied in the channel modeling literature, turns out to be
degenerate and is therefore not useful. Instead, we study the
distribution of order statistics.

We evaluate the accuracy of the proposed Poisson ap-
proximation by comparing it to the mirror source model
and the constant rate model using Monte Carlo simulations.
The proposed Poisson approximation captures the specular-
diffuse transition and fits the mirror source model well in
terms of power- and kurtosis delay spectra, order statistics for
the arrival process, instantaneous mean delay, and rms delay
spread. The constant rate model has the correct power delay
spectrum, but represents poorly the kurtosis, order statistics,
instantaneous mean delay and rms delay spread.

The paper is organized as follows. Section II defines the
notation and summarizes the results of [23]. In section III
we first represent the mirror source process as a spatial point
process and then approximate it using a Poisson point process.
Sections IV and V give the results related to kurtosis of the
received signal y(t) and the distribution of order statistics
for the arrival times. The accuracy of the proposed Poisson
approximation is tested in numerical examples given in Sec-
tion VI. Discussion and conclusions are given in VII and VIII.

II. MIRROR SOURCE PROCESS FOR RECTANGULAR ROOM

The present contribution relies on the same setup as in the
previous work [23], and utilizes the results sumarized below.
For further details, the reader is referred to [23].

Consider a rectangular room with two directive antennas,
one transmitter and one receiver, located inside. The room has
dimension Lx × Ly × Lz , volume V = LxLyLz and surface
area S = 2(LxLy + LyLz + LxLz). Positions are given in a
Cartesian coordinate system aligned such that the room spans

the set [0, Lx)× [0, Ly)× [0, Lz). We assume that the carrier
wavelength lc is small compared to the room dimensions, and
that only specular reflections occur with an average gain ḡ.
The positions of the transmitter and receiver are denoted by
rT and rR . We subscript all entities related to the transmitter
and receiver by T and R, respectively.

Denote by G(Ω) the antenna gain in the direction specified
by the three dimensional unit vector Ω ∈ S2, where S2 is
the unit sphere. We assume the antennas to be lossless. The
footprint of an antenna on the unit sphere surrounding it is
defined as O = {Ω : G(Ω) ≥ ε ·Gmax} where Gmax is the
maximum gain and ε ≥ 0 defines a gain level below which we
ignore any signal contributions. The beam coverage fraction
is further defined as

ω =
1

4π

∫
S2
1(Ω ∈ O)dΩ, (3)

where 1( · ) denotes an indicator function with value one, if
the argument is true, and zero otherwise. The beam coverage
fraction ranges from zero to one. It can be interpreted as the
probability of a wave impinging from a uniformly random
direction is within the antenna beam.

The mirror sources, and thus the propagation paths, are
indexed by a triplet k = (kx, ky, kz). Mirror source k has
position

rT (kx,ky,kz) =


⌈
kx
2

⌉
· 2Lx + (−1)kx ·xT⌈ky

2

⌉
· 2Ly + (−1)ky · yT⌈

kz
2

⌉
· 2Lz + (−1)kz · zT

 . (4)

Further interpretation of the mirror source index is given in
[23]. By replacing subscript T by subscript R in (4), gives
the position rRk of mirror receiver k. Propagation path k has
delay,

τk = ‖rTk − rR‖/c = ‖rRk − rT ‖/c, (5)

where c is the speed of light. For path k the direction of arrival
reads

ΩRk =
rTk − rR
‖rTk − rR‖

. (6)

The direction of departure denoted by ΩTk follows from (6)
by interchanging subscripts T and R. The power gain of path
k is specified as1

|αk|2 = ḡ|k| · GT (ΩTk)GR(ΩRk)

(4πcτk/lc)2
(7)

with the convention |k| = |kx|+ |ky|+ |kz|.
Randomness is introduced to the mirror source model by

letting the transmitter’s position be independent and uniformly
distributed random variables. The arrival count N(τ), is a
random counting variable designating the number of received
(non-zero) signal components with delay less than or equal to
τ . The mean arrival count reads

E[N(τ)] =
4πc3τ3

3V
ωTωR1(τ > 0) (8)

1Here we consider the special case of all walls having the same gain value.
The gain for the more general case with different wall gains is stated in [23].
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with the corresponding arrival rate

λ(τ) =
dE[N(τ)]

dτ
=

4πc3τ2

V
ωTωR1(τ > 0). (9)

Assuming the complex gains to be uncorrelated random
variables, the second moment of the received signal can be
written in terms of the delay power spectrum P (t) as

E[|y(τ)|2] =

∫ ∞
−∞

P (τ − t)|s(t)|2dt. (10)

The delay power spectrum can be obtained as a product of
the arrival rate λ(τ) and the conditional second moment of
the complex gains σ2

α(τ) = E[|α|2|τ ], i.e.

P (τ) = σ2
α(τ)λ(τ). (11)

With close approximation, the conditional second moment is

σ2
α(τ) =

1

c2τ2ωTωR
· exp(−τ/T ). (12)

with the reverberation time defined according to Eyring’s
model [25],

T = − 4V ξ

cS ln(ḡ)
, (13)

where Kuttruff’s correction factor [27] is

ξ =
1

1 + γ2 ln(g)/2
. (14)

Here, the constant γ2 depends on the aspect ratio of the
room and can be found from Monte Carlo simulations. It
typically ranges from 0.3 to 0.4 [27]. The resulting power
delay spectrum reads

P (τ) = 1(τ > 0) · 4πc
V
· exp(−τ/T ). (15)

Notice that the antennas do not enter in (15).

III. THE MIRROR SOURCE PROCESS AS A SPATIAL POINT
PROCESS

The mirror source model can be studied by viewing the
positions of the mirror sources

M = {rTk : k ∈ Z3}. (16)

as a spatial point process in R3. Each point rTk ∈ M is
uniformly distributed within its own“mirror room” and there
is exactly one point per mirror room. This makes M a
homogeneous point process with intensity

%m(r) = 1/V, r ∈ R3. (17)

Clearly, M is a random point process with much more struc-
ture than the familiar spatial Poisson point process. Indeed,
given any of the points in the process, all other points are
known perfectly. In contrast hereto, since the points of a
Poisson process are independent, knowledge of one point gives
no information of the presence or location of other points.

Due to the directive antennas, some of the mirror sources
may not contribute to the received signal, and are hence con-
sidered ’invisible’. We consider a path as ’visible’ if, and only
if, both the direction of departure and the direction of arrival

T

R

Fig. 1. Realizations of the mirror source process and corresponding Poisson
approximation. For readability, only sources in mirror rooms with kz = 0 are
shown projected to the x–y plane. The gray area indicates the beam coverage
of the receiver antenna (R). The transmitter antenna (T) is a hemisphere
oriented in the direction of the receiver. The antennas are at the same height.
Black dots: Mirror source positions (M). Blue circles: The mirror sources
for which the receiver is in the beam coverage (V). Red stars: Poisson
approximation (VPPP).

reside within the respective beam supports of the transmitter
and receiver. Then the set of ’visible’ mirror sources reads

V =

{
r ∈M :

r − rT
‖r − rT ‖

∈ OT ,
r − rR
‖r − rR‖

∈ OR
}
. (18)

The intensity function of V can be derived by noticing that, due
to the assumption of uniformly distributed transmit antenna
orientation, the probability for the antenna of a mirror source
to be oriented toward the receiver, i.e. to have direction of
departure within the beam support of transmitter antenna,
is ωT . Furthermore, a mirror source only contributes, if the
direction of arrival is also within the (deterministic) beam
support of the receiver antenna, giving the intensity function

%v(r) = 1

(
r − rR
‖r − rR‖

∈ OR
)
ωT
V
, r ∈ R3. (19)

Fig.1 illustrates the two point processesM and V . The process
V is a subset ofM and therefore the points in V coincide with
points in M.

Relation (5) maps V into a one-dimensional point process
on the delay axis, i.e.

T = {‖r − rR‖/c : r ∈ V}. (20)
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Using Campbell’s theorem, the mean arrival count for T can
be derived as

E[N(τ)] =

∫
%v(r)1(‖r − rR‖ < cτ)dr

=
4πc3τ3

3V
·ωTωR ·1(τ > 0). (21)

As it should, this agrees with (8), and thus the arrival rate
(intensity function) λ(τ) of T is given in (9).

All information needed to evaluate the received signal using
(1), can be collected in form of a marked process,

X = {(τk, αk) : τk ∈ T }, (22)

with the gain given by (7).
The processes M,V and T and X all have a structure

reflecting their geometric construction. Given any particular
point in M, the whole realization is completely determined.
Due to this structure, it is very challenging, if at all possible,
to obtain second or higher order characterizations for these
point processes [23]. This observation is in line with the well
investigated problem in stochastic geometry of counting lattice
points inside a sphere with random center, see e.g. [29]. The
mean is known exactly [29], but the asymptotic behaviour for
the deviation from mean, including the variance, is still being
investigated; the standing conjecture in the literature being that
the count variable approaches a Poisson variable as the radius
of the sphere increases [30], [31]. This observation, however,
motivates our hypothesis, that the arrival time process can be
approximated adequately by Poisson point process.

A. Poisson Approximation for the Mirror Source Process

To facilitate analysis, we give Poisson approximations for
the processes M, V and T . The point process M is ap-
proximated by a homogeneous Poisson point process in R3

according to,

M≈MPPP ∼ PPP(R3, %m), (23)

where PPP( · , · ) denotes a Poisson point process. To approx-
imate V , we account for the antennas. The transmitter antenna
is accounted for by independently thinning MPPP keeping
points probability ωT . The receiver antenna is accounted for,
by keeping only points with direction of arrival within the
beam coverage. This procedure yields a Poisson point process
VPPP with the same intensity function as V , i.e.

V ≈ VPPP ∼ PPP(R3, %v). (24)

Fig. 1 gives an example of a realization of VPPP.
Mapping the process VPPP to the delay axis as in (20) gives,

according to Kingman’s mapping theorem [32], a new Poisson
point process with intensity function λ(t)

T ≈ TPPP = {‖r − rR‖/c : r ∈ VPPP} ∼ PPP(R, λ). (25)

Each point in the arrival process τk ∈ TPPP is marked
independently with a circular symmetric complex gain αk ∼
p(αk|τk), giving a marked Poisson point process

XPPP = {(τ, α) : τ ∈ TPPP}. (26)

The mark density p(α|τ) can be chosen in many ways, as we
only require that it is complex circular and has a specified
variance. Owing to (11), the conditional second moment can
be chosen to ensure that the power delay spectrum coincide
with the mirror source model as (12). For example, we
may draw independently the complex gain according to a
complex circular Gaussian pdf with a specified second moment
σ2
α(τ). Alternatively, we may draw the magnitude of α|τ

from an appropriate fading model (Rayleigh, Rice, log-normal,
Nakagami-m, etc.), with specified second moment and the
phase uniformly distributed on [0, 2π). The specific choice
enters in the forthcoming analysis in such a way that it
is straightforward to account for. We will leave the choice
of fading model open for now to achieve more generally
applicable results.

The underlying Poisson process makes the approximation
model analytically tractable. The approximations preserve
the intensity functions, i.e. the first order properties of the
processes, but no effort was put into preserving higher or-
der properties. From the example in Fig. 1 it is apparent,
that the Poisson approximation does not include interactions
between points and disregards the boundaries of the mirror
rooms. Therefore, even though the mean counts of the two
processes are exactly the same, we expect some approximation
error. This error is assessed based on simulations reported in
Section VI.

The inhomogeneous Poisson approximation in (26) is sim-
ple to simulate. Considering a finite time interval [0, τmax],
several simulation techniques can be applied, see e.g. [33].
We follow the procedure, where first arrival count on this
interval is generated. Conditioned on this count, the arrival
times falling in this interval are iid. with pdf,

p(τk) =
λ(τk)∫ τmax

0
λ(τ)dτ

·1(0 ≥ τk ≥ τmax)

=
3τ2k
τ3max

·1(0 ≥ τk ≥ τmax) (27)

which lends itself to the wellknown inverse cdf transform
method. This yields the procedure:

1) Draw a Poisson count N(τmax) with mean E[N(τmax)]
as specified by (21)

2) Draw Uk, k = 1, . . . N(τmax) independently uniformly
distributed on [0, 1].

3) Apply transform: τk = τmax
3
√
Uk, k = 1, . . . , N(τmax).

4) Draw αk ∼ p(α|τk), k = 1, . . . , N(τmax) indepen-
dently.

IV. STATISTICAL MOMENTS, CUMULANTS AND KURTOSIS

The proposed Poisson approximation model permits deriva-
tion of the characteristic and cumulant generating functionals
of the received signal y(t), as done in Appendix A. From
these functionals we can obtain the statistical moments and
cumulants as a function of time. Here we first compute the
cumulants, and then combine these to obtain expressions for
necessary moments as described in [34].
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The cumulants of y(t) are derived in Appendix A. Of
particular interest are the even cumulants of the form

κn:n[y(t)] =

∫
|s(t− τ)|2nP2n(τ)dτ, n = 1, 2, 3 . . . (28)

with the “2nth-order cumulant-delay spectrum” defined as

P2n(τ) = E[|α|2n|τ ]λ(τ). (29)

Note that the second cumulant P2(τ) equals the power-delay
spectrum P (τ), defined in (11). Since y(t) is circular, all odd
cumulants vanish, and its fourth moment is obtained as [34]

E[|y(t)|4] = κ2:2[y(t)] + 2E[|y(t)|2]2. (30)

The kurtosis-delay spectrum for y(t) then reads

Kurt[y(t)] =
E[|y(t)|4]

E[|y(t)|2]2
=

κ2:2[y(t)]

κ1:1[y(t)]2
+ 2. (31)

The first term on the righthand side is the “excess kurtosis”,
which is obtained from the kurtosis, by subtracting the kurtosis
of a circular complex Gaussian which equals two.

The excess kurtosis depends on the transmitted signal, the
moments of the path gains, and the arrival rate. In fact,
inspection of (31) using (28) reveals that, scaling the arrival
rate by a constant, results in an inverse scaling of the excess
kurtosis, that is

Kurt[y(t)]− 2 ∝ V

ωTωR
. (32)

The excess kurtosis for small rooms is expected to be small,
and thus close to that of a Gaussian; large rooms are expected
to lead to large excess kurtosis.

Further insight into the relation between arrival rate and the
kurtosis delay profile can be gained for large bandwidth case.
For a time-limited transmitted signal, with a duration short
enough such that the product of the 2nth-order cumulant delay
spectrum is nearly constant, we obtain the approximation

κn:n[y(τ)] ≈ Pn:n(τ) ·
∫ T

0

|s(t)|2ndt, (33)

and thus

Kurt[y(τ)] ≈ 1

λ(τ)
·Kurt[α|τ ] ·

∫ T
0
|s(t)|4dt

[
∫ T
0
|s(t)|2dt]2

+ 2 (34)

where Kurt[α|τ ] is the kurtosis of p(α|τ). In the case, where
the kurtosis of the complex gain is the same for all delays, the
excess kurtosis is approximately proportional to the inverse of
the arrival rate. In the simplifying case that the kurtosis of α|τ
is independent of τ , this approximation predicts that excess
kurtosis should decay quadratically with delay. Thus at larger
delays, the excess kurtosis vanishes, i.e. approaches that of a
Gaussian. This is in line with the intuition provided by the
central limit theorem for shot noise, see e.g [35]. Care should
be exercised here—the intuition is only valid pointwise in τ
and for short signal pulses.

In simulations or in measurements, the kurtosis delay profile
can be estimated, provided a sufficient number of realizations
of y(t) are at hand. The kurtosis can be estimated using
standard kurtosis estimators, e.g. by first estimating the fourth

and second moments and inserting in (31). Unfortunately,
this estimator is biased for small number of samples. In
Appendix B we derive an unbiased estimator for the fourth
cumulant of a circular random variable which we use here
to improve the kurtosis estimator. This allows us to obtain the
kurtosis from simulations when analysis of the fourth moment
is unavailable. Thus we can compare the simulated kurtosis of
the mirror source model with the results (32) and (34) for the
Poisson approximation.

A different application of the kurtosis delay profile is
estimation of parameters of the arrival rate and is thereby
a potential tool to validate the model based on measurement
data. The kurtosis in (31), can be evaluated numerically given a
specific choice of transmitted signal, and fitted by a non-linear
least squares approach to the estimated kurtosis in terms of the
model parameters. For this method to be reliable for practical
settings, the expression in (31) should be modified to also
account for additive noise on the received signal. If the noise
is Gaussian and independent of the signal contribution, this
adjustment amounts to an additive term in κ1:1[y(t)] equal
to the noise variance; the fourth cumulant is unaffected by
additive Gaussian noise. Thus, in practice this approach makes
it necessary to estimate the noise variance. With this in mind,
the approximation in (34) gives an indication of how the
sounding signal should be chosen to estimate the arrival rate
accurately: The sounding signal should have large kurtosis.

V. ARRIVAL TIMES

The mirror source model and the proposed approximation
model can be compared in terms of statistics of the arrival
times, e.g. the order statistics and interarrival times.

A. Order Statistics

Order statistics are wellknown tools within the field of
statistics [36] and can be meaningfully defined for the inho-
mogeneous arrival processes considered here. The points of
the arrival process T can be arranged in ascending order,

τ[1] ≤ τ[2] ≤ τ[3] ≤ . . . , (35)

where the nth order statistic τ[n] is the delay of the nth arrival.
The nth order statistic is unaffected by the observation time
interval, i.e. τmax, provided it is selected long enough to ensure
that, with high probability, at least n paths arrive within the
observation window. Conversely: if a minimum of n paths
have been observed in a set of measurements, then we should
consider order statistics of at maximum order n. Empirical
cdfs for the order statistics are readily obtained by a sorting
procedure.

To derive the distribution of order statistics for the proposed
model observe that the nth order statistic is less than τ
whenever the region count N(τ) is greater than or equal to n.
The probability of more than n arrivals before delay τ reads

P(τ[n] < τ) = 1− P(N(τ) < n)

= 1−
n∑
i=0

(τ/a)3i

i!
exp(−(τ/a)3) (36)
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where a = 3
√

4πc3ωTωR/3V . The probability in (36) can be
expressed in terms of the gamma function Γ( · ) and the lower
incomplete gamma function γ( · , · ) as (see e.g. [37, (10.70)])

P(τ[n] < τ) =
γ(n, (τ/a)3)

Γ(n)
= F (τ ; a, 3n, 3). (37)

Here, F ( · ; a, 3n, 3) is a generalized gamma cdf [38] for which
the moment generating function reads

M[n](ν) =

∞∑
r=0

(νa)r

r!
· Γ(n+ r/3)

Γ(n)
. (38)

From the generating function it is straight-forward to identify
the rth moment of the nth order statistic.

B. Interarrival Times

The distribution of time intervals between the arrival of
multipath components, called the interarrival times, has been
used by several authors as a means to fit and validate stochastic
channel models, e.g. [5], [8], [10]. If the arrival times form
a homogeneous Poisson process, the interarrival times are
exponentially distributed. Unfortunately, as we show in the
following, this distribution of interarrival times is not well
defined in the inhomogeneous case considered here.

We first derive the distribution of interarrival time, given that
point arrive at delay τk. The probability that no path arrives
between delay τk and τk + δ for fixed interarrival time δ > 0,
follows from the probability that no points from T fall in the
interval (τk, τk + δ). This is the same as the probability for
the interarrival time, given τk is greater than δ. Since T is a
Poisson point process, the probability for the interarrival time
less than δ reads

P(τk′ − τk < δ|τk) =1− P(N(τk + δ)−N(τk) = 0|τk)

=1− exp(−Λ(τk + δ) + Λ(τk))

=1− exp(− (τk + δ)3 − τ3k
a3

), (39)

δ > 0. This is a well defined cdf: with τk = 0, this is a
Weibull cdf with shape parameter three and scale parameter
a; for τk > 0 it is a shifted and truncated Weibull cdf with
the same parameters.

To obtain the (unconditional) distribution of interarrival
times, the delay τk should be averaged out. The pdf in (27)
is well defined for finite τmax, but for τmax → ∞ the
denominator in (27) diverges and the pdf is zero for finite
τk. The expectation of (39) with respect to (27) can now be
carried out, e.g. using symbolic computation software. The
result, which we omit here due to its length, depends on the
value of τmax. In particular, for infinite observation interval,
the resulting distribution of interarrival times is degenerate
with all probability mass at zero.

Indeed, the notion of interarrival times appears to be much
more involved for inhomogeneous arrival processes, poten-
tially leading to misinterpretation. As an example, in [8] it
was observed, that interarrival times were not exponentially
distributed as they should be for a homogeneous Poisson
process. The authors concluded, that a homogeneous Pois-
son process was inadequate to model the data. Instead they

proposed to model the interarrival times as a mixture of two
exponential distributions which fits the measurement data well.
Although unnoticed in [8], or the comments raised in [39],
this modification replaces the homogeneous Poisson process
by a renewal process, see e.g. [36]. A renewal processes is
specified by the distribution of the interarrival times and has
constant arrival rate by construction. The renewal process used
in [8] has in a total of three parameters and it is therefore
unsurprising that it fits the data much better than the constant
rate model with only one parameter. Moreover, since the
interarrival times of an inhomogeneous Poisson process does
not have to be exponentially distributed, the observation from
[8] of non-exponential interarrival times, does not contradict
that the arrival process is a Poisson process. The only safe
conclusion is that the arrival process is not homogeneous
Poisson.

C. Residual Power after Removing Dominant Paths

In measurements, the received signal y(t) can be obtained,
but the points in the arrival process are ‘hidden’ and must be
first extracted. The problem of extracting delays and ampli-
tudes for multipath models, has received a tremendous amount
of research attention, and many good estimation techniques
exist, e.g. [40], [41]. These techniques tend to work well for
clearly separated multipaths, and when the total number of
multipaths are low and known. Nevertheless, this is likely
not the case for the inroom scenarios considered here. It
is also possible to account for “diffuse components” in the
estimator [42], but to do so, we should be able to distinguish
between specular and diffuse components. In the light of
the gradual specular-diffuse transition predicted by the mirror
source model, such a split seems unnatural. To apply the
estimators [40]–[42], one needs to set a number of multipath
components to extract. This setting is critical, since the power
of the residual, i.e. the unresolved part of the received signal,
depends on it. In the following, we use the order statistics to
predict the residual power as a function of this setting.

We consider the ideal case, where the multipath components
are extracted one by one according to their ordering in delay.
Denote by P[n] the mean power contributed by paths with
delay greater than τ[n]. Then the set of arrival delays exceeding
τ[n] can be written as

Tn = TPPP ∩ (τ[n],∞) = {τ[n+1], τ[n+2], . . . }. (40)

The total power of paths with delay greater than τ[n] reads

P[n] = E
[ ∫ ∣∣∣∣ ∑

i:τi∈Tn

αis(τ − τi)
∣∣∣∣2dτ ∣∣∣∣τ[n]] (41)

= EsE[
∑
τ∈Tn

σ2
α(τ)|τ[n]] (42)

where Es =
∫
|s(τ)|2dτ and zero mean uncorrelated path

gains are assumed. Since TPPP is a Poisson point process, its
points are independent. Therefore, the set Tn|τ[n] is a Poisson
point process with intensity function λ(τ)1(τ > τ[n]). By
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TABLE I
SIMULATION SETTINGS

Room dim., Lx × Ly × Lz 5× 5× 3m3

Reflection gain, g 0.6
Center Frequency 60GHz
Bandwidth, B 2GHz
Wavelength, lc 30mm
Speed of light, c 3 · 108 m/s
Maximum delay, τmax 100 ns
Rate in constant rate model, ρ0 ωTωR · 150/τmax
Transmitted signal, s(t) Hamming pulse
Antennas Sph. Cap Sector
No. Monte Carlo Runs 104

invoking Campbell’s theorem, (12) and (11) we obtain

P[n] = Es

∫ ∞
τ[n]

P (τ)dτ (43)

= Es
4πcT

3V
exp(−τ[n]/T ). (44)

Taking the expectation with respect to τ[n] yields

E[P[n]] = Es
4πcT

3V
Mτ[n]

(−1/T ). (45)

The relative residual power, i.e. the ratio of the residual power
and the total power reads

E[P[n]]/Ptot = Mτ[n]
(−1/T ) (46)

This ratio is unity for n = 1, but vanishes for large n at a decay
rate determined by the ratio a/T . Using [43, (5.11.12)], we
see that the residual power has an asymptote given as

M[n](−1/T ) = exp(−3
√
na/T ), n→∞. (47)

The residual power decays more slowly in terms of n for
smaller rooms than for larger rooms. Furthermore, for more
directive antennas, the decay is faster, because the power is
concentrated on fewer multipath components.

VI. SIMULATION STUDY

The accuracy of the proposed Poisson approximation model
is evaluated by means of Monte Carlo simulations of the
following three models:

1) MS: The mirror source model defined in Section II, with
uniformly random antenna positions and orientations.

2) Proposed: The inhomogeneous Poisson approximation
defined in Section III-A. We simulate the inhomoge-
neous Poisson process as described in Section III-A,
with circular symmetric complex Gaussian gains.

3) Constant Rate: A homogeneous Poisson model with
constant arrival rate ρ0, but with the same delay power
spectrum as in Subsection III-A, and circular symmetric
complex Gaussian gains.

The constant rate model is included to contrast the proposed
inhomogeneous model, and the homogeneous case assumed in
e.g. [4], [11]. It should be noticed, however, that the effect of
the antennas has not hitherto been included in the constant
arrival rate models. We do so here to illustrate, how the
antenna effect would enter in the constant rate model.

The simulation setup is the same as in [23], with settings as
specified in Table I. The transmitted signal s(t) is a Hamming
pulse with the considered frequency bandwidth. To achieve
finite computational complexity, we simulate only components
with a delay up to a maximum delay, denoted by τmax. To
illustrate the impact of the beam coverage of the antennas,
we consider identical lossless spherical cap sector antennas,
as defined in [23]. For this type of antenna, ω specifies the
response: ω = 1 yields the isotropic antenna response; ω = 0.5
yields a hemisphere antenna.

A. Example Realizations

Fig. 2 gives examples of individual realizations of the
received signal. The mirror source model and the proposed
model both exhibit a specular to diffuse transition in the
received signal, i.e. early well separated specular components
are succeeded by a gradually denser diffuse tail. This effect
is not replicated by the constant rate model, which is either
“constantly sparse” or “constantly dense”.

Fig. 2 also reports the arrival counts for the three models.
These are not observable in a measurement, but are easy to
obtain in simulations. As expected, the counts fluctuate about
their respective theoretical mean. Moreover, as predicted, the
count for the isotropic antennas is four times higher than that
obtained with the hemisphere antennas. The mirror source
model and the proposed approximation produce similar re-
alizations of arrival counts; the constant rate model differs.

B. Power and Kurtosis of the Received Signal

The upper panels of Fig. 3 show the simulated expected
received power versus delay for the three models along with
the theoretical value calculated from (10) using ξ = 1.086.
All three models agree well with the theory showing only
minor deviations due to the applied Monte Carlo simulation
technique. This clearly exemplifies that, models with very
different arrival rates, can indeed have identical second or-
der statistics. As can be seen, the antenna directivity does
not affect the power delay spectrum. In addition, the high-
bandwidth approximation obtained using (33) with n = 1, is
very accurate with insignificant discrepancies at small delays.

Excess kurtosis delay spectra are reported in the middle
panels of Fig. 3. The lower panels in Fig. 3 show the relative
error in kurtosis for the proposed and constant rate model with
respect to the simulated mirror source model. The theoretical
curves from (31) are close to the large bandwidth approx-
imations obtained using (33) and (34). The theory predicts
the kurtosis to increase by a factor of four, by replacing
the isotropic antennas by hemisphere antennas. This shift is
correctly represented in all three models. The simulations for
the mirror source model agrees well with simulations of the
proposed model. The agreement is best for the early part of
the response, which carries the most signal power. At later
delays, however, the proposed model deviates somewhat from
the mirror source model. The deviation is caused in part by the
small discrepancy in the model of the second moment, and in
part due to the fact that, the gain variables are approximated
as Gaussian random variables. The discrepancy is furthermore
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(a) Isotropic Antennas ωT = ωR = 1 (b) Hemisphere Antennas ωT = ωR = 0.5

Fig. 2. Example realizations of the received signal (magnitude square) and corresponding arrival counts for (a) isotropic and (b) hemisphere antennas.
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Fig. 3. Power and kurtosis of the received signal obtained from simulation, theory and approximation for (a) isotropic and (b) hemisphere antennas.
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accentuated by the logarithmic of the second axis. The curve
for the constant rate model differs from the two others—as
expected its kurtosis delay profile is constant. This simulation
clearly shows that, models with identical delay power spectra,
may differ significantly in their kurtosis delay spectrum.

C. Order Statistics of Arrival Times

The simulated order statistics of arrival times reported in
Fig. 4, give rise to a number of observations. For all models,
the cdfs shift to the right as the order increases. Moreover, the
slope of the cdf, which is related to the variance of the pdf,
is steeper for the isotropic antennas than for the hemisphere
antennas; more directive antennas lead to larger spreads of the
order statistics. For all considered order statistics, the proposed
model captures more accurately the shape of the cdf than the
constant rate model. This indicates that to accurately model
the order statistics of the arrival process, it is important to
model the arrival rate properly. In the considered case, the
constant rate model is not appropriate. The deviations between
the proposed model and the mirror source model are relatively
minor, but are most significant in the first few order statistics
and in the case with isotropic antennas.

D. Residual Power After Removing Paths

Fig. 5 shows the relative residual power after removing n
first arrivals. Here the proposed and the mirror source model
agrees well, while the constant rate model is off. This is to
be expected in the light if the close match in order statistics
observed in Fig. 4. Also, the approximation computed in (47),
predicts the trend of the residual power well.

It is clear from Fig. 5 that the antenna characteristics affect
the residual power for all three models. In the proposed model,
the residual power depends only on the ratio a/T , it varies
with room size, antenna characteristics, and the reverberation
time. This observation is relevant in particular in connection
with approximating the received signal using only a fixed
number of multipath components, such as commonly done
using a high-resolution multipath estimators [40]–[42]. This
model prediction is in agreement with the recently published
measurement results [44], where the residual power after re-
moving specular components is observed to decay at different
rates for differently sized rooms.

E. Instantaneous Mean Delay and RMS Delay Spread

Fig. 6 reports the empirical cdfs for the instantaneous mean
delay and rms delay spread. The mean and rms delay are com-
puted as respectively the first and centered second temporal
moments of each realization of |y(t)|2, and thus include the
effect of the transmitted pulse. It appears that the proposed
model is able to mimic the effects of the mirror source model
well enough to accurately capture the distributions mean delay
and rms delay spread. This is not the case for the constant rate
model. All three models predict a shift of the curves as the
directivity of the antennas change.

VII. DISCUSSION

The proposed stochastic model is based on the mirror source
analysis presented in [23], which is a for a simplistic scenario,
where transmitter and receiver are placed in a rectangular room
with perfectly flat walls void of other objects. Certainly, in
realistic scenarios, the walls will be imperfect due to doors,
windows, heating devices, ventilation ducts, light fixtures, wall
roughness etc. In addition, other objects in the room add to
the complexity of the propagation environment. Therefore,
the mirror source model should in itself be considered as an
approximation of any real propagation environment.

We do expect, however, that since the very major elements
of the inroom scenario, namely the walls, floor and ceiling are
accounted for, the model can be used to qualitatively predict
some effects that occur in more realistic cases. We conjecture
that if the scenario is made more complex, e.g by considering
a furnished room, a number of mirror sources should be added
which leads to an even faster growth of the arrival rate. This
will accelerate the diffusion process and result in an even faster
decay of kurtosis delay profile.

The present contribution focus on the theoretical analysis
of the proposed model, rather than its experimental validation.
As discussed in [23], the power delay spectrum agrees with
a model which has been previously been experimentally vali-
dated. Other predictions of the proposed approximation model
have, however, not yet been compared to measurement data.
We comment on validation of the model in the following.

The predictions related to the moments of the received
signal can be validated, as they are easy to relate to mea-
surement data. In particular, the kurtosis delay profile could
be estimated using the estimator in Appendix B. While this
seems straightforward, we should bear in mind that reliable
estimation of higher moments, here the fourth moment, usually
calls for a large number of measurements. The presence of
noise in the measurements may impair the estimation accuracy
of especially the late part of the kurtosis delay profile. There-
fore, we suggest that the robustness and noise-sensitivity of the
estimator of the kurtosis delay profile should be investigated
in more detail prior to applying these estimators.

To validate the model based on arrival delays and complex
gains, the marked point process X should be estimated e.g.
by using high-resolution estimators such as [40]–[42]. Such
estimators, however, detect more easily multipath components
with short delays, which tend to have the strongest power and
be better separated. Hence, more signal components are missed
by the estimator in the parts of the response where the density
is the largest and the gains are the weakest. This effect can
be considered as censoring of the observation [13] which may
severely bias statistics based on estimates of arrival times.

Section V-B mentions the widespread practice of calibrating
and validating models for the arrival process by inspection of
the empirical distribution of interarrival times. The interarrival
times suffer from similar censoring problems as the arrival
times. Moreover, due to the inhomogeneity of the proposed
model, the interarrival times are not well defined. For these
reasons, we find the use of interarrival time statistics to be
questionable. A more robust method could be to use the first
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(a) Isotropic Antennas ωT = ωR = 1 (b) Hemisphere Antennas ωT = ωR = 0.5

Fig. 4. Empirical cumulative probability for the order statistics of the three models with (a) isotropic and (b) hemisphere antennas. The theoretical cdfs
given in dashed lines for the proposed and the constant rate models fall on top of the simulated curves.
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Fig. 5. The residual power relative to the total power for the three models
after removing n first paths for (a) isotropic and (b) hemisphere antennas.
The approximation (47) is given in dashed line.

few order statistics for calibration and validation, since these
are very likely to stem from strong and well separated signal
components. In either case, when calibrating and validating
multipath models based on estimation of arrival times, the
properties and biases caused by the delay estimation proce-
dure, should be understood and factored in.

The proposed model is inspired by results from mirror
source theory. This approach provides insight into how the
environment, here the room, and the system parameters, here
the antennas and the transmitted signal, affect the model.
This insight is advantageous compared to an empirical model.
Empirical models, however, can be more easily fitted to
measurement data. It is therefore worth mentioning that the
arrival rate model considered here, motivates an empirical
model of the form,

λ(τ) = η · τ2 ·1(τ > 0), (48)

This is a one parameter model, just as the constant rate model,
but has the advantage of accounting for the specular-to-diffuse
transition observed in indoor scenarios.

VIII. CONCLUSION

We have proposed a stochastic model for the arrival times
in an in-room scenario. The proposed model is based on
approximation of the positions of mirror sources by spatial
(3D) Poisson process. This induces a non-homogenous Poisson
process for the arrival times, and a model for the second mo-
ment of the power gain of a multipath component conditioned
on its arrival time. By construction, the path arrival rate and
power delay spectrum of the resulting stochastic multipath
model, agrees with the mirror source model. Nonetheless, the
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(a) Isotropic Antennas ωT = ωR = 1 (b) Hemisphere Antennas ωT = ωR = 0.5

Fig. 6. Empirical cumulative probability for instantaneous mean delay and rms delay spread for (a) isotropic and (b) hemisphere antennas.

statistical structure of the mirror source process and thus of
the arrival times, is not kept.

The proposed Poisson approximation is mathematically
more convenient than the mirror source model, as it enables
closed-form derivation of expressions of various signal char-
acteristics, e.g. all moments and cumulants of the received
signal. We show that the kurtosis delay spectrum depends on
the arrival rate in a very direct fashion. In the high-bandwidth
case, the kurtosis is inversely proportional to the arrival rate.
Due to the increasing arrival rate, the pdf of the received signal
depends on delay. At small delays the received signal can
differ significantly from a Gaussian, but as the delay increases,
the pdf approaches a Gaussian. Furthermore, we show that
the order statistics of the arrival times, i.e. the time of the
nth arrival, follows a generalized gamma distribution with the
parameters determined by antenna coverage fractions and the
room volume. Based on the order statistics, we give a closed
form expression for the relative residual power, after removing
the first n arrivals. Monte Carlo simulations show that the
proposed model agrees well to the mirror source model in
terms of power delay spectrum, kurtosis, order statistics of
arrival times, mean delay and rms delay spread.

The constant rate model has a power delay spectrum
identical to the two other models, but does not predict well
any of the other studied characteristics (distributions of mean
delay, rms delay spread, and order statistics). Thus, accurate
modelling the received signal using a stochastic multipath
model necessitate accurate modelling of the arrival rate. The

constant rate model, as used in e.g. the Saleh-Valenzuela
model, is not able to predict these characteristics

APPENDIX A
GENERATING FUNCTIONALS

The characteristic functional for y(t) evaluated for arbitrary
probing function φ(t) is defined as [35], [45]

C[φ] = E
[

exp
(
j<
∫
φ(t)y(t)dt

)]
(49)

where < denotes the real part. The complex natural logarithm
of the characteristic functional is the cumulant generating
functional denoted by K[φ]. By Kingmann’s marking theorem
[32], the marked point process {(τ`, α`)} with forms a two-
dimensional Poisson process with rate p(α|τ)λ(τ). Then using
Campbell’s theorem [32] and taking the logarithm we obtain

K[φ] =

∫∫ (
ej<α

∫
φ(t)s(t−τ)dt − 1

)
p(α|τ)λ(t)dαdτ (50)

=

∫ [
Cα|τ (

∫
φ(t)s(t− τ)dt)− 1

]
λ(τ)dτ (51)

where Cα|τ ( · ) is the characteristic function for p(α|τ).
The probing function plays the same role as the variable

introduced in the more widespread characteristic and cumu-
lant generating functions. Evaluating the cumulant generating
functional for φ(t) = νδ(t), we obtain the cumulant generating
function for y(t) for any given time t:

K(ν) =

∫ [
Cα|τ (νs(t− τ))− 1

]
λ(τ)dτ (52)
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Cumulants of y(t) can now be computed by complex differ-
entiation as

κm:n(t) =
∂m+n

∂mν∂ν∗n
K(ν)

∣∣∣∣
ν=0

(53)

=

∫
s(t− τ)ms(t− τ)∗nE[αmα∗n|τ ]λ(τ)dτ. (54)

Considering the gains to be circular random variables, the
moments E[αmα∗n|τ ] are zero for m 6= n and all odd
cumulants (and moments) of y(t) vanish. The even cumulants
in (28) are obtained with m = n. In particular for m = n = 1
we obtain the delay power spectrum, i.e κ1:1(τ) = P (τ).

APPENDIX B
KURTOSIS ESTIMATION FOR COMPLEX CIRCULAR

VARIABLES

The fourth cumulant of a circular complex random variable
X can be estimated from iid. observations X1, . . . , XN . For
a circular complex variable, the fourth cumulant, fourth and
second moments are related as [34]

κ2:2[X] = E[|X|4]− 2E[|X|2]2. (55)

We seek an estimator of the form

κ̂2:2[X] = c1

N∑
n=1

|Xn|4 − c2

(
N∑
n=1

|Xi|2
)2

. (56)

For an unbiased estimator, E[κ̂2:2[X]] = κ2:2[X]. By using
(55) and some straight-forward manipulations we obtain

c1 =
N + 1

N(N − 1)
, and c2 =

2

N(N − 1)
, N > 1. (57)

Note this estimator differs from the unbiased estimator ob-
tained for real valued data derived in [46]. The kurtosis is
then estimated as κ̂2:2[X]/κ̂21:1[X].

REFERENCES

[1] G. Turin, F. Clapp, T. Johnston, S. Fine, and D. Lavry, “A statistical
model of urban multipath propagation channel,” IEEE Trans. Veh.
Technol., vol. 21, pp. 1–9, Feb. 1972.

[2] H. Suzuki, “A statistical model for urban radio propagtion channel,”
IEEE Trans. on Commun. Syst., vol. 25, pp. 673–680, Jul. 1977.

[3] H. Hashemi, “Simulation of the urban radio propagation,” IEEE Trans.
Veh. Technol., vol. 28, pp. 213–225, Aug. 1979.

[4] A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor
multipath propagation channel,” IEEE J. Sel. Areas Commun., vol. SAC-
5, no. 2, pp. 128–137, Feb. 1987.

[5] Q. H. Spencer, B. Jeffs, M. Jensen, and A. Swindlehurst, “Modeling the
statistical time and angle of arrival characteristics of an indoor multipath
channel,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 347–360,
2000.

[6] T. Zwick, C. Fischer, and W. Wiesbeck, “A stochastic multipath channel
model including path directions for indoor environments,” IEEE J. Sel.
Areas Commun., vol. 20, no. 6, pp. 1178–1192, Aug. 2002.

[7] T. Zwick, C. Fischer, D. Didascalou, and W. Wiesbeck, “A stochastic
spatial channel model based on wave-propagation modeling,” IEEE J.
Sel. Areas Commun., vol. 18, no. 1, pp. 6–15, Jan. 2000.

[8] C.-C. Chong and S. K. Yong, “A generic statistical-based UWB channel
model for high-rise apartments,” IEEE Trans. Antennas Propag., vol. 53,
no. 8, pp. 2389–2399, Aug. 2005.

[9] A. Molisch, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan,
J. Karedal, J. Kunisch, H. Schantz, K. Siwiak, and M. Win,
“A comprehensive standardized model for ultrawideband propagation
channels,” IEEE Transactions on Antennas and Propagation, vol. 54,
no. 11, pp. 3151–3166, nov 2006.

[10] C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On mm-wave
multipath clustering and channel modeling,” IEEE Trans. Antennas
Propag., vol. 62, no. 3, pp. 1445–1455, Mar. 2014.

[11] K. Haneda, J. Jarvelainen, A. Karttunen, M. Kyro, and J. Putkonen,
“A statistical spatio-temporal radio channel model for large indoor
environments at 60 and 70 GHz,” IEEE Trans. Antennas Propag.,
vol. 63, no. 6, pp. 2694–2704, Jun. 2015.

[12] M. K. Samimi and T. S. Rappaport, “3-D millimeter-wave statistical
channel model for 5G wireless system design,” IEEE Trans on Microw.
Theory and Techniques, vol. 64, no. 7, pp. 2207–2225, Jul. 2016.

[13] A. Karttunen, C. Gustafson, A. F. Molisch, J. Järveläinen, and
K. Haneda, “Censored multipath component cross-polarization ratio
modeling,” IEEE Wireless Communications Letters, vol. 6, no. 1, pp.
82–85, Feb 2017.

[14] A. Meijerink and A. F. Molisch, “On the physical interpretation of the
Saleh–Valenzuela model and the definition of its power delay profiles,”
IEEE Trans. Antennas Propag., vol. 62, no. 9, pp. 4780–4793, Sep.
2014.

[15] C. Holloway, M. Cotton, and P. McKenna, “A model for predicting the
power delay profile characteristics inside a room,” IEEE Trans. Veh.
Technol., vol. 48, no. 4, pp. 1110–1120, July 1999.

[16] J. Kunisch and J. Pamp, “An ultra-wideband space-variant multipath
indoor radio channel model,” in IEEE Conf. on Ultra Wideband Systems
and Technologies, 2003, Nov. 2003, pp. 290–294.

[17] ——, “Measurement results and modeling aspects for the UWB radio
channel,” in IEEE Conf. on Ultra Wideband Systems and Technologies,
2002. Digest of Papers, May 2002, pp. 19–24.

[18] G. Steinböck, M. Gan, P. Meissner, E. Leitinger, K. Witrisal, T. Zemen,
and T. Pedersen, “Hybrid model for reverberant indoor radio channels
using rays and graphs,” IEEE Trans. Antennas Propag., vol. 64, no. 9,
pp. 4036–4048, Sep. 2016.

[19] G. Steinböck, T. Pedersen, B. Fleury, W. Wang, and R. Raulefs, “Cali-
bration of the Propagation Graph Model in Reverberant Rooms,” in URSI
Commission F Triennial Open Symposium on Radiowave Propagation
and Remote Sensing, May 2013.

[20] T. Pedersen and B. H. Fleury, “A realistic radio channel model based on
stochastic propagation graphs,” in Proceedings 5th MATHMOD Vienna –
5th Vienna Symposium on Mathematical Modelling, vol. 1,2, Feb. 2006,
p. 324, ISBN 3–901608–30–3.

[21] T. Pedersen and B. Fleury, “Radio channel modelling using stochastic
propagation graphs,” in Proc. IEEE International Conf. on Commun.
ICC ’07, Jun. 2007, pp. 2733–2738.

[22] T. Pedersen, G. Steinböck, and B. H. Fleury, “Modeling of reverber-
ant radio channels using propagation graphs,” IEEE Trans. Antennas
Propag., vol. 60, no. 12, pp. 5978–5988, Dec. 2012.

[23] T. Pedersen, “Modelling of path arrival rate for in-room radio channels
with directive antennas,” IEEE Trans. Antennas Propag., vol. 66, no. 9,
pp. 4791–4805, Sep. 2018.

[24] M. L. Jakobsen, B. H. Fleury, and T. Pedersen, “Analysis of the
stochastic channel model by Saleh & Valenzuela via the theory of point
processes,” in Int. Zurich Seminar on Communications (IZS), February
29 - March 2, 2012. Zürich, Eidgenössische Technische Hochschule
Zürich, 2012.

[25] C. F. Eyring, “Reverberation time in ’dead’ rooms,” The Journal of the
Acoustical Society of Amarica, vol. 1, no. 2, p. 241, 1930.

[26] G. Steinböck, T. Pedersen, B. H. Fleury, W. Wang, and R. Raulefs,
“Experimental validation of the reverberation effect in room
electromagnetics,” IEEE Trans. Antennas Propag., vol. 63, no. 5,
pp. 2041–2053, May 2015.

[27] H. Kuttruff, Room Acoustics. London: Taylor & Francis, 2000.
[28] G. Steinböck, T. Pedersen, B. H. Fleury, W. Wang, and R. Raulefs,

“Distance dependent model for the delay power spectrum of in-room
radio channels,” IEEE Trans. Antennas Propag., vol. 61, no. 8, pp.
4327–4340, Aug. 2013.

[29] M. G. Kendall and P. A. P. Moran, Geometrical Probability. London:
Charles Griffin and Company Limited, 1963.

[30] N. Minami, “On the poisson limit theorems of Sinai and Major,”
Communications in Mathematical Physics, vol. 213, no. 1, pp. 203–247,
2000.

[31] J. Bourgain, P. Sarnak, and Z. Rudnick, Modern Trends in Constructive
Function Theory. American Mathematical Society (AMS), 2016, ch.
Local Statistics of Lattice Points on the Sphere, pp. 269–282.

[32] J. F. C. Kingman, Poisson Processes. Oxford University Press, 1993.
[33] D. Cox and V. Isham, Point Processes. Chapman & Hall, 1980.
[34] P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-

Valued Data. Cambridge University Press, 2010.



13

[35] D. L. Snyder and M. Miller, Random Point Processes in Time and Space.
Springer-Springer-Verlag, Inc., 1991.

[36] A. C. Davison, Statistical Models. Cambridge University Press, 2003.
[37] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists,

5th ed. Hartcourt/Academic Press, 2001.
[38] E. W. Stacy, “A generalization of the gamma distribution,” The Annals

of Mathematical Statistics, vol. 33, no. 3, pp. 1187–1192, 1962.
[39] S. Nadarajah and S. Kotz, “Comments on "a generic statistical-based

uwb channel model for high-rise apartments,” IEEE Trans. Antennas
Propag., vol. 56, no. 6, pp. 1831–1831, June 2008.

[40] J. A. Högbom, “Aperture synthesis with a non-regular distribution
of interferometer baselines,” Astronomy and Astrophysics Supplement
Series, vol. 15, no. 3, pp. 417–426, 1974.

[41] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. L.
Pedersen, “Channel parameter estimation in mobile radio environments
using the SAGE algorithm,” IEEE J. Sel. Areas Commun., vol. 17, no. 3,
pp. 434–450, Mar. 1999.

[42] R. Thomä, M. Landmann, G. Sommerkorn, and A. Richter, “Multidi-
mensional high-resolution channel sounding in mobile radio,” in Proc.
21st IEEE Instrumentation and Measurement Technology Conf., IMTC,
vol. 1, May 2004, pp. 257–262.

[43] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, Eds., NIST
Handbook of Mathematical Functions. Cambridge University Press,
2010.

[44] K. Saito, J. I. Takada, and M. Kim, “Dense multipath component char-
acteristics in 11-GHz-band indoor environments,” IEEE Trans. Antennas
Propag., vol. 65, no. 9, pp. 4780–4789, Sept 2017.

[45] J. Rice, “On generalized shot noise,” Advances in Applied Probability,
vol. 9, no. 3, p. 553, Sep. 1977.

[46] I. V. Blagouchine and E. Moreau, “Unbiased adaptive estimations of the
fourth-order cumulant for real random zero-mean signal,” IEEE Trans.
Signal Process., vol. 57, no. 9, pp. 3330–3346, Sep. 2009.


