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Abstract

The multi-population method has been widely used to solve dynamic optimization problems
(DOPs) with the aim of maintaining multiple populations on different peaks to locate and track
multiple changing optima simultaneously. However, to make this approach effective for solving
DOPs, two challenging issues need to be addressed. They are how to adapt the number of pop-
ulations to changes and how to adaptively maintain the population diversity in a situation where
changes are complicated or hard to detect or predict. Tracking the changing global optimum
in dynamic environments is difficult because we cannot know when and where changes occur
and what the characteristics of changes would be. Therefore, we need to design algorithms
that are able to adapt to changes by taking the challenging issues into account. To address the
issues when multi-population methods are applied for solving DOPs, this paper proposes an
adaptive multi-swarm algorithm, where the populations are enabled to be adaptive in dynamic
environments without change detection. An experimental study is conducted based on the mov-
ing peaks problem to investigate the behavior of the proposed method. The performance of the
proposed algorithm is also compared with a set of algorithms that are based on multi-population
methods from different research areas in the literature of evolutionary computation.
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1 Introduction

The multi-population method has been widely used in evolutionary computation (EC) to locate

and track multiple optima over environmental changes. Multi-population methods, with proper

enhancements, have the potential to be efficient methods to solve dynamic optimization prob-

lems (DOPs) because they have two advantages. Firstly, they are able to maintain the population

diversity at the global level. The population diversity will always be guaranteed as long as pop-

ulations distribute in different sub-areas in the fitness landscape even though all of them are

converging. Secondly, they are able to track a set of optima rather than a single optimum, which

will increase the possibility of tracking the changing global optimum. This is because one of the
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relatively good optima in the current environment has a high possibility of being the new global

optimum in the next environment.

Although many algorithms based on multi-population methods have been proposed to solve

DOPs (Cruz et al., 2011; Nguyen et al., 2012), several fundamental challenging issues still re-

main to be addressed (Li and Yang, 2009; Yang and Li, 2010), e.g., how to determine the num-

ber of populations, how to adapt populations to changing environments, when to response to

changes, and how to maintain the population diversity without change detection. Some of these

issues had not been discussed until the recent work in (Li and Yang, 2009; Yang and Li, 2010),

where a hierarchical clustering method is employed within particle swarm optimization (PSO)

to create a set of populations that are distributed in different sub-areas in the fitness landscape.

The clustering PSO (CPSO) algorithm proposed in (Li and Yang, 2009; Yang and Li, 2010) and

the extended version (CPSOR) in (Li and Yang, 2012) attempt to address the challenging issues

when multi-population methods are applied. However, far more effort is needed to solve these

issues.

To enable multiple populations to adapt to changes in dynamic environments, this paper

proposes an adaptive multi-swarm optimizer (AMSO). The motivation is to provide a method

to adaptively maintain the population diversity regarding tuning the number of populations for

multi-population based algorithms without the assistance of change detection methods in dy-

namic environments. The work in this paper is based on our previous research (Li and Yang,

2012; Yang and Li, 2010), where all of them are based on the clustering method (Li and Yang,

2009) to create multiple populations. However, there are several natural and significant improve-

ments between this research and our previous research.

Firstly, the parameter settings in the AMSO are not guided by the problem information.

For our previous algorithms, some key parameters are set by directly using the information of

the problem to be solved, e.g., two key parameters in CPSOR (Li and Yang, 2012) (i.e., the

number of individuals gSize and the diversity threshold α), are determined by the number of

peaks (optima) in the moving peaks benchmark (MPB) (Branke, 1999) (see Eqs. (2) and (3)

in Sect. 2.2.1 for gSize and α, respectively). For the MPB, the number of peaks is available.

However, for other problems, such information may be unknown, e.g., the generalized dynamic

benchmark generator (GDBG) (Li et al., 2011) containing a huge unknown number of local

optima. AMSO does not use such problem information to guide parameter settings due to its

diversity maintaining mechanism.

Although the population diversity maintaining mechanism in AMSO is similar to the idea in

CPSOR (Li and Yang, 2012) (both increase the population diversity when it drops to a threshold

level), the mechanism in AMSO is adaptive while the one in CPSOR is not. In CPSOR, the

number of individuals is simply restored to an initial number gSize when the diversity drops

to a threshold level α. The total number of individuals and the threshold value α determine the

number of populations and the moment to increase diversity, respectively. However, they are

fixed and not adaptive to changes particularly in situations with unknown number of peaks (see

evidences in Figure 2 later). In this paper, the number of populations and the moment to increase

diversity are adaptive to changes in general situations. This enables the proposed algorithm to

efficiently use the available fitness evaluations to track more peaks than CPSOR (see evidences

in Figure 5 later in this paper), and hence greatly improves the performance.

Secondly, like the CPSOR (Li and Yang, 2012) algorithm, change detection is not needed

in AMSO. However, change detection is needed for CPSO (Yang and Li, 2010) to trigger the

population increase procedure. The performance of CPSO is seriously affected in hard-to-detect

environments (see evidences in Table 9 later in this paper).
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Thirdly, in our previous work (Li and Yang, 2012; Yang and Li, 2010), the results of some

peer algorithms were collected from the papers where they were proposed, while in this paper,

all the peer algorithms are implemented, and they are run and compared based on exactly the

same dynamic environments and performance measurements.

The rest of this paper is organized as follows. Sect. 2 reviews some multi-population meth-

ods developed in dynamic environments and discusses the difficulties in using multi-population

methods for DOPs. The idea of adaptively maintaining the population diversity without change

detection and the proposed AMSO are described in Sect. 3. The experimental studies regarding

the configuration, working mechanism, and comparison of AMSO with other algorithms on the

MPB problem are presented in Sect. 4. Finally, conclusions are given in Sect. 5.

2 Multiple Populations in Dynamic Environments

Due to the advantages of implicit diversity maintaining, multi-population methods have been

widely used in the literature of EC for solving DOPs.

2.1 Related Research for DOPs

Branke et al. (2000) proposed a self-organizing scouts (SOS) algorithm that has shown promis-

ing results on DOPs with many peaks. In SOS, the whole population is composed of a parent

population that searches through the entire search space and child populations that track local

optima. The parent population is regularly analyzed to check the condition for creating child

populations, which are split off from the parent population.

Inspired by the SOS algorithm (Branke et al., 2000), a fast multi-swarm1 optimization

(FMSO) algorithm was proposed by Li and Yang (2008) to locate and track multiple optima

in dynamic environments. In FMSO, a parent swarm is used as a basic swarm to detect the most

promising area when the environment changes, and a group of child swarms are used to search

the local optimum in their own sub-spaces. Each child swarm has a search radius, and there is

no overlap among all child swarms since they exclude from each other. If the distance between

two child swarms is less than their radius, then the whole swarm of the worse one is removed.

This guarantees that no more than one child swarm covers a single peak. Another similar idea

of hibernation multi-swarm optimization (HmSO) algorithm was introduced by Kamosi et al.

(2010), where a child swarm will hibernate if it is not productive anymore and will be woken up

if a change is detected.

In the work in (Jiang et al., 2009), swarms are dynamic and the size of each swarm is small.

The whole population is divided into many small sub-swarms. The sub-swarms are re-grouped

frequently by using different re-grouping schemes and information is exchanged among sub-

swarms. Several accelerating operators are applied to improve the local search ability. Changes

need to be detected and adjustments are performed once changes are detected.

An atomic swarm approach was adopted by Blackwell and Branke (2004) to track multi-

ple optima simultaneously with multiple swarms in dynamic environments. An atomic swarm

is comprised of charged (or quantum) and neutral particles. The model can be depicted as a

cloud of charged particles orbiting a contracting, neutral, PSO nucleus. In their approaches in

(Blackwell and Branke, 2006), either charged particles (for the mCPSO algorithm) or quantum

particles (for the mQSO algorithm) are used for maintaining the diversity of the swarm, and

1The term “swarm” is normally used in PSO, which also denotes “population”.
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an exclusion principle ensures that no more than one swarm surrounds a single peak. An anti-

convergence principle is also introduced to detect new peaks by sharing information among all

sub-swarms. This strategy was experimentally shown to be efficient for the MPB.

Borrowing the idea of exclusion from mQSO (Blackwell and Branke, 2006),

Mendes and Mohais (2005) developed a multi-population differential evolution (DE) al-

gorithm (DynDE) for DOPs. In their approach, a dynamic strategy for the mutation factor F
and probability factor CR in DE was introduced. Recently, an enhanced version of mQSO

was proposed by applying two heuristic rules to further enhance the diversity of mQSO in

(del Amo et al., 2010). One of the two rules is to increase the number of quantum particles

and decrease the number of trajectory particles when a change occurs. The other rule is to

re-initialize or pause the swarms that have bad performance.

A collaborative evolutionary swarm optimization (CESO) was proposed by

Lung and Dumitrescu (2007). In CESO, two swarms, which use the crowding DE (CDE)

(Thomsen, 2004) and the PSO model, respectively, cooperate with each other by a collaborative

mechanism. The swarm using CDE is responsible for preserving diversity while the PSO

swarm is used for tracking the global optimum. The competitive results were reported in

(Lung and Dumitrescu, 2007). Thereafter, a similar algorithm, called evolutionary swarm

cooperative algorithm (ESCA), was proposed by Lung and Dumitrescu (2010) based on the

collaboration between a PSO algorithm and an evolutionary algorithm (EA). In ESCA, three

populations using different EAs are used. Two of them follow the rules of CDE (Thomsen,

2004) to maintain the diversity. The third population uses the rules of PSO. Three types

of collaborative mechanisms were also developed to transmit information among the three

populations.

Parrott and Li (2004) developed a speciation based PSO (SPSO), which dynamically ad-

justs the number and size of swarms by constructing an ordered list of particles, ranked ac-

cording to their fitness by a “good first” rule, with spatially close particles joining a particular

species. At each generation, SPSO aims to identify multiple species seeds within a swarm. Once

a species seed has been identified, all the particles within its radius are assigned to that same

species. Parrott and Li (2006) also proposed an improved version with a mechanism to remove

duplicate particles in species. Bird and Li (2006) developed an adaptive niching PSO (ANPSO)

algorithm which adaptively determines the radius of a species by using the population statis-

tics. Based on their previous work, Bird and Li (2007) introduced another improved version of

SPSO using a least square regression (rSPSO). Recently, in order to determine niche boundaries,

a vector-based PSO (Schoeman and Engelbrecht, 2009) algorithm was proposed to locate and

maintain niches by using additional vector operations.

An algorithm similar to SPSO (Parrott and Li, 2006), called PSO-CP, was proposed in

(Liu et al., 2010). In PSO-CP, the whole swarm is partitioned into a set of composite parti-

cles by a “worst first” principle, which is opposite to the “good first” rule used in SPSO. The

members of each composite particle is fixed by three particles (one pioneer particle and two el-

ementary particles). Inspired by the composite particle phenomenon in physics, the elementary

members in each composite particle interact via a velocity-anisotropic reflection (VAR) scheme

to integrate valuable information. The idea behind the VAR scheme is to replace the worst par-

ticle with a refection point with better fitness through the other two particles. The diversity of

each composite particle is maintained by a scattering operator. An integral movement strategy

with the aim to promote the swarm diversity is introduced by moving two elementary particles

with the same velocity of the pioneer particle after the pioneer particle is updated.

The clustering PSO algorithm proposed by Li and Yang (2009) applies a hierarchical clus-
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tering method to divide an initial swarm into sub-swarms that cover different local regions.

CPSO attempts to solve some challenging issues associated with multi-population methods, e.g.,

how to guide particles to move toward different promising sub-regions and how to determine the

radius of sub-swarms. Recently, Li and Yang (2012) proposed a general framework for multi-

population methods in undetectable dynamic environments based on the clustering method used

in (Li and Yang, 2009; Yang and Li, 2010). An algorithm, called CPSOR, was implemented

using the PSO technique. The CPSOR algorithm shows a superior performance compared with

other algorithms, especially in dynamic environments where changes are hard to detect.

Recently, a new cluster-based differential evolution algorithm was proposed by

Halder et al. (2013). In the algorithm, multiple populations are periodically generated by the

k-means clustering method, and the number of clusters is decreased or increased by one over

a time span according to the algorithm’s performance. When a cluster is converged, it is re-

moved with the best individual stored in an external archive. When a change is detected, all the

populations are restored to an initial size and re-clustered.

A cultural framework was introduced in (Daneshyari and Yen, 2011) for PSO where five

different kinds of knowledge, named situational knowledge, temporal knowledge, domain

knowledge, normative knowledge, and spatial knowledge, respectively, are defined. The in-

formation is used to detect changes. Once a change is detected, a diversity based repulsion

mechanism is applied among particles as well as a migration strategy among swarms. The

knowledge also helps in selecting leading particles at personal, swarm, and global levels.

In (Khouadjia et al., 2011), a multi-environmental cooperative model for parallel meta-

heuristics was proposed to handle DOPs that consists of different sub-problems or environments.

A parallel multi-swarm approach is used to deal with different environments at the same time

by using different algorithms that exchange information obtained from these environments. The

multi-swarm model was tested on a set of dynamic vehicle routing problems.

An adaptive PSO algorithm was proposed in (Rezazadeh et al., 2011). In the proposed

algorithm, the exclusion radius and inertia weight are adaptively adjusted by a fuzzy C-means

(FCM) mechanism. A local search scheme is employed for the best swarm to accelerate the

search progress. When the search areas of two sub-swarms overlap, the worse one is removed.

To increase diversity, all normal particles are converted to quantum particles when a change is

detected.

2.2 Difficulties in Determining the Number of Populations

The number of populations is a vital factor that affects the performance of an algorithm to locate

and track the multiple peaks. However, determining a proper number of populations needed in

a specific environment is a very difficult task. This is because the proper number of populations

needed is mainly determined by the number of peaks in the fitness landscape. In addition, the

distribution and shape of peaks may also play a role in configuring the number of populations.

Generally speaking, the more peaks that are in the fitness landscape, the more populations that

are needed. Several experimental studies (Blackwell and Branke, 2006; Mendes and Mohais,

2005; Yang and Li, 2010) have shown that the optimal number of populations is equal to the

number of peaks in the fitness landscape for the MPB with a small number of peaks (i.e., less

than ten peaks). However, evidences in (du Plessis and Engelbrecht, 2012a) show that the op-

timal number of populations is not equal to the number of total peaks for the MPB with many

peaks (i.e., more than ten peaks). Although locating and tracking each peak by a single popula-

tion is theoretically right, it is not effective and hard to achieve in practice because only limited
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computational resources are available. Usually in practice, a relatively low peak in the current

environment has a very small chance to become the highest peak in a new environment, and thus,

it will waste computational resources available to locate and track each peak by each population.

Intuitively, the optimal number of populations should be relevant to the number of promis-

ing peaks. The difficulty is how to figure out the number of such promising peaks in each specific

environment. It becomes even harder when the number of peaks fluctuates over changes or in

cases where the number of peaks is unknown. In addition, how to determine the search radius

for each population is also a difficult issue.

2.2.1 Solutions So Far

To the best of our knowledge, little research regarding the above issue has been done so far due

to the difficulties. In the literature of multi-population methods for DOPs, some researchers use

pre-defined values for the number of populations and the radius of each population according

to their empirical experience. For example, to effectively solve the MPB, ten populations were

suggested by Blackwell and Branke (2006) for the mQSO algorithm, the radius was set to 30 in

SPSO (Parrott and Li, 2006), rSPSO (Bird and Li, 2007), and HmSO (Kamosi et al., 2010), and

to 25 in FMSO (Li and Yang, 2008).

To alleviate the difficulty in manually tuning the two parameters, some problem information

is assumed to be known and is used to guide the settings of the two parameters. For example,

the exclusion radius in mQSO (Blackwell and Branke, 2006) is set by:

rexcl = 0.5 ∗X/peaks1/D (1)

where X is the range of the search space, D is the number of dimensions, and peaks denotes

the number of peaks in the search space, respectively. Thereafter, several other researchers

(del Amo et al., 2010; Mendes and Mohais, 2005) also adopted the same population radius on

the MPB problem. In order to get an optimized number of populations, the CPSOR algo-

rithm (Li and Yang, 2012) uses the number of peaks to estimate the total number of individuals

(gSize) as follows:

gSize = 300 · (1− exp(−0.33 · peaks0.5)) (2)

The threshold value of α in CPSOR is also determined by:

α = 1− exp(−0.2 · peaks0.45); (3)

Although the number of populations varies over the runtime in SOS (Branke et al., 2000),

SPSO (Parrott and Li, 2004), and CPSO (Yang and Li, 2010), it is not adaptive as the total num-

ber of individuals is fixed during the whole run. One attempt at adapting the number of popula-

tions was made by Blackwell (2007) where mQSO as extended to a self-adaptive version, called

self-adaptive multi-swarm optimizer (SAMO). The SAMO algorithm starts with a single free

swarm (a free swarm is one that is patrolling the search space rather than converging on a peak).

The number of free swarms will decrease when some of them are converging (a swarm is as-

sumed to be converging when the neutral swarm diameter is less than a convergence diameter of

2rconv). If there is no free swarm, a new free swarm is created. On the other hand, a maximum

number of free swarms (nexcess) is used to prevent too many free swarms being created.

A similar population spawning and removing idea as used in SAMO was in-

troduced and incorporated into a competitive differential evolution (CDE) algorithm

(du Plessis and Engelbrecht, 2012b), which is called DynPopDE (du Plessis and Engelbrecht,

2012a), to address DOPs with an unknown number of optima. Different from the population
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converging criterion used in SAMO, a simple approach is used in DynPopDE where a popula-

tion k is assumed to stagnate if there is no difference between the fitness of the best individual of

two succussive iterations (∆fk(t) = |fk(t)− fk(t− 1)| = 0). If the stagnation criterion is met,

a new free population will be created and the stagnated one will be re-initialized if it is an ex-

cluded population. To prevent too many populations crowding in the search space, a population

will be discarded when it is identified for re-initialization due to exclusion and ∆fk(t) 6= 0.

One major issue of the above two adaptive algorithms is that the number of converging

populations is un-watched. Therefore, more and more free populations will become converging

populations without considering the total number of peaks in the search space, which may be

caused by an improper exclusion radius used (i.e., rexcl = 0.5 ∗X/M1/D where M is the num-

ber of populations). For example, the average number of populations obtained by DynPopDE

(du Plessis and Engelbrecht, 2012a) on a 80 peak MPB instance almost rises to 45 when the

number of changes reaches to 100 and still has a growing trend (see evidences in Figure 4 in

(du Plessis and Engelbrecht, 2012a) and the fourth graph in Figure 2 in this paper). Thus, here

the issue is that the 45 peaks tracked by DynPopDE may not be all promising in terms of the

probability of becoming new global optima when a change happens. Thus, the performance

would decrease as fitness evaluations are not effectively used due to tracking un-promising

peaks. Another issue with the SAMO algorithm (Blackwell, 2007) is that the optimal value for

parameter nexcess is problem-dependent (Blackwell, 2007; du Plessis and Engelbrecht, 2012a).

For example, experimental results in Blackwell (2007) suggests nexcess = 3 is optimal for the

10-peak MPB instance while nexcess = 5 is optimal for the 200-peak MPB instance.

2.3 Difficulties in Maintaining Diversity in Dynamic Environments

So far, most EAs developed for DOPs either use some change detection methods (Li, 2004;

Lung and Dumitrescu, 2007, 2010; Richter, 2009; Yang and Li, 2010) or predict changes as-

suming that changes have a pattern (Simoes and Costa, 2008). Once a change has been detected

or predicted, different kinds of strategies are applied to increase the diversity, e.g., random immi-

grants strategies (Li, 2004; Li and Yang, 2009; Lung and Dumitrescu, 2007, 2010; Yang and Li,

2010), or to re-use stored useful information assuming that the new environment is closely re-

lated to the current or a previous environment, e.g., memory-based strategies (Branke, 1999).

However, in order to use these strategies efficiently, a condition must be applied, that is, changes

must be successfully detected. So, here comes a common question: what can these algorithms

do if they fail to detect changes? For example, re-evaluating methods will fail to detect changes

in a fitness landscape where a part of it changes if all evaluators are in un-changed areas. An

example of completely undetectable environments is noisy environments where changes are im-

possible to be detected by re-evaluation methods because the noise in every fitness evaluation

will be misinterpreted as changes.

Maintaining diversity without change detection throughout the run is an interesting

topic. In (Grefenstette, 1992), random individuals (called random immigrants) are created

every iteration. Three different mutation strategies were designed to control the diversity in

(Cobb and Grefenstette, 1993). Sharing or crowding mechanisms in (Cedeño and Rao Vemuri,

1997) were introduced to ensure diversity. A genetic algorithm (GA), called thermodynamical

GA (TDGA) (Mori et al., 1996), was proposed to control the diversity explicitly via a measure,

called “free energy”. However, these methods are not effective because the continuous focus on

diversity slows down the optimization process as pointed out by Jin and Branke (2005).

Normally, diversity-maintaining is achieved by the following three methods: a) introduce

new randomly generated individuals; b) re-activate individuals via mutation operation with a
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large probability or a large mutation step; c) allow some individuals to use specially designed

rules to maintain diversity rather than to locate the global optimum. However, for the first

and second methods, the difficulty is when to increase diversity. For the third method, the

problem is how to design such effective rules for maintaining the diversity. In addition, the

waste of computational resources for the third method cannot be avoided due to the function of

the specialized individuals.

In fact, all the above difficulties regarding diversity maintaining in dynamic environments

can be attributed to one fundamental issue, which is how to actively adapt the whole population

to changes. As we know, changes in dynamic environments are usually unpredictable. We

cannot predict when, where, and what kind of changes will take place. Therefore, to efficiently

solve DOPs, an algorithm should be able to actively learn the information about the changes.

3 Multi-Population Adaptation in Dynamic Environments

In order to make populations adaptable to changes, we use a clustering method to create popu-

lations. All populations use the same search operator to focus on local search. An overcrowding

handling scheme is applied, if certain criteria are satisfied, to remove unnecessary populations

and, hence, save computational resources. To find out proper moments to increase diversity

without the aid of change detection methods, a special rule is designed according to the drop

rate of the number of populations over a certain period of time. In order to introduce a proper

number of active individuals that are needed in each specific environment, an adaptive method

is developed according to the information collected from the whole populations since the last

diversity-increasing point.

3.1 Preparation for Multi-Population Adaptation

Before introducing our population adaptation method, we do some preparatory work, including

the introduction of a multi-population generation scheme and an overlapping detection scheme.

3.1.1 Multi-Population Generation

In order to divide the search space into several sub-areas without overlapping, we use the single

linkage hierarchical clustering method proposed in (Li and Yang, 2009). In this method, the

distance d(i, j) between two individuals i and j in the D-dimensional space is defined as the

Euclidean distance between them. The distance of two clusters t and s, denoted M(t, s), is

defined as the distance of the two closest individuals i and j that belong to clusters t and s,

respectively. M(t, s) is formulated as follows:

M(t, s) = min
i∈t,j∈s

d(i, j) (4)

Here, we assume that each peak in the fitness landscape has a cone shape. Therefore, the search

area of a population s can be defined as a circle, and accordingly, its radius can be calculated as:

radius(s) =
1

|s|

∑

i∈s

d(i, scenter), (5)

where scenter is the central position of population s and |s| is the number of individuals in s.

Note that, the best individual of population s will be replaced with scenter if scenter is better

than the best individual of population s in this paper.

8 Evolutionary Computation Volume x, Number x
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Given an initial population pop with a number of individuals uniformly distributed in the

fitness landscape, the clustering method works as follows: It first creates a list G of clusters with

each cluster containing only one individual. Then, in each iteration, it finds a pair of clusters

t and s such that they are the closest among those pairs of clusters, of which the total number

of individuals in the two clusters is not greater than subSize (subSize is a prefixed maximum

size of a sub-population), and, if successful, combines t and s into one cluster. This iteration

continues until each cluster in G contains more than one individual. Finally, the cluster list G
is appended to a global population list plst, which is empty initially. As a result, we can have a

certain number of populations without overlapping with each other.

3.1.2 Overlapping Detection Scheme

Generally speaking, over-crowded populations on a single peak should not be allowed as com-

putational resources are wasted due to redundant individuals searching on the same peak. Over-

lapped populations searching on different peaks should be allowed to encourage populations

to track promising peaks as many as possible. In order to detect whether two populations in-

volve a real overcrowding or overlapping situation, we adopt the following method introduced

in (Yang and Li, 2010). If two populations t and s are within each other’s search area, an over-

lapping ratio between them, denoted roverlap(t, s), is calculated as follows: We first calculate

the percentage of individuals in t which are within the search area of s and the percentage of in-

dividuals in s which are within the search area of t, and then set roverlap(t, s) to the smaller one

of these two percentages. The two populations t and s are combined only when roverlap(t, s)
is greater than a threshold value β (β = 0.5 is used in this paper). In the combination process,

only subSize best individuals are kept if the number of individuals in the combined population

is greater than subSize. It should be noted that the radius of s and t used in the overlapping

check operation is their initial radius when s and t are firstly created by the clustering method

rather than their current radius. It should also be noted that this method does not guarantee that

every detection is able to identify a real overcrowding or overlapping situation.

In this paper, if the radius of a population is less than a small threshold value ǫ, which is

set to 1.e-4, the population is regarded as converged. A converged population will be removed

from the population list plst, but the best individual is kept in a list clst.

3.2 Multi-Population Adaptation

Diversity lose is one major issue of applying EAs to solve DOPs (Blackwell, 2007). Multi-

population adaptation is an alternative approach to addressing the diversity lose issue: it aims to

adaptively maintain the population diversity at the multi-population level. To achieve this aim,

two issues should be addressed: when to increase the population diversity when it gets low and

how many populations (via clustering random individuals in this paper) should be introduced.

3.2.1 The Moment to Increase Diversity

In order to illustrate how to find out a proper moment to increase the population diversity at the

multi-population level, we carried out a preliminary experimental study on the MPB with the

default settings (see Table 2 in Sect. 4.1.1) based on a non-adaptive algorithm introduced above–

the CPSO algorithm (Yang and Li, 2010). The algorithm is informed when a change occurs and

at the same time individuals will be restored to the initial size of gSize. Then, the clustering

method is applied to create populations. In the study, gSize and subSize were set to suggested

values of 100 and 7, respectively. Figure 1 presents the progress of the number of populations,
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Figure 1: Progress of the number of populations, average radius, peaks tracked, and best error

for CPSO on the MPB with default settings (see Table 2).

average radius, the number of peaks tracked, and best error across five changes over a typical

run. A peak is assumed to be tracked/found with the MPB if the distance of any individual

to the peak is less than 0.01. Here, besides current populations, converged populations are also

counted to the number of populations to show the converging behavior in each environment. The

best error is the fitness difference between the best solution found so far since the last change

and the global optimum.

From the top graph in Figure 1, the number of populations decreases as the search goes on

in each environment due to the overlapping detection scheme introduced above. It eventually

stays at a certain level in all the five environments. Similar observations can be seen in the curves

of average radius and best error. Opposite to the changes with the number of populations, the

number of peaks tracked increases as search goes on in each environment. When the number of

populations does not change, the whole populations enter a stable status, that is, all populations

are converging on different peaks. As a result, no new peaks can be found any more.

This can be validated from the results of the average radius and the number of peaks

tracked. From the figure, the corresponding average radius of all populations almost drops to

zero in the first two environments after the number of populations converges. For the other three

environments, the corresponding average radius also decreases to very small values compared

with the initial values. The number of peaks tracked does not increase any more at a certain time

after the number of populations becomes stable. This observation is an important clue, which

indicates that when the number of populations converges, it is a proper moment to increase di-

versity. For example, in Figure 1, evals≈3k is such a proper moment to increase the diversity

by introducing new individuals as the drop rate of the number of populations almost decreases to

zero and the number of peaks being tracked also converges. From that moment, as stated above,

there will be no new peaks that can be found if no new individuals are introduced. Therefore,

it is necessary to introduce new random individuals to explore new promising peaks no matter

whether the environment changes or not.

To find out the proper moment to increase diversity, we monitor the drop rate of the number

of populations over a time period (δ). If the rate is less than a threshold value, a certain number
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of random individuals (see the following sub-section) are introduced to increase the population

diversity. In this paper, the following formula is used to identify the moment to increase the

population diversity:

(pop(t− δ)− pop(t))/δ < 0.002 (6)

where pop(t) is the number of populations at time t (measured in the number of fitness evalua-

tions), δ is a new trace gap parameter in this paper. Note that, although the drop rate decreases

till zero as overlapped populations are gradually removed for each environment, as shown in

Figure 1, we should not use zero as the threshold of the drop rate. There are several reasons.

Firstly, the overlapping detection scheme cannot guarantee to detect and remove all overlapped

populations as search goes on due to the difficulties stated above. Secondly, the evolutionary

status of all populations at the same time may be different since new populations are added

repeatedly at each diversity increasing point. This would make it more difficult to detect over-

lapped populations. Thirdly, populations that have converged will be removed in this paper.

This also suggest that the threshold value for the drop rate cannot be zero from the viewpoint of

removal of converged populations at unknown time point. It should also be noted that the choice

of the threshold of the drop rate also affects the choice of δ, and vice versa (the sensitivity of δ
will be studied later in Sect. 4.2.1). Although the threshold of the drop rate should not be zero,

obviously it should be a very small value. Based on the above considerations, we use 0.002

as the threshold value for the drop rate in this paper (the choice was made also based on our

experimental results). And this would make it easy to perform the sensitivity analysis of δ later.

It should be noted that the monitoring operation on the drop rate of the number of popula-

tions will start over once new random individuals are introduced, i.e., populations evolve for at

least δ evaluations after a diversity increasing operation. To achieve this, a queue can be used to

store relevant information at each iteration, including the number of populations and the number

of fitness evaluations. We keep pushing the relevant information into the back of the queue at

each iteration. An element is popped out from the queue if the time difference between the front

and back elements is larger than δ. This way, the moment to increase population diversity can be

identified by checking the difference of the number of populations between the front and back

elements. The queue is cleared once new individuals are introduced and the monitoring will

start over.

3.2.2 Adaptation of the Number of Populations

Another issue of population adaptation is how many random populations should be introduced

when the population diversity needs to be increased. Intuitively, the optimal number of popula-

tions needed is related to the number of peaks in the fitness landscape. However, the relationship

between them is hard to know even if we have a prior knowledge of the number of peaks. And it

will become harder to get such relationship in a situation where the number of peaks fluctuates

over changes. To address this issue, we introduce another rule. In order to explain our idea, we

again conducted a preliminary experimental study on the MPB with different numbers of peaks

over 100 changes with the CPSO algorithm (Yang and Li, 2010) in this section. For CPSO, the

same parameter values were used as in Sect. 3.2.1.

Table 1 presents the average number of populations at the time point before a change occurs

over 30 runs. From Table 1, the average number of populations linearly increases from 5 to 14

as the number of peaks increases from 5 to 100 even though the same number of individuals

(gSize = 100) are used in all cases. Therefore, our idea is to use the changes in the number of

populations to guide the decision on the number of populations to be introduced and hence to

adapt the number of populations to changes where the number of peaks is unknown.
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Table 1: The average number of populations obtained by CPSO just before changes occur on

the MPB with different numbers of peaks over 30 runs.

peaks 5 10 20 30 50 100

Populations 5.0 7.3 9.6 10.8 11.9 14.0

In AMSO, the number of populations to be increased depends on the number of random

individuals to be generated for clustering. The number of random individuals to be generated

(and hence the number of populations to be increased) is estimated as follows. Whenever a

moment of diversity increasing is identified by Eq. (6), we compare the number of populations

at the current increasing point (curPops) with the number of populations at the last increasing

point (prePops). If curPops > prePops, the total number of individuals (and hence the

number of random individuals to be generated) will be increased; otherwise, if curPops is

less than prePops by a certain amount α > 0 (which is set to 3 in this paper), the number

of individuals is decreased in comparison with the number of individuals at the last diversity

increasing point. In our experiments, we found that decreasing the number of individuals once

curPops is less than prePops sometimes would lead to a wrong decision. This is because

a few peaks sometimes become invisible in the fitness landscape when changes occur, which

will cause the same effect as the number of peaks really reducing. And once a wrong decision

is made to decrease the number of individuals, it will dramatically affect the performance in

locating and tracking multiple peaks as only a few peaks can be located and tracked due to a

small number of populations. However, a wrong decision to increase the number of individuals

will not affect the performance too much as the tracking will not be lost. Therefore, we apply a

harder condition on decreasing the number of individuals than that on increasing the number of

individuals in this paper.

Another rule that should be noted is that the number of individuals (gSize) will not be

changed in the following increasing point if it is changed in the current increasing point. This is

because we need to give an algorithm enough time to run under a given setting to get relatively

reliable feedback. If the number of individuals is changed (the current estimation value is dif-

ferent from the last value), a variable counter will be set to an initial value of one; otherwise,

it will be increased by one. There will be no change if counter is equal to one. Therefore, the

algorithm will be given a certain time to run under given settings.

After all the conditions are checked, an estimated number of individuals for the follow-

ing search will be obtained using Algorithm 1. The number of individuals to be increased

or decreased is determined by the difference between prePops and curPops. The larger the

difference between prePops and curPops, the larger the number of individuals that will be

increased or decreased accordingly, where the number is estimated by a base step of step times

|curPops − prePops| (see Steps 5 and 8 in Algorithm 1). This way, the idea is able to adapt

the number of populations to changes according to the feedback information of the whole pop-

ulations. Note that the optimal number of populations for each environment is not guaranteed.

We reiterate that the aim of this paper is to locate and track as many promising peaks as

possible via multi-population methods where each population locates a single peak and tracks its

movement. The two issues discussed above are challenging as two tradeoffs must be considered.

One tradeoff is between the frequency of increasing populations and exploitation, and the other

is between the number of populations to be increased and exploitation. Increasing populations

frequently or increasing a large number of populations at each increasing moment is helpful to
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Algorithm 1 getNextIndis()
1: if counter = 1 then

2: nextIndis := preIndis;

3: else

4: if curPops − prePops > 0 then

5: nextIndis := preIndis + step × (curPops − prePops);

6: else

7: if prePops − curPops > α then

8: nextIndis := preIndis − step × (prePops − curPops);

9: end if

10: else

11: nextIndis := preIndis;

12: end if

13: end if

14: if nextIndis = preIndis then

15: counter := counter + 1;

16: if curPops > prePops then

17: prePops := curPops;

18: end if

19: else

20: counter := 1;

21: prePops := curPops;

22: end if

23: return nextIndis;

Note: counter is the number of successive increasing points that have the same

number of individuals; nextIndis and preIndis are the number of individuals

for the next and previous check points, respectively; curPops and prePops are

the number of populations in the current and previous increasing points, respec-

tively; step and α are constants with values of 10 and 3, respectively.

explore more promising peaks. However, increasing populations too frequently or increasing too

many populations at each increasing moment is harmful for populations to focus on exploitation

since there are limit computational resources (i.e., evaluations) available before a change occurs.

3.3 Algorithm Implementation by Particle Swarm Optimization

PSO was first introduced by Kennedy and Eberhart (1995). In PSO, each particle i (a candidate

solution) is represented by a position vector ~xi and a velocity vector ~vi, which are updated in

the version of PSO with an inertia weight (Shi and Eberhart, 1998) as follows:

v′
d
i = ωvdi + η1r1(x

d
pbesti − xd

i ) + η2r2(x
d
gbest − xd

i ) (7)

x′d
i = xd

i + v′
d
i , (8)

where x′d
i and xd

i represent the current and previous position in the d-th dimension of particle

i, respectively, v′i and vi are the current and previous velocity of particle i, respectively, ~xpbesti

and ~xgbest are the best position found by particle i so far and the best position found by the

whole swarm so far, respectively, ω ∈ (0, 1), η1, and η2 are constant parameters, and r1 and

r2 are random numbers generated in the interval [0.0, 1.0] uniformly. Note that, the maximum

velocity of each particle is set to the initial search radius of its swarm.

The PSO algorithm with the gbest model is used in this paper where each particle’s neigh-

borhood is defined as the whole swarm. To speed up the local search within the PSO algorithm,

we employ a learning method for the gbest particle, which is an improved version of the one

used in CPSO (Yang and Li, 2010) by introducing a learning probability. This learning method

tries to extract useful information relevant to those potentially improved dimensions of an im-

proved particle to update gbest. When a particle, say particle i, gets improved, we iteratively

check each dimension d of the gbest particle and replace the dimension with the corresponding

dimensional value of particle i with a probability pd if the gbest particle is improved by doing so.

The value of pd is calculated by pd = 1− |xd
i − xd

gbest|/
∑D

d=1 |x
d
i − xd

gbest | (see Algorithm 2).

The introduction of the heuristic learning probability greatly saves function evaluations. This
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Algorithm 2 gbestLearn(particle ~xi)
1: for each dimension d do

2: pd = 1 −
|xi[d]−xgbest[d]|

∑D
d=1

|xi[d]−xgbest[d]|
;

3: end for

4: for each dimension d of gbest do

5: if rand()< pd then

6: ~xt gbest(a temporary particle) := ~xgbest;

7: xt gbest[d] := xi[d];
8: if ~xt gbest is better than ~xgbest then

9: xgbest[d] := xt gbest[d];
10: end if

11: end if

12: end for

Algorithm 3 PSO( )
1: for each particle ~xi do

2: ~xt:= ~xi; {~xt is a temporal particle}
3: Update particle i according to Eqs. (7) and (8);

4: if f(~xi) < f(~xpbesti
) then

5: ~xpbesti
:= ~xi;

6: if f(~xi) < f(~xgbest) then

7: ~xgbest := ~xi;

8: end if

9: if f(~xi) < f(~xt) then

10: gbestLearn(~xi);

11: end if

12: end if

13: end for

Algorithm 4 AMSO

1: Initialize a counter of fitness evaluation t := 0;

2: Create an initial population pop with gSize particles;

3: Create an empty list plst to store populations;

4: Create an empty list clst to store the best individuals of converged populations;

5: Create an empty queue Q to store relevant information (t and popNo (the number of populations));

6: Clustering the initial population pop;

7: while stop criteria is not satisfied do

8: for each population plst[i] do

9: plst[i].PSO();

10: end for

11: Put the best individuals of converged populations into clst;
12: Remove populations that are converged and overcrowded;

13: Q.push(t,|plst(t)|);
14: δ̄:=Q.back.t- Q.front.t;
15: if δ̄ >= δ & (Q.front.popNo− Q.back.popNo)/δ̄ < 0.002 then

16: e indis = getNextIndis();

17: if e indis > MAX INDIS then

18: e indis = MAX INDIS;

19: end if

20: if e indis < MIN INDIS then

21: e indis = MIN INDIS;

22: end if

23: Count the number of individuals s indis;

24: t indis := e indis − s indis − |clst|;
25: if t indis > 0 then

26: Create a temporal population t pop with t indis random individuals;

27: Add the individuals of clst into t pop;

28: Clear clst;
29: Clustering t pop;

30: Clear Q;

31: end if

32: end if

33: if δ̄ > δ then

34: Q.pop();

35: end if

36: end while

Note: e indis is an estimated number of individuals; MAX INDIS and MIN INDIS are the al-

lowed maximum and minimum number of individuals with values of 300 and 70, respectively.

way, the gbest particle is able to learn some useful information from those dimensions of a

particle that has been improved.

To implement an adaptive multi-swarm algorithm (AMSO) with the ideas proposed above,

we use the improved PSO with learning as a local search method for each population. Algo-

rithm 4 summarizes the framework of AMSO. Initially, populations are obtained by clustering

an initial random swarm. In the evolutionary process, all populations use the improved gbest
PSO (see Algorithm 3) to locate different optima simultaneously. Then, they undergo the over-

lapping and convergence check process where redundant populations will be removed. Before
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discarding converged populations, the best individuals of them will be saved into a list clst for

later use. To increase the population diversity at a proper moment, Eq. (6) is applied every

iteration to identify that moment. If the proper moment is found, an expected number of in-

dividuals is estimated. After that, the estimated figure is amended if it goes beyond the range

of the maximum and minimum number of individuals. Finally, a random immigrants scheme

is applied to introduce new random populations, which are obtained by clustering a temporal

random population with the estimated number of individuals and the members in clst.

4 Experimental Study

In this section, two groups of experiments are carried out to investigate the performance

of the AMSO algorithm. The aim of the first group is to investigate the adaptability of

AMSO in different perspectives in dynamic environments based on the MPB. In the second

group of experiments, twelve multi-population based EAs are selected from the research ar-

eas of PSO, DE, GA, and hybrid algorithms. They are mCPSO (Blackwell and Branke, 2006),

mQSO (Blackwell and Branke, 2006), SAMO (Blackwell, 2007), SPSO (Parrott and Li, 2006),

rSPSO (Bird and Li, 2007), CPSO (Yang and Li, 2010), CPSOR (Li and Yang, 2012), and

HmSO (Kamosi et al., 2010) from PSO, DynDE (Mendes and Mohais, 2005) and DynPopDE

(du Plessis and Engelbrecht, 2012a) from DE, SOS (Branke et al., 2000) from GA, and ESCA

(Lung and Dumitrescu, 2010) from the hybridization of DE and PSO, respectively. Comparison

is conducted based on the MPB problem (Branke, 1999).

In order to use exactly the same fitness landscapes across all environmental changes for

a fair comparison, all the peer algorithms involved in this paper were carefully implemented

and examined according to their origins where they were proposed. Note that, the PSO-CP

algorithm has also been implemented, but the results could not be replicated and this algorithm

is therefore omitted from the comparison. The implementation of all the involved algorithms

will be included in the library of EAs (EALib2).

4.1 Experimental Setup

4.1.1 The MPB Problem

The MPB problem, proposed by Branke (1999), has been widely used as a benchmark in the

literature of dynamic optimization. Within the MPB problem, the optima can be varied by three

features, i.e., the location, height, and width of the peaks. For the D-dimensional landscape, the

problem is defined as follows:

F (~x, t) = max
i=1,...,p

Hi(t)

1 +Wi(t)
∑D

j=1 (xj(t)−Xij(t))2
, (9)

where Wi(t) and Hi(t) are the height and width of peak i at time t, respectively, and Xij(t)
is the j-th element of the location of peak i at time t. The p independently specified peaks are

blended together by the max function. The position of each peak is shifted in a random direction

by a vector ~vi of a distance s (s is also called the shift length, which determines the severity of

the problem dynamics), and the move of a single peak can be described as follows:

~vi(t) =
s

|~r + ~vi(t− 1)|
((1 − λ)~r + λ~vi(t− 1)), (10)

2Available at http://cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html
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where the shift vector ~vi(t) is a linear combination of a random vector ~r and the previous shift

vector ~vi(t − 1) and is normalized to the shift length s. The correlated parameter λ is set to 0,

which implies that the peak movements are uncorrelated.

More formally, a change of a single peak can be described as follows:

Hi(t) = Hi(t− 1) + height severity ∗ σ (11)

Wi(t) = Wi(t− 1) + width severity ∗ σ (12)

~Xi(t) = ~Xi(t)(t− 1) + ~vi(t) (13)

where σ is a normal distributed random number with mean 0 and variation 1.

Note that different from the traditional MPB problem (Branke, 1999), two new features are

introduced to make it more difficult to solve in this paper:

• Changes in the number of peaks. The number of peaks is allowed to change to evaluate

the performance of multi-population methods in terms of the adaptation of the number

of populations. If this feature is enabled, the number of peaks changes using one of the

following formulas:

peaks = peaks+ sign · 10 (14a)

peaks = peaks+ sign · rand(5, 25) (14b)

peaks = rand(10, 100), (14c)

where sign = 1 if peaks <= 10, sign = −1 if peaks >= 100, and the initial value of

sign is one; rand(a, b) returns a random value in [a, b].

• Changes in a part of the fitness landscape. A ratio of changing peaks to the total number

of peaks (cPeaks) is also introduced. This feature may cause algorithms that are based on

change detection to lose their functions.

The default settings and definition of the benchmark problem used in the experiments of

this paper can be found in Table 2. The new features introduced above are disabled by default

unless explicitly stated otherwise in this paper.

4.1.2 Performance Evaluation

Two performance measures are used in this paper. They are the offline error (Eoffline)

(Branke and Schmeck, 2003) and the best-before-change error (EBBC ). The offline error is

the average of the best error found at each fitness evaluation. The best-before-change error is

the average of the best error achieved at the fitness evaluation just before a change occurs.

4.1.3 t-Test Comparison

To compare the performance of two algorithms at the statistical level, a two-tailed t-test with

58 degrees of freedom at a 0.05 level of significance was conducted between AMSO and each

peer algorithm. The t-test result is given together with the average score value with superscript

letter “w”, “l”, or “t”, which denotes that the performance of AMSO is significantly better than,

significantly worse than, and statistically equivalent to its peer algorithm, respectively.
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Table 2: Default settings for the MPB, where the term “change frequency (u)” means that the

environment changes every u fitness evaluations, S denotes the range of allele values, and I
denotes the initial height for all peaks. The height of peaks is shifted randomly in the range

H = [30, 70] and the width of peaks is shifted randomly in the range W = [1, 12].

Parameter Value

number of peaks (peaks) 10

change frequency (u) 5000 function evaluations

height severity 7.0

width severity 1.0

peak shape cone

basic function no

shift length (s) 1.0

number of dimensions (D) 5

correlation coefficient (λ) 0

percentages of changing peaks (cPeaks) 1.0

noise no

time-linkage no

number of peaks change no

S [0, 100]

H [30.0, 70.0]

W [1, 12]

I 50.0

4.1.4 Configurations of AMSO

In AMSO, the number of populations and the moments to increase diversity are adaptive. How-

ever, in order to make AMSO adaptable to changes, several non-adaptive parameters are also

introduced. Table 3 lists all the parameters for AMSO. Note that constant values for most non-

adaptive parameters are made by a systematical experimental study and they are reasonable.

For example, the threshold radius value of 1.e-4 is small enough for checking if a population

converges or not. Making the parameters of PSO (ω, η1, and η2) adaptive may be helpful in

dynamic environments. But, we do not investigate this aspect as it is not the main objective of

this paper. To start to run the AMSO algorithm, the initial value of gSize was set to 100 in all

experiments unless otherwise stated in this paper. All the results obtained on the MPB problem

are averaged over 30 independent runs in this paper.

All the peer algorithms use the suggested configurations from the papers where they were

proposed on the MPB problem. Table 4 presents the configurations regarding the population

radius and the number of populations for all the involved algorithms. Note that the population

radius is not applicable for ESCA and parameter settings of all the peer algorithms for the MPB

were adjusted to solve the GDBG benchmark set as necessary. For example, the search radius

r = 3 was used for the HMSO algorithm with the GDBG benchmark set instead of r = 30 with

the MPB due to the different search ranges of the two benchmarks.

4.2 Experimental Investigation of AMSO

In this section, the performance of AMSO is investigated with regard to several aspects, includ-

ing the number of populations in dynamic environments with a variable number of peaks, the
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Table 3: Parameters in AMSO, where gSize = 100 was used to start the AMSO algorithm.

Parameter Type Value

overlapping ratio (β) Constant 0.5
convergence threshold (ǫ) Constant 1.e-4

trace gap (δ) Constant 1,500 evals
population adjustment step size (step) Constant 10 individuals

population decrease threshold (α) Constant 3
maximum individuals (MAX INDIS) Constant 300
minimum individuals (MIN INDIS) Constant 70

maximum individuals in a sub-pop (subSize) Constant 7
PSO:inertia weight (ω) Constant 0.6

PSO:acceleration constants (η1=η2) Constant 1.7
initial population size (gSize) Variable 100

number of populations Adaptive -
number of total individuals Adaptive -

population radius Variable -
frequency of diversity increase Adaptive -

Table 4: Comparison regarding the configurations of the radius and number of populations for

all the involved algorithms, where “variable” denotes that the value of the parameter changes

but not in an adaptive way.

Algorithm Radius Number of populations

SOS (Branke et al., 2000) Constant Variable
DynDE (Mendes and Mohais, 2005) Constant (31.5: Eq. (1)) Constant (10)
mCPSO (Blackwell and Branke, 2006) Constant (31.5: Eq. (1)) Constant (10)
mQSO (Blackwell and Branke, 2006) Constant (31.5: Eq. (1)) Constant (10)
SPSO (Parrott and Li, 2006) Constant (30) Variable
rSPSO (Bird and Li, 2007) Constant (30) Variable
SAMO (Blackwell, 2007) Variable Adaptive
ESCA (Lung and Dumitrescu, 2010) N/A Constant (3)
CPSO (Yang and Li, 2010) Variable Roughly constant (70/3)
HmSO (Kamosi et al., 2010) Constant (30) Variable
CPSOR (Li and Yang, 2012) Variable Roughly constant (Eq. (2))
DynPopDE (du Plessis and Engelbrecht, 2012a) Variable Adaptive
AMSO, 2013 Variable Adaptive

sensitivity to the parameter δ, and the ability of locating and tracking multiple peaks, respec-

tively.

4.2.1 Sensitivity Analysis of Parameter δ

From Eq. (6), the frequency of increasing diversity depends on the parameter δ once the thresh-

old of the drop rate is fixed. To make sure that “necessary” population diversity is always

guaranteed, the value of δ on the one hand should not be too large as a future change may take

place at any time. However, the current check is already a postponed operation, because we have

to give enough time for populations to evolve into the converging status in order to achieve a

precise estimation. Therefore, the value of δ on the other hand should not be too small. In order

to find out a good choice of the value of δ, we carried out an experimental study with AMSO

with different values of δ on the MPB problem with different numbers of peaks in this section.

Table 5 presents the offline error, the best-before-change error, diversity increasing times per

change (divInc), and the number of peaks tracked of AMSO over 30 runs.
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Table 5: The offline error, the best-before-change error, the number of diversity increasing per

change (divInc), and the number of peaks tracked by AMSO for different values of δ on the

MPB, where w and t denote the best score results in bold font are significantly better than and

statistically equivalent to the other results, respectively. The suggested configuration for AMSO

and the default settings for the MPB in Table 2 except peaks were used.

peaks δ 100 300 500 700 1000 1500 2000 2500 3000 3500 4000 4500

1

Eoffline 3.91w 3.96w 4.61w 4.56w 3.66w 2.45w 1.6 1.82t 1.69t 2w 1.87t 1.93w

EBBC 0.0407 0.0691w 0.117w 0.168w 0.22w 0.13w 0.098w 0.114w 0.0687w 0.0652w 0.0479t 0.0542t

divInc 5.29 4.35 3.17 2.68 2.45 2.11 1.92 1.71 1.53 1.44 1.36 1.28

tPeaks 0.99 0.981 0.97 0.955 0.941 0.965 0.974 0.971 0.981 0.982 0.986 0.984

2

Eoffline 2.72w 2.55w 2.6w 2.47w 2.2 2.48w 2.53w 2.76w 2.91w 2.81w 2.6w 2.77w

EBBC 0.791w 0.745w 0.611t 0.66t 0.503 0.707t 0.96w 1.18w 1.41w 1.24w 1.18w 1.28w

divInc 5.2 4.15 3.25 2.71 2.28 1.74 1.66 1.5 1.36 1.22 1.14 1.06

tPeaks 1.76 1.79 1.79 1.79 1.81 1.78 1.58 1.5 1.46 1.47 1.45 1.42

7

Eoffline 1.32w 1.38w 1.26t 1.33w 1.24 1.37w 1.4w 1.35w 1.4w 1.38w 1.35w 1.39w

EBBC 0.223w 0.318w 0.203t 0.274w 0.153 0.231w 0.238w 0.212t 0.241w 0.267w 0.248t 0.298w

divInc 5.49 4.2 3.62 2.88 2.36 1.69 1.38 1.21 1.08 1.01 0.94 0.862

tPeaks 5.95 5.93 6.06 6.01 6.34 6.3 6.28 6.28 6.35 6.24 6.31 6.25

10

Eoffline 1.22t 1.21t 1.21 1.24t 1.25t 1.4w 1.43w 1.38w 1.36w 1.36w 1.43w 1.39w

EBBC 0.109t 0.123t 0.108t 0.131t 0.107 0.13t 0.196w 0.146t 0.151t 0.175w 0.196w 0.196w

divInc 2.44 2.19 2.19 2.34 1.73 1.53 1.35 1.21 1.12 1.03 0.956 0.892

tPeaks 9.22 9.21 9.21 9.29 9.25 9.25 9.12 9.23 9.18 9.07 9.08 9.09

20

Eoffline 2.29w 2.12w 2.16w 2.02t 2.02t 1.97 2.04t 2.06t 2.04t 2.06t 2.02t 2.05t

EBBC 1.47w 1.33w 1.34w 1.2w 1.17t 1.02 1.04t 1.03t 1.04t 1.09t 1.08t 1.13w

divInc 1.25 1.1 1.12 1.16 1.08 1.29 1.16 1.06 0.983 0.96 0.897 0.875

tPeaks 10.9 11 11.1 11.7 12.3 13.5 13.7 13.8 13.7 13.6 13.3 13.5

30

Eoffline 1.9w 1.96w 1.73w 1.68w 1.57w 1.48 1.54w 1.58w 1.59w 1.6w 1.55w 1.58w

EBBC 0.971w 1.04w 0.792w 0.751w 0.617w 0.457 0.458t 0.49t 0.479t 0.541w 0.512w 0.527w

divInc 0.918 0.784 0.904 0.943 0.783 1.11 1.11 1.02 0.945 0.93 0.891 0.857

tPeaks 14.6 13.8 15.2 15.7 16.9 18.9 19.2 19.1 19.4 18.7 18.7 18.7

50

Eoffline 2.3w 2.34w 2.27w 2.11w 2.06w 1.95t 1.93t 1.9 1.91t 1.95w 1.92t 1.91t

EBBC 1.33w 1.37w 1.29w 1.08w 1.04w 0.964t 0.913 0.928t 0.916t 0.968w 0.93t 0.947t

divInc 0.89 0.755 0.872 0.885 0.884 1.04 1.22 1.09 1.04 0.982 0.943 0.877

tPeaks 16.6 15.9 16.7 18.6 19.6 20.7 21.9 21.3 21.4 21.2 21.1 21.1

100

Eoffline 2.41w 2.57w 2.45w 2.43w 2.21w 2.12t 2.07t 2.1t 2.1t 2.06 2.15w 2.11t

EBBC 1.47w 1.65w 1.55w 1.52w 1.26w 1.2w 1.11 1.16t 1.16t 1.16t 1.25w 1.22w

divInc 1.07 0.888 0.912 0.917 1 1.13 1.24 1.1 0.962 1.04 0.877 0.893

tPeaks 18.7 17.3 18.1 19 21.6 22.4 23.4 22.9 22.8 22.1 21.4 21.4

200

Eoffline 2.47w 2.47w 2.56w 2.43w 2.18w 1.94 2.08w 1.95t 2.06w 2.04t 2.06t 2.2w

EBBC 1.53w 1.55w 1.62w 1.48w 1.26w 1.04 1.17w 1.05t 1.17w 1.13t 1.14w 1.28w

divInc 0.736 0.737 0.629 0.65 0.921 1.17 0.968 1.04 0.847 0.808 0.691 0.559

tPeaks 18.1 17.6 17.7 19.1 21.5 24.1 22.2 23.1 21.6 21.6 22.4 20

From Table 5, the expected results can be observed, i.e., the choice of δ affects the perfor-

mance of AMSO. A good choice of δ seems to be instance-dependant. Based on the results,

we suggest that a relatively large value of δ should be used for problems with a large number

of optima as AMSO achieves small EBBC and Eoffline errors with a large value of δ in most

cases. In this paper, δ = 1, 500 is used for the following experiments.

Two interesting results can also be observed from Table 5. Firstly, the average number of

diversity increasing per change decreases as the value of δ increases in cases where the number

of peaks is less than 30. For the instances with a large number of peaks (e.g., more than 20

peaks), however, there is no such trend compared with the former cases. For example, in the

case with 200 peaks, the value of divInc decreases from 0.73 to 0.62 as δ increases from 100

to 500, then it increases to 1.17 when δ reaches 1500 and then the value again decreases as δ
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increases. Secondly, the larger the number of peaks that are tracked by AMSO, the better the

performance is for AMSO. This is obvious particularly in cases with many peaks. For example,

the largest number of peaks tracked by AMSO in the case of 200-peak is 24.1, which corresponds

to the smallest offline error and the best-before-change error. The explanation is that the more

peaks (promising peaks) that an algorithms can track, the larger probability the algorithm will

track the global optimum.

4.2.2 Adaptation in The Number of Populations

Figure 2 presents the comparison of the progress of the number of populations and the offline er-

ror between AMSO and other three algorithms (CPSOR, SAMO, and DynPopDE) on the MPB

with different numbers of peaks. CPSOR is our previous algorithm and SAMO and DynPopDE

are two adaptive algorithms regarding the number of populations. The optimal number of popu-

lations for a specific environment depends on the total number of peaks in the fitness landscape.

Comparing the results between CPSOR and AMSO on the left graphs, we can see that AMSO

shows much better adaptation capability than that of CPSOR. For example, the number of pop-

ulations obtained by AMSO is slightly more than ten in the 10-peak MPB case, but that number

obtained by CPSOR is much larger than ten over the whole run. In the case with 50 peaks, the

number of populations achieved by CPSOR is similar to that of AMSO. For the instance with

a variable number of peaks using Eq. (14a), CPSOR hardly shows any adaptation regarding

the number of populations where the number of populations even grows when the number of

peaks drops. The number of populations obtained by AMSO, by contrast, generally changes in

synchronization with the change of number of peaks.

Due to the adaptation ability, AMSO shows much better performance than CPSOR in terms

of the offline error. In the 10-peak MPB case, the average number of populations generated by

CPSOR is about 25, which is much larger than the total number of peaks. Due to limited

fitness evaluations for each change interval, too many populations may cause them to be unable

to exploit their local areas sufficiently before new populations are introduced. In this case, it

can be seen that the offline error of CPSOR is much larger than that of AMSO, which make

the average offline error of CPSOR much worse than that of AMSO (see the results in Table

6). The effect of the number of populations on the performance of AMSO and CPSOR can be

further seen in the 50-peak MPB case. In the graph, CPSOR and AMSO use a similar number of

populations after 250k evaluations, which causes them to achieve similar offline errors as well as

the best-before-change errors (see the results in Table 6). Again, in the case of varying number

of peaks, the gap between the offline errors of CPSOR and AMSO increases when the peak

number reaches the lowest level, due to a larger number of populations generated by CPSOR

than that of AMSO.

Comparing the results obtained by SAMO and DynPopDE on the right graphs in Figure 2,

although all the three algorithms show the adaptation capability, their behaviors are different. In

the 10-peak case, all the three algorithms have similar behavior where the number of populations

achieved by SAMO is about ten and that number achieved by DynPopDE is slightly smaller than

ten. In the 100-peak case, the number of populations achieved by DynPopDE grows the fastest,

followed by SAMO, and both DynPopDE and SAMO still show a growing trend at the end of the

run (such behavior of DynPopDE can also be seen in Figure 4 in (du Plessis and Engelbrecht,

2012a) where DynPopDE was proposed), while that number of AMSO converges to about 32

after 200k evaluations. In the case with a variable number of peaks, the number of populations

obtained by the three algorithms increases or decreases accordingly when the total number of

peaks increases or decreases. However, DynPopDE uses a much larger number of populations
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than AMSO and SAMO.
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Figure 2: Comparison of the progress of the number of populations and offline error on the

MPB with different numbers of peaks between AMSO and CPSOR (left) and between AMSO

and other two adaptive algorithms (right).

4.2.3 Visualization of the Behavior of AMSO on Tracking Multiple Peaks

In order to show a clear working mechanism of AMSO, an experimental study was conducted

on the MPB in a 2-dimensional search space. Figure 3 presents the results of pbest positions of

all particles over six evolving episodes of a typical run, where cross points are particles’ pbest
positions, black squares are positions of ten peaks, and each circle represents an initial search

area defined by Eq. (5) in a population.

In the first episode, 100 random individuals are randomly generated and clustered into 21

populations and there is no overlapping between them. Then, although only 7 populations with
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5). 104 individuals are added after episode 4. 6). Nine peaks are being tracked.

Figure 3: Six episodes of the distribution of all populations at different evals, where the crossed

points represent pbest positions, the black squares are the ten peaks’ locations, and each circle

indicates the initial search area of a population by Eq. (5).

43 individuals survive at eval = 1328 in episode 2, they cover 7 different peaks, which indicates

7 peaks have been located and tracked. Due to the diversity increasing scheme, the number of

individuals is increased to 110 at eval = 10000 in episode 3. However, there is overcrowding

between the survived populations and the populations clustered from the randomly increased

individuals. In episode 4, only 4 peaks are successfully tracked, and 104 individuals are added

due to the random immigrants scheme, which makes the total individuals increased to 130. In

addition, it can also be seen that most peaks are surrounded by populations again in episode 5.

In episode 6, 9 out of 10 peaks are successfully located and tracked by 9 populations with a total

of 63 individuals. Note that 2 populations, which are distributed around 2 peaks in the right top

corner in episode 6, are overlapped, but they are not combined together due to the overlapping

handling scheme in AMSO.
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Table 6: The offline error (Eoffline) and best-before-change error (EBBC ) for different algo-

rithms on the MPB with different numbers of peaks, where the suggested configurations for

AMSO in Table 3 and the default settings of the MPB in Table 2 were used.

peaks AMSO CPSOR CPSO rSPSO SPSO mCPSO mQSO SAMO DynDE DynPopDE ESCA HmSO SOS

1
Eoffline

2.4 6.1w 7.8w 4.1w 4.4w 41w 5.9w 4.2w 5.2w 0.44l 6.5w 4w 2.8t

±0.71 ±0.84 ±1 ±0.71 ±0.72 ±9.5 ±0.98 ±0.61 ±1 ±0.12 ±0.93 ±0.4 ±1.6

EBBC 0.13 0.062l 2.01e-04l 1.6w 1.9w 39w 3.2w 2.9w 1.3w 0.034l 4.9w 2.2w 1.5w

2
Eoffline

2.5 5w 5.3w 2.6t 2.6w 14w 6.1w 2.9w 5.7w 1.2l 7.4w 2.6t 4.3w

±0.37 ±0.79 ±0.45 ±0.15 ±0.2 ±2.2 ±0.46 ±0.17 ±0.41 ±0.4 ±0.8 ±0.43 ±0.93

EBBC 0.71 1.4w 1.1w 0.93w 0.99w 12w 4.3w 1.7w 4.1w 0.85t 6.5w 1.2w 3.5w

5
Eoffline

1.6 2.9w 4.2w 2.5w 2.5w 7.3w 2.6w 2.6w 1.9w 2w 13w 5.2w 6.5w

±0.28 ±0.34 ±0.32 ±0.29 ±0.25 ±1.2 ±0.24 ±0.17 ±0.12 ±0.68 ±1.8 ±0.75 ±0.96

EBBC 0.42 0.66w 1.1w 1.5w 1.5w 6.3w 1.6w 1.6w 1.1w 1.7w 13w 4.4w 6w

7
Eoffline

1.4 3w 4w 2.3w 2.3w 5.3w 2.2w 2.2w 1.5w 1.6t 14w 3.9w 7w

±0.15 ±0.22 ±0.28 ±0.21 ±0.17 ±0.54 ±0.11 ±0.089 ±0.064 ±0.77 ±1.8 ±0.31 ±1.5

EBBC 0.23 0.54w 0.63w 1.2w 1.2w 4.4w 1.2w 1.2w 0.69w 1.1w 13w 2.1w 6.2w

10
Eoffline

1.4 2.6w 4.5w 3.5w 3.6w 8.6w 2.8w 3w 1.5w 2.3w 15w 5.1w 8.6w

±0.11 ±0.2 ±0.26 ±0.41 ±0.47 ±1.1 ±0.19 ±0.15 ±0.067 ±0.79 ±1.8 ±0.31 ±1.4

EBBC 0.13 0.36w 1.3w 2.2w 2.3w 7.7w 1.7w 2w 0.68w 1.7w 14w 3.6w 7.8w

20
Eoffline

2 2.6w 4w 4.3w 4.3w 8.6w 3.4w 3.2w 2.8w 2.3w 11w 4.2w 6.4w

±0.19 ±0.3 ±0.16 ±0.38 ±0.38 ±0.96 ±0.24 ±0.16 ±0.61 ±0.27 ±1.5 ±0.12 ±0.98

EBBC 1 1t 1.6w 3.6w 3.6w 7.9w 2.7w 2.5w 2.2w 1.8w 10w 3.4w 5.7w

30
Eoffline

1.5 2w 3.5w 3.9w 4w 6.4w 3.8w 2.8w 3.1w 1.9w 9.9w 3.9w 6.1w

±0.1 ±0.14 ±0.16 ±0.25 ±0.3 ±0.72 ±0.46 ±0.1 ±0.3 ±0.28 ±1.1 ±0.11 ±1.1

EBBC 0.46 0.6w 1.3w 3w 3.1w 5.7w 2.9w 2w 2.5w 1.4w 9.1w 3.3w 5.3w

50
Eoffline

2 2.4w 3.5w 4.3w 4.3w 6.4w 3.7w 3w 3.5w 2.1w 10w 4.1w 5.8w

±0.16 ±0.12 ±0.13 ±0.29 ±0.31 ±0.74 ±0.19 ±0.11 ±0.28 ±0.24 ±1.6 ±0.11 ±1.2

EBBC 0.96 0.98t 1.4w 3.3w 3.4w 5.5w 2.8w 2.2w 2.9w 1.5w 9.5w 3.3w 5w

100
Eoffline

2.1 2.5w 3.2w 4.3w 4.4w 6.4w 4.2w 3.1w 3.9w 2.2t 11w 4.1w 6.1w

±0.16 ±0.1 ±0.13 ±0.3 ±0.35 ±0.46 ±0.33 ±0.11 ±0.29 ±0.33 ±1.3 ±0.11 ±1

EBBC 1.2 1.2t 1.5w 3.5w 3.5w 5.6w 3.4w 2.4w 3.2w 1.6w 9.6w 3.6w 5.3w

200
Eoffline

1.9 2.3w 2.5w 4.5w 4.5w 6w 4.3w 2.9w 3.8w 2t 8.5w 3.4w 5.2w

±0.17 ±0.097 ±0.091 ±0.38 ±0.47 ±0.85 ±0.39 ±0.15 ±0.35 ±0.21 ±0.7 ±0.12 ±0.89

EBBC 1 1.1t 0.98t 3.6w 3.6w 5.2w 3.3w 2.2w 3.2w 1.4w 7.7w 3w 4.4w

4.2.4 Discussion

There is no explicit action when a change occurs because AMSO does not need to detect

changes. The adaptive diversity maintaining is achieved just based on the evolving status of

all populations rather than the changing information from the environment. Thanks to the ideas

proposed in Sect. 3.2, the AMSO algorithm is able to adapt to environmental changes even

though it has no knowledge about the changes at all.

4.3 Comparison on the MPB Problem

So far, the working mechanism of AMSO has been investigated. In this section, the performance

of AMSO is compared with other twelve algorithms on the MPB with different scenarios.

4.3.1 Effect of Varying the Number of Peaks

Table 6 presents the comparison of all the involved algorithms on the MPB with different num-

bers of peaks. From the results, AMSO achieves the best offline error and best-before-change

error in most cases and its performance is significantly better than that of all other algorithms in
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Table 7: The offline error (Eoffline) and best-before-change error (EBBC ) for different algo-

rithms on the MPB with different shift severities, where the suggested configurations for AMSO

in Table 3 and the default settings of the MPB in Table 2 were used.

s AMSO CPSOR CPSO rSPSO SPSO mCPSO mQSO SAMO DynDE DynPopDE ESCA HmSO SOS

1
Eoffline

1.4 2.6w 4.5w 3.5w 3.6w 8.6w 2.8w 3w 1.5w 2.3w 15w 5.1w 8.6w

±0.11 ±0.2 ±0.26 ±0.41 ±0.47 ±1.1 ±0.19 ±0.15 ±0.067 ±0.79 ±1.8 ±0.31 ±1.4

EBBC 0.13 0.36w 1.3w 2.2w 2.3w 7.7w 1.7w 2w 0.68w 1.7w 14w 3.6w 7.8w

2
Eoffline

2.2 3.7w 5.4w 4.9w 5w 9.1w 3.3w 3.7w 2l 2.5w 13w 5.9w 11w

±0.13 ±0.19 ±0.24 ±0.29 ±0.27 ±0.91 ±0.14 ±0.12 ±0.1 ±0.49 ±1.1 ±0.45 ±1.3

EBBC 0.22 0.59w 1.3w 2.8w 2.9w 7.4w 1.8w 2.2w 0.78w 1.7w 12w 3.9w 8.9w

3
Eoffline

2.9 4.5w 6.1w 5.9w 5.9w 10w 3.8w 4.2w 2.4l 2.9t 13w 6.7w 21w

±0.18 ±0.24 ±0.19 ±0.26 ±0.26 ±0.69 ±0.14 ±0.12 ±0.1 ±0.62 ±0.94 ±0.38 ±4

EBBC 0.27 0.81w 1.3w 3.3w 3.3w 8.2w 2.1w 2.4w 0.88w 1.9w 12w 4.3w 15w

4
Eoffline

3.4 5.5w 6.7w 6.9w 7.1w 12w 4.4w 4.7w 2.9l 3.8w 13w 7.1w 26w

±0.19 ±0.26 ±0.21 ±0.21 ±0.26 ±0.63 ±0.14 ±0.12 ±0.13 ±0.61 ±0.92 ±0.54 ±3.7

EBBC 0.3 1.1w 1.5w 4w 4.1w 8.9w 2.3w 2.6w 0.91w 2.7w 12w 4.4w 18w

5
Eoffline

3.8 6.1w 7.2w 7.7w 7.8w 13w 5w 5.2w 3.6l 4.4w 13w 7.3w 32w

±0.16 ±0.21 ±0.15 ±0.23 ±0.24 ±0.77 ±0.14 ±0.18 ±0.11 ±0.54 ±0.78 ±0.37 ±6.4

EBBC 0.36 1.3w 1.5w 4.4w 4.4w 9.9w 2.6w 2.8w 1w 3.2w 11w 4.4w 23w

6
Eoffline

4.2 6.6w 7.6w 8.8w 8.9w 14w 5.5w 5.8w 4.3t 4.7w 13w 8w 37w

±0.15 ±0.25 ±0.2 ±0.21 ±0.24 ±0.61 ±0.13 ±0.13 ±0.17 ±0.58 ±0.78 ±0.44 ±7.2

EBBC 0.48 1.5w 1.7w 5.1w 5.2w 11w 2.9w 3.1w 1.1w 3.3w 11w 5.1w 28w

most cases as well.

Generally speaking, the more peaks in the fitness landscape, the harder it is for an algorithm

to locate and track the global optimum. This trend can be observed in the best-before-change

error for most algorithms where the EBBC error increases as the number of peaks increases.

However, it is interesting to see that the offline error is very large for most algorithms in the

1-peak and 2-peak MPB cases. It seems difficult for these multi-population algorithms to solve

the MPB with a few number of peaks. This is because that competition between populations on

a single peak becomes more serious as the number of peaks decreases. This would slowdown

the search. Therefore, a worse offline error is achieved for these competing models, such as

AMSO, CPSOR, CPSO, mQSO, SAMO, SPSO, DynDE, and HmSO.

4.3.2 Effect of Varying the Shift Length

Table 7 shows the comparison of the Eoffline error and EBBC error of all the algorithms on

the MPB with ten peaks under different shift lengths (s). Generally speaking, the difficulty for

an algorithm to locate and track a changing optimum will increase as the shift length increases.

The larger the shift length, the further a peak moves, and hence, the harder for an algorithm

to re-locate and track the new peak. This trend can be observed from the comparison of both

Eoffline and EBBC with different shit lengths for all algorithms except ESCA. The motivation

of the ESCA algorithm is to use a swarm with sufficient diversity to re-start a new search for the

global optimum whenever a change is detected. A DOP is treated as a series of static problems

by the ESCA algorithm and hence the moving distance of peaks will not affect its performance

too much. AMSO outperforms our previous algorithm CPSOR on all instances in terms of the

t-test results. It also outperforms all the other algorithms except DynDE in cases with s > 1.
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Figure 4: Comparison of the average tracking rate for each peak of all the algorithms on the

MPB problem, where the height increases as the peak number increases in the x-axis. The

suggested configurations of AMSO in Table 3 and the default settings of the MPB problem in

Table 2 were used.

4.3.3 Comparison of the Peaks Tracked

To further investigate the performance of algorithms in tracking optima, Figure 4 presents the

results of the average tracking ratio for each peak of all the involved algorithms. In the exper-

iment, we sort all peaks according to their heights when a change occurs and then monitor if

any peak is tracked by an algorithm according to the criterion stated above in Sect. 3.2.1. Fig-

ure 5 presents the average ratio of peaks found over the total number of peaks on the MPB with

different change frequencies. From the results, several observations can be made.

Firstly, the performance of AMSO is the best among all the algorithms. The superiority

becomes obvious when the number of peaks is large. The other two clustering based algo-

rithms (CPSOR and CPSO) outperform the remaining algorithms that are based on other multi-

population methods. DynDE and DynPopDE also show relatively good results in comparison

with other algorithms. Compared with other algorithms, the clustering method is able to locate

and track a larger number of optima.

Secondly, comparing the results on the MPB problem with different numbers of peaks, the

tracking ratios drop seriously when the number of peaks increases for all the involved algo-

rithms. This is understandable because it will become harder for algorithms to track the global

optimum when the number of local optima increases. The offline error may get smaller when

the number of peaks increases on the MPB. However, the tracking ratio for each peak decreases
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Table 8: The offline error (Eoffline) and the best-before-change error (EBBC ) for all the peer

algorithms on the MPB problem with ten peaks in different dimensions (D), where the suggested

configuration for AMSO and the default settings for the MPB problem in Table 2 except D were

used.
D AMSO CPSOR CPSO rSPSO SPSO mCPSO mQSO SAMO DynDE DynPopDE ESCA HmSO SOS

5
Eoffline

1.4 2.6w 4.5w 3.5w 3.6w 8.6w 2.8w 3w 1.5w 2.3w 15w 5.1w 8.6w

±0.11 ±0.2 ±0.26 ±0.41 ±0.47 ±1.1 ±0.19 ±0.15 ±0.067 ±0.79 ±1.8 ±0.31 ±1.4

EBBC 0.13 0.36w 1.3w 2.2w 2.3w 7.7w 1.7w 2w 0.68w 1.7w 14w 3.6w 7.8w

10
Eoffline

4.2 9.6w 8.9w 1.1e+02w 1.1e+02w 21w 7.4w 7.5w 5.1w 8.4w 17w 13w 15w

±0.5 ±1 ±0.53 ±11 ±11 ±2.3 ±0.36 ±0.26 ±0.25 ±1.4 ±4.1 ±0.67 ±1.5

EBBC 2.3 3.1w 4.2w 1.1e+02w 1.1e+02w 20w 6.5w 6.7w 4w 7.7w 16w 12w 14w

20
Eoffline

6.5 37w 17w 2.2e+02w 2.2e+02w 70w 14w 15w 9.9w 13w 47w 23w 77w

±1.4 ±5.6 ±1.4 ±10 ±10 ±15 ±0.52 ±0.63 ±0.46 ±2.1 ±6.9 ±0.97 ±53

EBBC 2.6 8.1w 9w 2.2e+02w 2.2e+02w 68w 13w 13w 8.2w 11w 46w 22w 73w

30
Eoffline

8.1 70w 25w 2.9e+02w 2.9e+02w 1.9e+02w 17w 19w 11w 13w 72w 45w 1.4e+02w

±1.3 ±15 ±2.4 ±9.5 ±9.5 ±17 ±0.31 ±0.69 ±0.34 ±2.4 ±20 ±5.3 ±85

EBBC 3.3 19w 10w 2.9e+02w 2.9e+02w 1.8e+02w 16w 16w 10w 11w 72w 44w 1.4e+02w

50
Eoffline

25 1.4e+02w 89w 4.3e+02w 4.3e+02w 2.7e+02w 33w 35w 24l 18l 1.2e+02w 87w 1.4e+02w

±3.7 ±4.4 ±5.1 ±10 ±10 ±20 ±0.92 ±1.9 ±0.85 ±1.4 ±10 ±8.8 ±47

EBBC 9.2 77w 22w 4.3e+02w 4.3e+02w 2.7e+02w 30w 31w 21w 17w 1.2e+02w 85w 1.4e+02w

obviously as the number of peak increases in this paper.

Thirdly, it is interesting to observe that the AMSO algorithm prefers to track promising

peaks with relatively high heights. The CPSO, CPSOR, and DynPopDE algorithms also show

the similar behavior. However, this trend cannot be observed in the other algorithms. This is

also an advantage of such kind of algorithms.

Fourthly, from the comparison results of algorithms on the MPB with different change

frequencies in Figure 5, most algorithms are able to track more peaks when the change frequency

increases except mCPSO and ESCA. This is reasonable as algorithms are given more computing

resources to re-locate peaks before a change occurs when the change frequency increases. As a

result, more peaks should be tracked. Among all involved algorithms, the average ratio of peaks

tracked by the AMSO algorithm is the largest across all cases.

4.3.4 Comparison in High Dimensional Spaces

Experiments were carried out to compare the performance of algorithms in high dimensional

spaces. Table 8 shows the results of algorithms on the 10-peak MPB instance with the number of

dimensions of 5, 10, 20, 30, and 50, respectively. From the results, although the performance of

AMSO decreases as the number of dimensions increases, the results are still significantly better

than that of all the peer algorithms across all test cases except DynDE and DynPopDE in the

case of D=50. The performance of all the algorithms decreases, which is understandable: The

difficulty in tracking changing optima will increase as the number of dimensions increases, and

thus normally a larger number of evaluations is required. However, the number of evaluations is

fixed to 5,000 before a change occurs in all dimensional cases here.

4.3.5 Comparison in Hard-to-Detect Environments

So far, all the comparisons are in the environments where changes are easy to detect. This

section presents the comparison of involved algorithms in the environments where changes are

hard to detect. This kind of environments is simulated by introducing cPeaks to the MPB (see

Sect. 4.1.1). Note that the highest peak (the global optimum) is guaranteed to change in order

to test the performance of algorithms in tracking the global optimum in this experimental study.
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Figure 5: Average tracking ratio of all algorithms on the MPB with different change frequencies,

where tRatio is the ratio of the number of peaks tracked to the total number of peaks.

Table 9: The offline error (Eoffline) and the best-before-change error (EBBC ) for different

algorithms on the MPB problem with different change ratios (cPeaks), where the suggested

configurations for AMSO in Table 3 and the default settings for the MPB problem in Table 2

were used.
cPeaks AMSO CPSOR CPSO rSPSO SPSO mCPSO mQSO SAMO DynDE DynPopDE ESCA HmSO SOS

0.1
Eoffline

2.2 4w 8w 4.9w 5w 5.7w 2.8w 2.6w 1.6l 7.7w 9.2w 8.5w 6.7w

±0.71 ±0.49 ±1 ±0.51 ±0.52 ±0.54 ±0.66 ±0.46 ±0.45 ±0.93 ±1.4 ±2 ±1.2

EBBC 1.3 2.1w 7.9w 4.6w 4.6w 5.4w 2w 1.8w 0.87l 7.5w 9.2w 8.3w 6.5w

0.3
Eoffline

1.7 3.2w 8.5w 6w 5.5w 8w 3.1w 3.2w 1.9w 6.7w 18w 9.6w 11w

±0.25 ±0.32 ±1.9 ±1.2 ±1.2 ±1.3 ±0.26 ±0.22 ±0.3 ±1.6 ±4.5 ±2.1 ±3.2

EBBC 0.7 0.92w 7.4w 5.3w 4.8w 7.2w 2.3w 2.4w 1.2w 5.7w 17w 9w 11w

0.5
Eoffline

1.5 2.5w 4.7w 2.7w 2.7w 5.6w 2.2w 2.2w 1.4t 3.9w 11w 5.1w 6.4w

±0.32 ±0.25 ±0.7 ±0.25 ±0.28 ±0.56 ±0.23 ±0.23 ±0.23 ±0.68 ±0.9 ±0.57 ±1.3

EBBC 0.54 0.5t 3.2w 1.9w 1.9w 4.9w 1.4w 1.4w 0.84w 3.2w 10w 4.4w 5.9w

0.7
Eoffline

1.5 2.8w 3.8w 3.9w 3.9w 6.4w 2.6w 2.7w 1.6t 2.9w 15w 4.7w 6.7w

±0.17 ±0.27 ±0.69 ±0.44 ±0.41 ±0.69 ±0.26 ±0.25 ±0.26 ±0.74 ±2.2 ±0.69 ±0.98

EBBC 0.52 0.68w 1.9w 3w 3w 5.6w 1.8w 1.9w 0.99w 2.3w 14w 3.6w 6.1w

0.9
Eoffline

1.7 2.8w 3.7w 4.1w 4w 7.8w 3.1w 3.2w 1.8t 2.9w 9.9w 5w 6.5w

±0.29 ±0.26 ±0.27 ±0.43 ±0.44 ±1.1 ±0.2 ±0.18 ±0.28 ±0.67 ±0.92 ±0.68 ±0.69

EBBC 0.66 0.73t 1.2w 3.2w 3.2w 7.2w 2.3w 2.4w 1.1w 2.4w 9.4w 3.9w 5.9w

1
Eoffline

1.4 2.6w 4.5w 3.5w 3.6w 8.6w 2.8w 3w 1.5w 2.3w 15w 5.1w 8.6w

±0.11 ±0.2 ±0.26 ±0.41 ±0.47 ±1.1 ±0.19 ±0.15 ±0.067 ±0.79 ±1.8 ±0.31 ±1.4

EBBC 0.13 0.36w 1.3w 2.2w 2.3w 7.7w 1.7w 2w 0.68w 1.7w 14w 3.6w 7.8w

Table 9 shows the comparison of all the algorithms over 30 runs on the MPB where a part of the

fitness landscape changes.
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Table 10: The offline error (Eoffline) and the best-before-change error (EBBC ) for all the

peer algorithms on the MPB where the number of peaks changes, where Var1-Var3 are changes

following Eq. (14a)-Eq. (14c), respectively.

Error AMSO CPSOR CPSO rSPSO SPSO mCPSO mQSO SAMO DynDE DynPopDE ESCA HmSO SOS

Var1
Eoffline

2.3 2.8w 4w 6w 5.9w 7.8w 4.5w 3.5w 3.6w 3.7w 13w 4.5w 11w

±0.25 ±0.17 ±0.28 ±0.55 ±0.58 ±0.62 ±0.27 ±0.24 ±0.38 ±0.26 ±1.3 ±0.19 ±3.2

EBBC 1.5 1.6w 1.9w 5.2w 5.1w 7w 3.7w 2.8w 3w 3.1w 12w 3.5w 9.7w

Var2
Eoffline

2.9 3.3w 5w 4.6w 4.9w 7.3w 4.4w 4w 3.5w 4.2w 13w 5.4w 9.4w

±0.74 ±0.63 ±1 ±0.65 ±0.67 ±0.89 ±0.92 ±0.68 ±0.81 ±0.75 ±1.2 ±0.69 ±4.3

EBBC 2 1.9t 2.6w 3.7w 3.9w 6.3w 3.4w 3.1w 2.9w 3.6w 13w 4w 8.4w

Var3
Eoffline

2.7 2.9w 4.5w 4.9w 4.8w 7.4w 4.1w 3.7w 3.4w 4.8w 13w 5.3w 9.6w

±0.45 ±0.29 ±0.36 ±0.68 ±0.66 ±0.98 ±0.55 ±0.32 ±0.5 ±0.59 ±2 ±0.4 ±3.5

EBBC 1.7 1.6t 2.2w 3.9w 3.7w 6.4w 3.3w 2.8w 2.7w 4.1w 12w 4.1w 8.5w

From Table 9, it can be seen that the performance of several algorithms on the problems

with cPeaks < 1.0 is worse than that on the problem with cPeaks = 1.0. For problems with

cPeaks < 1.0, only a part of peaks are allowed to change. Therefore, a successful change

detection depends on the location of detectors. The change detection will fail when detectors

are in unchanged areas of the fitness landscape, and hence algorithms that are based on change

detection, such as HmSO and CPSO, do not work well in such dynamic environments.

For HmSO and CPSO, successful change detection is very important for good performance.

Normally, the smaller the value of cPeaks, the harder it is for the two algorithms to detect

changes. From the corresponding results, it can be seen that the errors obtained by the two

algorithms gets worse as cPeaks decreases. For the other algorithms that do not heavily rely on

change detection, the effect is not as serious as for HmSO and CPSO. AMSO and DynDE show

the competitive performance among all the algorithms.

4.3.6 Comparison in Environments with Changing Number of Peaks

Table 10 presents the comparison of all algorithms on the MPB with changing number of peaks.

Var1-Var3 are changes corresponding to Eq. (14a) to Eq. (14c), respectively. From the results,

the performance of all the algorithms greatly drops on the MPB with this new feature in com-

parison with the MPB under the default settings. Among the algorithms, AMSO shows the best

performance due to the adaptive mechanism. The adaptive algorithm SAMO also achieves bet-

ter performacne than its non-adaptive version of mQSO. However, such improvement cannot be

observed between DynPopDE and DynDE, where DynPopDE is an adaptive version of DynDE

but was proposed by different authors.

5 Conclusions

In order to effectively use multi-population methods to solve complex DOPs where changes

are complicated or hard to detect, this paper proposes an adaptive multi-population algorithm,

which is able to adapt to changes by increasing a “necessary” number of populations at proper

moments over changes. The proposed AMSO algorithm employs a single-linkage hierarchical

clustering method to generate populations. An overlapping detection scheme is introduced to

remove redundant populations during the running process. In this scheme, in order to avoid

losing peaks that are being tracked, populations, which are overlapped but cover different peaks,

will not be removed. In order to find proper moments to increase the population diversity, a
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special technique is proposed by monitoring the drop rate of the number of populations. In

order to deal with DOPs with complicated changes, e.g., the number of peaks fluctuates, a novel

idea is introduced to figure out a proper number of populations that are really needed. The idea

is to compare the number of populations in the current and previous diversity increasing points.

If the number of populations in the current increasing point is larger than that in the previous

increasing point, the total number of individuals will be increased; Otherwise, the total number

of individuals will be decreased. By using these methods, AMSO is able to adaptively maintain

the population diversity over changes. Therefore, this adaptive algorithm has basically solved

the difficulties in applying multi-population methods for DOPs, including how to determine the

number of populations and when to increase diversity over changes. In addition, the population

diversity is maintained automatically based on only the information of populations without the

assistance of change detection methods.

From the working mechanism investigation and the comparison of a set of algorithms based

on multi-population methods on the MPB and the GDBG benchmark, we can draw two conclu-

sions. Firstly, the proposed algorithm is able to adapt to changes by adaptively adjusting the

number of populations that are really needed without change detection. Secondly, the perfor-

mance of the proposed AMSO algorithm is competitive compared with other peer algorithms

on the tested problems in terms of both the successful tracking rate and the average score, es-

pecially for the fitness landscape with a large number of local optima and for situations where

changes are complicated or even hard to detect.

For the future work, an interesting topic is how to adaptively determine the search radius

of each population. Although the radius of each population is different in this paper, it is not

adaptive to changes.
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Cruz, C., González, J. R., and Pelta, D. A. (2011). Optimization in dynamic environments: A survey on
problems, methods and measures. Soft Computing, 15(7):1427–1448.

Daneshyari, M. and Yen, G. (2011). Dynamic optimization using cultural based pso. In Proceedings of the
2011 IEEE Congress on Evolutionary Computation, pages 509–516.
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