316 research outputs found

    Deep Learning Techniques for Multi-Dimensional Medical Image Analysis

    Get PDF

    Deep Learning Techniques for Multi-Dimensional Medical Image Analysis

    Get PDF

    Incremental and Adaptive L1-Norm Principal Component Analysis: Novel Algorithms and Applications

    Get PDF
    L1-norm Principal-Component Analysis (L1-PCA) is known to attain remarkable resistance against faulty/corrupted points among the processed data. However, computing L1-PCA of “big data” with large number of measurements and/or dimensions may be computationally impractical. This work proposes new algorithmic solutions for incremental and adaptive L1-PCA. The first algorithm computes L1-PCA incrementally, processing one measurement at a time, with very low computational and memory requirements; thus, it is appropriate for big data and big streaming data applications. The second algorithm combines the merits of the first one with additional ability to track changes in the nominal signal subspace by revising the computed L1-PCA as new measurements arrive, demonstrating both robustness against outliers and adaptivity to signal-subspace changes. The proposed algorithms are evaluated in an array of experimental studies on subspace estimation, video surveillance (foreground/background separation), image conditioning, and direction-of-arrival (DoA) estimation

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Information processing for mass spectrometry imaging

    Get PDF
    Mass Spectrometry Imaging (MSI) is a sensitive analytical tool for detecting and spatially localising thousands of ions generated across intact tissue samples. The datasets produced by MSI are large both in the number of measurements collected and the total data volume, which effectively prohibits manual analysis and interpretation. However, these datasets can provide insights into tissue composition and variation, and can help identify markers of health and disease, so the development of computational methods are required to aid their interpretation. To address the challenges of high dimensional data, randomised methods were explored for making data analysis tractable and were found to provide a powerful set of tools for applying automated analysis to MSI datasets. Random projections provided over 90% dimensionality reduction of MALDI MSI datasets, making them amenable to visualisation by image segmentation. Randomised basis construction was investigated for dimensionality reduction and data compression. Automated data analysis was developed that could be applied data compressed to 1% of its original size, including segmentation and factorisation, providing a direct route to the analysis and interpretation of MSI datasets. Evaluation of these methods alongside established dimensionality reduction pipelines on simulated and real-world datasets showed they could reproducibly extract the chemo-spatial patterns present

    3D exemplar-based image inpainting in electron microscopy

    Get PDF
    In electron microscopy (EM) a common problem is the non-availability of data, which causes artefacts in reconstructions. In this thesis the goal is to generate artificial data where missing in EM by using exemplar-based inpainting (EBI). We implement an accelerated 3D version tailored to applications in EM, which reduces reconstruction times from days to minutes. We develop intelligent sampling strategies to find optimal data as input for reconstruction methods. Further, we investigate approaches to reduce electron dose and acquisition time. Sparse sampling followed by inpainting is the most promising approach. As common evaluation measures may lead to misinterpretation of results in EM and falsify a subsequent analysis, we propose to use application driven metrics and demonstrate this in a segmentation task. A further application of our technique is the artificial generation of projections in tiltbased EM. EBI is used to generate missing projections, such that the full angular range is covered. Subsequent reconstructions are significantly enhanced in terms of resolution, which facilitates further analysis of samples. In conclusion, EBI proves promising when used as an additional data generation step to tackle the non-availability of data in EM, which is evaluated in selected applications. Enhancing adaptive sampling methods and refining EBI, especially considering the mutual influence, promotes higher throughput in EM using less electron dose while not lessening quality.Ein häufig vorkommendes Problem in der Elektronenmikroskopie (EM) ist die Nichtverfügbarkeit von Daten, was zu Artefakten in Rekonstruktionen führt. In dieser Arbeit ist es das Ziel fehlende Daten in der EM künstlich zu erzeugen, was durch Exemplar-basiertes Inpainting (EBI) realisiert wird. Wir implementieren eine auf EM zugeschnittene beschleunigte 3D Version, welche es ermöglicht, Rekonstruktionszeiten von Tagen auf Minuten zu reduzieren. Wir entwickeln intelligente Abtaststrategien, um optimale Datenpunkte für die Rekonstruktion zu erhalten. Ansätze zur Reduzierung von Elektronendosis und Aufnahmezeit werden untersucht. Unterabtastung gefolgt von Inpainting führt zu den besten Resultaten. Evaluationsmaße zur Beurteilung der Rekonstruktionsqualität helfen in der EM oft nicht und können zu falschen Schlüssen führen, weswegen anwendungsbasierte Metriken die bessere Wahl darstellen. Dies demonstrieren wir anhand eines Beispiels. Die künstliche Erzeugung von Projektionen in der neigungsbasierten Elektronentomographie ist eine weitere Anwendung. EBI wird verwendet um fehlende Projektionen zu generieren. Daraus resultierende Rekonstruktionen weisen eine deutlich erhöhte Auflösung auf. EBI ist ein vielversprechender Ansatz, um nicht verfügbare Daten in der EM zu generieren. Dies wird auf Basis verschiedener Anwendungen gezeigt und evaluiert. Adaptive Aufnahmestrategien und EBI können also zu einem höheren Durchsatz in der EM führen, ohne die Bildqualität merklich zu verschlechtern

    Dynamic Algorithms and Asymptotic Theory for Lp-norm Data Analysis

    Get PDF
    The focus of this dissertation is the development of outlier-resistant stochastic algorithms for Principal Component Analysis (PCA) and the derivation of novel asymptotic theory for Lp-norm Principal Component Analysis (Lp-PCA). Modern machine learning and signal processing applications employ sensors that collect large volumes of data measurements that are stored in the form of data matrices, that are often massive and need to be efficiently processed in order to enable machine learning algorithms to perform effective underlying pattern discovery. One such commonly used matrix analysis technique is PCA. Over the past century, PCA has been extensively used in areas such as machine learning, deep learning, pattern recognition, and computer vision, just to name a few. PCA\u27s popularity can be attributed to its intuitive formulation on the L2-norm, availability of an elegant solution via the singular-value-decomposition (SVD), and asymptotic convergence guarantees. However, PCA has been shown to be highly sensitive to faulty measurements (outliers) because of its reliance on the outlier-sensitive L2-norm. Arguably, the most straightforward approach to impart robustness against outliers is to replace the outlier-sensitive L2-norm by the outlier-resistant L1-norm, thus formulating what is known as L1-PCA. Exact and approximate solvers are proposed for L1-PCA in the literature. On the other hand, in this big-data era, the data matrix may be very large and/or the data measurements may arrive in streaming fashion. Traditional L1-PCA algorithms are not suitable in this setting. In order to efficiently process streaming data, while being resistant against outliers, we propose a stochastic L1-PCA algorithm that computes the dominant principal component (PC) with formal convergence guarantees. We further generalize our stochastic L1-PCA algorithm to find multiple components by propose a new PCA framework that maximizes the recently proposed Barron loss. Leveraging Barron loss yields a stochastic algorithm with a tunable robustness parameter that allows the user to control the amount of outlier-resistance required in a given application. We demonstrate the efficacy and robustness of our stochastic algorithms on synthetic and real-world datasets. Our experimental studies include online subspace estimation, classification, video surveillance, and image conditioning, among other things. Last, we focus on the development of asymptotic theory for Lp-PCA. In general, Lp-PCA for p\u3c2 has shown to outperform PCA in the presence of outliers owing to its outlier resistance. However, unlike PCA, Lp-PCA is perceived as a ``robust heuristic\u27\u27 by the research community due to the lack of theoretical asymptotic convergence guarantees. In this work, we strive to shed light on the topic by developing asymptotic theory for Lp-PCA. Specifically, we show that, for a broad class of data distributions, the Lp-PCs span the same subspace as the standard PCs asymptotically and moreover, we prove that the Lp-PCs are specific rotated versions of the PCs. Finally, we demonstrate the asymptotic equivalence of PCA and Lp-PCA with a wide variety of experimental studies
    corecore