1,510 research outputs found

    IOT Based Continuous Glucose Monitoring for Diabetes Mellitus using Deep Siamese Domain Adaptation Convolutional Neural Network

    Get PDF
    The phrase "Internet of Things" (IoT) refers to the forthcoming generation of the Internet, which facilitates interaction among networked devices. IoT functions as an assistant in medicine and is critical to a variety of uses that monitor healthcare facilities. The pattern of observed parameters can be used to predict the type of the disease. Health experts and technologists have developed an excellent system that employs commonly utilized technologies like wearable technology, wireless channels, and other remote devices to deliver cost-effective medical surveillance for people suffering from a range of diseases. Network-connected sensors worn on the body or put in living areas collect large amounts of data to assess the patient's physical and mental wellbeing. In this Manuscript, IoT -based Continuous Glucose Monitoring for Diabetes Mellitus using Deep Siamese Domain Adaptation Convolutional Neural Networ k (CGM-DM- DSDACNN) is proposed. The goal of the work that has been described to investigate whether Continuous Glucose Monitoring System (CGMS) on the basis of IoT is both intrusive also secure. The job at hand is for making an architecture based on IoT that extends from the sensor model to the back-end and displays blood glucose level, body temperature, and contextual data to final users like patients and doctors in graphical and text formats. A higher level of energy economy is also attained by tailoring the Long range Sigfox communication protocol to the glucose monitoring device. Additionally, analyse the energy usage of a sensor device and create energy collecting components for it. Present a Deep Siamese Domain Adaptation Convolutional Neural Network (DSDACNN) as a last resort for alerting patients and medical professionals in the event of anomalous circumstances, like a too -low or too-high glucose level

    Smart Health Internet of Thing for Continuous Glucose Monitoring: a Survey

    Get PDF
    Health monitoring system allows patients to monitor the health-related problem to avoid further complications which could result in loss of life. Smart health is one of the categories of a health monitoring system that uses Smartphone’s and sensors to effectively monitor patient health status. However, the smart health internet of thing methods for glucose monitoring still does not provide accurate glucose reading. Hence, diabetes patient can easily loss life. To help understand this challenge, a comprehensive survey focused on smart health internet of thing methods for continuous glucose monitoring was conducted. The paper discusses the benefit and challenge of each method applicable to glucose monitoring. It was observed that several smart health methods required sensor to function. Smart vehicles and remote monitoring have less attention. However, when accommodates can provide future opportunities

    Secure and Privacy-Preserving Automated Machine Learning Operations into End-to-End Integrated IoT-Edge-Artificial Intelligence-Blockchain Monitoring System for Diabetes Mellitus Prediction

    Full text link
    Diabetes Mellitus, one of the leading causes of death worldwide, has no cure to date and can lead to severe health complications, such as retinopathy, limb amputation, cardiovascular diseases, and neuronal disease, if left untreated. Consequently, it becomes crucial to take precautionary measures to avoid/predict the occurrence of diabetes. Machine learning approaches have been proposed and evaluated in the literature for diabetes prediction. This paper proposes an IoT-edge-Artificial Intelligence (AI)-blockchain system for diabetes prediction based on risk factors. The proposed system is underpinned by the blockchain to obtain a cohesive view of the risk factors data from patients across different hospitals and to ensure security and privacy of the user's data. Furthermore, we provide a comparative analysis of different medical sensors, devices, and methods to measure and collect the risk factors values in the system. Numerical experiments and comparative analysis were carried out between our proposed system, using the most accurate random forest (RF) model, and the two most used state-of-the-art machine learning approaches, Logistic Regression (LR) and Support Vector Machine (SVM), using three real-life diabetes datasets. The results show that the proposed system using RF predicts diabetes with 4.57% more accuracy on average compared to LR and SVM, with 2.87 times more execution time. Data balancing without feature selection does not show significant improvement. The performance is improved by 1.14% and 0.02% after feature selection for PIMA Indian and Sylhet datasets respectively, while it reduces by 0.89% for MIMIC III

    A review of wearable sensors based monitoring with daily physical activity to manage type 2 diabetes

    Get PDF
    Globally, the aging and the lifestyle lead to rabidly increment of the number of type two diabetes (T2D) patients. Critically, T2D considers as one of the most challenging healthcare issue. Importantly, physical activity (PA) plays a vital role of improving glycemic control T2D. However, daily monitoring of T2D using wearable devices/ sensors have a crucial role to monitor glucose levels in the blood. Nowadays, daily physical activity (PA) and exercises have been used to manage T2D. The main contribution of the proposed study is to review the literature about managing and monitoring T2D with daily PA through wearable devices and sensors. Finally, challenges and future trends are also highlighted

    Machine Learning and Deep Learning Models for Predicting the Onset of Diabetes: A Pilot Study

    Get PDF
    Diabetes currently one of the most significant worldwide concerns, and its prevalence is only expected to increase in the future years. In order to monitor glucose levels in the blood and set treatment protocols for diabetes, keeping a regular schedule for checking blood glucose levels is essential. The purpose of widespread adoption of digital health in recent years has been to enhance diabetic healthcare for patients, and as a result, a massive quantity of data has been collected that may be used in the ongoing management of this chronic condition. Deep learning, a relatively new kind of machine learning, is one method that has taken advantage of this trend, and its applications seem promising. In this research, we provide a thorough analysis of how deep learning has been used in the study of diabetes thus far. We conducted a comprehensive literature search and found that this method is most often used in the following settings: diabetes diagnosis, glucose control, and the identification of diabetes-related complications. We have described the most important details regarding the learning models used, the development process, the primary outcomes, and the baseline techniques for performance assessment from the 40 original research publications that we selected based on the search. In the reviewed literature, it becomes clear that several deep learning algorithms and frameworks have outperformed traditional machine learning methods to attain state-of-the-art performance on numerous problems involving diabetes. However, we point out several gaps in the existing literature, such as a dearth of readily available data and a lack of clarity in the interpretation of models. In the near future, these obstacles may be surmounted thanks to the fast advancements in deep learning methodologies which will allow for wider application of this technology in therapeutic settings

    Glucose Data Classification for Diabetic Patient Monitoring

    Get PDF
    [EN] Living longer and healthier is the wish of all patients. Therefore, to design effective solutions for this objective, the concept of Big Data in the health field can be integrated. Our work proposes a patient monitoring system based on Internet of Things (IoT) and a diagnostic prediction tool for diabetic patients. This system provides real-time blood glucose readings and information on blood glucose levels. It monitors blood glucose levels at regular intervals. The proposed system aims to prevent high blood sugar and significant glucose fluctuations. The system provides a precise result. The collected and stored data will be classified by using several classification algorithms to predict glucose levels in diabetic patients. The main advantage of this system is that the blood glucose level is reported instantly; it can be lowered or increased.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P.Rghioui, A.; Lloret, J.; Parra-Boronat, L.; Sendra, S.; Oumnad, A. (2019). Glucose Data Classification for Diabetic Patient Monitoring. Applied Sciences. 9(20):1-15. https://doi.org/10.3390/app9204459S115920Rghioui, A., Sendra, S., Lloret, J., & Oumnad, A. (2016). Internet of Things for Measuring Human Activities in Ambient Assisted Living and e-Health. Network Protocols and Algorithms, 8(3), 15. doi:10.5296/npa.v8i3.10146Zhang, Y., Gravina, R., Lu, H., Villari, M., & Fortino, G. (2018). PEA: Parallel electrocardiogram-based authentication for smart healthcare systems. Journal of Network and Computer Applications, 117, 10-16. doi:10.1016/j.jnca.2018.05.007Ismail, W. N., Hassan, M. M., Alsalamah, H. A., & Fortino, G. (2018). Mining productive-periodic frequent patterns in tele-health systems. Journal of Network and Computer Applications, 115, 33-47. doi:10.1016/j.jnca.2018.04.014Aboufadel, E., Castellano, R., & Olson, D. (2011). Quantification of the Variability of Continuous Glucose Monitoring Data. Algorithms, 4(1), 16-27. doi:10.3390/a4010016Katon, W. J., Rutter, C., Simon, G., Lin, E. H. B., Ludman, E., Ciechanowski, P., … Von Korff, M. (2005). The Association of Comorbid Depression With Mortality in Patients With Type 2 Diabetes. Diabetes Care, 28(11), 2668-2672. doi:10.2337/diacare.28.11.2668Riazul Islam, S. M., Daehan Kwak, Humaun Kabir, M., Hossain, M., & Kyung-Sup Kwak. (2015). The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access, 3, 678-708. doi:10.1109/access.2015.2437951Lloret, J., Canovas, A., Sendra, S., & Parra, L. (2015). A smart communication architecture for ambient assisted living. IEEE Communications Magazine, 53(1), 26-33. doi:10.1109/mcom.2015.7010512Xiao, Z., Tan, X., Chen, X., Chen, S., Zhang, Z., Zhang, H., … Min, H. (2015). An Implantable RFID Sensor Tag toward Continuous Glucose Monitoring. IEEE Journal of Biomedical and Health Informatics, 1-1. doi:10.1109/jbhi.2015.2415836Wang, H.-C., & Lee, A.-R. (2015). Recent developments in blood glucose sensors. Journal of Food and Drug Analysis, 23(2), 191-200. doi:10.1016/j.jfda.2014.12.001Ahmed, H. B., & Serener, A. (2016). Effects of External Factors in CGM Sensor Glucose Concentration Prediction. Procedia Computer Science, 102, 623-629. doi:10.1016/j.procs.2016.09.452Siddiqui, S. A., Zhang, Y., Lloret, J., Song, H., & Obradovic, Z. (2018). Pain-Free Blood Glucose Monitoring Using Wearable Sensors: Recent Advancements and Future Prospects. IEEE Reviews in Biomedical Engineering, 11, 21-35. doi:10.1109/rbme.2018.2822301Fortino, G., Parisi, D., Pirrone, V., & Di Fatta, G. (2014). BodyCloud: A SaaS approach for community Body Sensor Networks. Future Generation Computer Systems, 35, 62-79. doi:10.1016/j.future.2013.12.015Kanchan, B. D., & Kishor, M. M. (2016). Study of machine learning algorithms for special disease prediction using principal of component analysis. 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC). doi:10.1109/icgtspicc.2016.7955260Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1), 10-18. doi:10.1145/1656274.1656278Huda, S., Yearwood, J., Jelinek, H. F., Hassan, M. M., Fortino, G., & Buckland, M. (2016). A Hybrid Feature Selection With Ensemble Classification for Imbalanced Healthcare Data: A Case Study for Brain Tumor Diagnosis. IEEE Access, 4, 9145-9154. doi:10.1109/access.2016.264723

    Updates of Wearing Devices (WDs) In Healthcare, And Disease Monitoring

    Get PDF
     With the rising pervasiveness of growing populace, aging and chronic illnesses consistently rising medical services costs, the health care system is going through a crucial change from the conventional hospital focused system to an individual-focused system. Since the twentieth century, wearable sensors are becoming widespread in medical care and biomedical monitoring systems, engaging consistent estimation of biomarkers for checking of the diseased condition and wellbeing, clinical diagnostics and assessment in biological fluids like saliva, blood, and sweat. Recently, the improvements have been centered around electrochemical and optical biosensors, alongside advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have created with a mix of multiplexed biosensing, microfluidic testing and transport frameworks incorporated with flexible materials and body connections for additional created wear ability and effortlessness. These wearables hold guarantee and are fit for a higher understanding of the relationships between analyte focuses inside the blood or non-invasive biofluids and feedback to the patient, which is fundamentally significant in ideal finding, therapy, and control of diseases. In any case, cohort validation studies and execution assessment of wearable biosensors are expected to support their clinical acceptance. In the current review, we discussed the significance, highlights, types of wearables, difficulties and utilizations of wearable devices for biological fluids for the prevention of diseased conditions and real time monitoring of human wellbeing. In this, we sum up the different wearable devices that are developed for health care monitoring and their future potential has been discussed in detail

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    Design and Development of IoT Based Optical Glucometer

    Get PDF
    This research presents the development of an IoT based non-invasive glucometer using optical methods for diabetes monitoring. Diabetes needs to be identified as soon as possible and its development is closely monitored. One of the measures to control this disease is the daily monitoring of blood sugar levels by using glucometer. Glucometers on the market are invasive that require blood sampling or sensors implantation. To get a blood sample, it is necessary to prick a fingertip with a needle to obtain a blood sample. This procedure is uncomfortable, and repeated punctures increase the risk of transmission of infectious diseases. Alternatively, a non-invasive method using optical technique was proposed in this paper. The prototype device is mainly consisting of an NIR LED (940nm) acting as a light transmitter delivered through a finger and reflect to photodetector (BPW34) that acting as a light receiver. The prototype was integrated with the IoT platform using Arduino Cloud for monitoring purpose. The next step involved the development of calibration model. Ten healthy individuals were recruited to take part in glucose readings measurement that conducted by National Kidney Foundation Batu Pahat. A calibration model ( y=82.19x+12.91) was successfully obtained from this experiment. The accuracy of the developed device was between 93.2 and 96.9 % where the error percentage was found to be less than 7 %. In conclusion, a painless non-invasive glucometer based near-infrared LED and photodiode was successfully developed. For future development, the accuracy of the system can possibly be improved by using a longer wavelength of light emitter such as 1500 nm
    corecore