53,332 research outputs found

    Consensus clustering and functional interpretation of gene-expression data

    Get PDF
    Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    Exploiting the noise: improving biomarkers with ensembles of data analysis methodologies.

    Get PDF
    BackgroundThe advent of personalized medicine requires robust, reproducible biomarkers that indicate which treatment will maximize therapeutic benefit while minimizing side effects and costs. Numerous molecular signatures have been developed over the past decade to fill this need, but their validation and up-take into clinical settings has been poor. Here, we investigate the technical reasons underlying reported failures in biomarker validation for non-small cell lung cancer (NSCLC).MethodsWe evaluated two published prognostic multi-gene biomarkers for NSCLC in an independent 442-patient dataset. We then systematically assessed how technical factors influenced validation success.ResultsBoth biomarkers validated successfully (biomarker #1: hazard ratio (HR) 1.63, 95% confidence interval (CI) 1.21 to 2.19, P = 0.001; biomarker #2: HR 1.42, 95% CI 1.03 to 1.96, P = 0.030). Further, despite being underpowered for stage-specific analyses, both biomarkers successfully stratified stage II patients and biomarker #1 also stratified stage IB patients. We then systematically evaluated reasons for reported validation failures and find they can be directly attributed to technical challenges in data analysis. By examining 24 separate pre-processing techniques we show that minor alterations in pre-processing can change a successful prognostic biomarker (HR 1.85, 95% CI 1.37 to 2.50, P < 0.001) into one indistinguishable from random chance (HR 1.15, 95% CI 0.86 to 1.54, P = 0.348). Finally, we develop a new method, based on ensembles of analysis methodologies, to exploit this technical variability to improve biomarker robustness and to provide an independent confidence metric.ConclusionsBiomarkers comprise a fundamental component of personalized medicine. We first validated two NSCLC prognostic biomarkers in an independent patient cohort. Power analyses demonstrate that even this large, 442-patient cohort is under-powered for stage-specific analyses. We then use these results to discover an unexpected sensitivity of validation to subtle data analysis decisions. Finally, we develop a novel algorithmic approach to exploit this sensitivity to improve biomarker robustness

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery

    Get PDF
    Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.National Institute for Health Researc

    Noncoder : a web interface for exon array-based detection of long non-coding RNAs

    Get PDF
    Due to recent technical developments, a high number of long non-coding RNAs (lncRNAs) have been discovered in mammals. Although it has been shown that lncRNAs are regulated differently among tissues and disease statuses, functions of these transcripts are still unknown in most cases. GeneChip Exon 1.0 ST Arrays (exon arrays) from Affymetrix, Inc. have been used widely to profile genome-wide expression changes and alternative splicing of protein-coding genes. Here, we demonstrate that re-annotation of exon array probes can be used to profile expressions of tens of thousands of lncRNAs. With this annotation, a detailed inspection of lncRNAs and their isoforms is possible. To allow for a general usage to the research community, we developed a user-friendly web interface called 'noncoder'. By uploading CEL files from exon arrays and with a few mouse clicks and parameter settings, exon array data will be normalized and analysed to identify differentially expressed lncRNAs. Noncoder provides the detailed annotation information of lncRNAs and is equipped with unique features to allow for an efficient search for interesting lncRNAs to be studied further. The web interface is available at http://noncoder.mpi-bn.mpg.de
    corecore