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ABSTRACT 

 

With the emerge of the cloud computing service and the explosive growth of the 

mobile devices and applications, mobile computing technologies and cloud computing 

technologies have been drawing significant attentions. Mobile cloud computing, with the 

synergy between the cloud and mobile technologies, has brought us new opportunities to 

develop novel and practical systems such as mobile multimedia systems and cloud 

systems that provide collaborative data-mining services for data from disparate owners 

(e.g., mobile users). However, it also creates new challenges, e.g., the algorithms 

deployed in the computationally weak mobile device require higher efficiency, and 

introduces new problems such as the privacy concern when the private data is shared in 

the cloud for collaborative data-mining. 

The main objectives of this dissertation are: 1. to develop practical systems based on 

the unique features of mobile devices (i.e., all-in-one computing platform and sensors) 

and the powerful computing capability of the cloud; 2. to propose solutions protecting the 

data privacy when the data from disparate owners are shared in the cloud for 

collaborative data-mining.  

We first propose a mobile geo-tagging system. It is a novel, accurate and efficient 

image and video based remote target localization and tracking system using the Android 

smartphone. To cope with the smartphones’ computational limitation, we design light-

weight image/video processing algorithms to achieve a good balance between estimation 

accuracy and computational complexity. Our system is first of its kind and we provide 
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first hand real-world experimental results, which demonstrate that our system is feasible 

and practicable. 

To address the privacy concern when data from disparate owners are shared in the 

cloud for collaborative data-mining, we then propose a generic compressive sensing (CS) 

based secure multiparty computation (MPC) framework for privacy-preserving 

collaborative data-mining in which data mining is performed in the CS domain. We 

perform the CS transformation and reconstruction processes with MPC protocols. We 

modify the original orthogonal matching pursuit algorithm and develop new MPC 

protocols so that the CS reconstruction process can be implemented using MPC. Our 

analysis and experimental results show that our generic framework is capable of enabling 

privacy preserving collaborative data-mining. The proposed framework can be applied to 

many privacy preserving collaborative data-mining and signal processing applications in 

the cloud.  

We identify an application scenario that requires simultaneously performing secure 

watermark detection and privacy preserving multimedia data storage. We further propose 

a privacy preserving storage and secure watermark detection framework by adopting our 

generic framework to address such a requirement. In our secure watermark detection 

framework, the multimedia data and secret watermark pattern are presented to the cloud 

for secure watermark detection in a compressive sensing domain to protect the privacy. 

We also give mathematical and statistical analysis to derive the expected watermark 

detection performance in the compressive sensing domain, based on the target image, 

watermark pattern and the size of the compressive sensing matrix (but without the actual 

CS matrix), which means that the watermark detection performance in the CS domain can 
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be estimated during the watermark embedding process. The correctness of the derived 

performance has been validated by our experiments. Our theoretical analysis and 

experimental results show that secure watermark detection in the compressive sensing 

domain is feasible.  

By taking advantage of our mobile geo-tagging system and compressive sensing 

based privacy preserving data-mining framework, we develop a mobile privacy 

preserving collaborative filtering system. In our system, mobile users can share their 

personal data with each other in the cloud and get daily activity recommendations based 

on the data-mining results generated by the cloud, without leaking the privacy and 

secrecy of the data to other parties. Experimental results demonstrate that the proposed 

system is effective in enabling efficient mobile privacy preserving collaborative filtering 

services. 
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Chapter 1. Introduction 

 

Mobile devices (e.g., smartphone, tablet, etc) are becoming an essential part of our 

daily life as the most effective and convenient communication tools. The rapid progress 

of mobile computing becomes a powerful trend in the development of IT technology as 

well as commerce and industry fields. Cloud computing has been widely recognized as 

the next generation’s computing infrastructure. Cloud computing offers some advantages 

by allowing users (e.g., mobile users) to use infrastructure (e.g., servers, networks, and 

storages), platforms (e.g., middleware services and operating systems), and software 

(e.g., application programs) [1]. Mobile cloud computing, which takes advantages of both 

the mobile devices and the cloud, could become the dominant model [2] in the future. In 

this chapter, we first introduce the motivations of our proposed mobile-cloud systems and 

frameworks in Section 1.1. Then a summary of the contributions from this dissertation is 

presented in Section 1.2. We then give an overview of this dissertation in Section 1.3.  

 

1.1. Motivations 

 

There are basically two types of mobile cloud computing systems [2]. The first one is 

to consider mobile devices them-selves as the cloud making up a mobile peer-to-peer 

network which provides certain services and applications, as shown in Figure 1.1. There 

are several application scenarios that are based on the first type [3][4], e.g., video 

recordings from multiple mobile devices are spliced to construct a single video that 
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covers the entire event from different angles, and perspectives. The second type of 

mobile cloud system is: mobile devices act as a thin client connecting to a remote cloud 

through the network, and offloading the data and processing to the cloud as shown in 

Figure 1.2. Some examples of this type are Facebook’s location aware services, Twitter 

for mobile, mobile weather widgets [2].  

 
Figure 1.1. Mobile devices in a vicinity link to each other to create a mobile cloud 
system. 

 

 
Figure 1.2. Mobile devices offload the data storage and processing to the cloud to create a 
mobile cloud system. 

 

The first type of mobile cloud system is essentially a system executing on mobile 

devices without support from a computationally powerful server. In this dissertation, we 

develop a mobile geo-tagging system based on one or more connected mobile devices, 

i.e., an image/video based remote target localization and tracking system on the Android 
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smartphones. Our proposed system has three major components: 1. Single-image based 

remote target localization when the remote target’s physical size is known; 2. Two-image 

based remote target localization when the target size is unknown; 3. Video-based tracking 

when the remote target of known physical size is moving. Such system will be useful for 

many scenarios. For example, on the battlefield, a soldier needs a rangefinder, compass, 

GPS and other tools to do reconnaissance before calling for an air strike. On the golf 

course, players often would like to estimate the distance to the green. Biologists can 

document the location of a rare animal without disturbing it. A tourist may be very 

interested in a remote object’s GPS location while taking a picture of it; later on that 

picture can be associated with a map (such as Google Maps or Google Earth) and be 

shared with other people with the location information. On the highway, a policeman can 

use our video tracking system to estimate a moving vehicle’s speed while taking video 

evidence. In previous works, mobile localization systems are all designed for locating the 

device itself, but not the remote target. Furthermore, the previous smartphone vision 

based localization systems have to interact with a server and leverage the server’s 

resource. In our geo-tagging system, all the computations are performed on the 

smartphones without a remote server. We also design optimization methods that are 

tailored to the unique characteristics of the smartphone’s computing platform to improve 

the efficiency. For the image based localization component, we propose an optimized 

feature extraction method designed for the smartphone computing platform taking into 

account its memory I/O and CPU limitations. For the video based tracking component, 

we develop a light-weight video based remote target tracking system that can accurately 
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track the moving objects in the video on the smartphone. Our experimental results 

demonstrate that our system is feasible and practicable. 

The second type of mobile cloud system (i.e., thin mobile clients and a remote cloud 

service) can be introduced to support various services including the collaborative data-

mining applications. In the collaborative data-mining system, users (e.g., mobile users) 

can share their data with other parties in the cloud and the cloud could perform data-

mining tasks with the aggregated data.  

Collaborative data-mining system has received increasing attentions recently. The 

rapid development of the Internet, storage and database systems has given opportunities 

for companies, institutions and individuals to collect data by themselves. Mobile devices 

and smartphones also have a database to store personal data or application data. Analysis 

merely based on those limited data may generate some biased statistical results. It would 

be more accurate to aggregate data from different data holders to jointly perform data-

mining to better understand the overall data characteristics. For some e-commerce 

companies, as an example, it will be beneficial to have a better product recommendation 

system for the customers by integrating with other companies’ customer data. Disparate 

data owners can outsource their data to the cloud for data-mining and retrieve the 

expected results. However such applications are infeasible without the protection of 

individual data privacy.  
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Figure 1.3. Privacy preserving collaborative data mining in the cloud. 

 

In this dissertation, we propose a generic privacy preserving data-mining framework 

based on compressive sensing using secure multiparty computation. In our framework, 

the data-mining algorithms are performed in a compressive sensing (CS) domain to 

protect the data privacy, and the secure multiparty computation (MPC) protocols are used 

for the CS transformation and reconstruction processes. The scenario we address is 

illustrated in Figure 1.3: Suppose there are m data holders (e.g., mobile users) DH1, 

DH2,…, DHm. Each of them has a private database and there is a third party computing 

cloud service provider CLD who performs data-mining tasks and a trusted key manager 

CSH which generates and maintains a common secret key to be used for the encryption 

of data (the encryption here refers to CS transformation) from all data holders. Each of 

the DHs would like to keep its data from being disclosed to any other parties including 

the CSH; and the CSH would not expose the common key to any other parties for the 

sake of security. In our framework, all DHs’ data are transformed to the same CS domain 

for collaborative data-mining through MPC based CS transformation before they are 

outsourced to the CLD. The data-mining results are sent to DH by executing MPC based 

CS reconstruction process between CSH and CLD. Our analysis and experimental results 
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demonstrate that the proposed generic framework is effective in enabling efficient 

privacy preserving collaborative data-mining. Our generic framework can also be 

extended to support many other privacy preserving data-mining and signal processing 

tasks, e.g., the secure watermark detection framework proposed in Chapter 5 of this 

dissertation.  

Due to the rapid growth of the Internet and social networks, it is very easy for a user 

to collect a large amount of multimedia data from different sources without knowing the 

copyright information of those data. The user may want to take advantage of the cloud for 

storage, and at the same time, work with copyright owners for watermark detection while 

keeping those self-collected multimedia data private. The watermark pattern owner wants 

to keep their watermark patterns private during the watermark detection as well. Most of 

the existing secure watermark detection works assume the watermarked copy are publicly 

available and focus on the security of the watermark pattern, while the privacy of the 

target media on which watermark detection is performed has received little attention. But 

for some applications such as the scenario given above, it is required to protect the 

multimedia data’s privacy in the watermark detection process. We therefore propose a 

compressive sensing based privacy preserving storage and secure watermark detection 

framework based on our generic privacy preserving collaborative data-mining 

framework. Our theoretical analysis and experimental results show that secure watermark 

detection in the CS domain is viable. We also demonstrate that the expected watermark 

detection performance in the CS domain can be estimated by the target image, the 

watermark pattern and the height of the CS matrix (disregarding the actual CS matrix 

used). This is an important result since the watermark detection performance in the CS 
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domain can be estimated during the watermark embedding process by the content 

providers. 

In a future ubiquitous setting [5], users will be able to routinely record their own 

locations via smartphones, and their purchases through digital wallets or credit card 

records. Their data are stored in a remote cloud and then the cloud can perform 

collaborative filtering so that the users could get recommendations about many of their 

everyday activities, including restaurants, bars, movies, and interesting sights to see and 

things to do in a neighborhood. However, the smartphone users may desire to keep their 

personal data private while using such collaborative filtering recommendation service. In 

this dissertation, we develop a mobile privacy preserving collaborative filtering system 

based on our proposed mobile geo-tagging system and generic privacy preserving data-

mining framework. Our experimental results demonstrate that our system is capable to 

provide collaborative filtering recommendation services while protecting the data 

privacy.  

 

1.2. Summary of Contributions 

 

In this dissertation, significant efforts have been made to improve the efficiency, 

practicality, feasibility and security for the mobile cloud computing systems. The major 

contributions of our proposed mobile geo-tagging system can be summarized as: 

1. The proposed smartphone based remote target localization and tracking system is first 

of its kind. We make the initial efforts developing the system on the smartphone and 

provide first hand real-world experimental results of the system. We demonstrate that 
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accurate image/video based remote target localization and tracking on the smartphone 

is feasible and practicable. 

2. All the tasks are performed on the smartphone, no remote server is required. We have 

developed algorithms and optimization methods tailored to the smartphone 

computing platform by considering its unique characteristics. 

 

The main contributions of our generic privacy preserving collaborative data-mining 

framework are summarized below: 

1. Compared to previous random projection based privacy-preserving data-mining work 

[39], we improve the security by introducing a trusted third party to manage the 

common key used for encrypting multiple disparate data sources without revealing 

the key to individual data holders. 

2. Compared to previous MPC based privacy-preserving data-mining, e.g., [69], the 

proposed framework decouples the encryption/compression process that could be 

shared from different data mining operations, which significantly reduces the 

computational and communication complexity often incurred in MPC protocols for 

privacy preserving data mining.  

3. Compared to other MPC based privacy preserving data mining algorithms, the 

proposed framework offers much better scalability in that it can add more data 

holders and data sources without incurring additional cost to existing data holders.  

4. The proposed compressive sensing encryption based secure multiparty privacy-

preserving framework can be extended to develop many other privacy preserving 

collaborative data-mining and signal processing systems. 
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The main contributions of our secure watermark detection framework are summarized 

as follows: 

1. Most of the existing secure watermark detection works paid little attention to the 

privacy of the multimedia data, while our framework protects the privacy of the self-

collected data. 

2. We derive the expected watermark detection performance in the compressive sensing 

domain, given the target image, watermark pattern and the size of the compressive 

sensing matrix (but without the CS matrix itself). The correctness of the derived 

performance has been validated by our experiments. 

3. Our theoretical analysis and experimental results show that secure watermark 

detection in the compressive sensing domain is feasible. 

 

1.3. Overview of the Dissertation 

 

The rest of the dissertation is organized as follows:  

Chapter 2 introduces some background knowledge including imaging geometry and 

homomorphic encryption systems referenced by this dissertation.  

Chapter 3 presents the proposed mobile geo-tagging system. In this chapter, the 

system is proposed first and then we present the experimental results and the speed 

optimization methods showing that our system is practicable and feasible.  

Chapter 4 introduces our generic compressive sensing based privacy preserving 

collaborative data-mining framework using secure multiparty computation. We present 
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the proposed framework and the proposed MPC protocols followed by the framework 

security and complexity analysis. Then we show that compressive sensing domain data-

mining (e.g., k-means clustering) is feasible based on our experimental results.  

Chapter 5 presents the integrated privacy preserving storage and secure watermark 

detection framework. We present our framework as well as the security and complexity 

analysis of the framework. The superiority of our framework to previous secure 

watermark detection methods is shown quantitatively. We show that compressive sensing 

domain secure watermark detection is viable based on our analysis and experimental 

results.  

Chapter 6 discusses a use case: a mobile privacy preserving collaborative filtering 

system by taking advantage of our mobile geo-tagging system and our generic privacy 

preserving data-mining framework. Our experimental results with real-world data 

demonstrate that our system is feasible.  

Finally, Chapter 7 presents a summary of the contributions and gives several 

suggestions for the future work. 
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Chapter 2. Background and General Knowledge 

 

In this chapter, we introduce some backgrounds and general knowledge referenced in 

this dissertation. Section 2.1 introduces the geometry of image formation and the camera 

parameters (i.e., Pin-hole camera model and Multi-view geometry), which determine the 

relationship between a point in the image plane and a scene point. They will be applied in 

our mobile geo-tagging system in Chapter 3. In Section 2.2, several public key encryption 

systems and their homomorphism property (i.e., additive and multiplicative 

homomorphism) are introduced. They are referenced by our privacy-preserving data-

mining frameworks and systems from Chapter 4 to Chapter 6.  

 

2.1. Imaging Geometry 

2.1.1. Pin-hole Camera Model 

 
Figure 2.1. The geometry of the pin-hole camera model: π is the image plane;   is focal 
length; OC is the camera coordinate origin.   
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Figure 2.2. Transformation between the world coordinate system and the camera 
coordinate system (Left: camera coordinate; Right: world coordinate). 

 

The most common and simplest geometric model of a camera is the perspective (pin-

hole) model [18] as shown in Figure 2.1. The line through the center of projection 

(optical center) OC and perpendicular to the image plane π is the optical axis. The 

intersection point between π and the optical axis is the principal point. In an actual 

camera, the image plane π is at a distance of f behind the center of projection and the 

projection image is inverted. However, in pin-hole camera model, we assume the image 

plane is in front of the center of projection, so that we can avoid the inversion. The 

relationship between a world coordinate homogenous representation 

  (             ) (XW in Figure 2.2)  and its corresponding camera coordinate 

homogenous representation   (             ) (XC in Figure 2.2) can be expressed by a 

transformation which contains the 3 3 rotationmatrix R =            and the 3 1 

translation vector   [18]: 
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where      is called the extrinsic parameters. Then the image coordinate homogenous 

representation    (Xn in Figure 2.1) and its corresponding world coordinate homogenous 

representation can be related by [18]: 

                                  
              (2.1) 

          [
   
   

  

  

     

] 

  is called the intrinsic matrix, where    and    represent the focal length (in pixels) of the 

camera in the   and   direction respectively, and   is called the skew factor and is 

typically very close to zero.    and    are the coordinates of the principal point [18].   is 

a scale factor. In the calibration process [11][18], user takes several checker board images 

from different perspectives, then the standard calibration algorithms and tools [12][20] 

can be used to calculate the camera’s intrinsic matrix  . The pin-hole camera model will 

be later referenced in our single-image based localization system in Section 3.3.  

 

2.1.2. Multi-View Geometry 

 
Figure 2.3. Epipolar Geometry 
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Figure 2.3 shows the Epipolar geometry. Consider two planes with distinct 

viewpoints, let x = (x, y, 1) and x’ = (x’, y’, 1) be the corresponding points in two image 

planes, i.e., the projection points of xw. The epipolar geometry defines the geometric 

relationship between these corresponding points. The plane passing through the optical 

center Oc1 and Oc2 and the scene point xw is called an epipolar plane. The projection e (e’) 

of one camera center onto the image plane of the other camera frame is called an epipole. 

An epipolar line l (l’) is the intersection of an epipolar plane for xw with the image plane. 

All epipolar lines pass through the epipole.  

The fundamental matrix represents the epipolar geometry and contains most of the 

information about the relative position and orientation between the two views. For all 

corresponding points x (  ) and x’ (  ) in two image planes, the fundamental matrix   is 

the unique 3x3 rank 2 homogenous matrix which satisfies: 

  
        

The 8-point algorithm [15] is the simplest method to compute the fundamental 

matrix. Fundamental matrix will be further utilized to calculate the essential matrix, 

which has been referenced by our two-image based localization system in Section 3.4.  

 

2.2. Homomorphic Encryption Systems 

 

Homomorphic encryption is a form of encryption which allows certain computations 

to be performed on ciphertext and generate an encrypted value, and then the decryption 

result of the generated encrypted value matches certain computation result on the 

plaintext. There are several public key systems that can perform homomorphic 
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encryption, e.g., Unpadded RSA, ElGamal, Goldwasser-Micali, Paillier and etc. In this 

section, we introduce ElGamal and Paillier public key systems and their homomorphic 

properties. 

2.2.1. Public Key Encryption Systems 

 

Paillier Cryptosystem [72]: 

-Key generation: 

Let       , where   and   are two large primes. Choose      
  (integers less than N2 

but bigger than zero) such that the order of   is divisible by  . Any such   is the form of 

                  for a pair (   ), where      and     
 . Let         

       (    means least common multiple). Let                        , 

where       
   

 
 Then the public key is (   ) and the private key is      .  

 

-Encryption (         ()): 

1. Let   be a message to be encrypted where      

2. Select random   where     
  

3. Compute ciphertext as               

 

-Decryption (         ()) 

1. Ciphertext      
  

2. Compute    (         )          

3.  
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ElGamal Cryptosystem [71]: 

-Key Generation: 

Let   be a prime, and   be a generator of   . The private key x is an integer between   

and    . Let             . The public key for ElGamal encryption is the triplet 

       .  

 

-Encryption (        ()): 

1. Let   be a message to be encrypted where      

2. Then let              and             , where k is a random integer. 

3.       is the ciphertext. 

 

-Decryption (        ()): 

1. Let s =   , where   is the private key. 

2. Then compute              . 

 

2.2.2. Public Key Homomorphism 

 

Homomorphism Definition: 

Given two algebra systems A and B, • and ◦ are the operations in A, B, respectively. If  

x, y  A, we have f(x◦y) = f(x) •f(y), then the mapping f: A → B is called A to B’s 

homomorphism. 

 

The Paillier public key system has the following homomorphic properties: 
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Additive homomorphism: 

                                                                 (a) 

 

Multiplicative homomorphism: 

                          
                        (b) 

 

The ElGamal public key system has the following homomorphic properties: 

Multiplicative Homomorphism: 

                  (  )            (  ))  =              

 

The homomorphism of the Paillier and the ElGamal public key systems will be utilized 

by the MPC protocols in Chapter 4.  

 

2.2.3. Handling Real Values through Scaling  

 

The public key systems introduced in this chapter only take positive integers as input, 

while practical data might involve real-number values such as in the frameworks and 

systems presented in Chapter 4 through Chapter 6. We scale the floating point values into 

integer values with certain scaling factor. Negative integers are represented by the upper 

half of the range [0,  -1] (  is the modulo) in a modulo field, e.g., -1 is represented as 

 -1, as suggested in [90]. We show how to handle negative values in the Paillier 

homomorphic properties (a) and (b) in Section 2.2.2. Given two messages    and    to 
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encrypt, and without loss of generality, assume    is a positive number and    is 

negative, where |  |, |  |     ⁄ . Let      represent   , we have: 

                                                                    =  , 

then: 

      {
         

           
 

                          
                             , then:  

      {
         

           
 

  



-19- 
 

Chapter 3. A Mobile Geo-tagging System 

 

As summarized in Chapter 1, one type of the mobile cloud systems is formed by 

several connected mobile devices. In such mobile cloud system, one of the challenges is 

that the algorithms deployed in the computationally weak mobile device require higher 

efficiency. In this chapter, we introduce a mobile geo-tagging system which uses one or 

more connected mobile phones to locate and track a remote target (still or moving) 

utilizing smartphone’s sensors, e.g., GPS, digital compass and camera sensor. To cope 

with the smartphones’ computational limitation, we design light-weight image/video 

processing algorithms to achieve a good balance between estimation accuracy and 

computational complexity. 

 

3.1. Introduction 

 

Smartphone is becoming a powerful computing, sensing and communication 

platform. Due to its ubiquity, low-cost, all-in-one sensors and convenient programming 

environment, commodity smartphone based system has attracted increasing attention and 

is becoming an active research field. In particular, the high resolution smartphone 

cameras which can take both images and videos have created abundant opportunities for 

mobile multimedia research and led to many interesting works in the literature. For 

example, Hile et al. [28] developed a system on the smartphone that automatically 

generates landmark-based pedestrian navigation instructions. Yu et al. [26] developed an 
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image based user localization system on smartphone for use when the phone’s GPS 

information is lost in big cities. A mobile vision system has also been developed to detect 

pedestrian lights to help pedestrians with visual impairment cross roads [27]. 

Smartphones’ powerful CPU, camera, accelerometer, GPS, and digital compass have also 

made them a very promising platform for augmented reality [29][30]. We propose and 

develop an efficient image and video based real-world remote target localization and 

tracking system using the Android smartphone, by leveraging its built-in sensors such as 

camera, digital compass, GPS, etc. The system includes single-image based remote target 

localization, two-image based remote target localization and video-based remote target 

tracking, as shown in Figure 3.1. 

 

 
Figure 3.1. The proposed smartphone based system has three major components: 1. 
Single-image based remote target localization; 2. Two-image based remote target 
localization; 3. Video based remote moving object tracking. 
 

Image based localization algorithms and stereo vision systems have been studied by 

researchers for decades. Video object tracking is also an active research area for years. 

However, the smartphone is an emerging computing platform and has computational 

limitations. New designs and methods of image/video based remote target localization 
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and tracking for use on mobile smartphones are yet to be developed, considering the 

following unique characteristics and requirements of smartphones: 

a) Light-weight computing: due to the still limited computation capability of 

smartphones, sophisticated algorithms with high complexity and memory requirement 

may not fit. 

b) Trade-off between accuracy and complexity: achieving a good balance between the 

accuracy and the complexity is a critical consideration on the smartphone platform.  

For example, to estimate a remote target’s trajectory based on the video, an accurate 

tracking with the object boundary appropriately identified is very important, while 

detecting the detailed contour of the object may not be necessary.  

c) Exclusive interactive user interface: smartphone provides a friendly user interface that 

can be leveraged to input parameters and improve the accuracy and speed. Explicit 

and implicit information from user’s interaction is a unique feature on smartphones. 

d) Memory I/O limitation: the smartphone’s computing platform is different from PC, 

which leads to difference in computational complexity distribution. For example, our 

experiments show that large memory space allocation is extremely time-consuming 

on the smartphone.  

 

In this chapter, we not only develop the image/video based remote target localization 

and tracking system on the smartphone, but also propose optimization methods that are 

tailored to the unique characteristics of the smartphone’s computing platform. The 

contributions of this chapter can be summarized as below: 
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1. The proposed smartphone based remote target localization and tracking system is first 

of its kind. We make the initial efforts developing the system on the smartphone and 

provide first hand real-world experimental results of the system. We demonstrate that 

accurate image/video based remote target localization and tracking on the smartphone 

is feasible and practicable. 

2. All the tasks are performed on the smartphone, no remote server is required. We have 

developed algorithms and optimization methods tailored to the smartphone 

computing platform by considering its unique characteristics. 

 

The rest of this chapter is organized as follow. Section 3.2 describes the related work. 

Section 3.3, Section 3.4, and Section 3.5 introduce our proposed system in detail 

including the algorithms. Section 3.6 presents the system performance, and Section 3.7 

proposes and evaluates some complexity optimization methods. Section 3.8 concludes the 

Chapter and discusses the future work. 

 

3.2. Related Works 

 

We describe the related work in image based localization and video based object 

tracking, and highlight how our work differs in this section. 

 

3.2.1. Image based Localization Systems 

 



-23- 
 

Research on image and vision based localization has been extensively conducted in 

the context of robot vision and the stereo vision systems, e.g., Zhang and Kosecka [22] 

studied image based localization in the urban environments and [23] explored image 

based localization in the indoor environments. Smartphones have also been used for both 

indoor and outdoor localization purposes [24][25][26], based on the digital compasses, 

accelerometers and image sensors. However, these localization systems are all designed 

for locating the device itself, but not the remote target. Furthermore, the smartphone 

vision based localization systems, such as [24][26], have to interact with a server and 

leverage the server’s resource. In this chapter, we develop a system to locate a remote 

target and all the computations are performed on the smartphone without a remote 

server.  

Typically, there are two technical approaches for image based localization. The first 

uses image global properties for correlation and the second explores the correlation based 

on a set of local features. Local-feature based approaches are often considered to be more 

robust [21]. In our work, we will use SURF [17] local features for feature matching. 

However, in general, feature extraction and matching are considered computationally 

complex even on a PC platform. In this chapter, we propose an optimized feature 

extraction method designed for the smartphone computing platform taking into account 

its memory I/O and CPU limitations. 

 

3.2.2. Video based Object Tracking Systems 
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Video-based object tracking is an active research field and many works have been 

proposed in the literature. For example, Weng et al. [31] proposed a video tracking 

algorithm using adaptive Kalman filter based on the object’s dominant color assuming 

the background is static. However in our application scenario, such static background 

assumption does not hold anymore since users’ hands may be shaking while shooting a 

video. Roh et al. [32] proposed a tracking algorithm that detects the detailed contour of 

the moving target, which is not suitable for the mobile scenario due to its high 

complexity. Rosales and Sclaroff [33] developed a 3D trajectory tracking system with a 

fixed uncalibrated camera. However it estimates the 3D trajectory up to a scale factor to 

help more accurate 2D tracking on the image plane, not the real world 3D trajectory. Xu 

et al. [34] also proposed a 3D-trajectory estimation system based on video sequences. 

However, its computationally expensive SIFT-based feature matching component is not 

suitable for video based object tracking on the smartphone platform. The existing video 

based object tracking algorithms cannot be adopted for our problem for one or more of 

the following reasons: 

1. Static background assumption: such assumption does not hold for videos taken by the 

smartphones. 

2. Roughly locating the moving object on the image only: such tracking results cannot 

be used to estimate the object’s remote location in the physical world. 

3. Detecting object’s detailed contour: the detailed contour detection introduces high 

complexity and is unnecessary and not suitable for our system.  
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4. Not originally designed for the smartphone platform: Smartphone’s computational 

limitation denies many existing high complexity algorithms; User interaction is 

another exclusive advantage of the smartphone that has not been considered before.  

 

In this chapter, we develop a light-weight video based remote target tracking system 

that can accurately track the moving objects in the video on the smartphone, based on 

which we can estimate the remote objects’ moving trajectory in the physical world. 

In addition, the extended Kalman Filter (EKF) has proven to be very useful in the 

recovery of rigid motion and structure from image sequences [33]. Meanwhile, applying 

EKF to remote target tracking such as vehicle tracking based on some non-image sensor 

readings has also been widely used [35]. In our work, we adopt the EKF model to track a 

remote target’s trajectory and estimate its velocity based on the observations from the 

video. 

Figure 3.1 shows the components of the proposed smartphone based remote target 

localization and tracking system. Before using the system, the smartphone camera needs 

to be calibrated [11]. In order to position or track the remote object, the system collects 

the compass reading and the GPS coordinates of the phones while taking images/videos 

of the remote object. Under the circumstances where no GPS coordinates and/or digital 

compass readings are available on the phone, distance and relative trajectory with respect 

to the phone can still be estimated. In the following, we present the three major 

components and the basic algorithms of our system: the single image based localization 

system, the two-image based localization system and the video based object tracking 

system, respectively. 
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Figure 3.2. (a) Single-image based remote target localization: user takes a picture of a 
remote target and draws a tight bounding box around it; (b) Two-image based remote 
target localization: user inputs a rough bounding box on the left and right image 
enclosing the target. (The camera and the remote target positions are displayed on Google 
Maps. Blue dots: camera position; Red pin: estimated position of the remote target). 

 

3.3. Single Image-based Remote Target Localization  

 

When estimating the position/distance based on a single image, user is expected to 

know the object’s physical height and width. For example, if the target object is a car and 

its model can be automatically detected using computer vision techniques, its precise size 

can be retrieved from the web. The user inputs a tight bounding box around the object in 

the image (note this condition will be relaxed for moving target objects when we have a 

video, as discussed in Section 3.5), and then the system will estimate the remote target’s 

relative position to the smartphone based on the correspondences between the object’s 

physical size and its pixel size on the image plane. Putting together the GPS and the 

compass reading, we can estimate the GPS coordinate of the object, as illustrated in 

Figure 3.2 (a). 

 

3.3.1. Algorithm 
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Figure 3.3. The 4-point algorithm: WIDTH and HEIGHT are the object’s physical size; 
Wi are four 3D points and Ci are their corresponding points on the image plane. 
 
 

 
Figure 3.4. The 2-point algorithm 

 

The algorithm’s assumption is that the remote target’s physical size is known. As 

shown in Eq.(2.1), we can calculate the relative pose                 to estimate the remote 

target’s relative position. Note the translation vector   is the relative position of the 

remote target to the camera. The rotation [            can be described by three angles [12] 

and the translation   is a 3×1 vector, hence the relative pose includes six unknowns. We 

need to have at least six equations with the relative pose as the only unknown in order to 

estimate the relative pose.  

Because of the smartphone’s exclusive interactive user interface, a simple user’s input 

can be used as the system input parameter to create the equations that we need. We 

assume the 3-D object is a planar object. This assumption holds in many cases since the 

target is far away and approximately only one side of the 3-D object appears in the 

image. The four corners of the bounding rectangular box drawn by the user around the 

object correspond to four 3-D points (  ) of the world coordinate system as shown in 
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Figure 3.3, which demonstrates our 4-points algorithm. The coordinate values of the four 

3-D points are also shown in Figure 3.3. Since we assume   ’s are co-planar, their   axis 

values in the world coordinate system are all zero, we have: 

                                 
              (3.1) 

Each of Eq. (3.1) gives two equations, so there are a total of 8 equations. Then the six 

unknowns could be calculated by solving a linear system.  

In fact, in many practical cases, when the user takes image of an object on a level 

surface, the object’s physical height corresponds to the height of the tight bounding box 

on the image when the camera is held upright. In these cases, the physical height 

information alone is sufficient for object position estimation. We can assume that the 

vertical line      and      of Figure 3.3 are in parallel, as shown in Figure 3.4. With 

such an assumption, we describe our 2-point algorithm for single-image based 

localization. In Figure 3.4,   and   ’s camera coordinates (          
 ,           

 ) 

and    and   ’s  image coordinates (   
 
   

 
    ,    

 
   

 
    ) are related by: 

   
 
   

 
          

 
     

 
    

              
  (3.2) 

   
 
   

 
          

 
     

 
    

              
  (3.3) 

According to the assumption,      is in parallel with      and both of them are in 

parallel with   -axis too, we have: 

     ,       and   
 

   
  

Then we can derive: 
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  ’s camera coordinate (          
 ) is the remote target’s relative position to the 

phone. Typically, the value of    axis is close to zero since the camera and the object are 

on a level surface.   

 

3.4. Two Image-based Remote Target Localization 

 

In case we do not have the information about the object’s physical size, we can still 

estimate the object’s position by taking two images of the remote object from two 

different positions with two different phones or the same phone. The phone’s GPS 

locations for both images are recorded. If the GPS reading is not accurate enough to 

estimate the two phones’ distance, we can use the single-image based system to estimate 

the distance between the two phones by treating one phone as the remote target of the 

other phone. The user can identify the remote target using a bounding box roughly 

enclosing the target on both images, after which the system will perform two-view 

triangulation to locate the remote target as shown Figure 3.2(b). If the two images are 

taken on different phones, we utilize Android phone’s Bluetooth or WiFi network 

capabilities to send the image from one to the other. 

 

3.4.1. Algorithm 
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Figure 3.5. Two view triangulation: PW is a remote point; pL and pR are the corresponding 
points on the two image planes. 
 

We perform triangulation between the two image views as shown in Figure 3.5. As 

given in Section 2.1.2, epipolar geometry related theories show that if    and    are two 

corresponding pixel points between two views, the fundamental matrix   and the two 

points have the constraint: 

  
        

First, we perform SURF [17] feature matching between the two images. We then use the 

matched features to calculate the fundamental matrix   based on the 8-Point Algorithm 

[15]. The essential matrix   can be calculated from the fundamental matrix and the two 

camera’s intrinsic matrixes: 

     
      

The essential matrix E contains the camera relative pose: the rotation R and the 

translation v: 

          

By decomposing  , one can obtain the rotation matrix   and the translation vector   

whose L-2 norm equals one [18]. Actually by decomposing  , we can have four possible 

  and   combinations. However, with the positive depth constraint, we can identify the 

camera’s true relative pose [18].  
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After the relative pose is calculated, we then try to identify the corresponding points 

on the objects as triangulation target points. Based on user’s bounding box, we can have 

two cropped images. We then perform feature matching from the two cropped images. 

We assume the two objects are planar objects, since they are far away from the camera. 

We calculate the perspective transformation between the two planes using RANSAC [19] 

based on the matched features and filter out the outliers which potentially include the 

matching points in the cropped image but outside of the object. The corresponding points 

on the objects can be used for triangulation. If we cannot find matching features on the 

objects, the geometric centers of the two bounding boxes are used as the triangulation 

target point. The solution to handle noisy triangulation target points proposed by Hartley 

and Strum [16] is adopted in our system. After v’s norm is scaled based on the true 

distance, we perform Two-View Triangulation [18] to estimate the target’s relative 

position to the phones. Then with the GPS and compass readings of the phone, the remote 

target’s GPS location can be calculated. The diagram of the basic two-image based 

localization algorithm is illustrated in Figure 3.6. 

 
Figure 3.6. Diagram of the two-image based localization algorithm 
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3.5. Video-based Remote Target Tracking 

 

When using the video tracking system, the user holds the smartphone still while 

shooting a remote moving object, and simply taps on the target for tracking. Our system 

then derives tight bounding boxes around the target object in all video frames. Assuming 

the physical width and height of the remote target is known, we then apply the single-

image based localization to project the moving object position on the image plane to the 

real world coordinates. We then use the Extended Kalman Filtering (EKF) model [13] to 

estimate a smooth trajectory and the velocity of the moving target. With the smartphone’s 

GPS coordinates and digital compass readings, the moving object’s trajectory could be 

drawn on the map. 

 

3.5.1. Algorithm 

 

An overview of the video tracking algorithm is given in Figure 3.7. An important task 

is to generate tight bounding boxes around the target for all frames in the video to 

facilitate subsequent remote target position estimation. In this process, image pixels can 

be classified into two categories: Background B and Object O, based on different motions 

of B and O.  

Based on the user’s touching point in the first frame, we will create a square area 

centered around the touching point with side size D, as shown in Figure 3.8. The square 

side size D is pre-determined and large enough to enclose the moving object (in our 
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experiments, the size D is set to half of the height of the video). The operations for the 

first frame are performed only in the square area.  

 

 
Figure 3.7. Overview of the video tracking algorithm. 

 

 
Figure 3.8. Yellow cross: user’s tapping point; Black square: centered by user’s tapping 
point with edge size D; Red points: Lucas-Kanade optical flow features of the moving 
target. 
 

To obtain a tight and accurate bounding box, we need to find the object’s canny edges 

that belong to the object boundary. Canny edges are detected first and added as a mask on 

top of the cropped image prior to the following segmentation step. Then color similarity 

based segmentation [12] is performed to get different clusters. After that, connected 

component analysis is applied to the segmented image to get image patches   = {  }, i = 
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1,…,n. The patches are then categorized into either background patches   or object 

patches   , as described below. 

Then the patches can be clustered based on their estimated motion vectors with 

respect to the next frame. However, motion search merely based on minimizing the 

compensation error over the whole space is very computationally expensive and is not 

suitable for smartphone applications. Instead, we calculate the motion based on the 

Lucas-Kanade optical flow features [10]. The optical flow features’ motion can serve as 

references for the motion estimation based on minimizing the compensation error.  

It is easy to differentiate between background features and foreground features 

because their motions are very different. Red points in Figure 3.8 demonstrate the 

moving object’s optical flow features positions. Both of the background and object 

optical flow feature motions are represented by a motion probability density function 

(PDF) and are assumed to follow a Gaussian distribution. Let the object motion at time t 

be  ⃗⃗     , then: 

 ⃗⃗         ⃗      ,  ⃗   [
    

    
],     [

    
  

     
 ]  

Similarly, let the background motion be  ⃗⃗     , then 

 ⃗⃗         ⃗      ,  ⃗    ⌈
    

    
⌉,    [

    
  

     
 ] 

 

The Gaussian parameters  ⃗  ,  ⃗  ,    and    are estimated from the Lucas-Kanade 

optical flow features. Note that for a Gaussian distribution N( ,  ), we have        

             . So the motion’s variance derived from the optical flow features 

will help reduce the image patch’s search range.  
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We will perform motion estimation guided by  ⃗⃗      and  ⃗⃗      for each patch, in 

which the searching range is constrained by the variance. For a given   , we calculate    

and    defined as: 

        ⃗⃗  
{   ⃗   }   ⃗    (

    

    
),      [                     ],  

     [                     ]  

        ⃗⃗  
{   ⃗   }   ⃗    (

    

    
),      [                     ],  

     [                     ]  

         ⃗    
∑ |        ⃗⃗        |    

                            
  

In the above definition, L is the position of a pixel from patch    and       is L’s gray 

scale intensity value at frame t.  

   and    are the motion compensated prediction residual errors for the object motion 

and background motion respectively.    norm is used instead of    norm to reduce the 

potential bias introduced by some large intensity difference on motion estimation. Then 

we have: 

If                , then    is a Background patch; 

Else if               , then    is an Object patch; 

Else, then    is labeled as unclassified. 

where   is a threshold value. It should be noted that if    belongs to a uniform 

background close to the object, it might also satisfy the object patch condition, creating a 

misleading scenario. Therefore another criterion is added for the Object patch to address 

the uniform background problem: 

        , where 
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 ⃗⃗  

{    ⃗   }   ⃗    (
    

    
) 

     [                     ] 

     [                     ] 

          ⃗    
∑ |      ⃗⃗        |    

                             
 and    is the compensation error under object 

motion on the same frame. In summary, we have: 

Object patches = {  |                } 

Background patches = {  |       }. 

 

Figure 3.9 shows an example of the image patch classification result. There are some 

very small unclassified patches shown as grey level areas in the figure. They will be 

ignored since most of the patches will be classified and classified patches are sufficient 

for locating the tight bounding box. To obtain the tight bounding box, all we need is to 

detect the canny edges belonging to the object. The K-Nearest Neighbor algorithm is 

used. For each canny edge pixel       , find its neighborhood pixels whose distance to 

       is less than R (R specifies the neighborhood range). If the following condition 

holds: 

                

             denotes the number of pixels belonging to *, θ is a threshold value, then 

       will be treated as a canny edge pixel belonging to the object. Then a tight 

bounding box could be drawn whose sides pass through the most outside object edge 

pixels, as shown in Figure 3.10. Given the optical flow feature speed of the object, the 

position and size of the tight bounding box on the current frame, a predicted bounding 
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box for the next frame in which the object is enclosed with a high probability can be 

generated. Then the same operations for the current frame will be applied to the next 

frame. The same process will be repeated for the consecutive frames as represented by 

the loop shown in Figure 3.7. After the tight bounding boxes are obtained for every 

frame, we can estimate the remote moving target’s positions for each frame based on the 

single image based algorithm. Currently, our system only tracks a moving object on the 

image plane without considering the scenarios with occlusion. Algorithms tracking 

multiple moving objects with occlusion have been proposed in many works such as 

[31][33], which will be included into our system in the future work. 

 
Figure 3.9. Black areas are Object patches with high confidence; White areas are 
Background patches with high confidence. Grey level areas are unclassified patches. 
 

3.5.2. Kalman Filtering 

 

The remote target position estimation will have errors introduced potentially by 

camera shaking, tight bounding box estimation error, as well as camera intrinsic 

parameter estimation errors. To mitigate these potential errors, Extended Kalman 

Filtering (EKF) [13] is applied. Since in most application scenarios, the camera is level 

with the remote target, the YC axis value in the coordinate system OC as shown in Figure 

3.3 is almost zero. We therefore only introduce the XC and ZC axis values into our EKF 

model.  

The state vector is defined as: 
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where      ,       represents the object position and      ,       represents the object 

instant velocity. The dynamic equation relates the target states    at time t+1 and t: 

               ⃗     

where F= [
  
  

   
   

  
  

     
     

], A = [
         

         

           
               

] 

and    is the time between two consecutive frames(i.e., 1/25 sec if the video frame rate is 

25fps).  ⃗          ⃗    
    represents the acceleration of the target as a statistical 

perturbation. The process noise level   
  controls the tradeoff between tracking 

convergence for a constant velocity target and the flexibility to track a maneuvering (e.g., 

accelerating) target. The observation matrix is: 

  (
  
  

  
  

) 

Two major steps in each iteration of EKF are the prediction step and the correction step: 

Prediction:    

  ̂             ̂         
    

     

Correction: 

       ̂    
 (  ̂    

     )
  

   

         ̂         (       ̂   )   

               ̂    

where    is the observation obtained from the image based position estimation,  is the 

measurement error and is based on our distance estimation accuracy presented in Section 

3.6. 



-39- 
 

 

3.6. Experimental Results 

 

Google Nexus One with 1GHz processor and 512 MB memory is chosen as our test 

phone. Our image/video based localization and tracking system is implemented using 

JAVA and C++ native package on the smartphone. For image processing purposes we 

integrate OpenCV [20] into our smartphone application. Different from an in-door, well 

set up stereo vision system, our system’s accuracy may be affected by various factors, 

e.g., blurred image caused by human hand shaking for both single-image and two-image 

based systems; bounding box input by user that  fails to enclose the remote target tightly 

for the single-image based system; only a few SURF features extracted due to the less 

textured background views, and inaccurate relative pose caused by larger distance 

between two phones for the two-image based system. In the real world applications, all of 

these heterogeneous factors for accuracy make the error analysis very difficult. In our 

experiments, users try to take images steadily without blurriness visually (in the cases a 

blurred image is taken, users re-take another image for further testing). In the 

experiments of the single-image based localization, we assume the user can locate a tight 

bounding box around the target with our handy user interface. Our experiments for two-

image based localization are conducted given the follow settings: the distances between 

two phones are 5-7 yards (remote targets are more than 30 yards away); the two phones 

are about the same height; some background scenes are shown in Figure 3.14. The single-

image based localization uses the image resolution 2592×1944 and the two-image based 

localization uses the resolution 1600×1200. The average accuracy of our image based 
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localization system for the single image based and two-image based cases are listed in 

Table 3.1 and Table 3.2 respectively. The accuracy is presented for the estimated target 

distance to the phone for the single image based localization and the target distance to the 

left phone for the two-image based localization. The ground truth distances are obtained 

from a Laser Range Finder. It can be observed from Table 3.1 and Table 3.2 that the 

single image based approach can achieve an average accuracy of 94% with the 4-point 

algorithm and slightly worse with the 2-point algorithm. The two-image based 

localization can achieve an average accuracy of 83%. The performance of the two-image 

based algorithm looks slightly worse for a couple of reasons: first the distance between 

the two cameras is an estimated value based on the single image based method, so the 

error will propagate during the two-image based localization process. Second, the camera 

relative pose estimation is constrained by the feature detection and matching accuracy. 

Third, if there is no identified feature matching on the object, we have to rely on the 

bounding box’s geometric center as the triangulation point which might reduce the 

accuracy. In addition, the highest resolution image (2592×1944) is not chosen due to the 

smartphone’s computing power limitation. Note that we can achieve an average accuracy 

of 89% on the two-image based approach with image size (2592×1944) on the PC 

platform.  

Table 3.1. Single-image based localization accuracy (Unit: Yards) 
Ground Truth 11 14 21 32 41 80 

4-point 12.26 15.71 22.10 33.68 41.94 76 
2-point 12.10 16.21 22.34 34.76 43.22 77 

 
Table 3.2. Two-image based localization accuracy (Unit: Yards) 

Ground Truth 35 40 49 50 96 
Estimated 30 34 45 42 111 
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Figure 3.10. Target tracking results on the video 

 
Figure 3.11. Video tracking results with different backgrounds and remote targets 

 

Figure 3.10 shows the video based target tracking results with the example given in 

Figure 3.8 (video resolution: 720x480). More real-world video tracking results with 

different backgrounds and remote targets are shown in Figure 3.11, which shows our 

video tracking algorithm is robust. In our experiments, we set the video tracking 

algorithm parameters   as 1.6, θ as 0.3 and R as 3 empirically. It shows that the tight 

bounding boxes enclosing the moving vehicle could be located accurately. We have more 

video tracking results with similar performance. When the tight bounding boxes are 

located accurately on the video frames, the single-image based algorithm (4-point and 2-

point algorithm) can be used for the remote target localization for each frame, and the 

accuracy is almost the same as what is presented in Table 3.1 even though the video 

frame resolution is lower. Figure 3.12 shows the estimated relative trajectory and velocity 

of the example given in Figure 3.10. With the GPS and the compass sensor reading, we 
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can also plot a moving trajectory on a map. Figure 3.12 (a) shows that the original 

trajectory estimation based on the 4-point algorithm has some abrupt changes which are 

introduced by either the bounding box estimation errors or human hands shaking, while 

our EKF model provides a smooth trajectory. In many real world scenarios, the 3-D 

remote target’s projection on the image plane includes more than one side of the target. 

So the pixel size of the bounding box does not correspond to the physical size of the 

target. Then the 4-point algorithm will not fit. However, in most practical cases, when the 

user shoots a video of a moving target on a level surface, the object’s physical height 

corresponds to the height of the tight bounding box on the image if the camera is held 

upright. Then we can use our 2-point algorithm to estimate the remote target’s position. 

Figure 3.12 (a) also shows the tracking results with the 2-point algorithm after EKF is 

applied. We can see that the trajectories based on the two algorithms are very close to 

each other, but the 4-point algorithm is a little bit more stable than the 2-point algorithm 

since the 4-point algorithm has two more corresponding point constraints. However, the 

advantage of using the 2-point algorithm in the video tracking is that it is more practical 

and can be applied for more general scenarios. Figure 3.12 (b) shows the moving 

vehicle’s velocity. It concurs with our observation that the target was accelerating slowly 

after waiting for the “green” traffic light. It is worth pointing out that, in our real world 

tests, we found that holding the camera roughly upright is sufficient and the tracking 

result is not very sensitive to it.  
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Figure 3.12. (a) Trajectory based on original observations with 4-point algorithm; 
smoothed trajectory with 4-point and 2-point algorithms after modeling with EKF. 
Camera position is (0, 0); (b) Estimated velocity of the remote target. 

 

Regarding the complexity of the three components, it takes less than a second for the 

single-image based localization system for any image resolution, and 30-40 seconds for 

the two-image based localization with image size 1600×1200. Our video based target 

tracking system can achieve a position estimation speed of about 3~4 fps (frames per 

second). In Section 3.7, we propose some optimization methods to reduce the 

complexities of the two-image based localization and the video based target tracking 

respectively. 
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3.7. Speed Optimization 

 

In this section we propose some optimization schemes to improve the speed of the 

system to make it more practical. 

 

3.7.1. Two-image based Localization System Optimization 

 

3.7.1.1. Block based feature extraction 

 

As shown in the second and the third row of Table 3.3, the running time distributions 

over different sub-tasks are different between the PC and smartphone platform when 

feature extraction is performed on the entire image. Feature extraction is extremely 

computationally heavy on the smartphone. The reason is that SURF builds image 

pyramids and does filtering for each layer with Gaussian of increasing variance by taking 

the difference between layers, which involves large memory allocation and de-allocation 

operations. Our experiment shows that allocating such large memory space is responsible 

for the majority of the complexity in the feature extraction step on the smartphone. To 

deal with such an I/O limitation, we do not perform feature extraction on the entire 

image. Instead, we cut the image into blocks (100×100) and perform feature extraction on 

individual blocks. The fourth row of Table 3.3 shows that the speed of feature extraction 

has been improved significantly after performing feature extraction on the 100×100 

blocks (50% overall speed improvement). Experiments show that the feature extraction 

and the final triangulation results based on blocks are almost the same as when 

processing on the entire image. 
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Table 3.3. Complexity distribution of two-image based localization on PC and Android 
smartphones respectively (1: Feature extraction, 2: Feature matching, 3: others.)  

Components 
(sec&percentage) 

1 2 3 Total 

PC 0.956 (57%) 0.174 (10.4%) 0.547 (32.6%) 1.677 (100%) 
Smartphone 
(entire image) 

39.7 (90.3%) 1.99 (4.5%) 2.25 (5.2%) 43.94 (100%) 

Smartphone 
(100×100 block) 

18.17 (84.2%) 1.3 (6.0%) 2.1 (9.8%) 21.57 (100%) 

 

3.7.1.2. Progressive random block selection 

 

 
Figure 3.13. Progressive random block selection for feature extraction. 

 

 

In our application scenario, the left images and right images are very similar to each 

other. As long as we can find sufficient amount of features for matching, the relative pose 

between the two image planes can be calculated. So it is unnecessary to extract features 

from the blocks covering the entire image. Instead, we only perform feature extraction on 

a subset of blocks. We propose a progressive random block selection method in this 

section.  

For the sake of robustness, the entire right image (or the left) has to be used for 

feature extraction. Based on the number of features of the right image, we can expect that 
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the left image also has about the same amount of features since they have the same scene 

just with different perspectives. The number of features in the right image also tells us the 

texture of the images. If the right image is a textured image with many feature points (in 

our experiment we set 6 feature points per 100×100 block as the threshold), the target 

number of features we will extract from the left image is 40% of the total number of 

features of the right image; otherwise it will be 70% of the total number of features of the 

right image. The above threshold numbers are determined empirically. 

We progressively select the blocks on the left image for feature extraction until we 

are able to reach the target number of features for matching. Firstly, we uniformly 

randomly select 10% of all the blocks and extract SURF features on these blocks. If we 

have extracted enough feature points, the feature extraction terminates. If not, we 

continue to process the neighboring blocks of the processed blocks. Typically, features 

often concentrate in the textured areas of an image and have lower density in the uniform 

areas (such as the road) as shown in Figure 3.14. Neighboring blocks of the blocks that 

have more features are given higher priority for feature extraction, in that we can have 

more features by processing fewer blocks. The algorithm selects the unprocessed blocks 

for feature extraction iteratively and terminates until the target number of features has 

been extracted. Figure 3.13 shows the algorithm diagram of our progressive random 

block selection. Figure 3.14 gives the feature matching results with the progressive block 

selection method. We can see from Figure 3.14 (a) and (b) that with feature-rich images, 

processing about 30% of the left image’s blocks has given us enough matches for 

estimating the fundamental matrix (8-point algorithm requires at least 8 correspondences 

between the two images). But with the image like Figure 3.14 (c) that has more uniform 
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areas without many features, about 70% of the left image’s blocks are used for feature 

extraction. 

 
(a)                                                          

 
 (b) 

 
(c) 

Figure 3.14. Feature matching results with progressive block selection method. The 
blackout blocks are not selected for feature extraction. (a) and (b) have textured 
background, only 30% of the left image are used. (c) has more uniform background and 
75% of the left image are used.  

 

Table 3.4. Two image based system optimization 
Feature extraction method Speed (sec) Relative error 
Entire image 38.1 0% 
Block based (All the blocks) 18.4 3.9% 
Progressive block selection 14.2 6.7% 
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Based on our tests with 5 sets of real world images, Table 3.4 shows the average 

complexity and average accuracy of the two-image based localization before and after 

speed optimization. The final triangulation results are slightly worse with block-based 

feature extraction. This is because we might have slightly fewer features with block based 

feature extraction since the features of the original image close to the block edges may be 

lost. The progressive random block selection does not affect the triangulation results too 

much, while saving a lot of complexity. Our experiments show that the two-image based 

localization speed is improved by 60% on average with the proposed optimization 

method.  

 

3.7.2. Video-based Remote Target Tracking System Optimization 

 

3.7.2.1. Feature tracking area prediction and earlier patch classification 

 

The video based target tracking system has several computing components: optical 

flow feature tracking, segmentation, motion estimation, connected component analysis, 

as well as I/O operations. The complexity distribution can be found in Table 3.5. We can 

see that the four most significant computing components are programming overhead 

(others), segmentation, optical flow tracking and motion estimation. We have tried 

several existing fast segmentation algorithms including quickshift [37], superpixel [38] 

and etc. The color similarity based segmentation [12] which we adopted is the fastest and 

provides satisfactory results for our system. We improve the speed by reducing the 

complexity of the optical flow feature tracking and the motion estimation.  
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When the object is moving in the video frames, its position on the following frames 

could be predicted by the previous motions. Instead of searching the whole next frame for 

the optical flow feature tracking, we limit the search area within the predicted box which 

is indicated in Figure 3.7. So the optical flow feature tracking is optimized by limiting the 

tracking area of the following frames. Further, in the patch classification process, the 

patches along the sides of the square box or the predicted bounding box have a high 

probability of being background and the patches in which motion features can be found 

have a high probability of being object. For these patches, their class (Background or 

Object) can be earlier determined so that the motion estimation process for them is 

bypassed to reduce the computational cost.  

Table 3.6 shows the video tracking complexity after the optimization based on user’s 

input. Nearly 50% speed improvement can be obtained for the patch motion estimation 

component and 70% speed improvements for the optical flow feature tracking. Overall 

speed improvement is 20%. 

Table 3.5. Video based tracking complexity distribution (1: Motion estimation; 2: 
Segmentation; 3: Connected component analysis; 4: Optical flow feature tracking; 5: 
Edge detection; 6: others) 

Components 1 2 3 4 5 6 
Percentage 6.3% 34% 1.3% 19% 0.94% 38% 

 

Table 3.6. Video tracking optimization considering user’s input (Motion: motion 
estimation; Optical: optical flow feature tracking; spf: second per frame) 

Video Motion (spf) Optical (spf) Processing rate(fps) 
original 0.0158 0.0473 3.98 
optimization 0.0078 0.0152 4.8 

 

 

3.7.2.2. Spatial and temporal video down-sampling 
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Both spatial and temporal down-sampling are adopted in order to reduce the 

complexity of video based target tracking. For the temporal down-sampling, all the 

frames are used for optical feature tracking in order to detect the motion accurately and 

robustly. But we do not use every frame for remote target position estimation. Instead, we 

only use one out of every n frames, as shown in Figure 3.15. The original video spatial 

resolution is 720×480, the lowest resolution we use is 540×360 for the spatial down-

sampling.  

Figure 3.16 gives the tracking results with different spatial and temporal down-

sampling parameters compared to the results without down-sampling by using the 

experiment shown in Figure 3.10, when the 4-point algorithm is used. Figure 3.16 shows 

that the tracking trajectory with down-sampling is close to the trajectory based on the 

original video. Table 3.7 summarizes the complexity and the accuracy (accuracy is 

represented by relative error compared to the tracking results of the original video) of the 

example of Figure 3.10. We can see from the table that with the spatial resolution of 

540×360 and the temporal down-sampling factor of 3. The processing frame rate can be 

increased to 14 fps with small relative error. The average relative error after down-

sampling is about 0.5 yards even when the objects are more than 30 yards away. Based 

on our tests with 10 real world videos, our video based target tracking can obtain near 

real-time processing speed (on average 16 fps).  
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Figure 3.15. Video temporal down-sampling 

 

 
Figure 3.16. Tracking results with temporal and spatial down-sampling (“X×Y, n” denotes 
spatial down-sampling to resolution X×Y and temporal down-sampling by a factor of n). 
Camera position is (0, 0). 

 

Table 3.7. Tracking speed and accuracy with video down-sampling 
Video Processing rate (fps) Relative err(yards) 

720×480,1 4.8 0 
720×480,2 7.08 0.273 
720×480,3 8.29 0.435 
540×360,1 8.87 0.54 
540×360,2 12.31 0.62 
540×360,3 14 0.57 

 

3.8. Conclusion and Future Works 

 

In this chapter, a novel, easy-to-use, image/video-based remote target localization and 

tracking system on commodity smartphones is presented. We demonstrate that remote 
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target position, trajectory and speed estimation using commodity smartphone is feasible, 

by utilizing image processing and computer vision techniques combined with the 

smartphone’s sensors. Our system can be used to measure coordinate values of any scene 

point with respect to the camera, so that it can be extended for applications such as 

gaming, 3-D measurement, augmented reality applications and etc. It can also combine 

with image based GPS systems to provide mobile user better location-based services. 

Furthermore, gyroscope (which accurately measures the phone’s self 3D rotation) has 

now been integrated into smartphones. We will integrate gyroscope into our system, such 

that users could rotate the cell phone when tracking video of a moving object. Our future 

work also includes further system accuracy improvement and complexity reduction. We 

believe our system could be applied in a number of application scenarios such as military 

operation, law enforcement, and commercial products.  
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Chapter 4. A Compressive Sensing based Privacy 

Preserving Data-mining and Signal Processing 

Framework 

 

As discussed in Chapter 1, the second type of the mobile cloud systems is: mobile 

devices act as a thin client connecting to a remote cloud, and offloading the data and 

processing to the cloud, in which privacy is a significant concern. To solve the privacy 

issue when private data are shared in mobile cloud computing and other collaborative 

data-mining scenarios, we proposed a generic privacy preserving collaborative data-

mining framework in this chapter. 

 

4.1. Introduction 

 

The problem of privacy preserving is becoming more and more important in many 

joint data-mining applications that deal with health care, e-commerce, security, financial, 

personal data and other types of sensitive data as the examples given in Chapter 1. In the 

meantime, the cloud computing technologies are growing, and it is more economical for 

data holder institutions to shift data storage or data-mining computations to the cloud 

instead of purchasing hardware and software by themselves. Ideally, the cloud will only 

store the data or perform data-mining in the encrypted or perturbed domain in order to 

preserve the data holder’s data privacy. We propose a generic privacy preserving data-

mining collaborative data-mining framework based on compressive sensing theory and 
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the secure multiparty computation. In our framework, the data are stored and processed in 

the compressive sensing domain in the cloud simultaneously.  

Earlier attempts to address privacy preserving data mining from disparate data 

sources suffer from one or more of the following limitations: low level of security (e.g., 

the risk of exposing the common key to individual data holders [39]), high computational 

and communication complexity, and no/low scalability, as will be discussed in more 

details in Section 4.7. Our framework not only supports privacy preserving collaborative 

data-mining, but also offers a great deal of flexibility and scalability including fully 

utilizing the cloud infrastructure, bringing no additional cost to existing data holders 

when introducing new data holders, and supporting interpretation of the data mining 

results in the original data domain.   

The rest of this chapter is organized as follows. Section 4.2 introduces preliminary 

knowledge for the proposed framework including the compressive sensing theory and the 

secure multiparty computation. In Section 4.3, related works are discussed and how the 

proposed framework differs is highlighted. In Section 4.4 and Section 4.5, details of the 

proposed framework, including relevant algorithms and protocols are presented. In 

Section 4.6, security analysis and complexity analysis are given. Then advantages of the 

proposed framework are demonstrated in Section 4.7. Section 4.8 presents the 

experimental results with real-world data. The chapter concludes in Section 4.9. 
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4.2. Preliminary Knowledge 

4.2.1. Compressive Sensing 

 

Restricted Isometry Property (RIP) is a required condition for the perfect 

reconstruction in the compressive sensing theory. Before presenting the compressive 

sensing theory, we first introduce the Restricted Isometry Property: 

 

Restricted Isometry Property (RIP): A vector      is k-sparse if |{j: |  |>0}|  . A 

matrix        is said to have the Restricted Isometry Property of order k and level 

        (equivalently, (k,  )-RIP) if  

     ‖ ‖ 
  ‖   ‖ 

       ‖ ‖ 
      (4.1) 

for all k-sparse     . The restricted isometry constant    is defined as the smallest 

value of   for which the above inequality holds. 

 

The compressive sensing theory [64] asserts that when a signal can be represented by 

a small number of non-zero coefficients, it can be perfectly recovered after being 

transformed by a limited number of incoherent, non-adaptive linear measurements. 

Suppose a signal      is a  -sparse vector (only   out of the n elements of   are 

nonzero) and can be transformed to         , where        . If      

satisfies RIP, it can be shown [64] that solving the below optimization problem: 

   ‖ ‖   s.t.            (4.2) 
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is equivalent to finding the sparsest solution s to        , provided           

  , where   is a small constant. Eq. (4.2) presents a L1 minimization problem which can 

be solved by orthogonal matching pursuit (OMP) algorithms [68]. It has been shown [67] 

that there are many ways to construct a matrix      that meets the RIP property, e.g., if 

the entries of matrix      are generated from a Gaussian distribution with zero mean 

and variance    ,      is a RIP matrix with overwhelming probability. In our 

framework, the compressive sensing matrix is generated from such a Gaussian 

distribution.   

4.2.2. Secure Multiparty Computation  

 

Secure multiparty computation (MPC) is a subfield of cryptography. The goal of 

MPC is to create methods that enable parties to jointly compute a function over their 

inputs, while at the same time keeping these inputs private. Here we introduce secure 

scalar product protocol and secure comparison protocol, which will be applied in our 

framework. Most of the MPC protocols in the literature are developed based on the 

homomorphic public key encryption systems introduced in Section 2.2.  

In MPC, an important security model is Semi-honest security model [82]: all parties 

comply with the protocol’s procedure strictly, and none of them will actively withdraw 

midway or incorporate false or malicious data. No two parties will collude to attack a 

third one. But during the computing process, they may try to keep all the intermediate 

information, so that they can infer others’ input after the process. Semi-honest model is a 

reasonable assumption for adversaries such as third-party service providers [84].  
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4.3. Related Works on Privacy-preserving Data-mining 

4.3.1. Privacy Preserving Data-mining  

  

Techniques proposed for privacy preserving data-mining can be grouped into six 

categories [39]: data perturbation, data swapping, k-Anonymity, secure multiparty 

computation (MPC), distributed data mining, and rule hiding. Data perturbation includes 

the probability distribution approach and the value distortion approach [65]. Our 

proposed privacy preserving work is a kind of value distortion approach which adopts 

multiplicative perturbation using a key-based random compressive sensing 

transformation.  

Random projection [39] refers to the technique of projecting a set of data points from 

a high-dimensional space to a randomly chosen lower-dimensional subspace. The idea of 

random projection arises from the Johnson-Linenstrauss Lemma. The lemma says that 

any set of s points in a high dimensional Euclidean space can be embedded (under a 

Lipschitz map [65]) into a lower dimensional space such that the pair-wise distance of 

any two points is maintained within an arbitrarily small factor. This nice property implies 

that it is possible to change the data’s original form by reducing its dimensionality but 

still maintains its statistical characteristics. Random projection is applied as a 

multiplicative perturbation in [39] for privacy preserving collaborative data-mining.  In 

[39], the random projection matrix is shared between and known by all the data holders, 

which results in a very vulnerable situation. When the shared key and some encrypted 

data are known to the adversary (e.g., when some of the data holders are compromised), 

the system security relies on that an underdetermined linear system does not have a 
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unique solution. However, by exploring the properties of the random projection matrix, 

an approximation of the original data could be found. In addition, when the input data is 

restricted to Boolean, the protocol will be at a high disclosure risk. Furthermore, this 

method does not provide an accurate decryption method to reconstruct the data from the 

encrypted domain to the original domain. In our proposed framework, we address the 

significant concern of shared key being exposed to all data holders by introducing an 

independent trusted key provider and performing compressive sensing key based 

encryption/decryption using an efficient secure multiparty computation scheme without 

revealing the key to individual data holders.  We assume that this independent trusted key 

provider is much more secure and trustable than individual data holders who might have 

limited capability to protect their data. In addition, the encrypted data is not known and 

possessed by the data holders, further reducing the opportunity of encrypted data being 

attacked. 

Canny [5] proposes an algorithm that allows a community of users to compute a 

public aggregate of the data without exposing individual users’ data. The method uses 

SVD to find an orthogonal space based on the aggregated data and projects the original 

data to such space for collaborative filtering. The similarity between users is determined 

by the representation of the users in the reduced space. Using such method requires 

continuously performing SVD for a large dimensional matrix first, which is 

computationally expensive and also introduces significant latency for the whole system. 

 

4.3.2. Secure Multiparty Computation for Privacy Preserving Data-mining 
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Secure multiparty computation naturally provides an interesting direction for 

distributed privacy preserving data-mining since MPC provides protocols that allow 

different parties to jointly perform a computational task without revealing their own data 

to the others. Lindell and Pinkas [40] adopt a secure multiparty computation protocol to 

solve a decision tree learning problem with the popular ID3 algorithm. [57] presents 

some early attempts toward building a secure multiparty computation toolkit of privacy-

preserving distributed computation techniques that can be assembled to solve specific 

real-world problems. It presented protocols for secure sum, secure set union, secure size 

of set intersection and secure scalar product. [45][69]developed protocols for privacy 

preserving k-means clustering in a distributed scenario. A general concern about MPC is 

its computational and communication complexity that make it difficult to use for large 

data sets and large number of parties (e.g., data holders). For example, in the MPC 

algorithms in [45][69], the k-means clustering is an iterative process, so the 

computational and communication costs highly depend on the dataset and the number of 

data holders. Another problem of the MPC based data-mining protocols is their low level 

of scalability. In [45][69], when there are new data holders join the multiparty group, the 

whole MPC process involving all the other data holders needs to be repeated. To address 

these problems, our proposed framework takes a two-step approach - developing new 

MPC protocols in performing simultaneous encryption and compression of data, followed 

by data mining in the compressed and encrypted domain. This separation approach 

significantly reduces the computational and communication complexity introduced by the 

MPC based data-mining approaches, while allowing various data mining operations to be 

applied to the compressed and encrypted data that needs to be generated only once. Note 
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that the computational complexity and communication complexity of our MPC protocols 

for encryption have a linear relationship with the number of data holders and the amount 

of data. In addition, in designing the new MPC protocols, effort has been made to move 

the complexity from data holders to the cloud.   

4.3.3. Compressive Sensing Domain Data-mining 

 

Most of the literature of compressive sensing has focused on improving the speed and 

accuracy of compressive sensing reconstruction. Davenport et al [85] take some initial 

steps towards a more general framework called compressive signal processing (CSP), 

which shows fundamental signal processing problems such as detection, classification, 

estimation, and filtering can be solved in the compressive sensing domain. Hsu et al [51] 

use compressive sensing to learn to predict compressed label vectors and then reconstruct 

the learned compressed label vectors. It provides mathematical proof and experimental 

results that show prediction of sparse vectors could be done in the compressive sensing 

domain. Calderbank et al [47] give some theoretical results and show that compressed 

learning, learning directly in the compressed domain, is possible. It gives the tight bounds 

demonstrating that the linear kernel SVM’s classifier in the measurement domain, with 

high probability, has an accuracy close to the accuracy of the best linear threshold 

classifier in the original data domain. Earlier than the birth of the compressive sensing 

theory, random projection using the Johnson-Lindenstrauss Lemma [39] was also used 

for privacy preserving data-mining. The paper by Liu et al [39] gave the following 

lemma about linear correlation in the compressive sensing domain: 
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Lemma 1. [39]: Let    {  },    {  } be two               vectors and      be 

an    –            random matrix. Each entry of      is independent and 

identically chosen from Gaussian distribution with mean zero and variance    . Further, 

let        ; and        . 

Then: 

               

              
 

 
 ∑   

 ∑   
  

 
 
   ∑     

 
     

 

4.4. The Proposed Framework 

 
Figure 4.1. Architecture of the proposed generic privacy preserving data-mining 
framework. 

 

Figure 4.1 presents the architecture of the framework. The framework is developed 

under the semi-honest assumption. Our framework considers three major parties: the 

compressive sensing matrix holder (CSH) serving as the independent trusted key 
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provider, the data holders (DH’s) and the cloud computing service provider (CLD). In 

our framework, the compressive sensing encryption process and decryption process are 

implemented using a secure multiparty computation scheme, so that: 

1. The compressive sensing matrix is held and known by CSH only. If such matrix is 

leaked to CLD, it could reconstruct the data from the data holders. If it is leaked to 

some data holders, it is risky that other data holder’s privacy may be compromised. 

We assume the CSH is very secure and trustable. 

2. Data holder does not want to expose its own private data to any other parties. 

3. CLD needs to prevent any other parties from having access to the encrypted data, 

since if they are leaked to CSH, it could be reconstructed by CSH and the data 

holder’s privacy is compromised. If it is leaked to DH, the compressive sensing 

matrix is vulnerable under known-plaintext attack. We assume CLD is very secure. 

  

First, the DHs will encrypt all of their data using the compressive sensing matrix as 

the key to the compressive sensing domain by working with the CSH and CLD through 

MPC. Then CLD will have all the data in the encrypted domain. CLD runs some data-

mining algorithms such as K-means clustering to generate the data-mining results in the 

compressive sensing domain. If certain data-mining result is reconstruct-able, the result 

could be sent to DHs after compressive sensing reconstruction through MPC. If it is not 

reconstruct-able, CLD can let DHs know the data-mining results by telling them how 

their data points contribute to such result. In Section 4.5, we introduce our MPC based 

CS transformation and CS reconstruction protocols that are used by the framework. 
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4.5. The Proposed Secure Multiparty Computation Protocols  

 

Here we first give the secure scalar product protocol and the secure comparison 

protocol in Section 4.5.1, which lay the foundation for the MPC based CS transformation 

and reconstruction protocols which are later introduced in Section 4.5.2 and Section 4.5.3 

respectively. 

4.5.1. Existing MPC Protocols Referenced by the Proposed Framework 

 

4.5.1.1. Secure Scalar Product Protocol 

 

There are many existing secure scalar protocols such as homomorphism based, 

commodity server based, secret sharing based techniques as summarized in [91]. 

Homomorphism based techniques only require two parties to be involved in the 

computation process and let the third party have the final results, which is the best fit for 

our scenario. In this chapter, we adopt the protocol proposed by Goethals et al (as shown 

in Protocol 1) based on the Paillier public key system and its homomorphism properties. 

 

4.5.1.2. Solution to the Millionaire’s Problem 

 

Yao’s Millionaires’ (“Greater than” or “GT”) problem [54] is to determine who is 

richer between two parties such that no information about the amount of assets a party 

has is leaked to the other. There are many GT solutions, and here in this chapter we adopt 
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the solution proposed by Lin et al [53] as shown in Protocol 2, because of its lower 

complexity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: Alice owns private vector       and Bob owns private vector      . 

Output: Only Charlie gets product      . 

 

1. Setup phase. Alice does: Generate a Paillier key pair (sk, pk). Send pk to Bob 
2. Alice does for   {     }: Generate a random new number   . Send                to Bob. 
3. Bob does: Set   ∏   

 ⃗   
   . 

Generate a random plaintext      and a random number     . 

Send                  to Alice. Send    to Charlie. 

4. Alice does: Computes         
             and sends      to Charlie. 

5. Charlie has            . 

                                

Input: Alice has positive private integer x and Bob has positive private integer y. 

Output: they want to find who has the bigger value without revealing the private values to the other. 

 

1. Alice has private value   and denotes it as a binary sequence:          , where   is the bit 
length. Alice has an ElGamal public key pair and share the public key with Bob. 

2. Alice prepares a 2  -table T[i,j] [53], i {   },      , such that: 
T[    ] =         (1) and T[ ̅   ] =              for some random   .  

And send T to Bob. 

3. Bob denotes y as           and generates set   
  definition of   

  is given in [53], then Bob 
does the following: 
For each t =             

 , compute 

Prepare   =     |  
 | random encryptions   ,      . 

Scalarize   ’s and permutate   ’s and   ’s randomly as           . And send all          
to Alice. 

4. Alice decrypts          and get   =             , and determine     if and only if 
some     . 

Protocol 1. Private secure scalar protocol 

Protocol 2. Solution to the Millionaire’s Problem 
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4.5.2. MPC based CS Transformation Protocol 

 

Based on Protocol 1, it is straightforward to give the secure CS transformation 

protocol (Protocol 3). 

 

 

 

 

 

 

4.5.3. MPC based CS Reconstruction Protocol 

 

Before we introduce the MPC based CS reconstruction protocol, we design an OMP 

algorithm (based on the original orthogonal matching pursuit algorithm [86]) which could 

fit the MPC framework as given in Algorithm 1. In Algorithm 1,        and        are 

private values of CSH;   is held by CLD only,  ̂  and  | |  should only be known by DH. 

In Algorithm 1,        and        are computed based on the selected columns of 

     and the selection criterion is based on the correlation results between columns of 

     and  . The final reconstructed  ̂ is calculated from       ,   and the sequence J. 

Since in the framework,      is the secret of CSH, h is only owned by CLD and we will 

give the computed   and  ̂ only to DH.  So we only need to perform Step 1, Step 4 and 

Step 6 using MPC protocols. It is easy to see that Step 6 only requires the secure scalar 

product protocol. In the following, we present the MPC protocols for Step1 and Step 4.  

Input: DH has CS matrix     , WO has   , an  n 1 vector. 

Output: CLD has  ⃗  =        . 

 

Between DH and WO, for all    , where      , a row of     , apply Protocol 1, let CLD 
have   

    . Finally, CLD  will have  ⃗            .  

Protocol 3. Secure CS transformation 
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In Step 1 of Algorithm 1,    
                      are vectors owned by 

CSH and   belongs to CLD. We apply Protocol 1 between    
          and  . Then 

the CSH will have {             }(Let    represent   
          ) and CLD has 

the random value sequence{        }. The Step 1 requires locating the maximum 

  
          , while all the   

            need to be hidden from both CSH and 

CLD for the privacy purpose. We present the hidden maximum value selection protocol 

(as shown in Protocol 4) based on Protocol 2. The protocol can be easily extended for use 

Parameters: original vector sparsity level  , CS matrix:     = {  |  |  |  …|  },   is the 
vector in the CS domain. 

Init: set     , residual error   ,  ̂ ⃗ ,    ,            (                          ) 

For      = 0,….,2  do 

    Step1.                   |   
           | 

    Step2.    {    },           
 and set      

    ⃗  

    Step3.        =    
     

     
  

                       = (         (  
    )

  
   

 ) 

    Step4.   |        |  

    Step5. If    is smaller than a small threshold End For 

            End if  

End For 

If    is smaller than a threshold 

Step6.              

Given the set:   = {  ,   , …}(    is      from loop i); and the vector:   ={  |  |…}: 

Construct  ̂ as  ̂    
              {      | |} 

Output:  Reconstructed value:  ̂ 

Else  No reconstruction results 

End if 

 

Algorithm 1. OMP algorithm designed for MPC 
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in the hidden selection process in Step 1 of the Algorithm 1. In the Step 4 of the 

Algorithm 1, CSH and CLD need to tell DH   , which is the loop termination criterion. 

We give a secure L2 norm protocol for Step 4 of the Algorithm 1 based on the Protocol 1 

(as shown in Protocol 5). Then, given the MPC protocols of Step 1, Step 4 and Step 6 of 

Algorithm 1, the MPC CS reconstruction protocol (as shown in Protocol 6) can be built 

easily. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: CSH has {     } and CLD has {  }. 

Output: CSH knows which is larger between |  |and |  |, but |  | and |  | need to be hidden 
from both CSH and CLD. 

 

1. CSH computes   =            ,   =            . CLD computes       

  ,        . 
2. CSH and CLD find the bigger one between    and   ; and the bigger one between    and 

   using    . 
3. CLD will have:             . Then 

   If                , then |  |  |  |. 

    Else if                , then |  |  |  |. 

    Else if                , then |  |  |  |. 

    Else if                , then |  |  |  |. 

   End if 

4. CLD tells CSH which is larger between |  | and |  |. 

Protocol 4. Hidden maximum value selection protocol 
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Input: CSH has a secret matrix        (in        every row is a vector                  ) 
and CLD has a secret vector  . 

Output: DH has    |        | . 

1. CSH and CLD apply Protocol 1 between each row of        and  . Then CSH can get a 
vector V =                =                     , and R = {  } , 
           , are random numbers known by CLD only. 

2. CSH and CLD apply Protocol 1 between V and 2*(-R). Then CSH has x =∑         
   

       
   + H, where H is a random value holds by CLD only. CLD computes z = 

∑    
   

   . 
3. CSH computes y  | | 

  ∑            
    

   
    

4. CSH sends x, y to DH; CLD sends z and H to DH. 
5. DH computes           H = |        | . 

 

Protocol 5. Secure L2 norm protocol 

Input: CSH has Compressive sensing matrix     , CLD has a data vector in compressive 
sensing domain     . 

Output: DH obtains  ̂ after applying Algorithm 1.  ̂ satisfies          ̂, where   is private 
with CLD,      is private with CSH and  ̂  is known by DH only. 

 

Init:             ,    =  , J =   

For i = 0,….,2  do 

1. Between every column of     :   (where      ) and     , CSH and CLD apply 
Protocol 1, let CSH have product = {  

             
        

             
   }. 

{  
        

   } is a random sequence hold by CLD only. 
2. CSH and CLD apply Protocol 4 between every pair of elements and CSH can have index 

    that |    
          | is maximum among all elements of product. 

3. CSH updates   , J,        and        as shown in Algorithm 1. 
4. CSH has        and CLD holds  , they apply Protocol 5 to let DH have | | , where 

| |   |        | . 
5. DH decides if | |  is smaller than a small threshold: 
            If yes,  End Loop.  If no, continue. 

End for  

If DH finds  | |  is smaller than a threshold 

6. CSH and CLD apply Protocol 1, let DH have  ̂  =          CSH sends J to DH and DH 
construct  ̂ as shown in Algorithm 1.  
Else  No reconstruction 

End if 

Protocol 6. MPC Orthogonal Matching Pursuit Protocol 
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4.6. Framework Analysis 

4.6.1. Complexity Analysis 

 

4.6.1.1. Computational Complexity 

 

The proposed protocols use the public key systems. Both of the ElGamal and Paillier 

public key systems are computationally expensive because of the modular 

exponentiation.  We therefore present the computational analysis based on the modular 

multiplications. The computational complexities of the random number generation and 

linear operations can be ignored compared to public key operations. ElGamal encryption 

requires two modular exponentiations, while decryption takes one modular 

exponentiation in the modified scheme proposed by [53]. Paillier encryption needs one 

modular exponentiation and decryption takes one modular exponentiation. ElGamal’s 

multiplication of ciphertexts takes two modular multiplications and Paillier’s 

multiplication of ciphertexts takes one modular multiplication. 

Let b denote the base, e denote the exponent and a denote the modular, modular 

exponentiation is represented as: 

         

The complexity of calculating the above is      modular multiplications [61].  When 

  is bounded by  , the complexity of modular exponentiation is bounded by         

modular multiplications. 

Assume the ElGamal and Paillier use the modular n1 and n2 respectively, with the 

same bit length. So each modular exponentiation will take                    
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modular multiplications, and we use         to represent both of them. Assume the 

plaintext’s bit length is  . In Table 4.1, the first column gives the operations that need 

modular multiplications. Given vector length is N, the second column is the 

computational complexity in modular multiplication. Protocol 2’s computational 

complexity is given in [53] and summarized in Table 4.2.   is the plaintext’s bit length. 

Protocol 2 is used in the decryption protocol Protocol 6 only. When the vector length is N 

and the matrix size is M   N,  the computational complexities from Protocol 1 to 

Protocol 5  are given in Table 4.3.  

Table 4.1. Protocol 1’s computational complexity per vector in number of modular 
multiplications when the vector length is N. 

Encryption N*         
Ciphertexts Exponentiation N*         
Ciphertexts Multiplication N 
Decryption 1 
Total N*        + N*        +N+1 

 

Table 4.2. Protocol 2’s computational complexity in number of modular multiplications 
Encryption            
Scalaring            
Ciphertexts Multiplication           
Decryption          
Total                 

 

Table 4.3. Summary of computational complexity in number of modular multiplications 
Protocol Computational complexity  

(modular multiplications) 
Protocol 1  
(Secure scalar product) 

N*        + N*        +N+1 

Protocol 2  
(Millionaire problem’s solution) 

5 *        +4  6 

Protocol 3  
(CS transformation) 

M*(N*        + N*        +N+1) 

Protocol 4 
(Hidden maximum value selection) 

10 *        +8  12 

Protocol 5 
(Secure L2 norm) 

M*( N*        + N*        +N+1)+  
M*        + M*        +M+1 

 

Computational complexity of the compressive sensing encryption protocol (Protocol 3): 
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CSH could send the encrypted compressive sensing matrix as part of the setup stage 

since it is used repeatedly for each data vector. Then the secure scalar protocol for a data 

vector will take N*        +N+1 modular multiplications. Given that the compressive 

sensing matrix size is M   N, to encrypt one data vector with length N, the complexity is 

M*(N*        +N+1). Since         is the dominant factor, we can simplify the 

complexity to be M*N*(        ) modular multiplications. This shows that the 

computational complexity per vector of the compressive sensing encryption has a linear 

relationship with the size of the compressive sensing matrix. 

 

Computational complexity of the compressive sensing decryption protocol (Protocol 6): 

Protocol 6 is an iterative process. Assume the compressive sensing matrix size is M   

N. From the above analysis, it is easy to derive the computational complexity of all the 

steps within a loop when the loop index number is  , where    {          }(  is the 

sparsity level of the original sparse vector). Given Table 4.3, it is easy to derive each 

step’s complexity. Step 1’s complexity is (N  )*(M*        +M*        +M+1). 

Step 2’s complexity is (N –   1)* (10 *        +8  12). Step 5 uses Protocol 5, so 

its complexity is M*(N*        +N*        +N+1) + M*         +  M*         

+M+1. Finally if there is a reconstruction, Step 7 is based on Protocol 1  so it takes 

( +1)*(N*        + N*        +N+1) modular multiplications. Protocol 6 will have 

at most 2  loops and most of the complexities are contributed by steps within the loop. 

Since         is much larger than the other factors, we can simplify the complexity to 

be 2 *(2*M*N+10* *N+M)*         modular multiplications per vector. It has a 

linear relationship with the size of the compressive sensing matrix.  



-72- 
 

 

4.6.1.2. Communication Complexity 

 

Both ElGamal’s ciphertext and Paillier’s ciphertext will take          bits which is 

the dominant factor for the communication cost. Table 4.4 summarizes the 

communication costs of the protocols from Protocol 1 to Protocol 5.  

 

Table 4.4. Summary of the communication complexity (in bits) of the fundamental 
protocols 

Protocol Communication complexity (bits) 
Protocol 1  
(Secure scalar product) 

(N+1) *          

Protocol 2  
(Millionaire problem’s solution) 

6(         ) 

Protocol 3  
(CS transformation) 

M*(N+1) *         

Protocol 4 
(Hidden maximum value selection) 

12(         ) 

Protocol 5 
(Secure L2 norm) 

M*( (N+1) *        )+ (M+1) *         

 

Communication complexity of the compressive sensing encryption (Protocol 3): 

CSH could send the encrypted compressive sensing matrix in the setup stage. So each 

round of using Protocol 1 in Protocol 3 to encrypt a vector will have less communication 

cost. Given that the compressive sensing matrix is M by N: transmitting the encrypted 

compressive sensing matrix in the setup stage will take: M*(N+1) *         bits. For 

each new data vector, DH only needs sending M*        bits to CSH. The 

communication cost of CS transformation has linear relationship with the CS matrix size.  

 

Communication complexity of the compressive sensing decryption (Protocol 6): 
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Protocol 6 is an iterative process. Given the compressive sensing matrix with a size of 

M  N, and when the iteration loop index number is  , where   {          }. Step 1 

costs (N- )*M*((N+1) *        ) bits and Step 2 costs (N- -1)*12*(         ) bits. 

Step 5 uses Protocol 5 and its communication cost is M*( (N+1) *        )+ (M+1) 

*         bits. If there is a reconstruction, finally Step 7 costs ( +1)*M*((N+1) 

*        ) bits. Protocol 6 will have at most 2  loops and most of the complexities are 

from the steps within the loop. We can simplify the complexity as 

2 *(M*N+12* *N+M)*         bits. The communication cost of CS reconstruction 

has linear relationship with the CS matrix size. 

 

In our framework, different DHs are independent of each other in both the encryption 

and decryption process. Different data entries are also independent of each other in the 

MPC framework, so the total computational and communication complexity of our MPC 

encryption/compression protocols will have linear relationship with the number of DHs 

as well as the amount of data. 

 

4.6.2. Security Analysis 

 

4.6.2.1. MPC based CS transformation 

 

It has been proven in the original paper [92] that Goethals’s secure scalar protocol is 

secure under the semi-honest model. It is straightforward to see that the MPC protocols 

(Protocol 1 and Protocol 3) are also secure under the semi-honest assumption that all the 
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parties follow the protocol strictly and no two parties will collude to attack a third party. 

After running the secure CS transformation protocol, DH and CSH do not leak their 

private values to other parties. Only the CLD has the data in the CS domain. 

 

4.6.2.2. MPC based CS Reconstruction 

 

As for the security of the CS reconstruction process, it is easy to see that Step 6 of the 

Protocol 6 only utilizes the Protocol 1 which has proven to be secure in [92] under the 

semi-honest model. The information leak, however, might happen in Step 2 of Protocol 6 

(Protocol 1). In Step 3 of Protocol 1, CLD will have the information:             , 

which may help CLD infer CSH’s private value   
        . But CSH can avoid such 

vulnerability in two ways: First, randomly permuting the order of   
         for every 

loop so that CLD cannot track   
        ; Second, in every loop, CSH randomly 

generates a random value     , then   
         can be disguised by multiplying the 

value   before executing Protocol 1, so that the sign of       will appear to be random 

for CLD. Note that the Step 3 of Protocol 1 shows that when the signs of       and 

      are flipped at the same time, the decision for the relationship between |  | and 

|  | will not be affected. Another information leak to CSH is      in each loop at Step 1 

of Algorithm 1, and CSH will have sequence   (step 2 of algorithm 1).  Even though CSH 

cannot get the absolute values of the entries of h, CSH can guess the non-zero entry 

positions and the order of the magnitudes of non-zero entries. Solutions for this issue will 

be studied in the future work. 
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4.6.2.3. CS domain data processing 

 

It has been shown that random projection based on transformation is viable for 

protecting privacy [39], even though sharing the transformation matrix incurs a security 

issue. We address such security issue by introducing a semi-trusted party managing the 

CS matrix. Further, our framework presents a scenario which is similar to the system 

proposed by Lu et al [83][84]. Lu et al prove that when the original vectors are 

normalized to have the same constant norm and their correspondences in the same 

random projection domain (ciphertext only) are obtained by a third party, the third party 

gains no additional information other than the correlations between different data under 

the semi-honest security model. The correlation between data will be inevitably leaked to 

the cloud since the other parties desire the cloud to provide such services. 

 

4.7. Complexity Comparison to MPC based Data-mining 

Algorithm 

 

We compare the complexity of our proposed MPC framework for k-means clustering 

to the complexity of the MPC algorithm for the k-means proposed in [69]. We continue 

to use the notations used in the above complexity analysis.  

Assume there are   data holders,   data entities and let   be the number of clusters.  

K-means is an iterative process, and we assume   is the number of iterations for the 
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clustering algorithm to converge. Most of the k-means computational complexity will be 

spent on computing vector distances. Let ʘ(M) represent the costs of one such operation, 

where M is the compressive sensing measurement length. The finding closest center step 

of k-means computes  *  distances, so its overall complexity is ʘ( * *M). In the center 

recomputation step of k-means, each vector gets added to a centroid once, so the 

complexity is ʘ( *M). The overall complexity of k-means is therefore ʘ( * * *M). 

Then the computational complexity per vector of k-means is ʘ( * *M). So our 

framework’s computational complexity for k-means is M*(N+1)*(         + 

ʘ( * *M) per vector and communication complexity is M*N*         bits per vector. 

The MPC computational and communication complexity per data entry of our framework 

has nothing to do with the number of data holders. It only depends on the vector length N 

and the compressive sensing measurement size M.  

The MPC algorithm in [69] uses additive homomorphic public key encryption system 

in step 4-5 of Algorithm 3 in [69], which finds the closest cluster for each data entry. The 

step 4-5 of that algorithm alone costs  * * *(3       ) modular multiplications per 

data entry and each data holder has to share certain amount of public key operation 

burdens. [69] gives the algorithm’s communication cost analysis, and shows that step 4-5 

of Algorithm 3 alone will cost 2* *(   )* *          bits per data entry.  

Since the modular multiplication is more computational expensive than the vector 

distance computing, it is obvious that the computational complexity ( * * *(3       )) 

of [69] is much higher than the complexity for clustering of our framework (ʘ( * *M)). 

When there are a lot of data holders, the number of clusters is large, and   is big. The 

computational and communication complexity of only two steps of the algorithm in [69] 
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may be larger than the overall computational and communication complexity of our 

framework. In our framework, the k-means clustering will be performed in a cloud 

environment with the compressed data vector dimension, which will make the k-means 

perform much more efficiently. 

More importantly, the complexity of our MPC protocols is shared by many data 

mining tasks that potentially will be applied to the same set of encrypted data. 

Furthermore, our framework is designed to reduce the data holders’ computational and 

communication complexity, which the algorithm of [69] cannot offer. To summarize, our 

proposed framework outperforms the MPC algorithm proposed in [69] in several aspects: 

 The overall computational and communication complexity is much lower in our 

framework, because we decouple the MPC encryption process from the data-mining 

process to avoid the high complexity incurred by the MPC processing for the iterative 

data-mining algorithms. In addition, our framework creates opportunities to take 

advantage of cloud computing technologies as well as lower data dimension to 

expedite the data-mining process.  

 The data holders are only responsible for a limited amount of computational and 

communication burden in our framework, while the MPC based k-means clustering in 

[69] requires all data holders to perform public key operations and bear significant 

communication cost. 

 Our framework achieves a higher scalability and flexibility than other MPC protocols 

such as the one in [69]. For example, in [69], if new data holders want to join the 

group, the whole MPC process has to start over. But in our framework, the MPC 

encryption step makes the data holders independent of each other. Furthermore,   
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previous MPC algorithms such as the one in [69] are limited to specific data-mining 

methods, while in our framework, after the MPC based encryption, different kinds of 

data-mining analysis can be performed simultaneously on the same set of compressed 

and encrypted data. Even though [45] proposes methods that can outperform the one 

in [69], they still suffer from iterative MPC processing as well as scalability and 

security problems. 

 

4.8. Experimental Results 

 

To confirm that data-mining in the compressive sensing domain is valid, this section 

provides some further experimental results for data processing in the encrypted 

compressive sensing domain based on the MovieLens 1M Dataset [62], UCI KDD 

Dataset [70] as well as self-generated data. In addition, simulation of the proposed MPC 

framework is also conducted to demonstrate that our framework works efficiently and 

effectively, especially for DH. 

 

4.8.1. Compressive Sensing Domain Data Processing 

4.8.1.1. Distance preservation 

 

The MovieLens 1M dataset consists of 1 million ratings from more than 6000 users 

on 4000 movies. It was originally designed for collaborative filtering to recommend some 

movies that a user may be interested in based on the users’ rating history.  Most of the 
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user ratings are sparse in the MovieLens 1M dataset, since on average a user only rates 

4.19% of 4000 movies. If a movie is rated by a user, the rating value is an integer and 

ranges from 1 to 10. We measure the error of pair-wise distance after compressive 

sensing transformation. For all the data vectors    where i {       } of the MovieLens 

Dataset, their corresponding values in the compressive sensing domain are    where 

i {       }. The relative error is given by: 

      
||     | 

 
 |     | 

 
|

|     | 
  

where i, j  {       }.   The compressive sensing matrix      is constructed in a way 

that all the entries follow the Gaussian distribution with mean 0 and variance    , which 

promises the JL-lemma embeddings.     will be the compressive sensing rate. Table 

4.5 gives the statistics of the relative error under different compressive sensing rates. It 

shows that even with a compressive sensing rate of 0.2, the average error is still as low as 

4.05% and variance is 0.0937%. This confirms that the compressive sensing 

transformation can preserve the Euclidean distance very well and data-mining techniques 

based on Euclidean distance could be performed in such compressive sensing domain 

without sacrificing too much of  the accuracy.  

Table 4.5. Relative errors of the Square of the Euclidean distance of Two Attributes 
Compressive sensing  

rate 
min Max (%) Avg (%) Var (%) 

0.9 0.0 13.0319 1.8572 0.0198 
0.8 0.0 14.1061 2.0662 0.0241 
0.7 0.0 16.9437 2.1534 0.0265 
0.6 0.0 16.8986 2.3098 0.0301 
0.5 0.0 17.1858 2.5091 0.0361 
0.4 0.0 19.8011 2.8274 0.0455 
0.3 0.0 22.9261 3.2342 0.0604 
0.2 0.0 26.9828 4.0505 0.0937 
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4.8.1.2. K-means clustering  

 

We use the Synthetic Control Chart Time Series data set from the UCI KDD Archive 

for K-means clustering algorithm testing. This data contains 600 examples of control 

charts, each has 60 attributes. It is designed as a common dataset for testing clustering 

algorithms. There are six different classes of control charts: normal, cyclic, increasing 

trend, decreasing trend, upward shift and downward shift. The K-Means clustering is 

conducted in the original domain as well as compressive sensing domain with different 

compressive sensing rates. We calculate the classification error of clustering in the 

compressive sensing domain compared to clustering in the original data domain. The 

compressive sensing matrix is constructed in the same way as in section 5.1.1. Table 4.6 

shows that the classification error is small even when compressive sensing rate is 20%. 

Table 4.6. Relative cluster error of K-means clustering of UCI KDD data 
compressive 
sensing rate 

Classification Error 
rate (%) 

0.9 2.3333 
0.8 3.0 
0.7 3.3333 
0.6 3.3333 
0.5 4.1667 
0.4 5.1667 
0.3 6.3333 
0.2 8.1667 

 

4.8.2. Experiments of MPC for Compressive Sensing 

 

We use our self-generated dataset to measure the communication cost for both of the 

MPC encrytion and decryption. In this dataset, the dimension of the original data  is 100. 

The sparsity level (number of non-zero entries of a data vector)   is less than or equal to 
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5. Each element of the data vector is a floating point ranging from 1 to 10. Theoretically, 

for a compressive sensing matrix       with i.i.d. Gaussian entries, m =              

is sufficient for perfect reconstruction. In our experiments, we set m to 30 which not only 

promises sufficient measurements for perfect reconstruction but also the Euclidean 

distance preserving properties. Paillier and Elgamal systems use ciphertexts with 2048 

bits.  

4.8.2.1.  MPC based compressive sensing encryption 

 

The total communication cost of the setup stage is 768000 bytes, where CSH needs to 

send DH the encrypted compressive sensing matrix. Such communication cost depends 

exclusively on the size of the compressive sensing matrix of CSH. Table 4.7 shows the 

average pair-wise communication costs (bytes to encrypt a single vector with length 100) 

between parties.  

Table 4.7. Average communication costs of encrypting a vector (data in public key 
domain only).  

From To Traffic (Bytes)  

CSH DH 0 

DH CSH 7680 

DH CLD 240 

CLD DH 0 

CLD CSH 0 

CSH CLD 240 

 

4.8.2.2.  MPC based compressive sensing reconstruction 
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The computational cost for DH in the decryption step could be ignored, since all DH 

needs to do is to receive a norm and execute an if-else operation as shown in Protocol 6. 

The decryption is an iterative process, and is typically performed only for the data mining 

results (e.g., cluster center in the encrypted domain). Table 4.8 shows the pair-wise 

average communication cost (Bytes needs to decrypt an encrypted vector with length 30). 

It shows that the communication cost for DH is very small, most of the communications 

occur between CSH and CLD, which helps save the computational power for DHs with 

limited computing resources such as mobile users.  

Table 4.8. Average communication costs of decrypting a vector (data in public key 
domain only) 

From To Traffic (Bytes) 

CSH DH 64 

DH CSH 0 

DH CLD 0 

CLD DH 64 

CLD CSH 1976243 

CSH CLD 2910463 

 

4.9. Conclusion and Future Works 

 

This chapter proposes a compressive sensing based secure multiparty computation 

framework that enables efficient privacy preserving collaborative data-mining and 

privacy preserving storage. Compared to prior works, our framework improves in the 

aspect of either security or scalability. We also developed a MPC adapted orthogonal 

matching pursuit algorithm and its MPC protocol. Our framework is also designed taking 

into account the future trend of cloud computing where cloud will provide computational 
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services as well as storage services, in which scenario privacy is a big concern. Our 

framework requires scaling a floating point value to an integer in order to use the 

homomorphism encryption based MPC protocols. Further work will include analyzing 

how the scaling factor affects the accuracy of the MPC framework. Future work also 

includes developing efficient distributed data-mining algorithms for cloud computing and 

further computational and communication complexity reduction.   
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Chapter 5. Compressive sensing based privacy 

preserving storage and secure watermark detection 

framework 

In this chapter, we identify a cloud computing application scenario that requires 

simultaneously performing secure watermark detection and privacy preserving 

multimedia data storage. Then we propose a compressive sensing based privacy 

preserving storage and secure watermark detection framework based on the generic 

privacy preserving data-mining framework proposed in Chapter 4. 

 

5.1. Introduction and Related Works 

 

Due to the rapid growth of the Internet and social networks, it is very easy for a user 

to collect a large amount of multimedia data from different sources without knowing the 

copyright information of those data. The user may want to take advantage of the cloud for 

storage, and at the same time, work with copyright owners for watermark detection while 

keeping those self-collected multimedia data private. A legal cloud offering storage 

services may also desire to participate in watermark detection initiated by the users, or 

initiate watermark detection itself without the involvement of the users, to check if the 

uploaded multimedia data is copyright protected. Another benefit of storing the encrypted 

multimedia data and facilitating encrypted domain watermark detection in the cloud is 

that those encrypted data can be reused if the image data holder (or the cloud) needs to 

work with other watermark owners later for secure watermark detection. 
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Traditional secure watermark detection techniques are designed to convince a verifier 

whether or not a watermark is embedded without disclosing the watermark pattern so that 

an untrusted verifier cannot remove the watermark from the watermark protected copy 

[73][74]. Two types of approaches have been proposed for secure watermark detection: 

asymmetric watermarking [75][76] and zero-knowledge watermark detection 

[77][78][79]. However, most of the existing secure watermark detection works assume 

the watermarked copy are publicly available and focus on the security of the watermark 

pattern, while the privacy of the target media on which watermark detection is performed 

has received little attention. But for some applications such as the scenario given above, it 

is required to protect the multimedia data’s privacy in the watermark detection process. 

Performing privacy preserving storage and secure watermark detection simultaneously is 

possible by using the existing secure watermark detection technologies such as zero-

knowledge proof protocols [77][78][79] that transform the multimedia data to a public 

key encryption domain. However, their limitations, such as complicated algorithms, high 

computational and communication complexity [73], and large storage consumption in the 

public key encryption domain, may impede their practical applications. 

We propose a compressive sensing based privacy preserving watermark detection 

framework that leverages secure multiparty computation and the cloud. In our 

framework, the target image/multimedia data is possessed by the image holder only. A 

compressive sensing matrix is issued by a certificate authority (CA) server to the image 

holder. The image holder transforms the DCT coefficients of the image data to a 

compressive sensing domain before outsources it to the cloud. For secure watermark 

detection, the watermark is transformed to the same compressive sensing domain using a 
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secure multiparty computation (MPC) protocol and then sent to the cloud. The cloud only 

has the data in the compressive sensing domain. Without the compressive sensing matrix, 

the cloud cannot reveal the original multimedia data and the watermark pattern. The 

cloud will perform watermark detection in the compressive sensing domain. The image 

data in the compressive sensing domain can be stored in the cloud and reused for 

detection of watermark from many other watermark owners.    

Our system is secure under the semi-honest [82] assumption that all parties comply 

with the protocol’s procedure strictly, and none of them will actively withdraw midway 

or incorporate false or malicious data. No two parties will collude to attack a third one. 

But during the computing process, they may try to keep all the intermediate information, 

so that they can infer others’ input after the process. Semi-honest model is a reasonable 

assumption for adversaries such as third-party service providers [84]. 

The rest of this chapter is organized as follows. In Section 5.2 and Section 5.3, we 

show that watermark detection of the correlation-based watermarking system in the CS 

domain is viable theoretically, and the expected performance is derived. Section 5.5 gives 

the details of the proposed framework together with some analysis. Section 5.6 presents 

the experimental results. The chapter concludes in Section 5.7. 

 

5.2. Correlation-based Watermarking System 

 

In Zeng and Liu’s work [80], watermarks are embedded in the discrete cosine 

transform (DCT) domain. Let the feature set {  } be the set of selective DCT coefficients 

(i.e., those with absolute values larger than certain perceptual thresholds) excluding the 
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DCs. The embedding process is   
  =    +   , where {  } is the inserted watermark 

signals which is derived from the watermark pattern {  }. In the detection process, the 

test feature set {  } is correlated with the watermark pattern {  }. Detection of the 

watermarks is accomplished via the hypothesis testing: 

  :   =  +  , without watermark 

  :   =  +  +  , with watermark 

where    is the noise. The normalized correlating detector outputs the test statistic  , 

which is compared to a threshold   to determine if the test image contains the claimed 

watermarks: 

  
∑   

 
   

   
 √ 

 
   

 √ 

   

       (5.1) 

where        ,   is the size of the feature set {  }.    
 and    

  are the sample mean and 

sample variance of   , given by: 

   
 

∑   
 
   

 
;     

   
∑        

   
   

   
   (5.2) 

 

Then under hypothesis   , for large  ,   is approximately a normal distribution   

~ (0,1). Under   ,   ~ ( ,1), where   >0. 
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5.3. Watermark Detection in the Compressive Sensing 

Domain 

 

Compressive sensing or random sampling domain linear correlation hypothesis test 

has been proven feasible and the error bound analysis has been given in works such as 

[85][89]. In [85][89], the analysis is based on the Neyman-Pearson detector and the 

statistic for detection is computed given that the random projection matrix   is known. 

However, in the scenarios addressed in our work, the entity who performs watermark 

detection does not have access to  , as described in Section 5.4. In our work, the statistic 

is calculated based only on the observation in the compressive sensing domain. We not 

only demonstrate that the statistical correlation hypothesis test based watermark detection 

is feasible by using only the data in the CS domain, but also show specifically what 

parameters will affect the watermark detection performance. 

Let vector   and   represent the sets {  } and {  } in Section 5.2 respectively:  

               ;                 

Let the compressive sensing matrix be      whose entries      have the distribution 

given in Lemma 1, then after the projection we have: 

                      

                      

where given X and Y, {  } and {  } are both i.i.d. Gaussian. 

Similarly, we define the statistic     in the CS domain as: 
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where   
       ; Then under   , for large  ,     is approximately a normal distribution 

with unit variance,            . Under   ,      (      , where      . To analyze 

the relationship between   and    , let us look at the conditional expectation of    , given 
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Since {     
 

 
          } is a convex function, according to the Jensen’s 

inequality:                . Then we have: 
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Since {     √                      } is a concave function, according to the 

Jensen’s inequality:                .: 
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Lemma 2. Let the compressive sensing matrix      be an    –            

random matrix. Each entry of      is independently and identically chosen from a 

Gaussian distribution with mean zero and variance    . Then, given    , 

 (   
  
 |   )  

 

  
   ∑     

 
      ∑   

  
   ∑   

  
       (5.8) 

Proof of Lemma 2: Please see Appendix I for the proof.  ∎ 

Based on Lemma 1 (in Section 4.3.3) and Lemma 2, we have: 
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Then, from Eq. (5.7), we have: 

     |        (∑   
   

    
 

   
   √ 

|   )      (5.9) 

It is well known in statistics that when a random variable is i.i.d Gaussian, its sample 

mean and sample variance are independent [93]. {  
  } is not i.i.d Gaussian, however, our 

experimental results (see Section 4.3) validate that the covariance term in Eq. (5.9) is 

very small (close to zero). From the   above, we can see that given the original input   

and   for watermark detection, the statistic    ’s mean value     is affected by the CS 

matrix height  : if   is smaller, the     will be smaller. In the experimental results 

section, we show that   is validated to be very close to the mean of the statistic    . This 

is important since the expected watermark detection performance     can be estimated by 

  (for example during the watermark embedding process) disregard the actual CS matrix 

used later by other parties for secure watermark detection. 
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The statistic   of the original domain is defined as    
 √   

   . In order to find the 

relationship between   and  , we need to compare the relationship between    

    and 
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 )            (5.10) 

where        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average of all possible       
                 ;        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is 

the average of all possible                      . 

Note that it is expected that the difference between  

 
       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and  

 
       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is very 

small, as       
  and         are statistically similar. Our experiment shows that 

 

 
       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ and  

 
       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are very close, and    , which means that the watermark 

detection in the CS domain will be inferior to that in the original domain.   

Furthermore, based on Eq. (5.10), we have: 
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A larger   means larger watermark detection distortion caused by the CS 

transformation. 
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5.4. The Secure Watermark Detection Framework 

 
Figure 5.1. Architecture of the proposed secure watermark detection framework 

 

Similarly with the generic framework shown in Figure 4.1 of Chapter 4, there are 

three parties in the proposed framework, the data holders (DH) of the potentially 

watermarked images, the watermark owners (WO) and the cloud (CLD) as illustrated in 

Figure 5.1. The secure watermark detection framework is developed under the semi-

honest assumption as well. The framework also requires a certificate authority (CA) to 

issue the public keys and CS matrix keys to certain parties of the framework. For DH 

(e.g., media agencies), when it collects a large volume of multimedia data from the 

Internet and stores their encrypted versions in the CLD, it wants to make sure those 

multimedia can be edited and republished legally. Watermark owners (WOs) are also the 

content providers who distribute their watermarked content (the watermark embedding is 
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performed by WO before the contents are published). WOs always want to know if their 

contents are legally used and republished.  

In some scenarios, not only DH and WO care about the copyright of the multimedia 

data, certain CLD who offers storage services may also desire to initiate the watermark 

detection to check if the uploaded multimedia data is copyright protected. For example, a 

CLD may choose not to provide storage services to copyright protected data illegally 

owned. If DH would like to use a CLD for storage or migrate the encrypted multimedia 

data from another cloud to this CLD, it will require the CLD to perform watermark 

detection on the encrypted multimedia data before providing the storage services. 

In our framework, initially, the CA needs to issue CS matrix suites to the DH. The CS 

matrix suites include the seeds and the random function used to generate the Gaussian CS 

matrix. We use the CA to issue the random function to guarantee the randomness of the 

generated Gaussian CS matrix (Our generic framework in Chapter 4 does not require CA 

because the CS matrix is hold by CSH only). The CA also needs to issue a Paillier public 

key pair to the DH and the DH’s public key to the WO. The public key is used for the 

MPC based CS transformation protocol discussed in Protocol 3 from Section 4.5.2. 

In general, the DH also has a different private compressive sensing matrix (derived 

from the seed) for each image. DH transforms the image’s DCT coefficients to the 

compressive sensing domain and let CLD have the CS domain data for storage. If 

watermark detection with WO is required, we need to let CLD have the watermark in the 

same CS domain, which is achieved through running a secure multiparty protocol 

(Protocol 3: Secure CS transformation protocol introduced in Section 4.5.2) by DH, WO 

and CLD collaboratively under the semi-honest model [82]. Then CLD can detect if the 
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watermark exists in the CS domain and let both DH and WO know the detection results. 

After Protocol 3 is executed, the compressive sensing matrix and the watermark pattern 

are still the secret values of the image holder and the watermark pattern owner 

respectively. In the framework, each CS matrix is used only once to encrypt the images’ 

DCT coefficients, which is proven to be computationally secure in [88]. Note, however, 

that a CS encrypted image will be stored and reused for secure detection of multiple 

watermarks on the same image. 

 
Figure 5.2. Some DCT coefficients (DCT1) are only used for storage; The other 
coefficients (DCT2) serve for both the storage and watermark detection purposes 

 

 
Figure 5.3. 8x8 DCT block zig-zag scan order: (a) an example of selective DCT 
coefficients for watermark embedding: the bold underlined numbers indicate that the 
corresponding DCT channels are embedded with watermark signals. (b) top 20 AC 
coefficients (white areas) are selected for watermark detection in the CS domain (i.e., 
DCT2 in Figure 5.2). 
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In Zeng and Liu’s work [80], the best watermark detection performance is achieved 

by using selective DCT coefficients for detection (i.e., select the potentially watermark 

embedded DCT channels for watermark detection as shown in Figure 5.3 (a)). However, 

the DH in our framework may not have the information about the criteria for the selection 

process. Even if we assume that the DH has such information, the DH needs to let the 

WO know which DCT channels are used for watermark detection. This will cause two 

issues for the framework. Firstly, the privacy issue: the image information of the DH 

might be leaked to the WO. Secondly, DH needs to send WO a large amount of data 

describing the selected DCT channels. To ensure the watermark detection performance, 

in our framework, DCT coefficients in the zig-zag order are split into two groups DCT1 

and DCT2, as shown in Figure 5.2. DCT1 (e.g., grey areas in Figure 5.3 (b)) includes the 

DC coefficients and potentially higher frequency AC coefficients, and DCT2 (e.g., white 

areas in Figure 5.3 (b)) includes the lower frequency AC coefficients. The CS 

transformation of DCT2 serves for both secure watermark detection and privacy 

preserving storage while DCT1 serves for privacy preserving storage only. This is 

because the watermark detection performance in the CS domain will be penalized if the 

coefficients from DCT1 are included. Note that in Zeng and Liu’s work [80], most 

watermarks are embedded in the low- and mid- frequency AC coefficients, while DC 

coefficients and most of the higher frequency AC coefficients are not even selected for 

watermark embedding (as demonstrated in Figure 5.3 (a)). Including DC and higher 

frequency AC coefficients (none-watermark-carriers) will introduce noises for the 

watermark detection in the CS domain, as will be shown in our experimental results 
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section. The DH needs to synchronize with WO about DCT2 (e.g., Top 20 AC 

coefficients in the zig-zag order). 

 

5.5. Framework Analysis 

5.5.1. Complexity Analysis 

 

Please refer to Section 4.6.1 for the complexity analysis of MPC based CS 

transformation protocol (Protocol 3). Note that the DH might be a computationally weak 

party such as a mobile device. In our framework, the complexity of DH is reduced when 

there are multiple watermark owners who are interested in performing watermark 

detection. When there are multiple watermark owners who are involved in performing 

watermark detection on an image, the data holder can send the public key encrypted CS 

matrix to the cloud. The watermark owners can get the public key encrypted CS matrix 

from the cloud to continue the secure CS transformation protocol. Then DH only needs to 

receive   public key encrypted values and decrypt them (Step 4) for every run of 

Protocol 3.  

In a practical system, some trade-offs between complexity and security could be 

considered. When a user has many images, the same CS matrix could be used multiple 

times for multiple images so that a CS encrypted watermark pattern could be stored and 

reused for secure watermark detection on multiple images. However, the security level of 

the CS transformation encryption might be sacrificed due to multi-time use of the same 

CS matrix on different images, as discussed in Section 5.5.2. 
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5.5.2. Security Analysis 

 

The security analysis of the MPC protocols has been given in Section 4.6.2 that the 

secure scalar protocol used in the framework is secure under the semi-honest security 

model. After running the secure CS transformation protocol, DH and WO do not leak 

their private values to other parties. Only the CLD has the image data and watermark 

pattern in the CS domain.  

The security of using compressive sensing transformation as an encryption has been 

explored in [87][88] and it was concluded that it is computationally secure under the 

brute force and structured attacks when each CS matrix is used only one time. So if the 

data holder encrypts different images with different CS matrix keys, the CS domain data 

are secure in the cloud.  

The security analysis of data-mining in CS domain has presented in Section 4.6.2.3: 

when multiple data in the same random projection domain (ciphertext only) are obtained 

by a third party, it gains no additional information other than the correlations between 

different data. The leakage of correlation between the image and watermark patterns is 

inevitable since we desire the CLD to provide such watermark detection services. Since 

the watermark patterns we use are i.i.d Gaussian, their corresponding CS domain versions 

are uncorrelated (but dependent on the same CS matrix). So the CLD cannot infer 

anything about the watermarks.  

As discussed in Section 5.5.1, if a practical system chooses to use the same CS matrix 

for multiple images to reduce the secure watermark detection complexity, multiple image 

data in the same CS domain will be presented to the CLD simultaneously, in which case 
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their dependencies on the same CS matrix may reveal the correlations and Euclidean 

distances ([39] shows the distance preserving property of the CS transformation) between 

the  images, and may be used to reduce the attacking complexity. In addition, statistical 

information of the multimedia data is common sense knowledge [88], which may also be 

used to reduce the attacking complexity. The RIP property in Section 4.2.1 suggests that 

the CS transformation can preserve the energy of the original data, which means the 

overall energy of the image’s DCT coefficients is leaked to the CLD. But this problem 

can be addressed, since the data holder can normalize all the original data vectors before 

outsourcing the CS encrypted data to the CLD, and the normalization will not affect the 

performance of the watermark detection. More analysis considering the above security 

concerns will be studied in our future work. 

 

5.5.3. Comparison to Previous Works 

 

When compared to previous works, our framework has the following advantages: 

1. Our framework utilizes the computing and storage resource of the cloud 

simultaneously and provides better efficiency and flexibility as the encrypted image 

data (and the encrypted watermark pattern under some circumstances, if so chosen) 

can be reused for multiple watermark detections in the cloud. 

2. Most of the existing secure watermark detection works paid little attention to the 

privacy of the multimedia data, while our framework protects the privacy of the self-

collected data. 
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We compare the communication cost of our framework to other secure watermarking 

systems such as [78] under the following setting (chosen for the sake of complexity 

evaluation and comparison): the Paillier public key domain value takes 2048 bits; the 

image size is 1000x1; the secure CS transformation protocol is executed with a CS matrix 

size of 1000x1000 and a watermark size of 1000x1. We focus our evaluation on the 

communication cost of the data in the public key encryption domain, since it is the 

dominant factor over other communication cost. The watermark pattern is transformed to 

the CS domain in the initial step: DH needs to send WO around 256 MB of data (i.e., 

public key encrypted CS matrix) and WO needs to send 0.256 MB of data (i.e., public 

key encrypted watermark pattern) to DH. As analyzed above, when multiple images can 

be transformed to the same CS domain and the CS encrypted watermark pattern exists in 

the CLD, there is no communication cost between DH and WO for secure watermark 

detection. Note that for the previous secure watermarking systems such as [78], each time 

when secure watermark detection is performed on a new image, DH (corresponding to 

the verifier in [78]) has to work with WO (corresponding to the prover in [78]), which 

introduces computational and communication overhead for both DH and WO. As given 

in [78], the communication overhead to execute the zero-knowledge watermark detection 

protocol once is in the order of 1MB when the length of the watermark signal reaches 

1000. Even though our framework has the semi-honest assumption that [78] is not 

constrained to, our framework has much better scalability and higher efficiency when 

performing secure watermark detection on a large number (e.g., thousands) of images. It 

is also very important to note that previous secure watermark detection methods 

[75][76][77][78][79] assume the multimedia data is available to all the parties and do not 
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consider the privacy of the multimedia data. It might be possible to adapt those methods 

to protect the privacy of the multimedia data by encrypting it into a public key encryption 

domain. Then the computational and communication overhead will be increased 

significantly. 

5.6. Experimental Results 

5.6.1. Experimental Settings and Notations 

 

We tested the proposed system using some standard 512x512 images. For the 

watermark detection, there are several detection methods proposed in [80]. We choose 

the one in which the watermark pattern used for watermark detection is directly generated 

from a Normal distribution  (0, 1). Given a CS matrix     ,     will be referred to as 

the compressive sensing rate (CS rate). Since the CS matrix size will be extremely large 

if we convert the 512x512 image to a vector for CS transformation. Instead, we cut the 

image into pieces and each piece contains 64 8x8 DCT blocks. Selective DCT 

coefficients of each piece will form a vector and be transformed to a CS domain with the 

same CS rate but using different CS matrixes. The data in the CS domain from all pieces 

is treated as {  }. Similarly, we get {  } from the 512x512 original watermark pattern. 

We test the watermark detection performance when different numbers of DCT 

components are transformed to the CS domain as DCT2 in Figure 5.2. In the rest of this 

section, “Top AC 20” means top 20 AC coefficients in the zigzag order are selected as 

DCT2.  
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5.6.2. Scaling Floating Point to Integer Error Analysis 

 

Since the MPC protocol is based on the Paillier public key system which requires 

integers as input, we scale the floating point values to integers with certain scaling 

factors. We test the error introduced by the conversion by comparing the result from 

secure CS transformation protocol to CS transformation with the original CS matrix and 

the watermark pattern. As shown in Table 5.1, the MSE decreases significantly as the 

scaling factor increases. In the following experiments, the scaling factor is set to 1.0e8.   

Table 5.1. Mean square error w.r.t scaling factor 
Scaling factor 1.E3 1.E4 1.E5 1.E6 1.E7 1.E8 

MSE 2.24E-5 3.48E-7 3.12E-9 3.05E-11 3.31E-13 3.52E-15 

 

 

5.6.3. Secure Watermark Detection in the Compressive Sensing Domain 

 

5.6.3.1. Assertions validation 

 

Table 5.2 summarizes the mean and variance of the sample covariance term in 

Equation (5.9) with different CS rates, under H1 and H0. The test result is based on 

several images including 512x512 ‘Lenna’, ‘Baboon’, ‘Barbara’, ‘Goldhill’, ‘Peppers’ 

and etc. We can see that the covariance is very small and close to zero. However, it is 

interesting to see that under H1, the covariance term is concentrated around a very small 

negative value. This may suggest that the expected watermark detection output     might 

be slightly lower than the   in Eq. (5.9). Table 5.3 summarizes some values for   in Eq. 

(5.10) and   in Eq.(5.11) using ‘Lenna’, when different DCT components are selected. It 
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shows that the assertion     is true. Furthermore, if “Top AC 10” is chosen as DCT2,   

is close to one, meaning that the CS transformation of such DCT channel coefficients will 

introduce nearly no distortion to the watermark detection. This is because almost all of 

the top 10 AC coefficients are selected for watermark embedding for the ‘Lenna’ image, 

while the distortions are mainly introduced by none-watermark-carriers that are mixed 

with watermark-carriers in the CS domain.  

Table 5.2. Test results of the covariance term in Equation (5.9) 
CS rate 1.0 0.7 0.4 0.1 
H1(mean/ 
variance) 

-3.3E-03/ 
1.98E-06 

-3.36E-03/ 
2.5E-06 

-3.71E-03/ 
3.64E-06 

-5.51E-03/ 
7.4E-06 

H0(mean/ 
variance) 

1.69E-04/ 
2.39E-06 

8.59E-04/ 
2.99E-06 

-3.78E-03/ 
5.09E-06 

-1.63E-03/ 
9.79E-06 

 

Table 5.3. Validation for the assertion:     (when    ). (for the 512x512 ‘Lenna’ 
image) 

Coefficients  
 

 
      

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    

 
      

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        

Top AC 63 0.0179 0.0879 0.0704 2.24 
Top AC 40 0.0301 0.089 0.0602 1.75 
Top AC 30 0.0367 0.0926 0.0577 1.62 
Top AC 20 0.0486 0.0707 0.0243 1.21 
Top AC 10 0.1582 0.1627 0.0092 1.02 

 

 

5.6.3.2. Watermark detection in the CS domain 

 

Figure 5.4 shows the watermark detection performance in the CS domain with 

different CS rates when different DCT components are selected. We give the watermark 

detection results (  under H1) in the original domain in Table 5.4. Table 5.4 and Figure 

5.4 show that watermark detection in the CS domain has lower performance than in the 

original domain. The distortion is introduced by the CS transformation. Figure 5.4 also 

presents the estimated     based on Eq. (5.9). We can see that the estimated     and the 
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tested real     agree with each other very well. The estimated     is calculated based only 

on the original signals and the CS rate, but not on the CS matrix used. It can be used as a 

reference to set a certain CS rate and achieve desired watermark detection performance in 

that CS domain. From Figure 5.4, we can see that when top 20 AC’s are selected, the 

watermark detection performance is the best for the 512x512 ‘Lenna’ image. This is 

because most of the watermarks are embedded in the top 20 AC coefficients and   is 

relatively smaller as seen from Table 5.3. The one with all the 63 AC coefficients 

selected has lower     value because the higher frequency DCT coefficients without 

watermark embedded will introduce noise to the watermark detection.  

 
Figure 5.4. Watermark detection in the CS domain under different CS rates when 
different DCT components are selected. For the legend of the figure, “real” means the 
mean of qCS calculated from {zi}, while “est” means the estimated mean of qCS based on 
Equation (5.9). The number “xx” means “Top AC xx”. (for the 512x512 ‘Lenna’ image) 

 

Table 5.4. Watermark detection (  under H1) in original domain with different DCT 
coefficients. (for the 512x512 ‘Lenna’ image) 

Top AC 
63 

Top AC 
40 

Top AC 
30 

Top AC 
20 

Top AC 
10 

5.6E+01 6.1E+01 5.6E+01 4.5E+01 2.5E+01 
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Figure 5.5.    ’s distribution under    and    with CS rate 0.1 using the top 20 AC 
coefficients as DCT2 and the top 63 AC coefficients as DCT2 (for the 512x512 ‘Lenna’ 
image) 

 

Figure 5.5 shows the distribution of the statistic     with CS rate 0.1 by using the top 

20 and 63 AC coefficients as DCT2 for watermark detection for the 512x512 ‘Lenna’ 

image. The figure shows that even with high dimension reduction, the watermark can still 

be detected.  

We evaluate the watermark detection performance in the CS domain when both the 

watermark signals and certain noises are transformed to the CS domain simultaneously. 

Figure 5.6 shows the watermark detection performance in the CS domain when Gaussian 

noise (generated by the Gaussian random value generator in Matlab) is inserted into the 

test image. The figure shows that the watermark detection performance decreases only 

slightly even when the zero-mean Gaussian noise has a standard deviation of 40. The CS 

reconstruction will introduce distortion to the test image, which is referred to as CS 

reconstruction attack (e.g., labeled as “CS recons atk, 63” in Figure 5.6) for the 
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watermark detection. We transform the top 63 (and 20) AC coefficients to a CS domain 

and perform watermark detection in the original domain after CS reconstruction. Figure 

5.6 shows that when the CS rate is very low, the performance could be inferior to CS 

domain watermark detection, due to significant loss of information in the CS 

reconstruction process. Compared with “CS recons atk, 63”, “CS recons atk, 20” of 

Figure 5.6 shows that the watermark detection in the original domain after CS 

reconstruction is even lower than the CS domain across most CS rates. This is because 

most of the top 20 AC DCT channels are selected for watermark embedding and the CS 

reconstruction distortion to any of those channels will affect the watermark detection 

performance. However, the CS reconstruction distortion for “CS recons atk, 63” goes to 

the higher frequency DCT coefficients, most of which are not selected for watermark 

embedding. 

 
Figure 5.6. The mean of     at different CS rates under zero-mean Gaussian noise attack 
(i.e. “20 atk” means Gaussian noise with zero mean and standard deviation 20); The 
mean of   in the original domain after CS reconstruction (i.e. if top 63 AC coefficients 
are selected for CS transformation, denoted as “CS recons atk, 63”). (for the 512x512 
‘Lenna’ image) 
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Table 5.5. Average qCS and   for  different images when different Top AC coefficients 
are chosen (CS rate = 0.1). 

Image/       TopAC 63 TopAC 20 TopAC 10 
‘Baboon’/ 
1.16E+02 

    3.26E+01 1.70E+01 9.93E+00 
  3.29E+01 1.70E+01 9.97E+00 

‘Barbara’/ 
6.01E+01 

    1.45E+01 1.24E+01 8.48E+00 
  1.45E+01 1.25E+01 8.52E+00 

‘Goldhill’/ 
7.68E+01 

    1.43E+01 1.56E+01 9.54E+00 
  1.42E+01 1.56E+01 9.54E+00 

‘Peppers’/ 
5.57E+01 

    8.49E+00 1.04E+01 6.68E+00 
  8.41E+00 1.04E+01 6.64E+00 

 

Table 5.5 and Figure 5.7 present the test results with 512x512 ‘Baboon’ image, 

‘Peppers’ image and etc. Table 5.5 gives the watermark detection results     in the CS 

domain and the estimated watermark detection performance  , when different images 

and different AC coefficients are selected with CS rate being 0.1. The first column also 

gives the watermark detection   in the original domain. The table shows that even with a 

CS rate of 0.1, the watermark can still be successfully detected for all the images when 

different AC coefficients are selected.  Furthermore, the table also confirms our analysis 

in Section 2.3 that   in Eq. (5.9) can be used for accurately estimating the expected 

watermark detection performance in the CS domain. Figure 5.7 summarizes the 

watermark detection performance under different CS rates. The watermark detection 

performance in the CS domain for the ‘Baboon’ image is very good when top 63 AC 

coefficients are selected. This is because ‘Baboon’ is a highly textured image and many 

of its higher frequency DCT coefficients are also selected for watermark embedding. 
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Figure 5.7. Watermark detection performance in the CS domain for other images (i.e. 
“Goldhill, 63” means Goldhill image with top 63 AC coefficients selected) 

 

5.6.4. Compressive Sensing Encryption 

 

 
Figure 5.8: (a) Original image; (b) Image in 8x8 DCT domain; (c) DCT coefficients after 
CS transformation; (d) Image reconstruction with the wrong CS matrix. (CS rate 1.0 is 
chosen here, similar effects are observed under other CS rates) 
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Figure 5.8 shows the encryption results using the CS matrix as the encryption key. 

Figure 5.8 (d) shows that if a different CS matrix is used for the CS reconstruction, the 

reconstructed image is totally random. The block effect is due to the inverse-DCT 

operation on the 8x8 DCT block. If watch closely, it can be observed that Figure 5.8 (c) 

still preserves the spatial contour of Figure 5.8 (b) roughly. The reason is that the CS 

transformation in our experiment is performed piece-wisely as mentioned in Section  

5.6.1 instead of treating the whole image as a single vector. As the RIP property given in 

Section 4.2.1 suggests, the CS transformation can preserve the energy of the original 

data. Such spatial contour similarity between DCT coefficients in the original domain and 

the CS domain can be removed by permuting the order of the pieces or by treating the 

whole image as a single vector.  

 

5.6.5. Compressive Sensing Reconstruction  

 

For privacy preserving storage, since the DCT coefficients are not perfectly sparse, 

the CS reconstruction will introduce distortion to the reconstructed image, especially 

when CS rate is low. The CS reconstruction error has been studied in many other works. 

Here we present our CS reconstruction experimental results when all AC components are 

transformed to a CS domain. In order to have a good quality image after the CS 

reconstruction, the CS rate needs to be high. Our experiments show that the PSNR (Peak 

Signal-to-Noise Ratio) is around 35 after the CS transformation/reconstruction process 

when the CS rate is 0.8, as shown in Figure 5.9. Even when the CS rate is set to 1.0, the 
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CS reconstruction algorithm (Orthogonal Matching Pursuit) still introduces distortion as 

we can see the PSNR is around 38.  However, it should be noted that when the CS rate 

equals 1.0, the original DCT coefficients can be recovered perfectly given the inverse of 

the CS matrix, in which case CS reconstruction is not necessary.  

 

 
Figure 5.9. CS reconstruction distortion when top 63 AC coefficients are transformed to 
the CS domain 
 
 

5.7. Conclusion and Future Works 

 

This chapter proposes a compressive sensing based secure signal processing 

framework that enables simultaneous secure watermark detection and privacy preserving 

storage. Our framework is secure under the semi-honest adversary model to protect the 

private data. Note that without the semi-honest assumption, our framework will fail to 

protect the secret values. For example, collusion between WO and CLD will cause the 

leakage of DH’s CS matrix. When compared to previous secure watermark detection 

protocols, our framework offers better efficiency and flexibility, and protects the privacy 

of the multimedia data that has not yet been considered in the previous works. We have 

demonstrated that secure watermark detection in the CS domain is feasible theoretically 
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and experimentally. More theoretical analysis of the covariance term in Eq. (5.9) will be 

conducted in the future work. In addition to watermark detection, it would be interesting 

to explore the possibility of secure watermark embedding in the compressive domain. We 

show that the performance of the watermark detection in the compressive sensing domain 

could be estimated without the actual CS matrix used. Such an idea could be extended for 

other data-mining and signal processing algorithms in the CS domain as well. Future 

work also includes further evaluation of the robustness of the watermark detection in the 

CS domain under some other attacks.  
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Chapter 6. Use Case: A Privacy Preserving 

Collaborative Filtering Recommendation System for 

Mobile Users 

In this chapter, we develop a privacy preserving collaborative filtering 

recommendation system for mobile users based on our mobile geo-tagging system 

proposed in Chapter 3 and the privacy preserving collaborative data-mining framework 

proposed in Chapter 4.  

 

6.1. Introduction and Related Works  

 

Recommender systems have become extremely common in recent years. Good 

personalized recommendations can add another dimension to the user experience, some 

of the largest e-commerce web sites have invested in high-quality recommender systems. 

Two well-known examples are the web merchant Amazon.com and the online movie 

rental company Netflix, which make the recommender system a salient part of their web 

sites. A majority of the recommender systems is based on the collaborative filtering 

techniques [44], which predict user preferences for products or services by learning past 

user-item relationships. The underlying assumption of the collaborative filtering 

approach, as given in [94], is that if a person A has the same opinion as a person B on an 

issue, A is more likely to have B’s opinion on a different issue x than to have the opinion 

on x of a person chosen randomly.   
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Based on the collaborative filtering literature review article given by Su and 

Koshgoftaar [44], there are three types of collaborative filtering (CF) techniques: 1. 

Memory-based CF techniques, 2. Model-based CF techniques, and 3. Hybrid CF 

techniques.  

Memory-based CF techniques systems use the user rating data to calculate the 

similarity or weight between users or items and make predictions or recommendations 

according to those calculated similarity values.  

Model-based CF techniques use the pure rating data to estimate or learn a model to 

make predictions. The model can be a data mining or machine learning algorithm. Well-

known model-based CF techniques include Bayesian belief nets (BNs) CF models, 

clustering CF models, and latent semantic CF models. An MDP (Markov decision 

process)-based CF system produces a much higher profit than a system that has not 

deployed the recommender.  

Hybrid CF techniques combine CF and content-based techniques, hoping to avoid the 

limitations of either approach and thereby improve recommendation performance. 

Content-based filtering, besides collaborative filtering, is another important class of 

recommender systems. Content-based recommender systems make recommendations by 

analyzing the content of textual information and finding regularities in the content. The 

major difference between CF and content-based recommender systems is that CF only 

uses the user-item ratings data to make predictions and recommendations, while content-

based recommender systems rely on the features of users and items for predictions. 

One of the challenges [44] of the CF systems is the protection of the privacy when 

sharing the personal data. Canny [5] proposed solutions to protect users’ privacy for CF 
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recommendation tasks (i.e., mobile users who share their activity history to receive daily 

activity recommendations).  Canny’s method uses SVD to find an orthogonal space based 

on the aggregated data and projects the original data to such space for collaborative 

filtering. The similarity between users is determined by the representation of the users in 

the reduced space. Using such method requires continuously performing SVD for a large 

dimensional matrix first, which is computationally expensive and also introduces 

significant latency for the whole system. 

In this chapter, we developed a mobile privacy preserving collaborative filtering 

system. In our system, mobile users can share their personal data (visit history or 

preference, e.g., restaurants, bars, landmarks, and etc.) with each other in the cloud and 

get daily activity recommendations based on the data-mining results generated by the 

cloud, without leaking the data privacy to other parties. Our mobile geo-tagging system 

could help improve the geo-tagging accuracy, i.e., users may record their visited or 

preferred places or landmarks by taking pictures of them from a remote spot. In such 

case, our mobile geo-tagging system could better reflect the user’s intention, while using 

GPS reading only is biased. 

The rest of this chapter is organized as follows. In Section 6.2, the detailed of the 

system is presented. Section 6.3 gives experimental results showing that our system is 

practicable and feasible. The chapter concludes in Section 6.4. 

 

6.2. The System 
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Figure 6.1. The architecture of the mobile privacy preserving collaborative filtering 
system. 

 

Table 6.1. An example of user’s visiting history. 
Users Location1 Location2 Location3 …… LocationN 
User1 0 3 8 …… 0 
User2 1 0 0 …… 0 
User3 0 5 3 ….... 0 

 

The architecture of the system is given in Figure 6.1, which is generated from our 

generic framework in Figure 4.1. All the DHs (data holders) are mobile users who use 

their smartphone’s sensors (GPS) or our proposed geo-tagging system to get their visited 

histories or the locations they like. The data will be formed as a vector including all the 

places, an example of which is shown in Table 6.1. In Table 6.1, each user’s data vector 

entries record how many times such user visits the corresponding location.  DHs work 

with CSH (compressive sensing matrix holder) to transform their personal data vector to 

the CLD (cloud) through MPC protocols given in Section 4.5. CLD will perform data-

mining algorithm to the data to generate the recommendation in the CS domain. Then the 

CSH and CLD will send the recommendation in original domain to the DH through MPC 

based CS reconstruction protocol as given in Section 4.5. In our system, the K-nearest 

neighbor algorithm is chosen to generate recommendations, because it is one of the pre-

dominant approaches used for collaborative filtering [96]. 
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The system’s security is based on the security of our generic framework, the security 

analysis of which has been given in Section 5.5. The analysis shows that the potential 

information leak will happen when the MPC based CS reconstruction protocol is 

executed, i.e., CSH may be able to guess the structure (the ranking of the entries based on 

the entry values) of the original vector. The complexity of the system can be easily 

derived from the complexity analysis of the generic framework in Section 5.5 as well. 

 

6.3. Experimental Results 

 

In our experiment, MovieLens 1M Dataset [62] (a benchmark dataset used for testing 

collaborative filtering techniques) is used for our simulation. Since its data structure is 

close to the data vector structure required in our system and its way of collecting users’ 

ratings is similar with how our system will get users’ preferences. We select 1578 sparse 

vectors from MovieLens Dataset with vector size 1000x1. Sparse data vectors are chosen 

in that the mobile users’ vector data is sparse (because user’s visited place is typically a 

small portion of an area). In the experiments, the scaling factor is set to 1.0e8 for the 

MPC protocols. A recommendation for a certain user is calculated based on its 10 nearest 

neighbors’ centroid. We give the recommendations based on the data-mining results in 

the CS domain and compare them with the results in the original domain as shown in 

Table 6.2. In Table 6.2, the relative error is given as: 

      
|| | 

  | | 
 |

| | 
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where both   and   are in the original domain.   is the recommendation result generated 

in the original domain, and   is the CS reconstruction result from the recommendation 

generated in the CS domain under difference CS rates. We can see that the 

recommendation results in the CS domain are very close to the original domain. The 

communication cost for our system is given in Table 6.3 under the CS rate 1.0 (chosen 

because it generates the highest communication cost). The table only gives the dominant 

communication cost introduced by public key domain values. The setting for public key 

systems is the same with Section 4.8.2. The initial step in which CSH sends DH the 

public key encrypted CS matrix (i.e., 256MB with the current setting) is not included in 

the table since it could be reused. From Table 6.3, we can see that during the CS 

transformation, DH only needs to send out 0.255MB data. During the reconstruction 

process, the communication cost between CSH and CLD is high while the cost for DH is 

negligible (no communication cost in the public-key domain). In our system, we assume 

CSH and CLD are computationally powerful parties but DHs are mobile users who have 

lower computational power. We can see from Table 6.2 and Table 6.3 that our system is 

feasible and practicable in enabling privacy preserving collaborative filtering services for 

mobile users.  

Table 6.2. Relative errors of the recommendation results in CS domain w.r.t the original 
domain. 

Compressive sensing rate Relative error (%) 
1.0 0.6 
0.9 0.6 
0.8 0.8 
0.7 0.9 
0.6 1.2 
0.5 1.6 
0.4 1.8 
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Table 6.3. Communication cost of the proposed system (data in public key domain only). 
From To CS transformation  

(MB) 
CS reconstruction  

(MB) 
       0 0 
       0.255 0 
       0 0 
       0 0 
        0 197 
        0 292 

 

 

6.4. Conclusions 

 

In this chapter, a privacy preserving collaborative filtering system for mobile users is 

proposed. Such system is enabled by both of our mobile geo-tagging system and our 

generic privacy preserving data-mining framework. Our experimental results based on 

the simulation with real-world data show that our system is feasible and practicable.  
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Chapter 7. Conclusions and Future Works 

 

In recent years, with the off-the-shelve mobile devices and the cloud computing 

services getting popular, mobile cloud computing has drawn increasing attentions from 

the industrial and academic communities. There are a great deal of opportunities to be 

explored and problems to be solved in the mobile cloud computing area. Our research 

focuses on developing practical systems by taking advantage of the on-board computing 

capability and sensors of the mobile devices and proposing solutions to protect the 

privacy when personal data is shared in the cloud for collaborative data-mining. In this 

dissertation, we have developed mobile geo-tagging system and privacy preserving 

collaborative data-mining frameworks and systems [6][7][8][9]. In this chapter, we 

conclude with a summary of our contributions and discuss future works.  

 

7.1. Summary of the Dissertation 

 

Our proposed frameworks and systems including their contributions  are summarized  

in the following. 

 

 Mobile geo-tagging system 

Mobile multimedia and vision systems and mobile location based systems have 

received significant attentions in recent years. Current mobile vision-based geo-tagging 
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systems in the literature are used to locate the device it-self but not a remote target and 

they have to rely on a remote server for computationally heavy tasks.  

In this dissertation, we propose an image/video based remote target localization and 

tracking system. In our system, all the computational tasks are performed on the mobile 

devices only. To cope with smartphone’s computationally weak limitation, we propose 

optimization methods that are tailored to the unique characteristics of the smartphone’s 

computing platform.  

Our system is first of its kind and we provide the first hand real-world experimental 

results showing that our system is feasible and practicable. Our system can be applied in 

various scenarios including military and commercial applications.  

 

 Generic privacy preserving collaborative data-mining framework 

Due to the necessity of collaborative data-mining applications and services, privacy is 

becoming a critical concern when users share their data with other parties. Previous 

privacy preserving data-mining methods or systems suffer from either lower security 

level or lower scalability and flexibility. 

In this dissertation, we propose a generic compressive sensing based privacy 

preserving collaborative data-mining framework using secure multiparty computation. In 

our framework, the secure multiparty computation is applied to the compressive sensing 

transformation and reconstruction processes and the data-mining is performed in the 

compressive sensing domain, so that the CS transformed data could be stored in the cloud 

securely for reuse for various types of data-mining tasks, e.g., k-means clustering, k-



-120- 
 

nearest neighbor, and etc. Our analysis and experimental results have demonstrated that 

our system is viable in enabling privacy preserving data-mining tasks.  

 

 Privacy preserving storage and secure watermark detection framework 

Secure watermark detection is an important field, however there are no new 

approaches and solutions to such problem for years. Previous secure watermark detection 

methods only protect the watermark pattern but not the target image and they are 

constrained by the significant computational and communication complexity. 

In this dissertation, we identify an application scenario that also requires protecting 

the privacy of the target image during the secure watermark detection process. We 

propose a secure watermark detection framework based on our generic privacy 

preserving data-mining framework. Our framework provides privacy protection for both 

watermark pattern and the target image with better flexibility and efficiency compared to 

previous works. 

We show that secure watermark detection in the compressive sensing domain is 

feasible based on our theoretical analysis and experimental results. We derive the 

expected watermark detection performance in the compressive sensing domain, given the 

target image, watermark pattern and the size of the compressive sensing matrix (but 

without the CS matrix used).  This is important since the performance can be estimated 

during the watermark embedding process by the content provider.  

 

 Mobile privacy preserving collaborative filtering system 
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Based on our mobile geo-tagging system and our generic privacy preserving 

framework, in this dissertation, we propose a mobile privacy preserving collaborative 

filtering system. Our mobile geo-tagging system is introduced to facilitate more accurate 

user personal data for better collaborative filtering recommendations. Our generic privacy 

preserving framework is used for protecting the data privacy of mobile users while 

providing data-mining services (i.e., k-nearest neighbor algorithm based recommendation 

service) through cloud. Our experimental results based on the simulation with real-world 

data show that our system is feasible and practicable. 

 

7.2. Future Works 

 

Details of the future works of our proposed systems and frameworks have been 

discussed in each corresponding chapter respectively. In this section, we summarize the 

future works in two aspects: developing more practical mobile geo-tagging systems and 

designing more efficient and secure privacy preserving data-mining frameworks. 

 Developing more practical mobile geo-tagging systems 

Future work could include further system accuracy improvement and complexity 

reduction, e.g., 1. the accuracy of the two-image based localization system could be 

improved by introducing more images of the remote target from different perspectives; 2. 

computationally heavy tasks (video tracking and image feature extraction & matching) 

can be dispatched to several smartphones and get processed in parallel; 3. on-board GPU 

programming of mobile devices can also facilitate higher computational efficiency for 

our system. Providing more user-friendly interface opens a direction for our system’s 
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future work as well, e.g., in the single-image based localization, drawing bounding boxes 

enclosing the object tightly by a user could be eased by taking advantage of image 

segmentation techniques so that the tight bounding box could be generated automatically 

based on the image segmentation results (i.e., the side of the box could be aligned 

automatically to the object’s segment boundary).  

 

 Designing more efficient and secure privacy preserving data-mining frameworks 

We have already demonstrated that many data-mining and signal processing tasks can 

be securely performed in the compressive sensing domain. Future work could include 

developing efficient distributed data-mining algorithms in the cloud. The public key 

based MPC protocols introduce significant computational and communication overheads. 

Future work could include complexity reduction for the MPC protocols, especially for the 

computationally weak data holders (e.g., mobile users). For example, the MPC protocols 

could be designed in a way that some public key operations of the data holders can be 

shifted to the cloud. Future work also includes security analysis of the MPC CS 

reconstruction process in which the ordering information is leaked to the CS matrix 

holder. Two approaches might be helpful to resolve such potential security issue: 

introducing an additional party to the MPC CS reconstruction protocol or eliminating the 

security leak step of the protocol by modifying the CS reconstruction algorithm. 
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APPENDIX I 

Proof of Lemma 2 in Section 5.3: 

An equivalent way to interpret the second formula from Lemma 1 [39] is: 
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The proof above is based on Lemma 1 in Section 4.3.3. However, the link of the proof for 

Lemma 1’s second equation is invalid in [39]. We give our proof of Lemma 2 in the 
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Then: 
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