1,345 research outputs found

    Operational Strategies for Continuum Manipulators

    Get PDF
    We introduce a novel, intuitive user interface for continuum manipulators through the use of various joystick mappings. This user interface allows for the effective use of continuum manipulators in the lab and in the field. A novel geometric approach is developed to produce a more intuitive understanding of continuum manipulator kinematics. Using this geometric approach we derive the first closed-form solution to the inverse kinematics problem for continuum robots. Using the derived inverse kinematics to convert from workspace coordinates to configuration space coordinates we develop a potential-field path planner for continuum manipulators

    Kinematically optimal hyper-redundant manipulator configurations

    Get PDF
    “Hyper-redundant” robots have a very large or infinite degree of kinematic redundancy. This paper develops new methods for determining “optimal” hyper-redundant manipulator configurations based on a continuum formulation of kinematics. This formulation uses a backbone curve model to capture the robot's essential macroscopic geometric features. The calculus of variations is used to develop differential equations, whose solution is the optimal backbone curve shape. We show that this approach is computationally efficient on a single processor, and generates solutions in O(1) time for an N degree-of-freedom manipulator when implemented in parallel on O(N) processors. For this reason, it is better suited to hyper-redundant robots than other redundancy resolution methods. Furthermore, this approach is useful for many hyper-redundant mechanical morphologies which are not handled by known methods

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Modeling, Control, and Motion Analysis of a Class of Extensible Continuum Manipulators

    Get PDF
    In this dissertation, the development of a kinematic model, a configuration-space controller, a master-slave teleoperation controller, along with the analysis of the self-motion properties for redundant, extensible, continuous backbone (continuum) ``trunk and tentacle\u27 manipulators are detailed. Unlike conventional rigid-link robots, continuum manipulators are robots that can bend at any point along their backbone, resulting in new and unique modeling and control issues. Taken together, these chapters represent one of the first efforts towards devising model-based controllers of such robots, as well as characterizing their self-motion in its simplest form. Chapter 2 describes the development of a convenient set of generalized, spatial forward kinematics for extensible continuum manipulators based on the robot\u27s measurable variables. This development, takes advantage of the standard constant curvature assumption made for such manipulators and is simpler and more intuitive than the existing kinematic derivations which utilize a pseudo-rigid link manipulator. In Chapter 3, a new control strategy for continuum robots is presented. Control of this emerging new class of robots has proved difficult due to the inherent complexity of their dynamics. Using a recently established full Lagrangian dynamic model, a new nonlinear model-based control strategy (sliding-mode control) for continuum robots is introduced. Simulation results are illustrated using the dynamic model of a three-section, six Degree-of-Freedom, planar continuum robot and an experiment was conducted on the OctArm 9 Degree-of-Freedom continuum manipulator. In both the simulation and experiment, the results of the sliding-mode controller were found to be significantly better than a standard inverse-dynamics PD controller. In Chapter 4, the nature of continuum manipulator self-motion is studied. While use of the redundant continuum manipulator self-motion property (configuration changes which leave the end-effector location fixed) has been proposed, the nature of their null-spaces has not previously been explored. The manipulator related resolved-motion rate inverse kinematics which are based on the forward kinematics described in Chapter 2, are used. Based on these derivations, the self-motion of a 2-section, extensible redundant continuum manipulator in planar and spatial situations (generalizable to n-sections) is analyzed. The existence of a single self-motion manifold underlying the structures is proven, and simple self-motion cases spanning the null-space are introduced. The results of this analysis allow for a better understanding of general continuum robot self-motions and relate their underlying structure to real world examples and applications. The results are supported by experimental validation of the self-motion properties on the 9 Degree-of-Freedom OctArm continuum manipulator. In Chapter 5, teleoperation control of a kinematically redundant, continuum slave robot by a non-redundant, rigid-link master system is described. This problem is novel because the self-motion of the redundant robot can be utilized to achieve secondary control objectives while allowing the user to only control the tip of the slave system. To that end, feedback linearizing controllers are proposed for both the master and slave systems, whose effectiveness is demonstrated using numerical simulations and experimental results (using the 9 Degree-of-Freedom OctArm continuum manipulator as the slave system) for trajectory tracking as well as singularity avoidance subtask

    Kinematics of continuum robots with constant curvature bending and extension capabilities

    Get PDF
    Continuum robots are becoming increasingly popular due to the capabilities they offer, especially when operating in cluttered environments, where their dexterity, maneuverability, and compliance represent a significant advantage. The subset of continuum robots that also belong to the soft robots category has seen rapid development in recent years, showing great promise. However, despite the significant attention received by these devices, various aspects of their kinematics remain unresolved, limiting their adoption and obscuring their potential. In this paper, the kinematics of continuum robots with the ability to bend and extend are studied, and analytical, closed-form solutions to both the direct and inverse kinematics are presented. The results obtained expose the redundancies of these devices, which are subsequently explored. The solution to the inverse kinematics derived here is shown to provide an analytical, closed-form expression describing the curve associated with these redundancies, which is also presented and analyzed. A condition on the reachable end-effector poses for robots with six actuation degrees-of-freedom (DOFs) is then distilled. The kinematics of robot layouts with over six actuation DOFs are subsequently considered. Finally, simulated results of the inverse kinematics are provided, verifying the study

    Static Shape Control of Soft Continuum Robots using Deep Visual Inverse Kinematic Models

    Get PDF

    CIDGIKc: Distance-Geometric Inverse Kinematics for Continuum Robots

    Full text link
    The small size, high dexterity, and intrinsic compliance of continuum robots (CRs) make them well suited for constrained environments. Solving the inverse kinematics (IK), that is finding robot joint configurations that satisfy desired position or pose queries, is a fundamental challenge in motion planning, control, and calibration for any robot structure. For CRs, the need to avoid obstacles in tightly confined workspaces greatly complicates the search for feasible IK solutions. Without an accurate initialization or multiple re-starts, existing algorithms often fail to find a solution. We present CIDGIKc (Convex Iteration for Distance-Geometric Inverse Kinematics for Continuum Robots), an algorithm that solves these nonconvex feasibility problems with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. CIDGIKc is enabled by a novel distance-geometric parameterization of constant curvature segment geometry for CRs with extensible segments. The resulting IK formulation involves only quadratic expressions and can efficiently incorporate a large number of collision avoidance constraints. Our experimental results demonstrate >98% solve success rates within complex, highly cluttered environments which existing algorithms cannot account for
    • …
    corecore