175 research outputs found

    3D Printed Soft Robotic Hand

    Get PDF
    Soft robotics is an emerging industry, largely dominated by companies which hand mold their actuators. Our team set out to design an entirely 3D printed soft robotic hand, powered by a pneumatic control system which will prove both the capabilities of soft robots and those of 3D printing. Through research, computer aided design, finite element analysis, and experimental testing, a functioning actuator was created capable of a deflection of 2.17” at a maximum pressure input of 15 psi. The single actuator was expanded into a 4 finger gripper and the design was printed and assembled. The created prototype was ultimately able to lift both a 100-gram apple and a 4-gram pill, proving its functionality in two prominent industries: pharmaceutical and food packing

    Actuation Technologies for Soft Robot Grippers and Manipulators: A Review

    Get PDF
    Purpose of Review The new paradigm of soft robotics has been widely developed in the international robotics community. These robots being soft can be used in applications where delicate yet effective interaction is necessary. Soft grippers and manipulators are important, and their actuation is a fundamental area of study. The main purpose of this work is to provide readers with fast references to actuation technologies for soft robotic grippers in relation to their intended application. Recent Findings The authors have surveyed recent findings on actuation technologies for soft grippers. They presented six major kinds of technologies which are either used independently for actuation or in combination, e.g., pneumatic actuation combined with electro-adhesion, for certain applications. Summary A review on the latest actuation technologies for soft grippers and manipulators is presented. Readers will get a guide on the various methods of technology utilization based on the application

    Novel Soft Palmar Gripper for Chicken Handling

    Get PDF
    This thesis describes the development of a novel concept for a soft gripper with pneumatically articulated fingers and palm used in the pick and place operations of raw chicken to aid with the shortage of human workers that currently perform this task. The gripper was attached to an industrial robot and tested by picking raw chicken parts moving along a conveyor and placing those parts into trays. Four different parts were tested over 250 times each for a total of more than 1000 trials. Over the course of these trials the gripper saw an overall success rate of 63.57%. While this is low, promising results occurred when the pressure in the palm was roughly doubled, yielding success rates around 95%. However, these pressures led to the palm bursting. With a greater investigation in materials and design, a more robust gripper could be achieved

    SCALER: Versatile Multi-Limbed Robot for Free-Climbing in Extreme Terrains

    Full text link
    This paper presents SCALER, a versatile free-climbing multi-limbed robot that is designed to achieve tightly coupled simultaneous locomotion and dexterous grasping. Although existing quadruped-limbed robots have shown impressive dexterous skills such as object manipulation, it is essential to balance power-intensive locomotion and dexterous grasping capabilities. We design a torso linkage and a parallel-serial limb to meet such conflicting skills that pose unique challenges in the hardware designs. SCALER employs underactuated two-fingered GOAT grippers that can mechanically adapt and offer 7 modes of grasping, enabling SCALER to traverse extreme terrains with multi-modal grasping strategies. We study the whole-body approach, where SCALER uses its body and limbs to generate additional forces for stable grasping with environments, further enhancing versatility. Furthermore, we improve the GOAT gripper actuation speed to realize more dynamic climbing in a closed-loop control fashion. With these proposed technologies, SCALER can traverse vertical, overhang, upside-down, slippery terrains, and bouldering walls with non-convex-shaped climbing holds under the Earth's gravity

    OpenPneu: Compact platform for pneumatic actuation with multi-channels

    Full text link
    This paper presents a compact system, OpenPneu, to support the pneumatic actuation for multi-chambers on soft robots. Micro-pumps are employed in the system to generate airflow and therefore no extra input as compressed air is needed. Our system conducts modular design to provide good scalability, which has been demonstrated on a prototype with ten air channels. Each air channel of OpenPneu is equipped with both the inflation and the deflation functions to provide a full range pressure supply from positive to negative with a maximal flow rate at 1.7 L/min. High precision closed-loop control of pressures has been built into our system to achieve stable and efficient dynamic performance in actuation. An open-source control interface and API in Python are provided. We also demonstrate the functionality of OpenPneu on three soft robotic systems with up to 10 chambers

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Towards a Universal Modeling and Control Framework for Soft Robots

    Full text link
    Traditional rigid-bodied robots are designed for speed, precision, and repeatability. These traits make them well suited for highly structured industrial environments, but poorly suited for the unstructured environments in which humans typically operate. Soft robots are well suited for unstructured human environments because they them to can safely interact with delicate objects, absorb impacts without damage, and passively adapt their shape to their surroundings. This makes them ideal for applications that require safe robot-human interaction, but also presents modeling and control challenges. Unlike rigid-bodied robots, soft robots exhibit continuous deformation and coupling between structure and actuation and these behaviors are not readily captured by traditional robot modeling and control techniques except under restrictive simplifying assumptions. The contribution of this work is a modeling and control framework tailored specifically to soft robots. It consists of two distinct modeling approaches. The first is a physics-based static modeling approach for systems of fluid-driven actuators. This approach leverages geometric relationships and conservation of energy to derive models that are simple and accurate enough to inform the design of soft robots, but not accurate enough to inform their control. The second is a data-driven dynamical modeling approach for arbitrary (soft) robotic systems. This approach leverages Koopman operator theory to construct models that are accurate and computationally efficient enough to be integrated into closed-loop optimal control schemes. The proposed framework is applied to several real-world soft robotic systems, enabling the successful completion of control tasks such as trajectory following and manipulating objects of unknown mass. Since the framework is not robot specific, it has the potential to become the dominant paradigm for the modeling and control of soft robots and lead to their more widespread adoption.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163062/1/bruderd_1.pd

    Open-loop position control in collaborative, modular Variable-Stiffness-Link (VSL) robots

    Get PDF
    — Collaborative robots (cobots) open up new avenues in the fields of industrial robotics and physical Human-Robot Interaction (pHRI) as they are suitable to work in close approximation and in collaboration with humans. The integration and control of variable stiffness elements allow inherently safe interaction. Apart from notable work on Variable Stiffness Actuators, the concept of Variable-Stiffness-Link (VSL) manipulators promises safety improvements in cases of unintentional physical collisions. However, position control of these type of robotic manipulators is challenging for critical task-oriented motions (e.g., pick and place). Hence, the study of open-loop position control for VSL robots is crucial to achieve high levels of safety, accuracy and hardware cost-efficiency in pHRI applications. In this paper, we propose a hybrid, learning based kinematic modelling approach to improve the performance of traditional open-loop position controllers for a modular, collaborative VSL robot. We show that our approach improves the performance of traditional open-loop position controllers for robots with VSL and compensates for position errors, in particular, for lower stiffness values inside the links: Using our upgraded and modular robot, two experiments have been carried out to evaluate the behaviour of the robot during taskoriented motions. Results show that traditional model-based kinematics are not able to accurately control the position of the end-effector: the position error increases with higher loads and lower pressures inside the VSLs. On the other hand, we demonstrate that, using our approach, the VSL robot can outperform the position control compared to a robotic manipulator with 3D printed rigid links

    Modeling of micro-scale touch sensations for use with haptically augmented reality

    Get PDF
    Possessing dexterity and sensory perceptions, the human hand is a versatile tool that can grasp, hold, and manipulate objects using various postures and forces interacting with the environment. Many industrial tasks are replacing human hands with anthropomorphic robotic hands. In skillful tasks such as micro surgical operations, a master-slave interface system of robotic hands is required to emulate a human hand\u27s dexterity by using glove controllers with force sensors for telemanipulation. Although these interface techniques are widely applied for large scale robots, little has been accomplished for micro-scale robots due to the constraints and complexity imposed by miniaturization. To provide sensible haptic control and feedback from robots at the micro-level, this work investigates the intricacies associated with the use of micro-scale robotic actuators with the intention of using them with haptic feedback systems. This work also develops a system model to test the ability of computing elements that emulate a microrobotic hand\u27s tactile perception of stiffness. An interface glove was used to collect control data from the user, which was used alongside a Matlab model to simulate the operation and control of two different microhand designs. In order to control the microhand device accurately, feedback from simulated sensors was used to affect the airflow of the pneumatic system driving the displacement of the microhand. Four major components were developed for the overall system. The glove interface gives the operator a method to interact with the system. The microhand modeling took place in two components. The first component was the model of the microhand itself. The other component needed was a pneumatic subsystem to drive the microhand operation. The final major component developed was a graphical user interface to give the operator feedback as to what is happening in the target environment. The integration of all of these components allows for experimentation of the intricacies of operating with these microhand devices. The investigation of this micro-haptic system shows that some parameters make the system perform faster and more accurately than others. Metrics such as percent error and settling time of the displacement of one micro-finger are shown to measure success of each method. Future improvements for this system could include the integration of pneumatically controlled balloon micro-actuators with the operator\u27s glove interface or implementing more accurate contact mechanics into the model
    • …
    corecore