58,542 research outputs found

    Spartan Daily, May 2, 1934

    Get PDF
    Volume 22, Issue 117https://scholarworks.sjsu.edu/spartandaily/2153/thumbnail.jp

    Absorbing Random Walks Interpolating Between Centrality Measures on Complex Networks

    Full text link
    Centrality, which quantifies the "importance" of individual nodes, is among the most essential concepts in modern network theory. As there are many ways in which a node can be important, many different centrality measures are in use. Here, we concentrate on versions of the common betweenness and it closeness centralities. The former measures the fraction of paths between pairs of nodes that go through a given node, while the latter measures an average inverse distance between a particular node and all other nodes. Both centralities only consider shortest paths (i.e., geodesics) between pairs of nodes. Here we develop a method, based on absorbing Markov chains, that enables us to continuously interpolate both of these centrality measures away from the geodesic limit and toward a limit where no restriction is placed on the length of the paths the walkers can explore. At this second limit, the interpolated betweenness and closeness centralities reduce, respectively, to the well-known it current betweenness and resistance closeness (information) centralities. The method is tested numerically on four real networks, revealing complex changes in node centrality rankings with respect to the value of the interpolation parameter. Non-monotonic betweenness behaviors are found to characterize nodes that lie close to inter-community boundaries in the studied networks

    Batch kernel SOM and related Laplacian methods for social network analysis

    Get PDF
    Large graphs are natural mathematical models for describing the structure of the data in a wide variety of fields, such as web mining, social networks, information retrieval, biological networks, etc. For all these applications, automatic tools are required to get a synthetic view of the graph and to reach a good understanding of the underlying problem. In particular, discovering groups of tightly connected vertices and understanding the relations between those groups is very important in practice. This paper shows how a kernel version of the batch Self Organizing Map can be used to achieve these goals via kernels derived from the Laplacian matrix of the graph, especially when it is used in conjunction with more classical methods based on the spectral analysis of the graph. The proposed method is used to explore the structure of a medieval social network modeled through a weighted graph that has been directly built from a large corpus of agrarian contracts

    Spartan Daily, November 1, 1939

    Get PDF
    Volume 28, Issue 30https://scholarworks.sjsu.edu/spartandaily/2976/thumbnail.jp

    Spartan Daily, September 27, 1934

    Get PDF
    Volume 23, Issue 5https://scholarworks.sjsu.edu/spartandaily/2184/thumbnail.jp
    • …
    corecore