3,161 research outputs found

    Cloud-based collaborative 3D reconstruction using smartphones

    Get PDF
    This article presents a pipeline that enables multiple users to collaboratively acquire images with monocular smartphones and derive a 3D point cloud using a remote reconstruction server. A set of key images are automatically selected from each smartphone’s camera video feed as multiple users record different viewpoints of an object, concurrently or at different time instants. Selected images are automatically processed and registered with an incremental Structure from Motion (SfM) algorithm in order to create a 3D model. Our incremental SfM approach enables on-the- y feedback to the user to be generated about current reconstruction progress. Feedback is provided in the form of a preview window showing the current 3D point cloud, enabling users to see if parts of a surveyed scene need further attention/coverage whilst they are still in situ. We evaluate our 3D reconstruction pipeline by performing experiments in uncontrolled and unconstrained real-world scenarios. Datasets are publicly available

    Innovative strategies for 3D visualisation using photogrammetry and 3D scanning for mobile phones

    Get PDF
    3D model generation through Photogrammetry is a modern overlay of digital information representing real world objects in a virtual world. The immediate scope of this study aims at generating 3D models using imagery and overcoming the challenge of acquiring accurate 3D meshes. This research aims to achieve optimised ways to document raw 3D representations of real life objects and then converting them into retopologised, textured usable data through mobile phones. Augmented Reality (AR) is a projected combination of real and virtual objects. A lot of work is done to create market dependant AR applications so customers can view products before purchasing them. The need is to develop a product independent photogrammetry to AR pipeline which is freely available to create independent 3D Augmented models. Although for the particulars of this research paper, the aim would be to compare and analyse different open source SDK’s and libraries for developing optimised 3D Mesh using Photogrammetry/3D Scanning which will contribute as a main skeleton to the 3D-AR pipeline. Natural disasters, global political crisis, terrorist attacks and other catastrophes have led researchers worldwide to capture monuments using photogrammetry and laser scans. Some of these objects of “global importance” are processed by companies including CyArk (Cyber Archives) and UNESCO’s World Heritage Centre, who work against time to preserve these historical monuments, before they are damaged or in some cases completely destroyed. The need is to question the significance of preserving objects and monuments which might be of value locally to a city or town. What is done to preserve those objects? This research would develop pipelines for collecting and processing 3D data so the local communities could contribute towards restoring endangered sites and objects using their smartphones and making these objects available to be viewed in location based AR. There exist some companies which charge relatively large amounts of money for local scanning projects. This research would contribute as a non-profitable project which could be later used in school curriculums, visitor attractions and historical preservation organisations all over the globe at no cost. The scope isn’t limited to furniture, museums or marketing, but could be used for personal digital archiving as well. This research will capture and process virtual objects using Mobile Phones comparing methodologies used in Computer Vision design from data conversion on Mobile phones to 3D generation, texturing and retopologising. The outcomes of this research will be used as input for generating AR which is application independent of any industry or product

    Geo-tagging and privacy-preservation in mobile cloud computing

    Get PDF
    With the emerge of the cloud computing service and the explosive growth of the mobile devices and applications, mobile computing technologies and cloud computing technologies have been drawing significant attentions. Mobile cloud computing, with the synergy between the cloud and mobile technologies, has brought us new opportunities to develop novel and practical systems such as mobile multimedia systems and cloud systems that provide collaborative data-mining services for data from disparate owners (e.g., mobile users). However, it also creates new challenges, e.g., the algorithms deployed in the computationally weak mobile device require higher efficiency, and introduces new problems such as the privacy concern when the private data is shared in the cloud for collaborative data-mining. The main objectives of this dissertation are: 1. to develop practical systems based on the unique features of mobile devices (i.e., all-in-one computing platform and sensors) and the powerful computing capability of the cloud; 2. to propose solutions protecting the data privacy when the data from disparate owners are shared in the cloud for collaborative data-mining. We first propose a mobile geo-tagging system. It is a novel, accurate and efficient image and video based remote target localization and tracking system using the Android smartphone. To cope with the smartphones' computational limitation, we design light-weight image/video processing algorithms to achieve a good balance between estimation accuracy and computational complexity. Our system is first of its kind and we provide first hand real-world experimental results, which demonstrate that our system is feasible and practicable. To address the privacy concern when data from disparate owners are shared in the cloud for collaborative data-mining, we then propose a generic compressive sensing (CS) based secure multiparty computation (MPC) framework for privacy-preserving collaborative data-mining in which data mining is performed in the CS domain. We perform the CS transformation and reconstruction processes with MPC protocols. We modify the original orthogonal matching pursuit algorithm and develop new MPC protocols so that the CS reconstruction process can be implemented using MPC. Our analysis and experimental results show that our generic framework is capable of enabling privacy preserving collaborative data-mining. The proposed framework can be applied to many privacy preserving collaborative data-mining and signal processing applications in the cloud. We identify an application scenario that requires simultaneously performing secure watermark detection and privacy preserving multimedia data storage. We further propose a privacy preserving storage and secure watermark detection framework by adopting our generic framework to address such a requirement. In our secure watermark detection framework, the multimedia data and secret watermark pattern are presented to the cloud for secure watermark detection in a compressive sensing domain to protect the privacy. We also give mathematical and statistical analysis to derive the expected watermark detection performance in the compressive sensing domain, based on the target image, watermark pattern and the size of the compressive sensing matrix (but without the actual CS matrix), which means that the watermark detection performance in the CS domain can be estimated during the watermark embedding process. The correctness of the derived performance has been validated by our experiments. Our theoretical analysis and experimental results show that secure watermark detection in the compressive sensing domain is feasible. By taking advantage of our mobile geo-tagging system and compressive sensing based privacy preserving data-mining framework, we develop a mobile privacy preserving collaborative filtering system. In our system, mobile users can share their personal data with each other in the cloud and get daily activity recommendations based on the data-mining results generated by the cloud, without leaking the privacy and secrecy of the data to other parties. Experimental results demonstrate that the proposed system is effective in enabling efficient mobile privacy preserving collaborative filtering services.Includes bibliographical references (pages 126-133)

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version

    Crowdsourced Live Streaming over the Cloud

    Full text link
    Empowered by today's rich tools for media generation and distribution, and the convenient Internet access, crowdsourced streaming generalizes the single-source streaming paradigm by including massive contributors for a video channel. It calls a joint optimization along the path from crowdsourcers, through streaming servers, to the end-users to minimize the overall latency. The dynamics of the video sources, together with the globalized request demands and the high computation demand from each sourcer, make crowdsourced live streaming challenging even with powerful support from modern cloud computing. In this paper, we present a generic framework that facilitates a cost-effective cloud service for crowdsourced live streaming. Through adaptively leasing, the cloud servers can be provisioned in a fine granularity to accommodate geo-distributed video crowdsourcers. We present an optimal solution to deal with service migration among cloud instances of diverse lease prices. It also addresses the location impact to the streaming quality. To understand the performance of the proposed strategies in the realworld, we have built a prototype system running over the planetlab and the Amazon/Microsoft Cloud. Our extensive experiments demonstrate that the effectiveness of our solution in terms of deployment cost and streaming quality

    D3MOBILE METROLOGY WORLD LEAGUE: TRAINING SECONDARY STUDENTS ON SMARTPHONE-BASED PHOTOGRAMMETRY

    Get PDF
    The advent of the smartphones brought with them higher processing capabilities and improved camera specifications which boosted the applications of mobile-based imagery in a range of domains. One of them is the 3-D reconstruction of objects by means of photogrammetry, which now enjoys great popularity. This fact brings potential opportunities to develop educational procedures in high schools using smartphone-based 3-D scanning techniques. On this basis, we designed a Project Based e-Learning (PBeL) initiative to introduce secondary students to the disciplines of photogrammetry through the use of their mobile phones in an attractive and challenging way for them. The paper describes the motivation behind the project "D3MOBILE Metrology World League", supported by ISPRS as part of the "Educational and Capacity Building Initiative 2020"programme. With this Science, Technology, Engineering and Mathematics (STEM) initiative, we implement a methodology with the format of an international competition, that can be adapted to daily classwork at the high school level anywhere in the world. Therefore, the championship is essentially structured around a collection of well-thought-out e-learning materials (text guidelines, video tutorials, proposed exercises, etc.), providing a more flexible access to content and instruction at any time and from any place. The methodology allows students to gain spatial skills and to practice other transversal abilities, learn the basics of photogrammetric techniques and workflows, gain experience in the 3-D modelling of simple objects and practice a range of techniques related to the science of measurementS

    Shaping the Future of Animation towards Role of 3D Simulation Technology in Animation Film and Television

    Get PDF
    The application of 3D simulation technology has revolutionized the field of animation film and television art, providing new possibilities and creative opportunities for visual storytelling. This research aims to explore the various aspects of applying 3D simulation technology in animation film and television art. It examines how 3D simulation technology enhances the creation of realistic characters, environments, and special effects, contributing to immersive and captivating storytelling experiences. The research also investigates the technical aspects of integrating 3D cloud simulation technology into the animation production pipeline, including modeling, texturing, rigging, and animation techniques. This paper explores the application of these optimization algorithms in the context of cloud-based 3D environments, focusing on enhancing the efficiency and performance of 3D simulations. Black Widow and Spider Monkey Optimization can be used to optimize the placement and distribution of 3D assets in cloud storage systems, improving data access and retrieval times. The algorithms can also optimize the scheduling of rendering tasks in cloud-based rendering pipelines, leading to more efficient and cost-effective rendering processes. The integration of 3D cloud environments and optimization algorithms enables real-time optimization and adaptation of 3D simulations. This allows for dynamic adjustments of simulation parameters based on changing conditions, resulting in improved accuracy and responsiveness. Moreover, it explores the impact of 3D cloud simulation technology on the artistic process, examining how it influences the artistic vision, aesthetics, and narrative possibilities in animation film and television. The research findings highlight the advantages and challenges of using 3D simulation technology in animation, shedding light on its potential future developments and its role in shaping the future of animation film and television art
    • …
    corecore