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Abstract— Collaborative robots (cobots) open up new avenues
in the fields of industrial robotics and physical Human-Robot
Interaction (pHRI) as they are suitable to work in close ap-
proximation and in collaboration with humans. The integration
and control of variable stiffness elements allow inherently safe
interaction. Apart from notable work on Variable Stiffness
Actuators, the concept of Variable-Stiffness-Link (VSL) manip-
ulators promises safety improvements in cases of unintentional
physical collisions. However, position control of these type of
robotic manipulators is challenging for critical task-oriented
motions (e.g., pick and place). Hence, the study of open-loop
position control for VSL robots is crucial to achieve high
levels of safety, accuracy and hardware cost-efficiency in pHRI
applications. In this paper, we propose a hybrid, learning based
kinematic modelling approach to improve the performance
of traditional open-loop position controllers for a modular,
collaborative VSL robot. We show that our approach improves
the performance of traditional open-loop position controllers
for robots with VSL and compensates for position errors, in
particular, for lower stiffness values inside the links: Using
our upgraded and modular robot, two experiments have been
carried out to evaluate the behaviour of the robot during task-
oriented motions. Results show that traditional model-based
kinematics are not able to accurately control the position
of the end-effector: the position error increases with higher
loads and lower pressures inside the VSLs. On the other
hand, we demonstrate that, using our approach, the VSL robot
can outperform the position control compared to a robotic
manipulator with 3D printed rigid links.

I. INTRODUCTION

Industrial robots have been particularly effective for fully-
automated processes in which typically high-payload ma-
chines are needed with a considerable robot body-mass
in comparison with the average body mass of a human
being [1]. For applications, in which hard automation is
not possible and close collaboration with a human worker
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are with the Systems Engineering and Automation Department,
University of Málaga, Spain. {jmgandarias, ajgarcia,
jesus.gomez}@uma.es

2Y. Wang and A. Stilli are with the Department of Computer
Science, University College London, UK. {yongjing.wang.18,
a.stilli}@ucl.ac.uk

3H.A. Wurdemann is with the Department of Mechanical Engineering,
University College London, UK. h.wurdemann@ucl.ac.uk

Fig. 1. (a) Enhanced prototype of our modular collaborative VSL robot: A
stepper and servo motor allow 2 DoFs in the base. Two VSL are mounted
in series connected by a second servo motor. An Aurora marker at the
end-effector allow magnetic tracking of the manipulator’s tip position. The
VSL can be exchanged with 3D printed, rigid links of the same weight
as the VSL. (b) Pressure regulators, transducers and motor controllers are
interfaced using Arduino microcontrollers.

is necessary, industrial robots might potentially be harmful
or life threatening to the human body [2], [1] - here,
collaborative robots (cobots) offer advantages as integrated
stiffness-controllable joints [3], sensing systems [4] and
control strategies [5], which promise safe (physical) inter-
action. Cobots such as Universal Robots UR5/UR10 [6],
the lightweight robots from KUKA [7], FerRobotics [8], or
Franka [9] are made to work closely with humans without the
need of safeguarding barriers. Electromechanical stiffness-
controllable actuators, also called Variable Stiffness Actu-
ators (VSA) [10], [11], adapt stiffness based on sensory
information allowing safe Human Robot Interaction (HRI)
according to ISO standards [12]. With the disruption intro-
duced by soft material robots, VSAs have been advanced



creating soft, stiffness-controllable actuators for applications
in minimally invasive surgery [13].

Although notable work has been delivered to improve
sensors and actuators performance for faster, safer and more
accurate collision detection [14], limited efforts have been
put into improving the intrinsic level of safety of the manip-
ulators links. Passive solutions like soft coatings and skins
have been developed to provide a softer contact surface (e.g.,
foam) in case of accidental collisions [15]. Recent research
has considered the use of Variable Stiffness Links (VSL)
to improve intrinsic safety in robotic manipulators. Instead
of changing the stiffness locally using VSAs, the overall
compliance of the robot can be controlled, resulting in an
inherently safe configuration, in particular, when the mass
of the robot is larger than the mass of the end-effector [16].
The concept of soft, stiffness-controllable links has been
considered in previous works in combination with off-the-
shelf actuators to create a VSL robotic manipulator suitable
for close collaboration with the human [17], [18]. A VSL
consists of a combination of a silicone-based structure and
reinforcing fabric material. Stiffness can be adjusted by
controlling the pneumatic air pressure inside the link. A
different concept of VSL that actively modulates stiffness
via parallel, rotating beams has been recently presented [19].
Recent work in [20] considers a VSL made of multiple
thin layers of rigid material and clamps. Here, stiffness is
controlled by applying different clamping pressures.

Although safety is of paramount importance when closely
collaborating with humans, position control is critical to per-
form tasks such as pick-and-place operations. Current studies
have investigated the performance of a single VSL [21] and
configuration combining the VSL with one Degree of Free-
dom (DoF) [22]. To the best of the authors knowledge, no
work exists on exploring position control based on variable
stiffness in VSL robotic manipulators.

Regarding position control of soft and continuum manipu-
lators, some research studies propose the use of mechanical
models that consider the deformation of the material and
mechanical behaviour of the robot. Three main categories
have been used: Piecewise Constant Curvature (PCC) [23],
[24], classical Cosserat [25], [26], [27], and Finite Elements
Models (FEM) [28]. Challenges remain, when applied to
real physical robotics manipulators, with respect to real-time
computation and accurate description of the kinematics, in
particular, when external forces are exerted to a robot.

Other extended approach for soft robots control are based
on kinematic models. The challenge of kinematic control
of soft robots lies in complex models depending on a large
number of parameters (e.g., actuation mechanism, materials,
redundancy) [29], [30], [36], [32]. Three main approaches
exist: model-based, model-free and hybrid kinematics [33].
Model-based kinematics consists of finding an analytical
solution, while model-free solutions are based on experi-
mentally collected data, typically using learning-based strate-
gies. Hybrid modeling approaches combine both of these
methodologies. The use of learning-based control techniques
have been used in soft robotic systems [34] and for other

applications, e.g., for a robotic manipulator navigating in
an unstructured environment when in interacting with a
human [35]. Open-loop position control only considers the
internal state of the robot [36], whereas closed-loop requires
additional external sensors such as cameras, that monitor the
robot’s state [23]. In real applications the integration of these
kind of sensors is not always feasible.

In this paper, we apply learning methods to an open-loop
position control for a modular VSL robot with 3 DoFs. In
particular, the contributions of this work are:
• A hybrid, learning-based kinematic approach for open-

loop position control is embedded into a collaborative
robot made of soft, stiffness-controllable links.

• The performance of open-loop position control, which
varies according to the stiffness level of the links, is
evaluated using traditional model-based kinematics and
hybrid, learning based kinematic modelling.

• Our controller is integrated into an enhanced, modular
Variable-Stiffness-Link (VSL) robot with sensing, con-
trol and actuation systems.

The advancements in relation to the VSL robot builds on
our recent work presented in [18]: The sensing, control and
actuation system has been enhanced allowing a complete
study of the performance of open-loop position control when
carrying out task-oriented motion. Two kinematic control
strategies are embedded and compared: traditional model-
based kinematics and hybrid, learning based kinematic mod-
elling. Two sets of experiments have been carried out to
study the performance of the control strategies. The impact of
our hybrid, learning based kinematic modelling approach is
the improvement of the performance of traditional open-loop
position controllers for robots with soft, stiffness-controllable
links and the compensation of errors that can be achieved,
in particular, for lower stiffness values of the links.

This paper is structured as follows: In Section II, the en-
hanced VSL robotic manipulator and interface is described.
The traditional model-based kinematics and trajectory plan-
ning used for experimentation are presented in Section III. In
Section IV, the learning-based kinematic model is explained.
Finally, the experimental protocol and results as well as
conclusions are described in sections V and VI respectively.

II. ENHANCED MODULAR VSL ROBOTIC MANIPULATOR

A. The VSL robot - enhancing controllability and modularity

The system presented in this work builds on the design
presented by the authors in [18], where the very first inte-
gration of the VSL robot in a small scale anthropomorphic
robotic platform was presented. The design presented in
this work shares the same anthropomorphic configuration,
however, the system presented here has been fitted with
more advanced electro-mechanical components and sensors
to reliably conduct a wide range of experiments.

To actuate joints J2 and J3 in the previous system 180◦

HS-7954SH (Hitec RCD, Inc., Poway, CA, USA) servo
motors had been used. To overcome the limitations of
these motors in terms of torque, controllability and sensory



Fig. 2. The enhanced VSLs allow seamless modularity of VSL robots with
up to three VSL. The fabric reinforced, silicone-based link (details in [17])
is sealed at each end using 3D printed caps. Fully integrated hoses supply
additional VSL with pneumatic air pressure.

information, 360◦ Dynamixels XM430-W350-T (ROBOTIS
Inc.,Korea) servo motors were integrated here. These servo
motors supply higher torque (3.8Nm) and angular position
feedback. In addition, these Dynamixels servos allow the
user to customise a number of control parameters inside
the servo board, such as the PID gains, as well as to
impose velocity and acceleration profiles. This results in
having the possibility to validate our new system with higher
payloads and in larger workspace. Further, the TTL Serial
communication protocol allows the synchronous control of
joints J2 and J3 with only one serial cable connection from
joints J3 to J2, and joint J2 to the driver board, resulting in
a more integrated robotic system.

Another critical limitation of the previous system had been
represented by instability of the controller of the ITV0030-
3BS pressure regulator (SMC Corporation, Tokyo, Japan)
due to oscillating pressure values inside the VSLs. This
oscillation affected the performance of the previous system
adding noise on the pressure feedback, making the force
estimation during interactions between the robot and the
environment impossible. To overcome this limitation, an
electromagnetic valve was placed in between the pressure
regulator and the VSL pneumatic pressure line. The valve
closes if the pressure is equal to the desired level, and allows
air flow if the pressure drops. The pressure is read by the
pressure sensor directly connected to VSL chambers. Thus, a
stable pressure feedback is achieved. The robot here has now
an active vacuum-based gripper mounted as the end effector.
Given the advantages in weight and versatility, this type of
gripper is preferred to electro-actuated mechanical ones.

Modularity is achieved by advanced VSL as shown in Fig-
ure 2: Multiple pressure hoses are embedded into the inner
free cavity of the VSL. This allows to build manipulators
with up to three VSL as well as exchanging any VSL with
3D printed rigid links as shown in Figure 1.

B. Interfacing the VSL cobot

A representative schematic of the control system in Fig-
ure 1(b) is shown in Figure 3. The stepper motor in the
base is connected via a motor shield [A4988 Stepper Motor
Driver] to an Arduino Nano microcontroller which again
is linked to the main PC via serial communication. The
two Dynamixel servo motors are driven by a U2D2 control

board. A H-Bridge L298 board is used to covert Pulse Width
Modulation (PWM) command signals from an Arduino Uno
to 0− 10V analogue signals for two pressure regulators
[Camozzi K8P-0-E522-0] and electromagnetic valves re-
spectively. The analogue sensory feedback signals from the
pressure transducers are first read by a 16 bits ADS1115
Analog/Digital converter, then read by the Arduino Uno
through a I2C communication connection.

III. MODEL-BASED KINEMATICS

In this section, model-based kinematics based on rigid
links and trajectory planning are described in order to
compare its performance with a VSL robot.

A. Kinematics

Forward and inverse kinematics of a rigid anthropomor-
phic manipulator with 3 rotational DoFs has been solved and
widely used in previous works [38], [37], [39]. The forward
and inverse kinematics models used in this paper are defined
by Equations (1-4).
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where ci = cos(θi),si = sin(θi),ci j = cos(θi+θ j) and si j =
sin(θi+θ j), λ defines the configuration of the robot as elbow
up (λ = 1) or elbow down (λ =−1), the joint space is defined
as q = [θ1,θ2,θ3] and r1, r2 and r3 are the distances defined
in Equations 5-7.
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Fig. 3. Representative schematic of the control system in Figure 1(b).
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B. Jacobian

Like the kinematics, it is well known that the Jacobian of
the manipulator can be calculated by direct differentiation
from the forward kinematics. In this work, the Jacobian of
the manipulator is defined in Equation (8).

J(q) =

−s1 (L2 c2 +L3 c23) −c1 (L2 s2 +L3 s23) −L3 c1 s23
c1 (L2 c2 +L3 c23) s1 (L2 s2 +L3 s23) −L3 s1 c23

0 L2 c2 +L3 c23 L3 c23

 (8)

C. Trajectory planning

In this work, a point-to-point trajectory planning is used.
The trajectories described below are used to analyse the
performance of the robot.

1) Linear trajectory: The linear trajectory algorithm (see
Algorithm 1) describes a linear movement that starts at initial
point x0 and ends at goal point xg, with a constant velocity
ẋg. The first step of the algorithm consists of moving the end-
effector to the initial position with the initial joint velocities
q̇0. Then, for each point k, from a total of N points, the
algorithm calculates the coordinates of the next point xk+1(i),
where i represents the three Cartesian coordinates of the point
and the joint velocities q̇k using the inverse Jacobian J−1(qk).
After that, the motors move to the next position.

2) Circular trajectory: The circular trajectory algorithm
is defined in Algorithm 2, and describes a circular movement
from an initial point x0 to a goal point xg, knowing the center
of the circular trajectory xc and the desired velocity V . The
trajectory is defined in the XZ plane, so the y coordinate of
the next point xk+1(2) is always 0.

IV. HYBRID, LEARNING-BASED KINEMATICS

The methodology described in this section combines tra-
ditional model-based kinematics, presented in the previous
section, with a learning model based on deep neural networks
(NN), to improve the performance of both forward and
inverse kinematics.

Algorithm 1 Linear Trajectory
Require: x0,xg, ẋg, q̇0,N

xk = x0
qk = InverseKinematics(xk)
Move(qk, q̇0)
for k = 1 to N do

for i = 1 to 3 do
xk+1(i) = xk(i)+

xg(i)−xk(i)
N−(k−1)

end for
qk+1 = InverseKinematics(xk+1)
J(qk) = Jacob(qk)
q̇k = J−1(qk) ẋt

g
Move(qk+1, q̇k)

end for

Algorithm 2 Circular Trajectory
Require: x0,xg,xc,V, q̇0,N

xk = x0
qk = InverseKinematics(xk)
Move(qk, q̇0)
r = ||xc−x0||
α = π

2N
for k = 1 to N do

xk+1 = [xc(1)+ r sin(α k) ,0, xc(3)− r cos(α k)]
qk+1 = InverseKinematics(xk+1)
J(qk) = Jacob(qk)
ẋk = [V cos(α k) ,0,V sin(α k)]
q̇k = J−1(qk) ẋt

k
Move(qk+1, q̇k)

end for

A. Dataset collection

To train the learning system, we have collected a dataset
which contains data from multiple points of the workspace
with different pressures and loads. The Aurora 3D Tracking
system (NDI Intl. Ontario, Canada) was used to measure the
actual position of the end-effector as ground-truth data for
the machine learning methods.

The dataset is represented by the matrix D: each row
has information about the ground truth position in Cartesian
space (Xi) measured with the tracking system the internal
pressure of the links (pi), the current of the motors (ii) and
the position of the servos (qi).

D =

 x1 p1 i1 q1
...

...
...

...
xn pn in qn

 (9)

The dataset collection process has been carried out record-
ing data from encoders and electrical current sensors of
the servos, pressure sensors of the links and the tracking
system. In this respect, the workspace has been reduced
due to the limited range of the tracking system. A total of
n = 17568 points have been collected. Each point is reached
by randomly varying the pressure, servo position or load in
each step.

B. Forward model

The hybrid, learning-based forward model (see Figure 4)
outputs the predicted position in Cartesian space (X̃k) using
the position resulted from the model-based forward kine-
matics (Xk), the internal pressure of the links (pk), and the
current of the motors (ik) as inputs.

Hence, the model can be represented as a non-linear
function (L) that estimates the position of the end-effector
according to Equation (10).

X̃k = L(Xk,pk, ik) (10)

The model uses a 7 layer NN as an estimator, which has
7 inputs and 3 outputs. All the layers are fully-connected,
and the activation functions of every layer are ReLUs. The



Fig. 4. Schematic of the hybrid model: Forward learning-based kinematics
(top) and inverse learning-based kinematics (bottom).

number of neurons from layer 1 to layer 7 is 64, 256, 1024,
1024, 256 and 64 respectively. The integration of this model
has been done using the deep learning toolbox of Matlab
R2019a. To train the model, pk, ik, and qk from matrix D
are used as inputs, whereas xk is used as the desired output.
Training, validation and test sets are chosen randomly, where
the training set contains 70% of the data, and validation and
test sets contains 15% each.

C. Inverse model

The hybrid, learning-based inverse model presented in
Figure 4 is similar to the forward model. In this case,
an NN estimates the next desired servo positions (q̃k+1)
from the next position obtained by the model-based Inverse
Kinematics (qk+1), pk, and ik. In other words, considering the
current pressure of the links and motors current, the system
outputs a corrected servo position that compensates the error
that might be produced by the weight of the arm and the soft
links.

The learning-based inverse kinematics can be described as
a non-linear function (L−1) that predicts compensated servo
positions according to Equation (11).

q̃k+1 = L−1 (qk+1,pk, ik) (11)

The NN architecture is the same as in the learning-based
forward kinematics, but the training hyperparameters have
changed to achieve a good performance.

V. EXPERIMENTAL PROTOCOL, RESULTS AND
DISCUSSION

In this section, the results of the experiments are presented
and discussed. Two experiments have been carried out to an-
alyze the performance of the robot when following different
trajectories. In order to better represent the paths, only two
motors (J2 and J3) are used for experimentation, keeping J1

to 0. Therefore, the robot moves on the plane XZ, as we
can presume that there is no position error in axis Y. The
position error is due to the weight and internal pressure and
we can also assume that they have effects on axes X and Z
only.

A. Experiment 1: Model-based kinematics

In the first experiment, the performance of the system,
using traditional model-based kinematics, is studied using
different configurations of loads and pressures and compared
with a fully-rigid manipulator with same dimensions and
parameters when following different trajectories.

Three trajectories have been programmed: a linear trajec-
tory between x0 = [300,0,50] and xg = [300,0,350]; a curved
trajectory which describes two semicircles, the first one with
x0 = [300,0,50], xg = [400,0,150] and xc = [300,0,150], and
the second one with x0 = [400,0,150], xg = [300,0,50] and
xc = [400,0,50]; and a square trajectory that is composed
by four linear trajectories between points x0 = [350,0,50],
x1 = [250,0,50], x2 = [250,0,150] and x3 = [350,0,150].

B. Experiment 2: Hybrid model

In this experiment, the model-based kinematics and the
hybrid, learning-based models are compared. The curved
trajectory of Experiment 1, with low and high pressures and
loads, is used to study the behaviour of the robot.

C. Results and Discussion

The results of Experiment 1 are presented in Figure 5.
Columns, from left to right, show the behaviour of the
manipulator when the end-effector is loaded with increasing
weights starting from no load to 100g, in 25g intervals.
The blue and red plots represent the mean trajectories and
standard deviations of the robot’s end-effector based on the
servo motor position reading and rigid links combined with
the model-based forward kinematics. The remaining plots
show the end-effector the trajectories when the VSLs are
pressurised by 0.5bar (green), 1bar (purple), 1.5bar (yellow)
and 2bar (orange). The blue plot represents the positions of
the end-effector according to the measured joint angles (servo
encoders) and the model-based forward kinematics, which is
similar to the desired path. The trajectory of a fully rigid
manipulator (red) should be consistent with the servo paths
(blue). However, there are some position error on the rigid
manipulator due to small deformations of the 3D printed
links, the arm weight and loads. As expected, the position
errors using the pressurised VSLs are larger. As expected,
errors also increase with higher payloads and lower VSL
pressures. Besides, the error also depends on the arm pose,
as can be seen in Figure 5(c): The further the end-effector
is from the base of the robot, the higher the error is.

The results of Experiment 2 are shown in Figure 6. The
end-effector load and VSL pressure are 25g and 1.5bar
(Figure 6 left) and 75g and 0.5bar (Figure 6 right). The
green plot shows the model-based path. The actual trajectory
(mean and standard deviation) is shown in blue. The purple
plot shows the trajectory estimated by the hybrid model.
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Fig. 5. Results of experiment 1: (a) Linear Trajectory, (b) Curve Trajectory, and (c) Square Trajectory. For each trajectory, the actual positions of the
end-effector using rigid links and soft links with different pressures and loads has been recorded using the tracking system. For each case, the trajectory is
commanded 5 times, and the mean (µ) and standard deviation (σ ) are represented. Servo positions indicate the path according to the model-based forward
kinematics and the measurements from the encoders.

Compared to the results of Experiment 1, the performance
has been improved by the addition of the learning-based
model both in forward and inverse cases. Figure 6 further
demonstrates that the hybrid forward model can predict the
real position of the end-effector more precisely than the
model-based kinematic model.

Figure 7(a) shows how the desired path can be followed
by the VSL arm using the hybrid inverse model for two
load/pressure combinations. The actual paths using both the
model-based inverse kinematics and the hybrid inverse model
are compared with the desired path in a single execution.
Here, the green and red plots show the mean trajectories
of the model-based approach and hybrid model respectively.
The hybrid inverse model provides a compensation trajectory
(dashed line), so the actual positions are closer to the desired

path even with soft links. The position errors are shown in
Figure 7(b) including the mean, range and a box between
the 25th and 75th percentile. The position error has been
calculated as the distance between the points of the measured
paths and the desired path. Figure 7 shows improvements in
open-loop position control when using the hybrid inverse
model. It can be observed that the path followed using the
inverse hybrid model achieve lower position errors than using
the model-based inverse kinematics. In fact, Figure 7(b) con-
cludes that the position errors of the VSL robotic manipulator
controlled by the hybrid model are lower than those obtained
with an arm that uses rigid links.
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Fig. 7. (a) Comparison of the paths followed using the model-based inverse
kinematics and the hybrid, learning-based inverse model. (b) Representation
and comparison of the position errors achieved by the VSL manipulator with
model-based and hybrid approaches, and the rigid arm.

VI. CONCLUSIONS

In this paper, the performance of open-loop position con-
trol in VSL robots has been studied. An enhanced, modular
version of the 3-DoF VSL robot published in [18] has
been presented, and the new control, actuation and sensing
systems have been described. Two modeling approaches have
been explained and implemented in the real system: tradi-
tional kinematic models, and hybrid, learning-based mod-
els. The model-based forward kinematics has been solved
considering the Denavit-Hartenberg notation, whereas the
inverse kinematics has been solved by geometric methods,
both using only the measurements from the encoders and dis-
regarding the deformation of the links. Besides, no external

sensors are required, compared to when using closed-loop
control techniques, and, hence, the complexity and overall
cost of the system is not affected. The implementation of the
hybrid model has consisted of estimating the real position in
the case of the forward model, and predicting a compensated
next position in the case of the inverse model, given the
output from the model-based kinematics and using it as
an input of a NN along with the measures of the internal
pressure of the links and the current of the motors. Two
experiments have been carried out to analyze the behaviour
of the system according to both approaches. In Experiment
1, the performance of the robot when controlled based
on traditional inverse kinematic model has been studied,
showing that the position error increases when the robot
bends due to high loads and low pressures. On the other
hand, in Experiment 2, it has been proved that the use of
NN that considers the expected position given by traditional
kinematics and the data from other proprioceptive sensors
helps to improve both open-loop control with the inverse
model and the estimation of the real position with the forward
model.

In future works the integration of other sensors like IMUs
can be considered to get more helpful information for the
hybrid models not only for position control but for the
physical interaction with humans or the environment. The
use of time-series of data and spatio-temporal, learning-based
techniques may also be contemplated. Also, the comparison
of this work to closed-loop control techniques, and the
integration of more complex mechanical models will be
considered for real applications with a scaled-up VSL robot.
Moreover, the path planning and trajectory following might
be improved by using more advanced models considering the
dynamics effects or close-loop strategies.
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