99 research outputs found

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    A Novel Parametric benchmark generator for dynamic multimodal optimization

    Get PDF
    In most existing studies on dynamic multimodal optimization (DMMO), numerical simulations have been performed using the Moving Peaks Benchmark (MPB), which is a two-decade-old test suite that cannot simulate some critical aspects of DMMO problems. This study proposes the Deterministic Distortion and Rotation Benchmark (DDRB), a method to generate deterministic DMMO test problems that can simulate more diverse types of challenges when compared to existing benchmark generators for DMMO. DDRB allows for controlling the intensity of each type of challenge independently, enabling the user to pinpoint the pros and cons of a DMMO method. DDRB first develops an existing approach for generation of static multimodal functions in which the difficulty of global optimization can be controlled. Then, it proposes a scaling function to dynamically change the relative distribution, shapes, and sizes of the basins. A deterministic technique to control the regularity of the pattern in the change is also proposed. Using these components, a parametric test suite consisting of ten test problems is developed for DMMO. Mean Robust Peak Ratio for measuring the performance of DMMO methods is formulated to overcome the sensitivity of the conventional peak ratio indicator to the predefined threshold and niche radius. Numerical results of a successful multimodal optimization method, when augmented with a simple strategy to utilize previous information, are provided on the proposed test problems in different scenarios with the aim of serving as a reference for future studies

    Multi-population methods in unconstrained continuous dynamic environments: The challenges

    Get PDF
    Themulti-populationmethod has been widely used to solve unconstrained continuous dynamic optimization problems with the aim of maintaining multiple populations on different peaks to locate and track multiple changing peaks simultaneously. However, to make this approach efficient, several crucial challenging issues need to be addressed, e.g., how to determine the moment to react to changes, how to adapt the number of populations to changing environments, and how to determine the search area of each population. In addition, several other issues, e.g., communication between populations, overlapping search, the way to create multiple populations, detection of changes, and local search operators, should be also addressed. The lack of attention on these challenging issues within multi-population methods hinders the development of multi-population based algorithms in dynamic environments. In this paper, these challenging issues are comprehensively analyzed by a set of experimental studies from the algorithm design point of view. Experimental studies based on a set of popular algorithms show that the performance of algorithms is significantly affected by these challenging issues on the moving peaks benchmark. Keywords: Multi-population methods, dynamic optimization problems, evolutionary computatio

    A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades:Part B

    Get PDF
    Many real-world optimization problems are dynamic. The field of dynamic optimization deals with such problems where the search space changes over time. In this two-part paper, we present a comprehensive survey of the research in evolutionary dynamic optimization for single-objective unconstrained continuous problems over the last two decades. In Part A of this survey, we propose a new taxonomy for the components of dynamic optimization algorithms, namely, convergence detection, change detection, explicit archiving, diversity control, and population division and management. In comparison to the existing taxonomies, the proposed taxonomy covers some additional important components, such as convergence detection and computational resource allocation. Moreover, we significantly expand and improve the classifications of diversity control and multi-population methods, which are under-represented in the existing taxonomies. We then provide detailed technical descriptions and analysis of different components according to the suggested taxonomy. Part B of this survey provides an indepth analysis of the most commonly used benchmark problems, performance analysis methods, static optimization algorithms used as the optimization components in the dynamic optimization algorithms, and dynamic real-world applications. Finally, several opportunities for future work are pointed out

    An adaptive multi-swarm optimizer for dynamic optimization problems

    Get PDF
    The multi-population method has been widely used to solve dynamic optimization problems (DOPs) with the aim of maintaining multiple populations on different peaks to locate and track multiple changing optima simultaneously. However, to make this approach effective for solving DOPs, two challenging issues need to be addressed. They are how to adapt the number of populations to changes and how to adaptively maintain the population diversity in a situation where changes are complicated or hard to detect or predict. Tracking the changing global optimum in dynamic environments is difficult because we cannot know when and where changes occur and what the characteristics of changes would be. Therefore, it is necessary to take the challenging issues into account to design such adaptive algorithms. To address the issues when multi-population methods are applied for solving DOPs, this paper proposes an adaptive multi-swarm algorithm, where the populations are enabled to be adaptive in dynamic environments without change detection. An experimental study is conducted based on the moving peaks problem to investigate the behavior of the proposed method. The performance of the proposed algorithm is also compared with a set of algorithms that are based on multi-population methods from different research areas in the literature of evolutionary computation
    • …
    corecore