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Abstract

In this dissertation, the development of a kinematic model, a configuration-

space controller, a master-slave teleoperation controller, along with the analysis of the

self-motion properties for redundant, extensible, continuous backbone (continuum)

“trunk and tentacle” manipulators are detailed. Unlike conventional rigid-link robots,

continuum manipulators are robots that can bend at any point along their backbone,

resulting in new and unique modeling and control issues. Taken together, these

chapters represent one of the first efforts towards devising model-based controllers of

such robots, as well as characterizing their self-motion in its simplest form.

Chapter 2 describes the development of a convenient set of generalized, spa-

tial forward kinematics for extensible continuum manipulators based on the robot’s

measurable variables. This development, takes advantage of the standard constant

curvature assumption made for such manipulators and is simpler and more intuitive

than the existing kinematic derivations which utilize a pseudo-rigid link manipulator.

In Chapter 3, a new control strategy for continuum robots is presented. Con-

trol of this emerging new class of robots has proved difficult due to the inherent

complexity of their dynamics. Using a recently established full Lagrangian dynamic

model, a new nonlinear model-based control strategy (sliding-mode control) for con-

tinuum robots is introduced. Simulation results are illustrated using the dynamic

model of a three-section, six Degree-of-Freedom, planar continuum robot and an ex-
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periment was conducted on the OctArm 9 Degree-of-Freedom continuum manipulator.

In both the simulation and experiment, the results of the sliding-mode controller were

found to be significantly better than a standard inverse-dynamics PD controller.

In Chapter 4, the nature of continuum manipulator self-motion is studied.

While use of the redundant continuum manipulator self-motion property (config-

uration changes which leave the end-effector location fixed) has been proposed, the

nature of their null-spaces has not previously been explored. The manipulator related

resolved-motion rate inverse kinematics which are based on the forward kinematics

described in Chapter 2, are used. Based on these derivations, the self-motion of a 2-

section, extensible redundant continuum manipulator in planar and spatial situations

(generalizable to n-sections) is analyzed. The existence of a single self-motion man-

ifold underlying the structures is proven, and simple self-motion cases spanning the

null-space are introduced. The results of this analysis allow for a better understand-

ing of general continuum robot self-motions and relate their underlying structure to

real world examples and applications. The results are supported by experimental val-

idation of the self-motion properties on the 9 Degree-of-Freedom OctArm continuum

manipulator.

In Chapter 5, teleoperation control of a kinematically redundant, continuum

slave robot by a non-redundant, rigid-link master system is described. This problem

is novel because the self-motion of the redundant robot can be utilized to achieve sec-

ondary control objectives while allowing the user to only control the tip of the slave

system. To that end, feedback linearizing controllers are proposed for both the master

and slave systems, whose effectiveness is demonstrated using numerical simulations

and experimental results (using the 9 Degree-of-Freedom OctArm continuum manip-

ulator as the slave system) for trajectory tracking as well as singularity avoidance

subtask.
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Chapter 1

Introduction

1.1 Literature Review

Robots with continuous backbones, more formally known as continuum robots,

are receiving greater consideration for use by the robotics community. These robots

are able to bend at any point along their structure. This distinguishes them from

their rigid-link counterparts by their ability to execute tasks and achieve objectives

that conventional robots find too complicated or are unable to perform. Continuum

manipulators draw their design inspirations from members of the animal kingdom

such as octopus arms, squid tentacles, and elephant trunks, as detailed in [1], [2],

and [3]. An example of an extensible continuum manipulator, the OctArm (Octopus

Arm) [4] is shown in Figure 1.1. The OctArm is a 3-section manipulator which has

9 Degrees-of-Freedom (DOFs); each section can bend with constant curvature about

two axes as well as extend its backbone. The desire to design and use biomimetic

continuum robots is due to the inherent structural compliance and ability to bend at

any point along their length, affording them the potential to perform operations not

feasible with conventional robots, such as:

1



• Manipulation of objects having arbitrary and a priori unknown shapes;

• Navigation through complex, cluttered, or unstructured environments (espe-

cially in search and rescue operations);

• On-sea refueling; and

• whole-arm grasping1 shown in Figure 1.2.

Because of their novel capabilities, continuum robots can interact with an

assortment of objects of highly variable shapes, sizes, and physical properties.

Figure 1.1: The 9-Degree-of-Freedom OctArm Continuum Manipulator.

While the general idea and basic set of desired properties remain the same, nu-

merous continuum manipulator designs have been proposed. Several pneumatically-

actuated designs are described in [2], [5], [6], [7], and [8]. Continuum robots based on

a vertebrate design have been proposed by [9], while [10] demonstrated a continuum

manipulator with tuneable stiffeness. Tendon-driven models were described in [11],

[12] and [13] while manipulator mechanics where described in [14]. Continuum robots

based on the concentric-tube paradigm and that had the ability to be used in a medi-

cal environment were proposed in [15], [16], and [17]. Other continuum manipulators

proposed as medical devices were presented in [18], [19], [20], and [21]. Combinations

1As the name suggests, whole-arm grasping is where the arm curls around an object and uses
its body to leverage and manipulate it, as opposed to the use of a set of parallel-jaw grippers by
conventional robots
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Figure 1.2: An Example of Whole-Arm Grasping
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of continuum manipulators which could be used as fingers were proposed in [22], [23]

and [24]. Applications have also been discussed: [25] proposed continuum manipula-

tors be used as force sensors, [26] suggested their use for environmental interaction,

while [15], [16], and [27] discussed motion planners for continuum manipulators.

To better understand and utilize such manipulators, the development of so-

phisticated mathematical models is essential. Kinematic models for various types of

continuum robots have been developed and proposed. Chirikjian and Burdick [28]

developed kinematics for a general hyper-redundant manipulator which restricted the

manipulator curve-shaping functions to a ‘modal’ form, allowing for quick computa-

tion of the inverse kinematic solution. This method is hindered in practice by the

ability of manipulators to shape themselves as the curve- functions require. Chen

et al. [29] developed manipulator kinematics based on similar previously-designed

models for a pneumatic kinematically-redundant manipulator with a silicone rubber

tip which could be used for colonoscopy. Jones and Walker [30] extended the early

kinematic developments by Hannan and Walker [31], to arrive at a general closed-

form solution based on standard Denavit-Hartenberg techniques. The same authors

added actuator length limits into the kinematic solutions derived previously [32], re-

sulting in more practical but more complex shapes and solutions for continuum robot

applications. Additionally, Gravagne and Walker developed kinematics using wavelet

decomposition to derive novel kinematics for continuum robots in [33] and [34]. At

this stage, the kinematics for continuum robots is considered to be well understood.

However, the performance of continuum manipulators based on kinematic controllers

have been shown to be poor.

Unlike the kinematic model development, the dynamic modeling of continuum

robots is still an open and active area of research. Chirikjian, who was one of the first

to develop dynamics for a continuum robot proposed an infinite degree of freedom
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dynamic model [35]. Khalil et al. [36] and [37], developed dynamics for an eel-

like robot using a recursive version of the Newton-Euler equation and the Cosserat

beam model, along with Navier-Stokes equations for fluid interaction in underwater

environments. However, this model required zero initial accelerations regardless of

the initial joint positions. In [38], Matsuno and Sato developed a dynamic model

for a snake-like robot having n-links. However while the model could be considered

applicable to a hyper-redundant manipulator, the links were assumed to be rigid and

thus the model was not appropriate for true continuous backbone continuum robots.

In [39], Li et al. proposed another dynamic model for a snake-like robot with rigid

links. Closed form dynamics were developed in [40], whose work was extended to

include extensibility by Tatlicioglu et al. in [41] and [42]. These dynamics are based

on the kinematic models developed in [30].

Having developed kinematic and dynamic models, the next logical step is to

apply them towards the development of model-based controllers to improve the per-

formance of the hardware. Some of the first known configuration-space controllers

for continuum robots were proposed by Ivanescu et al. [43], [44], and [45]. A highly

specific set-point tracking variable-structure controller was developed in [44] for a

tentacle arm whose physical model was based on composite materials consisting of

electrorheostatic fluids. An obstacle-avoidance controller based on the artificial poten-

tial field method with the goal of a desired final end-effector position was proposed in

[43], using the dynamic model developed in [44]. In [45], a sliding-mode controller was

developed along with a fuzzy controller for two cooperating hyper-redundant robots.

In [46], Braganza et al. described a controller which included neural-network feedfor-

ward components to compensate for the robot’s unknown dynamic model terms. In

[47], Penning et al. described two task-space controllers to precisely control the tip

of small-scale continuum manipulators prevalent in the medical field. All these works
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except [46] have been restricted to simulations.

While the aforementioned controllers regulate the shape of the manipulators

or the location of the tip (with or without any additional subtasks), they are not able

to utilize, or do not exploit, the structure of the robot’s self-motion. Self-motion of a

robotic manipulator is defined as the ability of the tip (or end-effector) of the manip-

ulator to maintain it’s position in space while allowing the other parts of the robot to

move (allowing the robot to change shape). Self-motion is a key property of redundant

robots. Burdick [48] analyzed the underlying structure of the self-motion of rigid-link

redundant manipulators and revealed it to be a set of distinct manifolds based on

the sets of possible configurations reflecting the redundant robot’s self-motion ability.

However, this characterization does not apply to continuum manipulators due to the

inherent structural differences between rigid-link manipulators and continuum ones.

Despite the numerous possible applications of continuum arms and the exten-

sive work in teleoperation of robot manipulators, the teleoperation of continuum arms

is still an active research problem. A teleoperation system enables a user to execute a

task using an output system (i.e. a slave) while manipulating an input system (i.e. a

master) in a remote environment. Teleoperation of robotic systems has been invalu-

able for numerous applications such as handling unstructured or hazardous materials,

maneuvering underwater vehicles, search and rescue, and most recently in assisting

medical procedures [49], [50].

Due to the relative rarity of continuum arms as compared to more conven-

tional robots, teleoperation of such robots has the disadvantage of not always having

a kinematically similar system to serve as a master, as shown in Figure 1.3. In such

instances, and where only a non-redundant system might be available to serve as

a master, a solution might be found in the task-space of both systems. Such solu-

tions however would require that an additional control element be designed to achieve
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secondary objectives such as obstacle or singularity avoidance with no user input nec-

essary, relieving the master system of any duties beyond controlling the end-effector

trajectory of the non-redundant master.

Related literature focuses on a similar problem of the master and slave systems

having dissimilar kinematics. The literature primarily deals with rigid-link structures,

and not continuum arms, as focused on in this dissertation. Kim et al. [51] classified

the dissimilar kinematics teleoperation problem by comparing the DOFs of master

and slave systems. Herndon et al. [52] were the first to use kinematically redundant

robot manipulators in a dual-arm teleoperator system to avoid obstacles in space ap-

plications. Nguyen et al. [53] developed an adaptive joint-space controller for a dual

arm system where both slave arms were kinematically redundant robot manipula-

tors; however, kinematic redundancy was not considered in the control development.

Jansen et al. [54] designed a stiffness controller for a teleoperator system with a

7 DOF slave and a 6 DOF master that utilized extended task-space techniques for

redundancy resolution and Euler parameters to avoid artificial singularities. Those

results were expanded in [55] by adding passivity to the overall system. Hwang et al.

[56] outlined the performance of a teleoperator system with a kinematically redun-

dant slave system, but did not provide robustness when the robot operated close to

its kinematic singularities or for high joint velocities. Nanayakkara et al. [57] utilized

neural networks to compensate for the uncertain master system and environmental

dynamics. Goel et al. [58] demonstrated experimental results where a planar 3 DOF

robot manipulator was considered as the slave system. Kinematic control was utilized

and the kinematic redundancy was used to maintain control even with joint failures.

Stanczyk et al. [59], [60], [61], [62] considered experimental verification of haptic tele-

operation with a kinematically redundant slave system. In [63], Hayakawa et al. used

a 7 DOF manipulator for the slave system while the master system had 6 DOF. The

7



redundancy in the slave system was utilized to move the robot away from its singular

configurations but only with the help of the user. Gosselin et al. [64] demonstrated

experimental results with a kinematically redundant haptic device: however the work

in [64] did not make use of the redundancy resolution. Recently, Nath et al. [65]

discussed teleoperation with kinematically redundant master and slave systems and

utilized the redundancy in both systems to achieve secondary objectives where the

master and slave systems were kinematically similar. Most of the aforementioned

works focused on experimental verification [63] - [65] while others such as [53], [56],

[64], and [66] did not take advantage of all the properties of kinematically redundant

manipulators, especially for control design. Thus, a control framework is required for

teleoperation with dissimilar kinematics, particularly for a kinematically redundant

continuum arm as the slave system.

Thus, based on the existing literature it can be argued that there exists a need

for a better mathematical understanding of the structure of continuum robots as well

as their control. This dissertation aims to address these issues regarding continuum

robots by devising a new set of kinematics along with a dynamic model-based nonlin-

ear configuration space controller. Additionally, the self-motion of continuum robots

is characterized in its most basic form, along with its occurrences in nature and poten-

tial uses. Finally, the task-space teleoperation of redundant continuum manipulator

by a non-redundant, kinematically-dissimilar, rigid-link master, which exploits the

self-motion property of the continuum manipulator, is discussed.

1.2 Dissertation Organization

This dissertation deals with research problems associated with the class of re-

dundant, extensible continuum manipulators. The development is strongly motivated
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by improving the accuracy and range of functionality of the OctArm. The Octarm

was built by Pennsylvania State University and Clemson University, to closely resem-

ble an octopus arm or an elephant trunk. The ability to extend as well as bend is

significant and a key advantage of continuum robots over traditional rigid-link ma-

nipulators. This ability was highlighted by Walker et al. in [67] and detailed the

increased workspace afforded by the OctArm due to its planar extension capabilities.

A basic non model-based controller for the OctArm was developed and implemented

in [46]. However, it was designed to compensate for the unknown dynamic model

(subsequently, a kinematic model for the OctArm was proposed in [30], while the

Lagrangian dynamics for the OctArm were developed later in [41] and [42]).

Most of the controllers previously proposed in the literature were found to

not be suitable for practical application on the OctArm, due to either the design of

the controller or specific assumptions regarding the manipulator design, and thus the

dynamic model. Performance was found to be slow in response, subject to oscillatory

motions, or both. In Chapter 3, the application of a standard sliding mode controller

developed for manipulators whose models are based on the Lagrangian dynamics

is proposed. However the controller was modified so as to fit the structure of the

OctArm’s continuum dynamics. A Lyapunov-type proof is utilized for the stability

analysis of the proposed controller, with numerical simulations and experimental re-

sults shown to highlight the effectiveness of the proposed controller in comparison to

a standard inverse-dynamics PD controller (which was the previously best performing

controller on the OctArm hardware).

However, the development of a controller to regulate the shape of continuum

manipulators does not exploit one of the main advantages of such devices, their self-

motion. Before attempting to utilize this capability, an argument can be made for

gaining a better understanding of the self-motion of continuum manipulators and
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characterizing it. Thus in Chapter 4, the work in [68] is fully described and built

upon by expanding and generalizing the self-motion analysis results of extensible

continuum manipulators from the planar case to the spatial case. Building on the

work in [48] for redundant rigid-link robots, the focus here is the analysis of the self-

motion of continuum manipulators. This is done to better understand the structure

of the redundant continuum manipulator self-motion and to exploit its capabilities

by taking advantage of the Jacobian null-space with the tip position being arbitrarily

fixed. In a fashion similar to [48], some initial studies of the null-space of continuum

manipulators were conducted in [68]. These studies focus on the capabilities of 2-

section, redundant, extensible continuum manipulators working in a plane. Based

on the method first proposed in [69], the velocity kinematics are described and used

to further describe and better understand the continuum manipulator null-space.

The inherent structural differences between the self-motion manifolds for rigid-link

redundant manipulators and their continuum manipulator counterparts are discussed.

The importance of the analysis for numerous applications is discussed along with

experimental demonstrations of self-motion on the OctArm continuum manipulator.

Knowledge of the self-motion capabilities of extensible continuum manipula-

tors allows for its utilization towards achieving objectives and solving open research

problems in the task-space. With that in mind, Chapter 5 focuses on the teleoper-

ation control of a continuum manipulator slave system, specifically the OctArm [5],

using a non-redundant, revolute, rigid-link robot as the master, and shown schemat-

ically in Figure 1.3. Due to the kinematic redundancy in the slave system, explicit

control of the shape of the continuum manipulator by the user via the non-redundant

master system is not possible. Thus, it is useful to develop a controller that makes

use of the redundancy resolution by automatically satisfying secondary objectives

while allowing the user to focus on control of the slave system’s tip resulting in a
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Figure 1.3: Example of a non-redundant, rigid-link master controlling a redundant,
continuum slave system and a general representation of the proposed teleoperation
system
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reduced workload for the user. In the subsequent control development, dynamic and

kinematic models and the interaction forces acting on both master and slave systems

are assumed to be measurable. Based on the exact model knowledge, feedback lin-

earizing controllers are designed for both master and slave systems. The designed

controllers ensure that the desired trajectory tracking errors for both the master and

slave systems are driven to zero exponentially fast. Additionally the slave system con-

troller allows the integration of a null-space controller to make use of the redundancy

resolution via the design of a null-space velocity tracking error [70]. The null-space

velocity tracking error is shown to go to zero monotonically. To that end, the gen-

eral sub-task controller developed in [71] is extended to integrate secondary control

objectives. Numerical simulations are performed to highlight the proposed controller

with experimental verification demonstrated on the OctArm.

The existing kinematic model for the OctArm in [30] is based on the standard

Denavit-Hartenberg technique used for most rigid-link robots. As a result, Jones

and Walker used a rigid-link equivalent of an OctArm section and related variables

and parameters from the Denavit-Hartenberg table to the continuum manipulator

shape variables. Thus, the kinematic equations do not intuitively reflect the shape

of the manipulator, especially when multiple sections are involved. To solve this

problem, Chapter 2 introduces a new and convenient kinematic model of extensible

continuum manipulators based on the measurable variables of the OctArm and thus

easier to correlate to the manipulator configuration. The full derivation for a 2-section

manipulator, which is utilized in the developments of the subsequent chapters of this

dissertation, is shown while an extension to n−sections is also provided.
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1.3 The OctArm Manipulator

The OctArm is a 9-DOF pneumatically-actuated, extensible, continuum ma-

nipulator capable of motion in 3 dimensions. It is comprised of 3 serially-connected

sections as seen in Figure 1.1 which are referred to (from right to left in Figure 1.1)

as the base section (“the base”), the middle section (“the mid”), and the tip sec-

tion (“the tip”). Each manipulator section is comprised of McKibben actuators in

parallel. A McKibben actuator is a rubber tube within a mesh sleeve which deter-

mines if the tube will extend or contract upon actuation, a phenomenon detailed in

[5]. Each section has a set of McKibben actuators connected together at the apexes

of an imaginary equilateral triangle. The base- and mid- sections have 2 McKibben

actuators at each apex to provide more lifting power, though at the expense of manip-

ulability. The tip-section has only 1 such actuator at each apex resulting in greater

manipulability as compared to the base- and mid- sections. Because of this type

of construction, varying the pressures sent to each actuator or set of actuators in a

section, will allow the section to bend in any cardinal direction. Providing the same

pressure to all the actuators in a section will result in extension. Because there are

3 independent actuators for each of the 3 independent sections of the Octarm, it has

9 Degrees-of-Freedom. The length of each actuator is measured by a string encoder,

a linear cable position transducer, which can measure the extension of a device as a

function of encoder counts.

As discussed in sections 1.1 and 1.2, the controllers available for continuum

manipulators either do not account for the OctArm’s manipulability or are inaccurate

because they deal with the manipulator at a kinematic level and do not incorporate

the system nonlinearities and dynamics. Thus, experiments for the dynamic model-

based approach discussed in this thesis are conducted on the OctArm to highlight
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their effectiveness and accuracy as controllers, and to highlight the capabilities of the

manipulator.
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Chapter 2

Kinematics of a Two-Section

Extensible Continuum Manipulator

In this chapter, a new, comparatively more intuitive method of kinematics

development for serially-connected extensible, continuum manipulators is described.

Jones and Walker [30], [32] used a rigid-link equivalent of an extensible continuum

manipulator to develop a Denavit-Hartenberg based homogenous transformation ma-

trix. However, this was not the most intuitive method to understand the shape of

continuum manipulators, especially when multiple sections are serially connected as

it required an understanding of how the rigid-link variables and parameters of the

rigid-link equivalent related to the continuum shape variables. To provide a more

intuitive solution, the kinematics developed in this chapter are based on the mea-

surable variables of the 9-DOF OctArm manipulator. It should be noted that these

kinematics only provide the position of any point along the manipulator backbone,

unlike that of [30] and [32] which provided position and orientation information in a

standard homogeneous transformation matrix. The lack of information regarding the

orientation of the manipulator tip could be a hindrance if it needs to be controlled.
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However, an application specifically regulating manipulator tip orientation, to the

best of this author’s knowledge, has not been found.

The general forward kinematics for a manipulator with n−degrees of freedom

(DOF) are given by

x = f (ψ) , (2.1)

where x(t) ∈ Rm represents the task-space coordinates of the manipulator tip, f(·) :

Rm → Rn represents the manipulator forward kinematics, and ψ(t) ∈ Rn is the

set of configuration-space variables (determining each internal degree of freedom) for

the manipulator. When n > m, the manipulator is considered to be kinematically

redundant.

Continuum manipulators are flexible and compliant robots that can theoret-

ically bend in any direction at any point along their length. However, continuum

backbones, which theoretically have infinite degrees of freedom, need to practically

be realized robotically using a small (finite) number of actuators. The degrees of

freedom not directly controlled must be constrained in the design in order to pro-

duce predictable behavior. In all continuum robots to date, this design constraint

results in the robot being a series of serially connected “sections”, which can bend

(typically in 2 dimensions) and often extend/contract. Numerous physical instanti-

ations of continuum robots have appeared [23], [72], [4], [36]. However, in all but

one case [73], these designs result in sections which are constrained to approximately

constant curvature (instantaneously, the curvatures vary with time, as the sections

bend) [1], [2], [3]. Thus, constant curvature section continuum robots are analyzed in

this dissertation.

Physical artifacts consist of serially-connected continuum sections allowing for

bending in multiple directions to accomplish more complex tasks. Unlike rigid-link
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redundant robots where the kinematics are based on the joint angles between links

(θ(t)) or their extensibility (d(t)), continuum manipulators are represented by the

length of the arc each section subtends (s(t)), the curvature of the arc (κ(t)), and the

angle of curvature (φ(t)).

Consider a two-section extensible continuum robot in a plane as shown in

Figure 2.1. There, Xi(t), and Zi(t) ∈ R represent the coordinates of the tip of each

Figure 2.1: Planar Schematic of Two-Section Continuum Robot

of the robot sections in the local frame1 and are collectively referenced as Pi(t) ∈ R2.

The terms si(t) and κi(t) ∈ R represent the section length and curvature, respectively.

Ci(t) ∈ R represents the center of the circle that section i is a part of, in the local

frame and is always on the local X−axis. The angle subtended by the section arc in

the local frame is defined as θi ∈ R. The local coordinate frames are X ′Y ′Z′ for the

1In this chapter, i = 1, 2 represents the first or second sections of the continuum robot, respec-
tively
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fixed base section and X ′′Y ′′Z ′′ for the tip section respectively. It can be seen that

κi = ri(t)
−1

θi(t) = si(t)κi(t).
(2.2)

Remark 1 It is assumed throughout this dissertation that the variables si(t) and κi(t)

are measureable and each section bends with uniform curvature, resulting in the arcs

being parts of circles with radius ri(t) = κi(t)
−1.

Remark 2 For the kinematic analysis, the coordinate axes are set up at the base

of each section such that each manipulator section curves tangentially to one of the

local coordinate axes. This constraint is inherited directly from the implementation of

physical continuum robots [5] which must bend about an initial (locally fixed) tangent.

2.1 Planar Single Section Kinematics

Figure 2.1 shows a continuum robot in theX ′Z ′ plane (quadrant 1, in which the

first section lies entirely). In that figure, consider the 4C1P1X1, where it can be seen

that ∠P1C1X1 = (π − θ1) and ∠P1X1C1 = π
2
. Also, ¯C1P1 = r1 and ¯C1X1 = X1 − r1,

which can be utilized to give

cos (π − θ1) =
X1 − r1
r1

. (2.3)

The expression in (2.3) can be rewritten as

X1 = r1 − r1cos (θ1) , (2.4)
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and using the expression in (2.2) in (2.4) results in

X1 =
1− cos (θ1)

κ1
. (2.5)

Similarly, the trigonometric expression that can be used from the same triangle results

in

Z1

r1
= sin (π − θ1) , (2.6)

which can be rewritten as

Z1 =
sinθ1
κ1

. (2.7)

2.1.1 Generalizing the Planar Kinematics

It should be noted that as stated in Remark 2, the single section kinematics

developed for motion in the 1st quadrant in equations (2.5) and (2.7), is tangential

to the local Z- axis, and thus needs to be rotated by π radians (clockwise or coun-

terclockwise) about the local X-axis to compute the section kinematics in the 4th

quadrant. Thus, the resulting kinematics become

Pquadrant 4 =

 X1

Z1

 =

 1

0

0

−1


 1−cos(θ1)

κ1

sin(θ1)
κ1

 =

 1−cos(θ1)
κ1

− sin(θ1)
κ1

 .
(2.8)

Similarly, the 1st quadrant equations, (2.5) and (2.7), have to be rotated by π

radians (clockwise or counterclockwise) about the local Z-axis to compute the section
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kinematics in the 2nd quadrant with the resulting kinematics being

Pquadrant 2 =

 X1

Z1

 =

 −1

0

0

1


 1−cos(θ1)

κ1

sin(θ1)
κ1

 =

 −1−cos(θ1)
κ1

sin(θ1)
κ1

 .
(2.9)

To calculate the kinematics of the manipulator in the 3rd quadrant, the first

quadrant kinematics have to be rotated by π radians first about the local Z-Axis and

then about the local X-Axis. Thus the kinematics take the form

Pquadrant 3 =

 X1

Z1

 =

 1

0

0

−1


 −1

0

0

1


 1−cos(θ1)

κ1

sin(θ1)
κ1

 =

 −1−cos(θ1)
κ1

− sin(θ1)
κ1

 .
(2.10)

2.2 Planar Two Section Kinematics

In the local frame, the kinematic derivation of the second section is identical

to that of the base section by considering 4P2C2X2. In the local frame, this results

in  X2

Z2

 =

 1−cos(θ2)
κ2

sin(θ2)
κ2

 . (2.11)

In order to represent the coordinates of the second section tip in the world reference

frame, the second section coordinates have to be rotated clockwise by an angle θ1(t)
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about the Y ′-axis before being added to the coordinates of the base section, giving

 X

Z

 =

 X1

Z1

+

 cosθ1 sinθ1

−sinθ1 cosθ1


 X2

Z2

 , (2.12)

which results in

X = 1
k1
− 1

k1
cosθ1 + 1

k2
cosθ1 − 1

k2
cosθ1cosθ2+

1
k2
sinθ1sinθ2;

Z = 1
k1
sinθ1 − 1

k2
sinθ1 + 1

k2
sinθ1cosθ2+

1
k2
cosθ1sinθ2.

(2.13)

These results represent the configurations of the manipulator where both sections lie

in their local first quadrants. Consequently, applying the appropriate rotations from

Section 2.1.1, we can generate the kinematics for the 8 possible configurations for a

two-section manipulator.

2.3 Spatial Single Section Kinematics

When a single section is rotated counterclockwise about the Z1-axis by an

angle φ1(t) ∈ R, such that φ 6= 0 or φ 6= π, as shown in Figure 2.2, the manipulator

motion is no longer restricted to the X1−Z1 plane. Thus the 2D (X1, Z1) coordinates

in (2.5) and (2.7) are converted to 3D (X1, Y1, Z1) as shown in Figure 2.2 and resulting
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in the following equation

P1−3D =


cosφ1

sinφ1

0

−sinφ1

cosφ1

0

0

0

1




1−cos(θ1)
κ1

0

sin(θ1)
κ1

 , (2.14)

where the matrix represents the 3D Z-axis rotation, resulting in

P1−3D =


X1

Y1

Z1

 =
1

κ1


cos (φ1) (1− cos (θ1))

sin (φ1) (1− cos (θ1))

sin (θ1)

 . (2.15)

Given the constraint of the initial tangent coinciding with Z1, it should be noted

X’

X
’’

Z’’

Y’’

r2

S1

X1

Y1

Z1

Θ1

Φ1

r1

C1

Θ2

P1(X1,Y1,Z1)

P2(X2,Y2,Z2)

C2

S
2

X
2

Z2

Y’

Z’

Figure 2.2: 3-Dimensional Schematic of a Two-Section Continuum Robot

that the forward kinematics in (2.15) are unique for a single section in either the
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spatial or planar (when φ(t) = 0, see Figure 4.1(b)) cases. The implications of this

are discussed in further detail in Section 4.1.

2.3.1 Generalizing the Spatial Kinematics

For the general spatial case, the model needs to account for the situation

where the manipulator section can reside in any of the eight octants of the Cartesian

coordinate system. To calculate the spatial coordinates from the planar coordinates,

X-Axis and Z-Axis kinematics from the appropriate starting quadrant are rotated

about the local Z-Axis, clockwise or counterclockwise depending on the desired octant

(the spatial coordinates for a section in the 1st octant were calculated in (2.15)).

For example, the 4th octant coordinates can be calculated by modifying (2.14)

to represent clockwise rotation around the Z1-Axis by an angle φ1. This results in

P1(O4) =


cosφ1

−sinφ1

0

sinφ1

cosφ1

0

0

0

1




1−cos(θ1)
κ1

0

sin(θ1)
κ1

 , (2.16)

with the resulting coordinates having the form

P1(O4) =


X1

Y1

Z1

 =
1

κ1


cos (φ1) (1− cos (θ1))

−sin (φ1) (1− cos (θ1))

sin (θ1)

 . (2.17)

Thus the spatial coordinates for each octant can be similarly calculated and

are tabulated in Table 2.1 and various configurations are shown in Figure 2.3:
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Starting Rotation Angle of Resulting
Quadrant Direction Rotation Octant
1 Counterclockwise φ 1
1 Clockwise φ 4
2 Clockwise φ 2
2 Counterclockwise φ 3
3 Counterclockwise φ 6
3 Clockwise φ 7
4 Counterclockwise φ 8
4 Clockwise φ 5

Table 2.1: List of rotations required for various manipulator orientations

Figure 2.3: Continuum Robot Configurations in Various Octants
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2.4 Spatial Two Section Kinematics

In the local frame, the kinematics derivation of the second section is identical

to that of the base section by considering 4C2P2X2 in Figure 2.2. This results in the

local frame coordinates of the tip of the second section having the form

P2−3D =


X2

Y2

Z2

 =
1

κ2


cos (φ2) (1− cos (θ2))

sin (φ2) (1− cos (θ2))

sin (θ2)

 . (2.18)

In order to represent the coordinates of the second section tip in the world frame, the

second section coordinates have to be first rotated clockwise by the angle θ1(t) about

the Y1-axis, rotated again (counterclockwise) by the angle φ1(t) about the Z2 axis

and finally added to the coordinates of the first section tip. Thus the 3D coordinates

of a two-section continuum manipulator are given by


X

Y

Z

 =


X1

Y1

Z1

+


cosφ1

sinφ1

0

−sinφ1

cosφ1

0

0

0

1




cosθ1

0

−sinθ1

0

1

0

sinθ1

0

cosθ1



X2

Y2

Z2

 .
(2.19)

This results in the coordinates of the tip in the base frame represented as
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[X(t) Y (t) Z(t)]T , in which

X = 1
k1
cosφ1 − 1

k1
cosθ1cosφ1 + 1

k2
cosθ1cosφ1cosφ2

− 1
k2
cosθ1cosθ2cosφ1cosφ2 − 1

k2
sinφ1sinφ2

+ 1
k2
cosθ2sinφ1sinφ2 + 1

k2
sinθ1sinθ2cosφ2;

Y = 1
k1
sinφ1 − 1

k1
cosθ1sinφ1 + 1

k2
cosθ1sinφ1cosφ2

− 1
k2
cosθ1cosθ2sinφ1cosφ2 + 1

k2
cosφ1sinφ2

− 1
k2
cosθ2cosφ1sinφ2 + 1

k2
sinθ1sinθ2sinφ2;

Z = 1
k1
sinθ1 − 1

k2
sinθ1cosφ2 + 1

k2
sinθ1cosθ2cosφ2

+ 1
k2
cosθ1sinθ2.

(2.20)

While these results represent a manipulator in the first octant, choosing the

appropriate starting octant and applying the necessary rotation will establish the

kinematics for the 32 possible configurations. If φ1(t) = φ2(t) = 0, in (2.20), the ma-

nipulator motion is restricted to the X-Z plane, as shown in Figure 2.1, and discussed

in Section 2.2.

2.5 Spatial n−Section Kinematics

The forward kinematic equation providing the tip location of a 2-section ex-

tensible continuum manipulator developed in (2.19) can be recursively generalized to

n−sections first by the clockwise rotation of the nth section about the Zn−1−Axis by

an angle of of θn−1 and then by the rotation of the same section about the (2.19) can

be generalized to n−sections first by the clockwise rotation of the same section about

the Zn−1−Axis by an angle of φn−1. Thus the resulting recursive formula to generate
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the kinematics of an n−section serially-connected extensible continuum manipulator

can be given by


X

Y

Z

 =


Xn−1

Yn−1

Zn−1

+


cosφn−1

sinφn−1

0

−sinφn−1

cosφn−1

0

0

0

1




cosθn−1

0

−sinθn−1

0

1

0

sinθn−1

0

cosθn−1



Xn

Yn

Zn

 .
(2.21)

As stated previously, this kinematic development provides a more instinctive un-

derstanding of the shape of the manipulators when provided with their shape vari-

ables. Because of this, these forward kinematic equations (in their 3-section form)

are utilized in the developments of the subsequent chapters, especially towards the

generation of the velocity Jacobian, self-motion characterization, and teleoperation

control.
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Chapter 3

A Sliding-Mode

Configuration-Space Controller for

Extensible Continuum

Manipulators

In this chapter, a standard sliding-mode controller is developed for contin-

uum manipulators whose models are based on the Lagrangian dynamics. Specific

modifications have been made to ensure the control algorithm fits the structure of

the OctArm’s continuum dynamics. Sliding-mode controllers are a class of variable-

structure controllers which alter the dynamics of a system with the application of

a discontinuous high-frequency switching control signal. The control signal is of a

high frequency because it is not a continuous function of time and switches from one

continuous state to another depending on the current position of the system in the

state-space. Thus, the control signal and subsequently the system is forced to “slide”

along cross-sectional boundaries of their respective structures. Because of a lack of
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model-based controllers for continuum robots, a sliding-mode controller was a natural

choice for the following reasons:

• Sliding-mode controllers exhibit relatively low sensitivity to uncertainty in robot

dynamic model parameters,

• the robot dynamic model does not need to have higher-order terms.

• and because it is discontinuous, finite-time convergence can be achieved with

the appropriate choice of gain values.

A Lyapunov-type proof is utilized for the stability analysis of the proposed controller,

while numerical simulations and experimental results are demonstrated to highlight

the effectiveness of the proposed controller in comparison to a standard inverse dy-

namics PD controller.

Based on the general forward kinematics equation given in (2.1), the forward

kinematics for the 3-section OctArm can be represented by

x = f(q), (3.1)

where x(t) ∈ R3 represents the [X(t) Y (t) Z(t)]T coordinates of the manipulator tip

in space, while the q(t) ∈ R9 represents the manipulator section lengths, curvatures,

and angles-of-orientation, defined as

q ,

[
s1 κ1 φ1 s2 κ2 φ2 s3 κ3 φ3

]T
, (3.2)

where s1(t), s2(t), and s3(t) ∈ R+ are the section lengths, κ1(t), κ2(t), and κ3(t) ∈ R

are the section curvatures, and φ1(t), φ2(t), and φ3(t) ∈ R are the angles of orienta-

tion, of the 3 sections respectively. It can further be seen that since the number of
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configuration-space terms (also system independent variables) are greater than the

space in which it operates, the manipulator is considered to be kinematically redun-

dant.

3.1 Dynamic Model

The model developed by Tatlicioglu et al. [41] [42] provides for the first time a

closed form model, applicable to continuum robot extension as well as bending, which

contains key properties (well established for conventional rigid- link robot structures)

essential for nonlinear controller synthesis. In particular, the overall model takes the

familiar form,

τ = M(q)q̈ +N (q, q̇) q̇ +G(q) +B(q) + E(q), (3.3)

where q(t) ∈ Rn represents the configuration-space variables, while M(q), N (q, q̇) ∈

Rn×n represent the inertia matrix and Centripetal-Coriolis matrix respectively. The

terms G(q), B(q), and E(q) ∈ Rn refer to vectors relating to the effects of gravity,

potential energy due to bending, and potential energy due to extension, respectively,

while τ(t) ∈ Rn is the control input. The individual elements of the dynamic model

developed in [41] and [42] can be found in Appendix D.

Remark 3 The model has the following properties:

1. The inertia matrix M(q) is symmetric and positive definite.

2. The matrix Ṁ − 2N is skew symmetric and satisfies the property,

ξT
(
Ṁ − 2N

)
ξ = 0 ∀ξ ∈ Rn, (3.4)

which will be exploited in the following controller synthesis.
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3.2 Controller Synthesis

Here, the dynamic model described above is used to extend and adapt the

nonlinear control approach in [74] to the case of extensible continuum robots. In [74],

the authors designed a sliding-mode controller for rigid-link robot manipulators by

exploiting their Euler-LaGrangian dynamic models.

To develop the controller, let the manipulator configuration-space tracking

error, e(t) ∈ R9 be defined as

e , qd − q (3.5)

where qd(t) ∈ R9 is the desired manipulator position. The first and second time

derivatives of (3.5) are given by

ė , q̇d − q̇

ë , q̈d − q̈
(3.6)

in which q̇(t) and q̈(t) ∈ R9 respectively represent the manipulator configuration-

space velocities and accelerations, while q̇d(t) and q̈d(t) ∈ R9 respectively represent

the desired configuration-space velocities and accelerations. The desired position

term, qd(t), should be chosen such that qd(t), q̇d(t), q̈d(t) ∈ L∞.

Let r(t) ∈ R9 be the sliding surface and defined as the filtered tracking error

such that

r , αe+ ė, (3.7)

where α = I9

[
α1 α2 α3 α4 α5 α6 α7 α8 α9

]T
, in which αi ∈ R+ for i = 1...9.
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Similar to (3.7), let the filtered trajectory, q̇r(t) ∈ R9 be defined as1

q̇r = αe+ q̇d. (3.8)

Theorem 1 Consider the controller

τ = M̂(q)q̈r + N̂ (q, q̇) q̇ + Ĝ(q) + B̂(q) + Ê(q) +Ksgn(r), (3.9)

in which M̂(q), N̂ (q, q̇) ∈ R9×9, Ĝ(q), B̂(q), Ê(q) ∈ R9 are estimates of M(q),

N (q, q̇), G(q), B(q), and E(q) respectively, and K ∈ R9×9 is a diagonal matrix with

positive entries.

Using this controller, the error reaches the sliding surface described in (3.7) in

finite time. In addition, once on the surface, q(t) will converge to qd(t) exponentially

fast.

Proof. The dynamic model of the manipulator in (3.3) can be rewritten as

M(q)q̈ = τ −N (q, q̇) q̇ −G(q)−B(q)− E(q), (3.10)

in which the substitution of (3.6) results in

M(q) (q̈d − ë) = τ −N (q, q̇) (q̇d − ė)−G(q)−B(q)− E(q). (3.11)

Substituting (3.8) and its time derivative in (3.11) yields

M(q) (q̈r − αė− ë) = τ −N ((q, q̇) q̇r − αe− ė)−G(q)−B(q)− E(q). (3.12)

1Throughout the dissertation, In and 0m×r will be used to represent an n× n standard identity
matrix and an m× r zero matrix, respectively.

32



Using (3.7) and its time derivative in (3.12) results in

M(q) (q̈r − ṙ) = τ −N (q, q̇) (q̇r − r)−G(q)−B(q)− E(q), (3.13)

which, after expanding and moving terms around can be rewritten as

M(q)ṙ = M(q)q̈r +N (q, q̇) q̇r −N (q, q̇) r +G(q) +B(q) + E(q)− τ . (3.14)

Consider the candidate Lyapunov function

V =
1

2
rTM(q)r, (3.15)

whose time derivative yields

V̇ = rTMṙ +
1

2
rTṀ(q)r. (3.16)

Substituting (3.14) in (3.16) we obtain

V̇ = rT [Mq̈r +Nq̇r −Nr +G+B + E − τ ] +
1

2
rTṀ(q)r, (3.17)

which can be rewritten as

V̇ = rT [Mq̈r +Nq̇r +G+B + E − τ ]− rTNr +
1

2
rTṀ(q)r. (3.18)

Using Property 2 in Remark 3 it can be seen that

rTNr =
1

2
rTṀr, (3.19)
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which when substituted in (3.18) yields

V̇ = rT [Mq̈r +Nq̇r +G+B + E − τ ] (3.20)

Substituting the controller proposed in (3.9) in (3.20) yields

V̇ = rT
[
M̃ q̈r + Ñ q̇r + G̃+ B̃ + Ẽ

]
−

9∑
i=1

ki | ri |, (3.21)

where M̃(q) ,M(q)−M̂(q) and Ñ , N (q, q̇)−N̂ (q, q̇) ∈ R9×9, G̃(q) , G(q)−Ĝ(q),

B̃(q) , B(q) − B̂(q), and Ẽ(q) , E(q) − Ê(q) ∈ R9. The term ki ∈ R+ is chosen

such that

ki ≥|
[
M̃ q̈r + Ñ q̇r + G̃+ B̃ + Ẽ

]
i
| +ηi, (3.22)

in which
[
M̃ q̈r + Ñ q̇r + G̃+ B̃ + Ẽ

]
i

represents the ith element of that vector, and

ηi ∈ R+. Substituting (3.22) in (3.18) yields the following inequality

V̇r ≤ −
9∑
i=1

ηi | ri |, (3.23)

from which it can be seen that r(t) → 0 in finite time. Thus from (3.7), when

r(t) = 0, ė(t) = 0 and e(t) = 0. Thus, once the system is in the sliding mode,

e(t)→ 0 exponentially fast.

3.3 Controller Performance - Simulation

In this section we first present the results of the controller applied to a sim-

ulation of the OctArm manipulator to demonstrate the effectiveness of the control

strategy introduced in the Section 3.2. In the following, all three sections of the robot
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are actuated. For simplicity, the robot motions are restricted to the plane orthogonal

to gravity, thus G(q) = 0 and φ1(t) = φ2(t) = φ3(t) = 0. because of this, the robot

now has six degrees of freedom, three of extension/contraction (one for each link),

and three for bending (again, one for each link).

The simulation was developed in the Matlab/Simulink R©environment which

was hosted on an Dell R©PC running on an Intel R©i5 processor under the Windows

7 R©operating system. In the simulation, the robot is modeled using the dynamic

model in Section 3.1. The nominal trajectories of the sections are an aggressive set

of sinusoids given by

qdsim =



s1d

k1d

s2d

k2d

s3d

k3d


=



0.35 + 0.01sin(2πt) [m]

1 + 0.2sin(2πt)
[
1
m

]
0.35 [m]

2 + 0.2sin(2πt)
[
1
m

]
0.4 + 0.01sin(2πt) [m]

3
[
1
m

]


. (3.24)

The ability of the controller proposed in this chapter to track the trajecto-

ries is compared with that of a conventional inverse dynamics controller, i.e. PD

controller with an inner linearization loop [74]. The results for the standard (PD)

controller are illustrated in Figures 3.1 and 3.2 respectively. Note that the inverse

dynamics controller includes all the possible problems and caveats associated with

system inversion. This includes the possible presence of non- minimum-phase zeros.

Additionally, the gains required for optimal performance change depending on the

nature of the performance objectives, while it should be ensured that the system is

critically damped.
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Figure 3.1: C-Space PD Controller Simulation: Tracking Errors
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Figure 3.2: C-Space PD Controller Simulation: Control Signals
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The results for the controller introduced in (3.9) are illustrated in Figures 3.3

and 3.4 respectively. The hallmark of the sliding- mode controller is that the error

only needs to be driven to the switching surface, after which the system will not be

affected by any modeling uncertainties or disturbances. Also, the additional caveats

noted for the inverse dynamics controller do not apply in this case. A comparison of

the plots in Figures 3.1 and 3.2 for the inverse dynamics PD controller, and Figures

3.3 and 3.4 reveal that the nonlinear controller successfully compensates for dynamic

uncertainty.
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Figure 3.3: C-Space Sliding Mode Controller Simulation: Tracking Errors
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3.4 Controller Performance - Experimental Vali-

dation

The controller described in (3.9) was implemented on the OctArm extensible

continuum manipulator. The objective of the experiment was to verify the perfor-

mance of the sliding-mode controller. Given that the available dynamic model devel-

oped in [41] and [42] is planar, the robot was placed on a horizontal surface. Because

of this orientation, the gravitational terms in the model were unnecessary.

Similar to the simulation, the control algorithm was developed on a Dell R©

PC running on an Intel R© i5 processor under the Windows 7 R© operating system.

Additionally, Quanser R© Q8 and Q2 data acquisition boards were used along with the

QUARC R© interface to connect to the OctArm hardware. The control signal from

the algorithm was converted into voltages and sent to the 9 pressure regulators (one

for each McKibben actuator on the OctArm) which give each section its length and

curvature. The length of each actuator was measured using a string encoder from

which the robot section lengths and curvatures were inferred using the conversions

developed in [30] for the feedback. A schematic of the control loop is shown in Figure

3.5 and was run at 1 KHz.

As in Section 3.3, the performance of the proposed controller was measured
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Figure 3.5: Experimental Control Loop Block Diagram

against a PD controller. The nominal desired trajectory was chosen to be:

qdexp =



s1d

k1d

s2d

k2d

s3d

k3d


=



0.38 + 0.05sin
(
π
4
t
)

[m]

1.5 + 0.2sin
(
π
4
t
) [

1
m

]
0.34 + 0.02cos

(
π
4
t
)

[m]

1.5 + 0.2sin
(
π
4
t
) [

1
m

]
0.38[m]

3.5 + 0.2sin
(
π
4
t
) [

1
m

]


(3.25)

The PD controller results can be seen in Figures 3.6, 3.7, 3.8, and 3.9, while the

Sliding-mode control voltages are shown in Figures 3.10, 3.11, 3.12, and 3.13. The con-

trol gains that provided the results for the PD controller areKp = diag{10 100 10 100 500 100}

and Kv = diag{50 50 50 50 50 50}, while the gains for the sliding-mode controller are

α = diag{1.3 2.9 0.5 1.1 0.8 0.6} and η = diag{1 2.5 0.15 1.1 0.7 3} . Comparing the

results of the PD controller with those of the Sliding-mode controller, it can be seen

that the Sliding-Mode controller tracking error converges slightly faster than that of
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the PD controller while the Sliding-mode controller also ensure tighter oscillations

about the desired tip location, as seen in Figures Figures 3.6 and 3.10. Additionally,

the control voltages generated by the Sliding-mode controller are significantly lower

than those of the PD controller, showing that better control is achieved with less

energy being consumed, as seen in the control signal figures.
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Figure 3.6: C-Space PD Controller Experiment: Tracking Error
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Figure 3.10: C-Space Sliding-Mode Controller Experiment: Tracking Error
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Chapter 4

A Study of the Self-Motion of

Extensible Continuum

Manipulators

In this chapter, we present the first work in categorizing the self-motion of

continuum robots (i.e. the type and nature of internal movement where the tip

remains at a fixed location). The underlying structures topologically describing the

self-motion are described in [48] as self-motion manifolds. Self-motion manifolds group

the infinite number of inverse kinematic solutions into a finite and bounded set of

solutions. Gaining an understanding of these solutions enables practical exploitation

of the manipulator self-motion. Here, we study and discuss the self-motion manifold

inherent for continuum robots, analyze its null-space, characterize the self-motion,

provide examples in nature or potential applications, and demonstrate the motion on

the OctArm extensible continuum robot.
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4.1 Self-Motion Manifolds

Self-motion manifolds of redundant manipulators have been categorized in

[48]. However, the manipulators in question were rigid-link and revolute. For these

manipulators, the analysis in [48] resolves the fundamental question of how many

distinct self-manifolds exist (physically, how many distinct self-motions exist). In

[48], it is shown that for serial rigid-link revolute manipulators, there are up to 16

potential distinct self-motion solutions. As the number of rigid links increase, the

number of self motion solutions decrease, until they resemble “strings” having only

one self-motion solution.

Serially-connected continuum sections bend to resemble “strings” more so than

their rigid-link counterparts. However, the physical constraints continuum manipula-

tors have in comparison to strings are significant. Thus since continuum manipulator

physical motion capabilities lie in between that of redundant rigid-link robots and

strings, a deeper understanding is motivated.

For rigid-link manipulators, it is shown in [48] that there exist two distinct

types of pose-based self-motion manifolds. These manifolds physically corresponding

to different self-motions from the “elbow up” and “elbow-down” configurations for

the same position as shown in Figure 4.1(a). Multiple self-motion manifolds arise

because, for some end-effector locations, there are disjoint “elbow-up” and “elbow-

down” trajectories which cannot cross into each other. Such crossings occur at singu-

lar configurations. It is shown by induction in [48] that there is an upper limit (that

number being 16) of distinct self-motions manifolds. However, for continuum robots

the solution is quite different. In fact, the following result holds:

Theorem 2 There is a single unique self-motion manifold for serially connected con-

stant curvature section continuum manipulators.
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Proof. Consider a single section continuum robot. As noted in Remark 2, there

exists the physical constraint that the initial tangent has to be fixed. This constraint,

along with the constant curvature assumption implies that there is a unique config-

uration for any tip location. Thus, it can be seen that the “elbow up” and “elbow

down” configurations of rigid-link robots (shown in Figure 4 (a)) do not have equiv-

alent feasible inverse kinematic solutions for continuum manipulators. The “elbow

down” equivalent of the continuum manipulator base section is possible only with a

different initial mounting (πc rotation about the X−axis from that shown in Figures

2.1 and 2.2), and shown in Figure 4.1 (right). This is true for both planar and spatial

sections (rotating Figure 4.1 (b) about the vertical axis still yields a unique solution

given the initial vertical tangent).

Figure 4.1: Left: The “Elbow-up” and “Elbow-down” Configurations for Rigid-Link
Robots as Described in [48]. Right: The Equivalent for Continuum Robots is Only
Possible For Opposite Initial Tangents, i.e. Physically Different Continuum Robots.

Now consider a two-section continuum manipulator. Let C denote the set of
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locations formed by the point D connecting the two solutions when moving section 2

and keeping the tip fixed. Each point in C corresponds uniquely to a configuration

of section 1 (base to D) since that section has a unique 1− 1 kinematic map given its

fixed initial tangent, as illustrated in Figures 4.2 and 4.3. Further, each point in C is

associated with a unique tangent at the tip of section 1; this tangent connects section

1 and section 2 (D to tip) (the tip of each section has the physical constraint of being

collinear with the initial tangent from base of the next section). This means that any

point in C uniquely defines an initial tangent for section 2, implying a 1-1 kinematic

map between section 2 configurations and the given section tip point (in planar or

3-Dimensional situations). The robot must inherit the unique tangent at the end of

section 1. Because section 2 has to begin at the same point, with its own uniquely

specified tangent, there exists a single unique configuration for section 2 for a given

tip location. Thus, any self-motion trajectory corresponds to a unique self-motion

trajectory, and hence there exists only a single self-motion manifold.

By induction, it can be seen that there is only one self-motion manifold for

any serially connected, constant curvature, multi-section continuum robot. Given

that any two sections have to be collinear at their intersection point, for 2 sections

of a continuum manipulator, the angles-of-orientation for each section have a unique

1-1 kinematic map for a set of section lengths and curvatures corresponding to the

subsequent fixed tip location.

The self-motion manifold for continuum manipulators, unlike its rigid-link

counterparts, is also not hindered by singularities. This is because singular configu-

rations exist only when each manipulator section is straight along the axis its base is

tangential to, resulting in the curvature k(t) = 0. This lack of singularities within the

rest of the configuration-space results in self-motion solutions easily “traveling into”

one another as opposed to being divided by a loci of singularities in the rigid-link
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cases.

4.2 The Null-Space: Local Analysis

4.2.1 Velocity Kinematics

A two-section extensible continuum manipulator as seen in Figure 2.2 is kine-

matically redundant for 3D (X-Y-Z) positioning tasks in 3D space as it has 6 Degrees

of Freedom (DOFs). Redundancy also exists for the XZ planar positioning case (by

setting φ1(t) = φ2(t) = 0), since 4 DOFs still exist (s1(t), k1(t), s2(t), and k2(t)).

Given that such manipulators are redundant, their inverse kinematics for the

manipulator yield non-unique solutions. This means that there exist infinite manip-

ulator configurations for the same position of the manipulator tip, the very property

which produces the self-motion. Thus the manipulator configuration cannot be con-

veniently computed in closed form from positional inverse kinematics. Due to this,

we next utilize the manipulator velocity kinematics.

The velocity kinematics for the extensible continuum manipulator can be ob-

tained by taking the time derivative of the kinematic model in (2.1), and are given

here by

ẋ = J (ψ) ψ̇, (4.1)

where J(·) ∈ Rm×n is the Jacobian matrix defined by

J =
∂f(·)
∂ψ

, (4.2)

in which ẋ(t) ∈ Rm represents the task-space velocity and ψ̇ ∈ Rn represents the
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configuration-space velocity. Thus the spatial velocity Jacobian is found to be

J ,



∂X
∂s1

∂Y
∂s1

∂Z
∂s1

∂X
∂k1

∂Y
∂k1

∂Z
∂k1

∂X
∂φ1

∂Y
∂φ1

∂Z
∂φ1

∂X
∂s2

∂Y
∂s2

∂Z
∂s2

∂X
∂k2

∂Y
∂k2

∂Z
∂k2

∂X
∂φ2

∂Y
∂φ2

∂Z
∂φ2


, (4.3)

whose elements are detailed in Appendix B.

4.2.2 Resolved Motion Rate Inverse Kinematics

To numerically solve the inverse kinematics problem for non-redundant manip-

ulators in the velocity domain conceptually, given an initial configuration, an initial

motion is fed on both sides of (4.1) to be multiplied by J(·)−1 (when [J ]−1 is defined

and invertible) resulting in

ψ̇ = [J ]−1 ẋ. (4.4)

The expression in (4.4) can then be numerically integrated to obtain ψ(t). This

method of obtaining a robot configuration from the velocity kinematics is known as

the “resolved-motion rate” approach [69].

However, for kinematically redundant manipulators, J(·) is never square, in

which case matrix inversion is not directly possible. Thus the Moore-Penrose pseu-

doinverse of J(·), given by J+(·) = JT
(
JJT

)−1 ∈ Rn×m, is often utilized. The

pseudoinverse J+(·) satisfies the property JJ+ = Im where Im is the m×m identity

matrix. Further Moore-Penrose Pseudoinverse properties are provided in Appendix

A. For kinematically redundant manipulators, the inverse kinematics solution in the
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velocity space can be given by

ψ̇ = [J ]+ ẋ. (4.5)

Along with finding a specific inverse kinematic solution for redundant manip-

ulators, it is important to characterize all the solutions. Thus, the pseudoinverse

solution is modified, resulting in (4.5) to be rewritten as

ψ̇ = [J ]+ ẋ+
[
In − J+J

]
ε, (4.6)

where In ∈ Rn×n is the n × n identity matrix and ε ∈ Rn×1 is an arbitrary vector.

Both terms on the right side of (4.6) represent joint velocities and can be further

denoted as

ψ̇ = ψ̇P + ψ̇N , (4.7)

where ψ̇P ∈ Rn×1 represents the particular solution and ψ̇N ∈ Rn×1 (the null-space

vector) represents the homogeneous solution. Furthermore

ψ̇P = [J ]+ ẋ

ψ̇N = [In − J+J ] ε.
(4.8)

The homogeneous (null-space) solution has the property that [J ]ψ̇N = 0, i.e.

solutions ψ̇N (parameterized by the arbitrary ε) are joint velocities that produce no

tip motion, and thus generate the self-motion.

Thus, to better explore the self-motion of extensible continuum manipulators,

we calculate the Jacobian null-space and analyze manipulator motion in that space.

To that end, we begin with the spatial 2-section extensible continuum robot, for which
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the null-space matrix, denoted by ξN(t) ∈ R6×6, is defined as

ξN , I6 − J+J, (4.9)

where I6 ∈ R6×6 represents an identity matrix, and J+(·) ∈ R6×3 is the Moore-Penrose

pseudoinverse of the Jacobian matrix, J(·). The columns (or rows) of ξN(t) span the

null space in R6.

4.3 Self-Motion Characterization

To better understand the self-motion behavior of continuum manipulators we

consider 4 cases for 2-section extensible continuum robots:

1. Planar constant second section curvature case;

2. Planar constant second section length case;

3. Spatial constant second section orientation case;

4. General motion case.

In case 1 and case 2, the constant curvature and length respectively represent restric-

tions on curvature and length of the second section only. In these cases, because we

are considering motion in the plane, φ1(t) = φ2(t) = 0 (these restrictions do not apply

to cases 3 and 4). In all cases the first section is free to move without any constraints

while the manipulator tip remains fixed at its initial point. No physical restrictions

have been placed on the manipulator section lengths or curvatures except si(t) > 0

and ri(t) > 0 (i.e. ki(t) <∞).
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4.3.1 Planar Self-Motion Due To Extension

In this case, the first section has no constraints on its length or curvature while

the length of the second section is free to change with its curvature being fixed, as

seen in Figure 4.4. Further, it can be seen that the overall shape of the manipulator

remains the same despite the changes in section lengths. This is probably the most

intuitive self-motion case.

Figure 4.4: Time Lapse: Planar Self-Motion Due To Extension. The Time Lapse is
Clockwise Starting from the Top Left.
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Based on (4.6), the velocity kinematics for this case can be given by

ψ̇cc =



ṡ1

k̇1

0

ṡ2

0

0


= [Jcc]

+ ẋ+
[
I6 − J+

ccJcc
]
ε, (4.10)

where ψ̇cc(t) ∈ R6 represents the configuration space velocity, Jcc(t) ∈ R3×6 is the

Jacobian for the second section constant curvature case, J+
cc(t) ∈ R6×3 is the pseu-

doinverse of Jcc(t), and ε(t) ∈ R5 is an arbitrary vector. Because this motion is planar,

φ1(t) = φ2(t) = φ̇1(t) = φ̇2(t) = 0. Let the homogeneous solution in (4.10) be defined

by the variable ψ̇ccN ∈ R3 such that

ψ̇ccN ,
[
I6 − J+

ccJcc
]
ε, (4.11)

The k̇2(t) term in (4.10) is replaced by a zero because, due to constant curvature,

k̇2(t) = 0.

4.3.2 Planar Self-Motion Due to Bending

In this case, the curvature of the second section is variable while its length is

kept constant and there are no restrictions on the base section. Figure 4.5.

Based on (4.6), and parallel to (4.10) the velocity kinematics for this case can
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Figure 4.5: Time Lapse: Planar Self-Motion Due To Bending. The Time Lapse is
Clockwise Starting from the Top Left.
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be given by

ψ̇cl =



ṡ1

k̇1

0

0

k̇2

0


= [Jcl]

+ ẋ+
[
I6 − J+

cl Jcl
]
ε, (4.12)

where ψ̇cl(t) ∈ R6 represents the configuration space velocity, Jcl(t) ∈ R3×6 is the

Jacobian for the second section constant curvature case, J+
cl (t) ∈ R6×3 is the pseu-

doinverse of Jcl(t), and ε(t) ∈ R6 is an arbitrary vector. Because this motion is planar,

φ1(t) = φ2(t) = φ̇1(t) = φ̇2(t) = 0. Let the homogeneous solution in (4.12) be defined

by the variable ψ̇clN ∈ R6 such that

ψ̇clN ,
[
I6 − J+

cl Jcl
]
ε, (4.13)

The ṡ2(t) term in (4.12) is replaced by a zero because, due to constant length, ṡ2(t) =

0.

4.3.3 Self-Motion Due to Constrained Angle-of-Orientation

In this case, neither section of the manipulator has any constraints on the

variable section lengths and curvatures. However, while the base section angle-of-

orientation is variable, the angle-of-orientation of the second section is kept constant.

Figure 4.6 demonstrates this motion. Based on (4.6), the velocity kinematics for this
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case can be given by

ψ̇co =



ṡ1

k̇1

φ̇1

ṡ2

k̇2

0


= [Jco]

+ ẋ+
[
I6 − J+

coJco
]
ε, (4.14)

where ψ̇co(t) ∈ R6 represents the configuration-space velocity, Jco(t) ∈ R3×6 is the

Jacobian for the second section constant angle-of-orientation case, J+
co(t) ∈ R6×3 is

the pseudoinverse of Jco(t) and ε(t) is an arbitrary vector. Let the homogeneous

solution in (4.14) be defined by the variable ψ̇coN ∈ R6 such that

ψ̇coN ,
[
I6 − J+

coJco
]
ε, (4.15)

The φ̇2(t) term in (4.14) is replaced by a zero because, due to constant angle-of-

orientation, φ̇2(t) = 0.

4.3.4 The General Motion Case

We now consider the general self motion case allowing for the manipulator to

be completely unrestricted in its self-motion.

Theorem 3 The general self-motion of spatial 2-section extensible continuum ma-

nipulators is spanned by the constrained manipulator self-motion velocities defined

above.
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Figure 4.6: Time Lapse: Spatial Self-Motion Due To Fixed Angle-of-Orientation. The
Time Lapse is Clockwise Starting from the Top Left.
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Proof. The null-space vector in (4.10) can be viewed and expanded into R6 as

ψ̇ccN =



ṡ1ccN

k̇1ccN

φ̇1ccN

ṡ2ccN

0

φ̇2ccN


∈ N [J ] . (4.16)

The 5th element of ψcc, nominally k̇2(t) does not exist for this case (constant second

section curvature) and thus its position is padded with a zero. Note that (4.16)

remains a self-motion velocity for the manipulator, (i.e. [J ]ψee = 0). Similarly,

(4.12) can be expanded as,

ψ̇clN =



ṡ1clN

k̇1clN

φ̇1clN

0

k̇2clN

φ̇2clN


∈ N [J ] . (4.17)

As the ṡ2(t) term does not exist and therefore has no effect on the manipulator

motion due the constant length second section case being considered, its position is

thus padded by a zero. Similar to (4.16) and (4.17), the expression in (4.14) can be
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expanded to give

ψ̇coN =



ṡ1coN

k̇1coN

φ̇1coN

ṡ2coN

k̇2coN

0


∈ N [J ] . (4.18)

The location of the φ̇2(t) term is padded with a 0 because it doesn’t exist in that

case.

From the general inverse kinematic solution in (4.6) (valid through the workspace

except for the infinitesimally thin subspaces of the local X and Z axes, i.e. ki(t) = σ),

for [J(t)] of full rank 3, it can be seen that [I − J+J ] is also of rank 3, and thus the

columns of [I − J+J ] span the null-space [75]. The general null-space is thus 3-

dimensional, and given that the vectors in (4.16), (4.17), and (4.18) are clearly in the

null-space of [J ] and independent of each other, they form a basis for the null-space,

resulting in

ψ̇ =



ṡ1

k̇1

φ̇1

ṡ2

k̇2

φ̇2


. (4.19)

Thus, we can see that (4.19) must result from a the linear combination of the

vectors in (4.16), (4.17) and (4.18),

ψ̇ = Kccψ̇ccN +Kclψ̇clN +Kcoψ̇coN , (4.20)
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where Kcc, Kcl and Kco ∈ R are constants.

An example of the general self-motion, generated using (4.20), in Figure 4.7.

Figure 4.7: Time Lapse: Unconstrained Spatial Motion. The Time Lapse is Clockwise
Starting from the Top Left.

It should be noted that in this case, the tip location was found to be at [0 0.5274 −

0.0921], and as in all previous cases, the manipulator base is located at the origin,

though the viewing angle could initially suggest otherwise.

4.3.5 Exploitation of Continuum Robot Self-Motion

Exposure of the underlying base structure of the continuum robot self-motion

in the previous subsections yields new insight into how the self-motion could be
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used innovatively in application scenarios. For example, the constant curvature base

self-motion lends itself to construction and manipulation tasks. When the second

section has a constant curvature constraint, it could potentially be used as a wrench-

like device for large screws or bolts, with the curvature of the section matching the

curvature of the bolt (or screw) head. With the curvature fixed, the base section

length and curvature as well as the length of the second section can be changed so as

to tighten or loosen the hold as required.

One application unique to continuum manipulators is that of rolling an object.

Mobile hospital units often need help turning a patient over, especially in cases of re-

habilitation. In this case, a 2-section continuum manipulator could maneuver around

the patient with the tip’s location setting up it’s fixed point under the patient. Using

self-motion, the tip section would increase it’s curvature to leverage the patient while

the base section reduces its length so as to pull the patient back. This motion would

effectively roll the patient over. This is analogous to the way nurses utilize their

hands and arms to roll a patient over. To do so, the nurse would leverage their hands

around and under the patient while standing on the other side. The nurse then pulls

their hands out and back while leveraging the patient with their elbows to avoid slip

and thus rolling the patient over in their bed.

One potential application when the manipulator is unconstrained is on-sea

refueling. The ships would line up next to each other and a continuum robot hose

would be used for transmitting the fuel. Given that the ships are constantly in

relative motion due to the active sea states and the high pressure with which the

fuel is being transmitted, it is imperative that the “hose” not flail about in the

event of a disconnection and that the configuration be compliant. Exploitation of the

manipulator null-space is necessary in such situations.

A novel way to apply continuum manipulators is using two continuum sections
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as a hand-finger equivalent with the hand and the finger distinguished from each other

at the point where the sections join. The constant curvature paradigm could be used

for the hand in order to set leverage a tip position similar to a lasso winding around an

object. The constant length self-motion and/or base section motion can then change

its shape to manipulate the object as required. For example, once the tip location

is fixed at a point on the edge of an object (a circular wedge, as seen in Figure 4.8),

the arm can ease itself into wrapping around the object by matching curvatures and

adjusting lengths. Once the object is grasped, it can be manipulated by changing the

shape of the base section as needed.

Figure 4.8: An example of a continuum manipulator (from bottom to top) grasping
an object by matching curvatures.
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Having grasped an object or a kitchen utensil, such as a mug, flask, bowl, or

stock pot, varying angle-of-orientation for a fixed tip location allows for the arm to

pour the contents out of the utensil as seen in Figure 4.9.

Figure 4.9: An example of changing angle of orientation (from right to left) demon-
strating the effect of pouring material out of a utensil.

4.4 Experimental Validation

Experiments to further explore self-motion of extensible continuum manipu-

lators were conducted on the 9-Degree-Of-Freedom OctArm continuum manipulator

[5].

The pressure regulator signals that actuate the OctArm are generated using a

71



Matlab/SimulinkTMblock diagram via a QuanserTMdata acquisition system. Figure

4.10 shows the ability of the OctArm to have different section lengths and curvatures

for a single tip location demonstrating planar self-motion while Figure 4.11 demon-

strating spatial self-motion. In both cases, the tip was loosely tied to metal bar

allowing varying orientation for the same location.

Figure 4.10: OctArm Planar Self-Motion starting at the top left and continuing clock-
wise.
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Figure 4.11: OctArm Spatial Self-Motion starting at the top left and continuing
clockwise.
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Chapter 5

Teleoperation Control of a

Redundant Continuum

Manipulator Using a

Non-Redundant Rigid-Link Master

One of the most useful properties of redundant robots is their ability to change

their shape without a change in the system tip (or end-effector) location. This is es-

pecially useful for performing tasks that require obstacle avoidance, or necessitates

that the manipulator itself avoids motion limits and singularities. When required

for teleoperation, one current disadvantage for extensible continuum manipulators is

the lack of availability of other robots which are physically and kinematically simi-

lar. This issue requires that control solutions be found accordingly; where the master

system would only regulate the tip of the slave continuum system with the slave sys-

tem modifying its own shape based on the requirements of its local environment. A

teleoperation controller addressing this question would be useful in a cluttered pick-
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and-place environment in which the slave system might need to operate. Another use

of such teleoperation could be for the on-sea refueling problem detailed in Chapter

4.3. Additionally, the insight into the self-motion of redundant, extensible, contin-

uum manipulators gained in Chapter 4 can be utilized especially with the examples

provided in Section 4.3.5.

Here, the teleoperation of a 9-DOF redundant extensible continuum manip-

ulator (the slave) by a 2-section, planar, rigid-link, revolute robot (the master) is

described. Despite the kinematic dissimilarity of the master and slave systems, the

proposed controller ensures that the tip of the slave system tracks the end-effector

of the master while the sub-task controller of the slave system ensures redundancy

resolution (e.g. section length and limit avoidance, singularity avoidance etc.). A

Lyapunov-type analysis proves stability while numerical simulation and experimental

results highlight the ability of the proposed controller.

5.1 Mathematical Model

5.1.1 Dynamic Model

The dynamic models for both the master and slave systems are described by

the standard Euler-Lagrangian form

Miq̈i + Ñi = τ i + JTi Fi (5.1)

where i = 1 represents the master system and i = 2 represents the slave system. The

number of joints of the master system is denoted by n1, whereas n2 represents the

number of slave system section lengths and curvatures.

The number of DOFs of master and slave systems are equal to n1 ∈ N and
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n2 ∈ N respectively, where n2 > n1, highlighting the kinematic dissimilarity between

the two systems. In (5.1), q1 (t) , q̇1 (t) , q̈1 (t) ∈ Rn1 denote the position, velocity,

and acceleration of the master system rigid-links. The terms q2 (t) , q̇2 (t) , q̈2 (t) ∈

Rn2 represent the slave system section lengths and curvatures and their first- and

second-order rates of change respectively. Mi(qi) ∈ Rni×ni represents the inertia

matrix, Ñi(qi, q̇i) ∈ Rni represents other dynamic effects (centripetal-Coriolis effects,

gravitational forces, and other dynamic frictional effects), τ i(t) ∈ Rni represents the

control input vector, Fi (t) ∈ Rni represents the task-space interaction forces, and

Ji(qi) ∈ Rn1×ni represents the Jacobian matrices for the master and slave systems1.

The inertia matrix Mi (·) is symmetric and positive-definite, and satisfies the following

inequalities [74]

m1i ‖ξ‖2 ≤ ξTMi (·) ξ ≤ m2i ‖ξ‖2 ∀ξ ∈ Rni (5.2)

where m1i, m2i ∈ R are positive constants and ‖·‖ denotes the standard Euclidean

norm.

5.1.2 Kinematic Model

The kinematic models for the master and slave systems are defined as

xi , f (qi) , (5.3)

where xi (t) ∈ Rn1 is the task-space position and f (qi) ∈ Rni represents the forward

kinematics of the manipulator. The first and second time derivatives of (5.3) are

1For the slave system, the Ñi(qi, q̇i) term represents a catchall for the Ni(qi, q̇i), G(q), B(q), and
E(q) terms of the continuum manipulator dynamics in (3.3) from Chapter 3.
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found to be

ẋi = Jiq̇i

ẍi = J̇iq̇i + Jiq̈i,
(5.4)

where the first time derivative in (5.4) represents the velocity kinematics. For the

redundant continuum slave system (i = 2), the Jacobian is similar to the one in (4.3)

from Chapter 4 with terms added or removed depending on the configuration of the

system involved in the teleoperation. Rearranging the terms in (5.4) results in

q̈1 = J−11

(
ẍ1 − J̇1q̇1

)
(5.5)

q̈2 = J+
2

(
ẍ2 − J̇2q̇2

)
+ q̈N (5.6)

where q̈N (t) ∈ Rn2 is an auxiliary vector in the null-space of J2 (·) and J+
2 (q2) ∈

Rn2×n1 is the Moore-Penrose pseudo-inverse of the Jacobian of the slave system (more

Moore-Penrose properties are found Appendix A).

Assumption 1 The kinematic and dynamic terms for both the general revolute robot

manipulator used as the master system, and the OctArm used as the slave system

(Mi (qi), Ni (qi, q̇i), Ji (qi) and J+
2 (q2)) are dependent on qi (t). Given qi (t) in both

cases is a function of sinusoidal trigonometric terms, the kinematics and dynamics

remain bounded for all possible qi (t). Thus it is assumed that if xi (t) ∈ L∞ then

qi (t) ∈ L∞.

5.1.3 The Task Space

The master system is represented by a 2-link, planar, revolute robot manipu-

lator, thus q1(t) refers to the manipulator joint angles and n1 = 2 thus also defining

the planar task-space as x = [X Z]T , where X(t) ∈ R and Z(t) ∈ R are the scalar
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Euclidean coordinates of the master system end-effector.

Since the slave system is a continuum manipulator, q2(t) ∈ Rn2 represents

the manipulator section lengths and curvatures. For the 3-section OctArm used in

the plane of motion of the master, to ensure redundancy q2(t) ∈ R6 and q2(t) =

[d1, d2, d3, κ1, κ2, κ3]
T are the extension lengths and curvatures for each of the three

sections respectively.

5.2 Task-Space Controller Development

The primary design objective is to formulate a control input that ensures that

the end-effector of the slave system tracks the end-effector of the master system while

both of them track a desired task-space trajectory. The subsequent development is

based on the assumption that the joint positions and velocities are measurable for

both master and slave systems.

The task-space tracking error for the master system denoted by e1 (t) ∈ Rn1

is defined as follows

e1 , xd − x1 (5.7)

where xd (t) ∈ Rn1 is the task-space desired trajectory2. Based on the exact model

knowledge, the following feedback linearizing controller is designed for the master

system

τ 1 ,M1u1 +N1 − JT1 F1 (5.8)

u1 , J−11

(
ẍd + k1ė1 + k2e1 − J̇1q̇1

)
(5.9)

2It is assumed that the desired trajectory and its first and second order time derivatives are
bounded signals. It should also be noted that xd (t) is the task-space desired trajectory that the
user of the master system will track.
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where u1 (t) ∈ Rn1 is an auxiliary control input and k1 ∈ R, k2 ∈ R are positive

control gains. Substituting (5.8) and (5.9) into (5.1) for i = 1 and premultiplying

with M−1
1 (·) results in the following

q̈1 = J−11

(
ẍd + k1ė1 + k2e1 − J̇1q̇1

)
. (5.10)

Substituting (5.5) into (5.10) and then premultiplying with J1 (·) results in the fol-

lowing closed-loop error system

ë1 + k1ė1 + k2e1 = 0n1×1 (5.11)

from which it can be concluded that with appropriate choice of k1 and k2, ‖e1 (t)‖

goes to zero exponentially fast.

The coordination error, denoted by e2 (t) ∈ Rn1 , is the difference between the

end-effector positions of the master and slave systems and is defined as follows

e2 , x1 − x2. (5.12)

The following feedback linearizing controller is designed for the slave system

τ 2 ,M2u2 +N2 − JT2 F2 (5.13)

u2 , J+
2

(
ẍd + k1ė1 + k2e1 + k3ė2 + k4e2 − J̇2q̇2

)
+ φN (5.14)

where u2 (t) ∈ Rn2 is an auxiliary control input, k3 ∈ R, k4 ∈ R are positive control

gains and φN (t) ∈ Rn2 is a vector in the null-space of J2 (·). Substituting (5.13) and
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(5.14) into (5.1) for i = 2 and premultiplying with M−1
2 (·) results in the following

q̈2 = J+
2

(
ẍ1 + k3ė2 + k4e2 − J̇2q̇2

)
+ φN (5.15)

where (5.11) was utilized. The following expression is obtained after substituting

(5.6) to the right-hand-side of (5.15)

J+
2

(
ẍ2 − J̇2q̇2

)
= J+

2

(
ẍ1 + k3ė2 + k4e2 − J̇2q̇2

)
+φN − q̈N . (5.16)

After premultiplying (5.16) with J2 (·) and rearranging, the following simplified error

system is obtained

ë2 + k3ė2 + k4e2 = 0n1×1 (5.17)

where (??) and the following facts were utilized

J2φN = 0n1×1 , J2q̈N = 0n1×1 . (5.18)

From (5.17), it is clear that with appropriate choice of k3 and k4, ‖e2 (t)‖ goes to zero

exponentially fast.

5.3 Null-Space Velocity Tracking

In addition to the task-space tracking and coordination objectives, secondary

or sub-task objectives may be required to successfully accomplish a particular task.

In order to ensure the sub-task objective is achieved, an auxiliary null-space signal

g (t) ∈ Rn2 , is introduced. The integration of this signal into the controller is done by
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designing a framework that places preferences on desirable slave configurations based

on the corresponding sub-task objective. This auxiliary signal is designed to operate

in the null-space of the slave continuum manipulator’s Jacobian matrix J2 (q2).

As noted in [70], the null-space velocity tracking error is defined as

ėN ,
(
In2 − J+

2 J2
)

(g − q̇2) , (5.19)

where g (t) is the auxiliary null-space term(yet to be designed). The time derivative

of (5.19) is found to be

ëN =
(
In2 − J+

2 J2
)

(ġ − q̈2)− Jφ (g − q̇2)− J+
2 J̇2ėN . (5.20)

Substituting (5.15) into (5.20) results in

ëN =
(
In2 − J+

2 J2
)
ġ − φN − Jφ (g − q̇2)− J+

2 J̇2ėN (5.21)

where the fact that φN (t) exists in the null-space of J2 (·) and Appendix A are

utilized. The auxiliary function Jφ (t) ∈ Rn2×n2 is based on the slave system Jacobian

and defined as

Jφ , J̇+
2 J2 + J+

2 J̇2J
+
2 J2. (5.22)

The auxiliary null-space vector φN (t), introduced in (5.14), is designed to be

φN ,
(
In2 − J+

2 J2
)

(ġ + knėN)− Jφ (g − q̇2) , (5.23)

where kn ∈ R is a positive constant. After substituting φN (t) into (5.21), the expres-
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sion in (5.23) simplifies into

ëN = kn
(
In2 − J+

2 J2
)
ėN − J+

2 J̇2ėN . (5.24)

The auxiliary null-space vector in (5.23) guarantees that ėN(t) → 0 as t → ∞ as

proven in [70].

5.4 Sub-Task Closed Loop Error System

The sub-task objective will be met if a Jacobian-type null-space matrix, Js(t) ∈

R1×n2 maintains full rank as shown in the condition stated in (5.32). To that end,

when Js(t) (yet to be defined) loses rank, the sub-task objective will not be met. To

facilitate this development, an auxiliary positive function ya(t) ∈ R is defined as

ya , exp (−kyβ(q2)) , (5.25)

where ky ∈ R is a positive constant and β(·) ∈ R is a sub-task dependent non-negative

function.

The time derivative of (5.25) yields

ẏa = Jsq̇2, (5.26)

where Js(t) ∈ R1×n2 is defined as

Js ,
∂ya
∂q2

. (5.27)

Adding and subtracting the terms JsJ
+
2 J2q̇2 and Js

(
In2 − J+

2 J2
)

(g − q̇2) respectively
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to the right-hand-side of (5.26) and substituting (5.4) and (5.19) into the expression

results in

ẏa = JsJ
+
2 ẋ2 + Js

(
In2 − J+

2 J2
)
g − JsėN . (5.28)

The auxiliary null-space term g(t) is designed to be

g = −ksJTs ya, (5.29)

where ks ∈ R is a positive constant. Substituting (5.29) into (5.28) and applying (??)

results in

ẏa = −ks
∥∥Js (In2 − J+

2 J2
)∥∥2 ya + JsJ

+
2 ẋ2 − JsėN . (5.30)

Theorem 4 The null-space term described in (5.29) guarantees that ya(t) is ulti-

mately bounded by the inequality

|ya(t)| ≤
√
y2a(t0) exp (−2γt) +

ε

γ
, (5.31)

provided that ∥∥Js (In2 − J+
2 J2

)∥∥2 > δ̄, (5.32)

∥∥Js (J+
2 x2 − ėN

)∥∥ ≤ δ1, (5.33)

ks >
1

δ̄δ2
, (5.34)

where ε, γ, δ̄, δ1, δ2 ∈ R are positive constants.

Proof. The proof can be found in Appendix A of [71].

Remark 4 It should be noted that the sub-task objective is met only if the sufficient
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conditions described by the inequalities in (5.32)-(5.34) are satisfied. Based on the

analysis in Section 5.2, the task-space tracking objective is always guaranteed and

the sub-task control objective is always secondary to it. When the sub-task controller

forces the end-effector of the manipulator to take a path not allowed by the task-

space controller, the condition in (5.32) will not be satisfied. Hence, (5.31) will not

hold. Thus, careful consideration is required in the design of the desired task-space

trajectory and the sub-task control objective to meet the task-space tracking and sub-

task objectives simultaneously.

5.5 Simulation Examples

A numerical simulation was performed using the MATLAB/SimulinkTMsoftware

package to highlight the performance of the controllers proposed in (5.8), (5.13), and

(5.19) as well as the sub-task controller g(t) described in (5.29). The simulation was

run using an aggressive sinusoidal task-space trajectory for the master system end-

effector whose dynamics were computed using the standard Euler-Lagrangian model

described in [76]. The link lengths for the master system were nominally chosen to

be l1,1 = l1,2 = 0.6[m]. The full dynamic model for the OctArm is developed and

described by Tatlicioglu et al. in [41] and [42] with all manipulator properties listed

and accounted for. It should be noted that Additive White Gaussian Noise with

SNR = 40 was added into the feedback loop to simulate feedback delays or noise in

sensor readings. The control gains were selected to be

k1 = 3 k2 = 10 k3 = 10

k4 = 15 ky = 1 ks = 1 kn = 100.
(5.35)

84



The desired task-space trajectory, xd(t) ∈ R2 was chosen as

xd =

 Xd

Zd

 =

 0 + 0.01sin(t)

1 + 0.01cos(t)

 . (5.36)

The sinusoidal component of the trajectory in (5.36) ensures that one possible

configuration of the slave system is a singularity at Xs = [0 1]T . This is because

k1 = k2 = k3 = 0 and the manipulator sections are then completely co-linear to

the z-axis. This trajectory was chosen to test the nominal sub-task objective for the

slave system of avoiding potential singular configurations, and, hence, decrease its

manipulability. For this sub-task, β (q2), defined as the manipulability measure and

described in [77] is chosen as

β =
√
det [J2JT2 ], (5.37)

where det(·) is the determinant of a matrix. It should be noted that the auxiliary

signal ya(t) defined in (5.25) was chosen in order to exploit the useful properties of the

exponential function. Thus, it can be seen that 0 < ya(t) ≤ 1 results in β(·) ∈ R+.

From (5.37), it can be seen that β (q2) = 0 denotes singular configurations for

the manipulator because the Jacobian J2 will no longer be of full rank. Thus the

problem is set up to ensure β(·) > 0, which is achieved by keeping ya(t) ≤ 1.

The continuum manipulator was initially set to be at rest with the section

curvatures set near 0 (almost a singular configuration) so as to maximize ya (t0) and

demonstrate that (5.31) holds for this simulation. Additionally, the desired task-

space trajectory is specifically chosen to operate across tip locations consistent with

the slave’s singular configuration.

The controller performance is illustrated in Figures 5.1, and 5.2, and 5.4.
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Figure 5.1 shows the tracking error between the desired trajectory and the non-

redundant master system as described in equation (5.7). Figure 5.2 shows the task-

space tracking error between the non-redundant master system and the continuum

slave system as described in equation (5.12). Figure 5.3 shows the auxiliary sub-

task function ya(t). Finally, Figure 5.4 shows that the ability of the controllers to

avoid singularities is validated by the fact that the manipulability measure β (q2)

hovers close to zero without actually reaching it. It can be seen that the slave system

tracking error converges to zero much slower than the master system. While the

continuum arm attempts to reach the desired tip location exponentially fast, the

singularity repulsion function used for the manipulability measure β (q2) forces the

manipulator to adjust its shape to an acceptable non-singular configuration.
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Figure 5.1: Teleoperation Simulation: Master System Tracking Error e1(t).
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Figure 5.2: Teleoperation Simulation: Slave System Tracking Error e2(t).
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Figure 5.3: Teleoperation Simulation: Auxiliary Positive Function ya(t) for the Sub-
Task Controller.

88



0 20 40 60 80 100 120
0

1

2

3

4

5

6

7
x 10

−6

Time [sec]

Figure 5.4: Manipulability Measure for the Continuum Arm Slave System β(t). Note:
Although the Measure Approaches Zero, it Never Actually Attains It.
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5.6 Experimental Validation

The controller described in (5.14) was implemented on the OctArm extensi-

ble continuum manipulator. The objective of the implementation was to verify the

performance of the teleoperation controller. Given that the available dynamic model

developed in [41] and [42] is planar, the robot was placed on a horizontal surface.

Because of this orientation, the gravitational terms in the model were unnecessary.

Similar to the simulation, the control algorithm was developed on a Dell R©

PC running on an Intel R© i5 processor under the Windows 7 R© operating system.

Additionally, Quanser R© Q8 and Q2 data acquisition boards were used along with the

QUARC R© interface to connect to the OctArm hardware. The control signal from

the algorithm was converted into voltages and sent to the 9 pressure regulators (one

for each McKibben actuator on the OctArm) which give each section its length and

curvature. The length of each actuator was measured using a string encoder from

which the robot section lengths and curvatures were inferred using the conversions

developed in [30] for the feedback.

As in Section 5.2, the performance of the proposed controller was measured

against a task-space position which could lead to a singularity solution. Thus, the

nominal desired manipulator tip location was chosen to be:

xdexp =

 Xd

Zd

 =

 0.2 [m]

1.3 [m]

 (5.38)

The teleoperation experimental results for the tip location in (5.38) can be be seen

in Figures 5.5, 5.6, 5.7, and 5.8. Figures 5.5 and 5.6 show the position tracking

error of the master and slave systems respectively and Figure 5.7 shows the auxiliary

sub-task function ya(t). Finally, Figure 5.8 shows that the ability of the controllers
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to avoid singularities is validated by the fact that the manipulability measure β (q2)

hovers close to zero without actually reaching it. It can be seen that the slave system

tracking error converges to zero much slower than the master system. While the

continuum arm attempts to reach the desired tip location exponentially fast, the

singularity repulsion function used for the manipulability measure β (q2) forces the

manipulator to adjust its shape to an acceptable non-singular configuration. The

slave system control voltages are shown in Figures 5.9, 5.10, and 5.11 and represent

the voltage signals sent to each actuator. It should be noted that the master system

aspect of the experiment was simulated due to hardware constraints and limitations

with the data acquisition inputs and outputs.
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Figure 5.5: Teleoperation Experiment: Master System Tracking Error e1(t).
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Figure 5.6: Teleoperation Experiment: Slave System Tracking Error e2(t).
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Figure 5.7: Teleoperation Experiment: Slave System Auxiliary Positive Function ya(t)
for the Sub-Task Controller.

93



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

−6

Time (t) [s]

β
 (

t)

Figure 5.8: Teleoperation Experiment: Manipulability Measure for the Continuum
Arm Slave System β(t).
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Figure 5.9: Teleoperation Experiment: Slave System Base Section Control Voltages.
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Figure 5.10: Teleoperation Experiment: Slave System Mid Section Control Voltages.
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Figure 5.11: Teleoperation Experiment: Slave System Tip Section Control Voltages.
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Chapter 6

Conclusion

This dissertation presents new understanding of extensible, continuous back-

bone (“continuum”) robots utilizing a holistic approach. An kinematic model based

on the manipulator measured variables was presented. Two control algorithms were

proposed, one in the configuration-space and the other in the task-space, along with

the first analysis of the self-motion of such manipulators.

In Chapter 2, a new set of intuitive, generalized, spatial forward kinematics

for an extensible continuum manipulator was described. Previous kinematics devel-

opments utilized a rigid-link equivalent for the kinematics which were then related to

the continuum manipulator variables. The new kinematics development were matched

directly to the measurable variables of the 9-DOF OctArm manipulator, resulting in

computationally simpler and more intuitive for determining the manipulator shape

and tip position.

In Chapter 3, a new model-based nonlinear (sliding-mode) controller for con-

tinuum robots was presented. The model was based on a formulation for continuum

robot dynamics recently established in the literature. By exploiting the structure

inherent in these dynamics, the controller was shown to guarantee to convergence
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despite inherent errors due to uncertainty in model parameters. The results are ap-

plicable to continuum robots which extend as well as bend. The designed controller

was compared to a standard inverse-dynamics PD controller via simulations on a

three-section extensible continuum robot operating in a plane. Experiments were

also conducted on the 9-DOF OctArm whose results validated the improved effec-

tiveness, accuracy, and speed-of-convergence of the proposed controller on a physical

system.

In Chapter 4, fundamental new insight into and characterization of the self-

motion properties of continuum robots showed that there was a single self-motion

manifold underlying the available self-motion. Resolved-motion rate inverse kinemat-

ics based on the manipulator kinematic development of Chapter 2 were also utilized.

This allowed for convenient analysis of the manipulator null-space in order to explore

the self-motion characteristics of continuum manipulators. Three base self-motion

cases were identified, which generated continuum manipulator behavior in the null-

space. The practical implications of the findings along with the applications in each

case and examples in nature were also discussed and these results were supported

empirically on the 9-DOF OctArm.

In Chapter 5, the regulation of the continuum robot tip position (task-space

control) teleoperated by a rigid-link, non-redundant, and kinematically dissimilar

master robot was discussed. Due to the kinematic dissimilarities between the two

systems, feedback linearizing task-space controllers were proposed with additional

sub-task terms for the slave system to allow for varied objectives in its null-space and

independent of the primary master system task-space tracking objective. Numerical

simulations and experimental results on the 9-DOF OctArm highlighted the effective-

ness of the controllers along with the singularity avoidance sub-task objective for the

slave system.
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Appendix A Pseudoinverse Properties

For the development of the task-space controller, the pseudoinverse, J+(ψ), of

the Jacobian J(ψ) is defined as

J+ , JT
(
JJT

)−1
, (1)

resulting in the property

JJ+ = Im (2)

where Im ∈ Rm×m is the standard identity matrix. As described in [78], the pseu-

doinverse defined in (1) satisfies the following Moore-Penrose properties

JJ+J = J

J+JJ+ = J+

(J+J)
T

= J+J

(JJ+)
T

= JJ+.

(3)

In addition to these properties listed above, the matrix (In − J+J) also satisfies

the following useful properties

(In − J+J) (In − J+J) = In − J+J

(In − J+J)
T

= In − J+J

J (In − J+J) = 0n×m

(In − J+J) J+ = 0n×m.

(4)
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Appendix B The Velocity Jacobian

The elements of (4.3) are:

∂X
∂s1

= sinθ1cosφ1 − k1
k2
sinθ1cosφ1cosφ2

+k1
k2
sinθ1cosθ2cosφ1cosφ2 + k1

k2
cosθ1sinθ2cosφ1,

(5)

∂X
∂k1

= − 1
k21
cosφ1 + s1

k1
sinθ1cosφ1

+ 1
k21
cosθ1cosφ1 − s1

k2
sinθ1cosφ1cosφ2

+ s1
k2
sinθ1cosθ2cosφ1cosφ2 + s1

k2
cosθ1sinθ2cosφ1,

(6)

∂X
∂φ1

= − 1
k1
sinφ1 + 1

k1
cosθ1sinφ1

+ 1
k2
cosθ1sinφ1cosφ2 + 1

k2
cosθ1cosθ2sinφ1cosφ2

− 1
k2
sinθ1sinθ2 sinφ1 − 1

k2
cosφ1sinφ2+

(7)

∂X
∂s2

= cosθ1sinθ2cosφ1cosφ2 + sinθ1cosθ2cosφ1

−sinθ2sinφ1sinφ2,
(8)

∂X
∂k2

= − 1
k22
cosθ1cosφ1cosφ2

+ 1
k2
cosθ1sinθ2cosφ1cosφ2

+ 1
k22
cosθ1cosθ2cosφ1cosφ2 + s2

k2
sinθ1cosθ2cosφ1

− 1
k22

sin θ1sinθ2cosφ1 + 1
k22
sinφ1sinφ2

− s2
k2
sinθ2sinφ1sinφ2 − 1

k22
cosθ2sinφ1sinφ2,

(9)

∂X
∂φ2

= − 1
k2
cosθ1cosφ1cosφ2

+ 1
k2
cosθ1cosθ2cosφ1sinφ2 − 1

k2
sinφ1cosφ2

+ 1
k2
cosθ2sinφ1cosφ2,

(10)
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∂Y
∂s1

= sinθ1sinφ1 − k1
k2
sinθ1sinφ1cosφ2

+k1
k2
sinθ1cosθ2sinφ1cosφ2

+k1
k2
cosθ1sinθ2sinφ1,

(11)

∂Y
∂k1

= − 1
k21
sinφ1 + s1

k1
sinθ1sinφ1

+ 1
k21
cosθ1sinφ1 − s1

k2
sinθ1sinφ1cosφ2

+ s1
k2
sinθ1cosθ2sinφ1cosφ2 + s1

k1
cosθ1sinθ2sinφ1,

(12)

∂Y
∂φ1

= 1
k1
cosφ1 − 1

k1
cosθ1cosφ1

+ 1
k2
cosθ1cosφ1cosφ2 − 1

k2
cosθ1cosθ2cosφ1cosφ2

+ 1
k2
sinθ1sinθ2cosφ1 − 1

k2
sinφ1sinφ2

+ 1
k2
cosθ2sinφ1sinφ2,

(13)

∂Y
∂s2

= cosθ1sinθ2sinφ1cosφ2 + sinθ1cosθ2sinφ1

+sinθ2cosφ1sinφ2,
(14)

∂Y
∂k2

= 1
k22
cosθ1sinφ1cosφ2

+ s2
k2
cosθ1sinθ2sinφ1cosφ2

+ 1
k22
cosθ1cosθ2sinφ1cosφ2 + s2

k2
sinθ1cosθ2sinφ1

− 1
k22
sinθ1sinθ2sinφ1

− 1
k22
cosφ1cosφ2 + s2

k2
sinθ2cosφ1sinφ2

+ 1
k22
cosθ2cosφ1sinφ2,

(15)

∂Y
∂φ2

= 1
k2
cosθ1sinφ1 sinφ2

+ 1
k2
cosθ1cosθ2sinφ1sinφ2 + 1

k2
cosφ1cosφ2

− 1
k2
cosθ2cosφ1cosφ2,

(16)
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∂Z
∂s1

= cosθ1 + k1
k2
cosθ1cosθ2cosφ2

−k1
k2
cosθ1cosφ2 − k1

k2
sinθ1sinθ2,

(17)

∂Z
∂k1

= s1
k1
cosθ1 − 1

k21
sinθ1 + s1

k2
cosθ1cosθ2cosφ2

− s1
k2
cosθ1cosφ2 − s1

k2
sinθ1sinθ2,

(18)

∂Z

∂φ1

= 0, (19)

∂Z

∂s2
= −sinθ1sinθ2cosφ2 + cosθ1cosθ2, (20)

∂Z
∂k2

= − s2
k2
sinθ1sinθ2cosφ2 − 1

k22
sinθ1cosθ2cosφ2

+ 1
k22
sinθ1cosφ2 + s2

k2
cosθ1cosθ2 − 1

k22
cosθ1sinθ2,

(21)

∂Z

∂φ2

= − 1

k2
sinθ1cosθ2sinφ2 +

1

k2
sinθ1sinφ2. (22)
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Appendix C The Single Section 3D Jacobian

The tip coordinates of a single section extensible continuum manipulator are

given in (2.15), with the resulting Jacobian having the form

J1−section =



∂X
∂s1

∂Y
∂s1

∂Z
∂s1

∂X
∂k1

∂Y
∂k1

∂Z
∂k1

∂X
∂φ1

∂Y
∂φ1

∂Z
∂φ1


. (23)

The Jacobian J1−section(t) can be rewritten as J1−section =
[
Js1 Jk1 Jφ1

]
where

Js1 =



∂X
∂s1

∂Y
∂s1

∂Z
∂s1


Jk1 =



∂X
∂k1

∂Y
∂k1

∂Z
∂k1


Jφ1 =



∂X
∂φ1

∂Y
∂φ1

∂Z
∂φ1


, (24)

and
∂X
∂s1

= sinθ1cosφ1

∂Y
∂s1

= sinθ1sinφ1

∂Z
∂s1

= cosθ1,

(25)

∂X
∂k1

= cosφ1 (cosθ1 + s1k1sinθ1)
1
k21

∂Y
∂k1

= sinφ1 (cosθ1 + s1k1sinθ1)
1
k21

∂Z
∂k1

= (s1k1cosθ1 − sinθ1) 1
k21
,

(26)
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∂X
∂φ1

= − 1
k1

(1− cosθ1) sinφ1

∂Y
∂φ1

= 1
k1

(1− cosθ1) cosφ1

∂Z
∂φ1

= 0.

(27)

It can further be seen that the dot products Jk1 · Jφ1 = 0 and Js1 · Jφ1 =

0 showing that Jk1 is orthogonal to Jφ1 and Js1 is orthogonal to Jφ1 . Given this

orthogonality in both cases with the φ1(t) term (the one required to convert 2D

coordinates to 3D), it can be seen that the self-motion results found in the 2D cases

are straightforward to extend to the 3D.
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Appendix D 3-Section Continuum Robot Planar

Dynamic Model Terms

The standard Euler-LaGrangian dynamic model for a serially-linked 3-section

extensible continuum robot manipulator operating in a plane, developed in [41] and

[42], is given by the equation

τ = M(q)q̈ + V (q, q̇) q̇ +G(q) +B(q) + E(q), (28)

where M(q) ∈ R6×6 is the inertia matrix, V (q, q̇) ∈ R6×6 is the Centripetal-Coriolis

Matrix, G(q), B(q), and E(q) ∈ R6 refers to the vectors relating the effects due to

gravitational, potential energy due to bending, and potential energy due to extension.

The elements of these matrices are detailed below:

D.1 Inertia Matrix Terms

The entries of the inertia matrix are defined as follows1

Kṡ1ṡ1 =
m

sκ21
r20 (29)

Kṡ1ṡ2 =
m

s
{r8 + r9 − r23 − r24} (30)

Kṡ1ṡ3 =
m

s
{r16 + r10 − r25} (31)

1The calculation of the these terms was done by MAPLE 9.5.
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Kṡ1κ̇1 =
m

s

{
− 1

κ31
r1 −

s1
κ2s3

r23 −
s1

κ2 (s2 + s3)
r24 −

2

κ31
r20 (32)

− s1
κ3s3

r25 − s1r4 +
s1
κ1

[
s3 + s2
κ1

− s2
κ2
− s3
κ3

]
sin (s1κ1)

}

Kṡ1κ̇2 =
m

s

{
− 2

κ2
r8 −

2

κ2
r9 −

s2
κ3s3

r25 − s2r4 +
1

κ2
r24

+
s3 − s2
κ2s3

r23 −
1

κ1
s2s3

(
1

κ3
− 1

κ2

)
sin (s1κ1)

}
(33)

Kṡ1κ̇3 =
m

s

{
− 2

κ3
r16 −

2

κ3
r10 +

1

κ3
r25 − s3r4

}
(34)

Kṡ2ṡ2 =
m

sκ22
r21 (35)

Kṡ2ṡ3 =
m

s
{r26 − r11} (36)

Kṡ2κ̇1 = m
s

{
1
κ1
r24 + s1

κ32
r5 + s1

κ3s3
r26 − s1

κ2
r13

}
−m

s

{
κ1κ2

(
s1(s1+s2+s3)

κ1
+ 1

κ21κ2
− s1s3

κ3

)
r8 − 1

κ1
r9

}
+m

s

{
s1
κ23
r6 + s1

κ2

(
s1
κ1

+ s2
κ2

)
sin (s1κ2)

}
−m

s

{
s1(s1+s2)
κ2κ1

sin ((s1 + s2)κ2)
}

(37)

Kṡ2κ̇2 =
m

s

{
s2
κ3s3

r26 +
s2
κ23
r6 −

1

κ32
r2 −

2

κ32
r21 + s2s3κ1κ2

(
1

κ3
− 1

κ2

)
r8

}
(38)

Kṡ2κ̇3 =
m

dκ3

{
s3
κ3
r6 − r26 + 2r11

}
(39)
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Kṡ3ṡ3 =
m

sκ23
r22 (40)

Kṡ3κ̇1 = m
s

{
s1
κ33
r7 − 1

κ1
r10 − 1

κ1
r16 + 1

κ1
r25

}
+m

s

{
s1

(
1
κ1
− 1

κ3

) [
r14 − s3

κ3
sin ((s1 + s2)κ3)

]} (41)

Kṡ3κ̇2 = m
s

{
s2
κ33
r7 − 1

κ2
r26 + 1

κ2
r11

}
+m

s

{
s2

(
1
κ2
− 1

κ3

) [
r14 − s3

κ3
sin ((s1 + s2)κ3)

]} (42)

Kṡ3κ̇3 =
m

sκ33
{−r3 − 2r22} (43)

Kκ̇1κ̇1 = m
s

{
s1

κ1κ2s3
r23 + s1

κ1κ2(s2+s3)
r24 + s1

κ1κ3s3
r25 + s1

κ1
r4

}
+m

s

{
s21κ1

(
1
κ2
− 1

κ1

)
r8 + s21κ1

(
1
κ3
− 1

κ1

)
r16 + 1

κ41
r1 + 1

κ41
r20

}
+m

s

{
s1
κ21

(
s2
κ2

+ s3
κ3
− s2+s3

κ1

)
sin (s1κ1)

}
+m

s

{
s21

[
s2
κ22
− s2

κ1κ2
− s3

κ1κ3
+ s3

κ23
+ s3+s2

2κ21
+ s1

6κ21

]}
(44)

Kκ̇1κ̇2 = m
s

{[
s2+s3
κ21

+ 2s1
κ2

(
1
κ2
− 1

κ1

)]
r13 + s2

κ1
r4 + s2

κ1κ3s3
r25

}
+m

s

{
2s2

κ1κ2s3
r23 + (s2 + s3) r17 + s1s2κ1

(
2
κ3
− 1

κ2
− 1

κ1

)
r16 + 2

κ1κ2
r9

}
+m

s

{
κ1

[
− s1s2

κ2
+ s1(s3+s2)

κ1
− s1s3

κ3
+ 2

κ21κ2

]
r8 − s1

κ2κ3s3
r26 − s1

κ2κ23
r6

}
+m

s

{
s1
κ42

cos (s2κ2)− 2s1s2
κ22

(
1
κ2
− 1

κ1

)
sin ((s1 + s2)κ2)

}
−m

s

{
s2s3
κ21

(
1
κ2
− 1

κ3

)
sin (s1κ1)− s1

κ42
+

s1s22
2κ22

}
−m

s

{
s1s2s3

(
1

κ1κ3
+ 1

κ2κ3
− 1

κ1κ2
− 2

κ23

)}
(45)

Kκ̇1κ̇3 =
m

s

{
2

κ1κ3
r10 + s3r18 − s3r15 +

2

κ1κ3
r16 −

s1
κ43
r7 (46)

+ s1s3

(
1

κ1
− 1

κ3

)
r19 +

2s1
κ3

(
1

κ3
− 1

κ1

)
r14 +

s1s
2
3

2κ23

}
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Kκ̇2κ̇2 =
m

s

{
− s2
κ2κ3s3

r26 −
s2
κ2κ23

r6 − s22κ1
(

1

κ2
− 1

κ3

)
r16 +

1

κ42
r21 +

1

κ42
r2 (47)

+s2s3κ1

(
1

κ2
− 1

κ3

)
r8 +

s22 (s2 + 3s3)

6κ22
+
s3s

2
2

κ3

(
1

κ3
− 1

κ2

)}

Kκ̇2κ̇3 =
m

s

{
− s2
κ43
r7 −

2s2
κ3

(
1

κ2
− 1

κ3

)
r14 −

s3
κ2κ23

r6 (48)

+
1

κ2κ3
r26 −

2

κ2κ3
r11 − s2s3

(
1

κ3
− 1

κ2

)
r19 +

s2s
2
3

2κ23

}

Kκ̇3κ̇3 =
m

sκ23

{
1

κ23
r3 +

s33
6

+
1

κ23
r22

}
. (49)

The time-varying functions ri (t) , i = 1, ..., 26, in (29)-(49) are introduced to simplify

the calculations. They are defined as follows

r1 = s1 cos (s1κ1)−
1

κ1
sin (s1κ1) (50)

r2 = s2 cos (s2κ2)−
1

κ2
sin (s2κ2) (51)

r3 = s3 cos (s3κ3)−
1

κ3
sin (s3κ3) (52)

r4 =
1

κ1κ23
[cos (sκ3)− cos (s1κ1 − sκ3)] (53)

r5 = 1− cos (s2κ2) (54)

110



r6 =
1

κ2
[cos ((s1 + s2)κ2 − sκ3)− cos (s1κ2 − sκ3)] (55)

r7 = 1− cos (s3κ3) (56)

r8 =
1

κ1κ22
[sin (s1κ2)− sin ((s1 + s2)κ2)] (57)

r9 =
1

κ1κ22
[sin (s1 (κ1 − κ2))− sin (s1κ1 − (s1 + s2)κ2)] (58)

r10 =
1

κ1κ23
[sin (s1κ1 − (s1 + s2)κ3)− sin (s1κ1 − sκ3)] (59)

r11 =
1

κ2κ23
[sin (s1κ2 − (s1 + s2)κ3)− sin (s1κ2 − sκ3)

+ sin ((s1 + s2)κ2 − sκ3)− sin (s1 + s2) (κ2 − κ3)] (60)

r12 =
1

κ23
[sin ((s1 + s2)κ3)− sin (sκ3)] (61)

r13 =
1

κ22
[cos (s1κ2)− cos ((s1 + s2)κ2)] (62)

r14 =
1

κ23
[cos ((s1 + s2)κ3)− cos (sκ3)] (63)

r15 =
1

κ21κ
2
3

[cos (s1κ1 − (s1 + s2)κ3) + cos (s1κ1 − sκ3)] (64)
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r16 =
1

κ1κ23
[sin ((s1 + s2)κ3)− sin (sκ3)] (65)

r17 =
1

κ21κ
2
2

[cos ((s1 + s2)κ2 − s1κ1)− cos (s1 (κ2 − κ1))] (66)

r18 =
1

κ21κ
2
3

[cos (sκ3) + cos ((s1 + s2)κ3)] (67)

r19 =
1

κ23
[sin (sκ3) + sin ((s1 + s2)κ3)] (68)

r20 = − (s2 + s3) cos (s1κ1) + s1 + s2 + s3 −
1

κ1
sin (s1κ1) (69)

r21 = −s3 cos (s2κ2) + s2 + s3 −
1

κ2
sin (s2κ2) (70)

r22 = s3 −
1

κ3
sin (s3κ3) (71)

r23 =
s3
κ1κ2

[cos ((s1 + s2)κ2)− cos (s1κ1 − (s1 + s2)κ2)] (72)

r24 =
s2 + s3
κ1κ2

[cos (s1 (κ1 − κ2))− cos (s1κ2)] (73)

r25 =
s3
κ1κ3

[cos (s1κ1 − (s1 + s2)κ3)− cos ((s1 + s2)κ3)] (74)
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r26 =
s3
κ2κ3

[cos (s1κ2 − (s1 + s2)κ3)− cos (s1 + s2) (κ2 − κ3)] . (75)

D.2 Centripetal-Coriolis Matrix Terms

The elements of the centripetal-coriolis matrix V (q, q̇) are defined as follows

V11 ,
∂Kṡ1ṡ1

∂s1
ṡ1 +

∂Kṡ1ṡ1

∂s2
ṡ2 +

∂Kṡ1ṡ1

∂s3
ṡ3 +

∂Kṡ1ṡ1

∂κ1
κ̇1 (76)

V12 ,
∂Kṡ1ṡ2

∂s2
ṡ2 −

∂Kṡ2ṡ2

∂s1
ṡ2 +

∂Kṡ1ṡ1

∂s2
ṡ1 +

∂Kṡ1ṡ2

∂s3
ṡ3 (77)

+
∂Kṡ1ṡ2

∂κ1
κ̇1 +

∂Kṡ1ṡ2

∂κ2
κ̇2 −

∂Kṡ2κ̇1

∂s1
κ̇1 −

∂Kṡ2κ̇2

∂s1
κ̇2

V13 ,
∂Kṡ1ṡ3

∂s3
ṡ3 −

∂Kṡ3ṡ3

∂s1
ṡ3 +

∂Kṡ1ṡ1

∂s3
ṡ1 +

∂Kṡ1ṡ3

∂s2
ṡ2 (78)

−∂Kṡ2ṡ3

∂s1
ṡ2 +

∂Kṡ1ṡ3

∂κ1
κ̇1 +

∂Kṡ1ṡ3

∂κ3
κ̇3 −

∂Kṡ3κ̇1

∂s1
κ̇1 −

∂Kṡ3κ̇2

∂s1
κ̇2

V14 ,
∂Kṡ1κ̇1

∂κ1
κ̇1 −

∂Kκ̇1κ̇1

∂s1
κ̇1 +

∂Kṡ1ṡ1

∂κ1
ṡ1 +

∂Kṡ1κ̇1

∂s2
ṡ2 (79)

+
∂Kṡ1κ̇1

∂s3
ṡ3 +

∂Kṡ1κ̇1

∂κ2
κ̇2 +

∂Kṡ1κ̇1

∂κ3
κ̇3 −

∂Kκ̇1κ̇3

∂s1
κ̇3

V15 ,
∂Kṡ1κ̇2

∂κ2
κ̇2 −

∂Kκ̇2κ̇2

∂s1
κ̇2 +

∂Kṡ1κ̇2

∂s2
ṡ2 +

∂Kṡ1κ̇2

∂s3
ṡ3 (80)

+
∂Kṡ1κ̇2

∂κ1
κ̇1 +

∂Kṡ1κ̇2

∂κ3
κ̇3 −

∂Kκ̇1κ̇2

∂s1
κ̇1 −

∂Kκ̇2κ̇3

∂s1
κ̇3
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V16 ,
∂Kṡ1κ̇3

∂κ3
κ̇3−

∂Kκ̇3κ̇3

∂s1
κ̇3+

∂Kṡ1κ̇3

∂s2
ṡ2+

∂Kṡ1κ̇3

∂s3
ṡ3+

∂Kṡ1κ̇3

∂κ1
κ̇1−

∂Kṡ2κ̇3

∂s1
ṡ2−

∂Kṡ3κ̇3

∂s1
ṡ3

(81)

V21 ,
∂Kṡ1ṡ2

∂s1
ṡ1 −

∂Kṡ1ṡ1

∂s2
ṡ1 +

∂Kṡ2ṡ2

∂s1
ṡ2 +

∂Kṡ2κ̇1

∂s1
κ̇1 +

∂Kṡ2κ̇2

∂s1
κ̇2 (82)

V22 ,
∂Kṡ2ṡ2

∂s1
ṡ1 +

∂Kṡ2ṡ2

∂s2
ṡ2 +

∂Kṡ2ṡ2

∂s3
ṡ3 +

∂Kṡ2ṡ2

∂κ2
κ̇2 (83)

V23 ,
∂Kṡ2ṡ3

∂s3
ṡ3 −

∂Kṡ3ṡ3

∂s2
ṡ3 +

∂Kṡ2ṡ2

∂s3
ṡ2 +

∂Kṡ1ṡ2

∂s3
ṡ1 +

∂Kṡ2ṡ3

∂s1
ṡ1 −

∂Kṡ1ṡ3

∂s2
ṡ1(84)

+
∂Kṡ2ṡ3

∂κ2
κ̇2 +

∂Kṡ2ṡ3

∂κ3
κ̇3 −

∂Kṡ3κ̇1

∂s2
κ̇1 −

∂Kṡ3κ̇2

∂s2
κ̇2 −

∂Kṡ3κ̇3

∂s2
κ̇3

V24 ,
∂Kṡ2κ̇1

∂κ1
κ̇1 −

∂Kκ̇1κ̇1

∂s2
κ̇1 +

∂Kṡ2κ̇1

∂s3
ṡ3 +

∂Kṡ2κ̇1

∂κ2
κ̇2 (85)

+
∂Kṡ2κ̇1

∂κ3
κ̇3 +

∂Kṡ1ṡ2

∂κ1
ṡ1 −

∂Kṡ1κ̇1

∂s2
ṡ1 −

∂Kκ̇1κ̇2

∂s2
κ̇2

V25 ,
∂Kṡ2κ̇2

∂κ2
κ̇2−

∂Kκ̇2κ̇2

∂s2
κ̇2+

∂Kṡ2ṡ2

∂κ2
ṡ2+

∂Kṡ2κ̇2

∂s3
ṡ3+

∂Kṡ2κ̇2

∂κ3
κ̇3+

∂Kṡ1ṡ2

∂κ2
ṡ1−

∂Kṡ1κ̇2

∂s2
ṡ1

(86)

V26 ,
∂Kṡ2κ̇3

∂κ3
κ̇3 −

∂Kκ̇3κ̇3

∂s2
κ̇3 +

∂Kṡ2κ̇3

∂s1
ṡ1 +

∂Kṡ2κ̇3

∂s3
ṡ3 (87)

+
∂Kṡ2κ̇3

∂κ2
κ̇2 −

∂Kṡ1κ̇3

∂s2
ṡ1 −

∂Kκ̇1κ̇3

∂s2
κ̇1 −

∂Kκ̇2κ̇3

∂s2
κ̇2
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V31 ,
∂Kṡ1ṡ3

∂s1
ṡ1 −

∂Kṡ1ṡ1

∂s3
ṡ1 +

∂Kṡ3ṡ3

∂s1
ṡ3 +

∂Kṡ2ṡ3

∂s1
ṡ2 +

∂Kṡ3κ̇1

∂s1
κ̇1 +

∂Kṡ3κ̇2

∂s1
κ̇2 (88)

V32 ,
∂Kṡ2ṡ3

∂s2
ṡ2 −

∂Kṡ2ṡ2

∂s3
ṡ2 +

∂Kṡ3ṡ3

∂s2
ṡ3 +

∂Kṡ1ṡ3

∂s2
ṡ1 (89)

−∂Kṡ1ṡ2

∂s3
ṡ1 +

∂Kṡ3κ̇1

∂s2
κ̇1 +

∂Kṡ3κ̇2

∂s2
κ̇2 +

∂Kṡ3κ̇3

∂s2
κ̇3

V33 ,
∂Kṡ3ṡ3

∂s1
ṡ1 +

∂Kṡ3ṡ3

∂s2
ṡ2 +

∂Kṡ3ṡ3

∂s3
ṡ3 +

∂Kṡ3ṡ3

∂κ3
κ̇3 (90)

V34 ,
∂Kṡ3κ̇1

∂κ1
κ̇1−

∂Kκ̇1κ̇1

∂s3
κ̇1+

∂Kṡ3κ̇1

∂κ3
κ̇3+

∂Kṡ1ṡ3

∂κ1
ṡ1−

∂Kṡ1κ̇1

∂s3
ṡ1−

∂Kṡ2κ̇1

∂s3
ṡ2−

∂Kκ̇1κ̇2

∂s3
κ̇2

(91)

V35 ,
∂Kṡ3κ̇2

∂κ2
κ̇2−

∂Kκ̇2κ̇2

∂s3
κ̇2+

∂Kṡ3κ̇2

∂κ3
κ̇3−

∂Kṡ1κ̇2

∂s3
ṡ1+

∂Kṡ2ṡ3

∂κ2
ṡ2−

∂Kṡ2κ̇2

∂s3
ṡ2−

∂Kκ̇2κ̇3

∂s3
κ̇3

(92)

V36 ,
∂Kṡ3κ̇3

∂κ3
κ̇3 −

∂Kκ̇3κ̇3

∂s3
κ̇3 +

∂Kṡ3ṡ3

∂κ3
ṡ3 +

∂Kṡ3κ̇3

∂s1
ṡ1 (93)

+
∂Kṡ1ṡ3

∂κ3
ṡ1 −

∂Kṡ1κ̇3

∂s3
ṡ1 +

∂Kṡ2ṡ3

∂κ3
ṡ2 −

∂Kṡ2κ̇3

∂s3
ṡ2 −

∂Kκ̇1κ̇3

∂s3
κ̇1

V41 ,
∂Kṡ1κ̇1

∂s1
ṡ1 −

∂Kṡ1ṡ1

∂κ1
ṡ1 +

∂Kκ̇1κ̇1

∂s1
κ̇1 +

∂Kκ̇1κ̇3

∂s1
κ̇3 (94)
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V42 ,
∂Kṡ2κ̇1

∂s2
ṡ2 +

∂Kκ̇1κ̇1

∂s2
κ̇1 −

∂Kṡ1ṡ2

∂κ1
ṡ1 +

∂Kṡ1κ̇1

∂s2
ṡ1 +

∂Kṡ2κ̇1

∂s1
ṡ1 +

∂Kκ̇1κ̇2

∂s2
κ̇2 (95)

V43 ,
∂Kṡ3κ̇1

∂s3
ṡ3 +

∂Kκ̇1κ̇1

∂s3
κ̇1 −

∂Kṡ1ṡ3

∂κ1
ṡ1 +

∂Kṡ1κ̇1

∂s3
ṡ1 (96)

+
∂Kṡ2κ̇1

∂s3
ṡ2 +

∂Kṡ3κ̇1

∂s1
ṡ1 +

∂Kṡ3κ̇1

∂s2
ṡ2 +

∂Kκ̇1κ̇2

∂s3
κ̇2

V44 ,
∂Kκ̇1κ̇1

∂s1
ṡ1 +

∂Kκ̇1κ̇1

∂s2
ṡ2 +

∂Kκ̇1κ̇1

∂s3
ṡ3 +

∂Kκ̇1κ̇1

∂κ1
κ̇1 +

∂Kκ̇1κ̇1

∂κ2
κ̇2 +

∂Kκ̇1κ̇1

∂κ3
κ̇3 (97)

V45 ,
∂Kκ̇1κ̇2

∂κ2
κ̇2+

∂Kκ̇1κ̇1

∂κ2
κ̇1+

∂Kκ̇1κ̇2

∂κ3
κ̇3+

∂Kκ̇1κ̇2

∂s1
ṡ1+

∂Kṡ1κ̇1

∂κ2
ṡ1−

∂Kṡ1κ̇2

∂κ1
ṡ1+

∂Kṡ2κ̇1

∂κ2
ṡ2

(98)

V46 ,
∂Kκ̇1κ̇3

∂κ3
κ̇3 +

∂Kκ̇1κ̇1

∂κ3
κ̇1 +

∂Kκ̇1κ̇3

∂s2
ṡ2 +

∂Kκ̇1κ̇3

∂s3
ṡ3 (99)

+
∂Kṡ1κ̇1

∂κ3
ḋ1 −

∂Kṡ1κ̇3

∂κ1
ṡ1 +

∂Kṡ2κ̇1

∂κ3
ṡ2 +

∂Kṡ3κ̇1

∂κ3
ṡ3

V51 ,
∂Kṡ1κ̇2

∂s1
ṡ1 +

∂Kκ̇2κ̇2

∂s1
κ̇2 +

∂Kκ̇1κ̇2

∂s1
κ̇1 +

∂Kκ̇2κ̇3

∂s1
κ̇3 (100)

V52 ,
∂Kṡ2κ̇2

∂s2
ṡ2 −

∂Kṡ2ṡ2

∂κ2
ṡ2 +

∂Kκ̇2κ̇2

∂s2
κ̇2 −

∂Kṡ1ṡ2

∂κ2
ṡ1 +

∂Kṡ1κ̇2

∂s2
ṡ1 +

∂Kṡ2κ̇2

∂s1
ṡ1 (101)
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V53 ,
∂Kṡ3κ̇2

∂s3
ṡ3 +

∂Kκ̇2κ̇2

∂s3
κ̇2 +

∂Kṡ1κ̇2

∂s3
ṡ1 −

∂Kṡ2ṡ3

∂κ2
ṡ2 (102)

+
∂Kṡ2κ̇2

∂s3
ṡ2 +

∂Kṡ3κ̇2

∂s1
ṡ1 +

∂Kṡ3κ̇2

∂s2
ṡ2 +

∂Kκ̇2κ̇3

∂s3
κ̇3

V54 ,
∂Kκ̇1κ̇2

∂κ1
κ̇1−

∂Kκ̇1κ̇1

∂κ2
κ̇1−

∂Kṡ1κ̇1

∂κ2
ṡ1+

∂Kṡ1κ̇2

∂κ1
ṡ1−

∂Kṡ2κ̇1

∂κ2
ṡ2+

∂Kκ̇1κ̇2

∂s2
ṡ2+

∂Kκ̇1κ̇2

∂s3
ṡ3

(103)

V55 ,
∂Kκ̇2κ̇2

∂s1
ṡ1 +

∂Kκ̇2κ̇2

∂s2
ṡ2 +

∂Kκ̇2κ̇2

∂s3
ṡ3 +

∂Kκ̇2κ̇2

∂κ2
κ̇2 +

∂Kκ̇2κ̇2

∂κ3
κ̇3 (104)

V56 ,
∂Kκ̇2κ̇3

∂κ3
κ̇3 +

∂Kκ̇2κ̇2

∂κ3
κ̇2 +

∂Kκ̇1κ̇2

∂κ3
κ̇1 +

∂Kκ̇2κ̇3

∂s2
ṡ2 (105)

+
∂Kṡ1κ̇2

∂κ3
ḋ1 +

∂Kṡ2κ̇2

∂κ3
ṡ2 −

∂Kṡ2κ̇3

∂κ2
ṡ2 +

∂Kṡ3κ̇2

∂κ3
ṡ3

V61 ,
∂Kṡ1κ̇3

∂s1
ṡ1 +

∂Kκ̇3κ̇3

∂s1
κ̇3 +

∂Kṡ2κ̇3

∂s1
ṡ2 +

∂Kṡ3κ̇3

∂s1
ṡ3 (106)

V62 ,
∂Kṡ2κ̇3

∂s2
ṡ2 +

∂Kκ̇3κ̇3

∂s2
κ̇3 +

∂Kṡ1κ̇3

∂s2
ṡ1 +

∂Kκ̇1κ̇3

∂s2
κ̇1 +

∂Kκ̇2κ̇3

∂s2
κ̇2 (107)

V63 ,
∂Kṡ3κ̇3

∂s3
ṡ3 −

∂Kṡ3ṡ3

∂κ3
ṡ3 +

∂Kκ̇3κ̇3

∂s3
κ̇3 −

∂Kṡ1ṡ3

∂κ3
ṡ1 (108)

+
∂Kṡ1κ̇3

∂s3
ṡ1 −

∂Kṡ2ṡ3

∂κ3
ṡ2 +

∂Kṡ2κ̇3

∂s3
ṡ2 +

∂Kṡ3κ̇3

∂s2
ṡ2 +

∂Kκ̇1κ̇3

∂s3
κ̇1
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V64 ,
∂Kκ̇1κ̇3

∂κ1
κ̇1−

∂Kκ̇1κ̇1

∂κ3
κ̇1−

∂Kṡ1κ̇1

∂κ3
ṡ1+

∂Kṡ1κ̇3

∂κ1
ṡ1−

∂Kṡ2κ̇1

∂κ3
ṡ2−

∂Kṡ3κ̇1

∂κ3
ṡ3+

∂Kκ̇1κ̇3

∂s1
ṡ1

(109)

V65 ,
∂Kκ̇2κ̇3

∂κ2
κ̇2 −

∂Kκ̇2κ̇2

∂κ3
κ̇2 −

∂Kκ̇1κ̇2

∂κ3
κ̇1 −

∂Kṡ1κ̇2

∂κ3
ṡ1 (110)

−∂Kṡ2κ̇2

∂κ3
ḋ2 +

∂Kṡ2κ̇3

∂κ2
ṡ2 −

∂Kṡ3κ̇2

∂κ3
ṡ3 +

∂Kκ̇2κ̇3

∂s1
ṡ1 +

∂Kκ̇2κ̇3

∂s3
ṡ3

V66 ,
∂Kκ̇3κ̇3

∂s1
ṡ1 +

∂Kκ̇3κ̇3

∂s2
ṡ2 +

∂Kκ̇3κ̇3

∂s3
ṡ3 +

∂Kκ̇3κ̇3

∂κ3
κ̇3. (111)
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D.3 Gravitational Terms

The entries of G (q) are given as follows

G1 ,
mg

d

{
1

κ1
[cos (s1κ1)− cos (2s1κ1)] (112)

+
1

κ2
[cos ((s1 + s2)κ2)− cos (2 (s1 + s2)κ2)

− cos (s1κ2) + cos (2s1κ2)]

+
1

κ3
[cos ((s1 + s2 + s3)κ3)

− cos (2 (s1 + s2 + s3)κ3)

− cos ((s1 + s2)κ3) + cos (2 (s1 + s2)κ3)]}

−mg
d2

{
1

κ21

[
sin (s1κ1)−

1

2
sin (2s1κ1)

]
+

1

κ22

[
sin ((s1 + s2)κ2)−

1

2
sin (2 (s1 + s2)κ2)

− sin (s1κ2) +
1

2
sin (2s1κ2)

]
+

1

κ23
[sin ((s1 + s2 + s3)κ3)

−1

2
sin (2 (s1 + s2 + s3)κ3)

− sin ((s1 + s2)κ3) +
1

2
sin (2 (s1 + s2)κ3)

]}

119



G2 ,
mg

d

{
1

κ2
[cos ((s1 + s2)κ2) (113)

− cos (2 (s1 + s2)κ2)

+
1

κ3
[cos ((s1 + s2 + s3)κ3)

− cos (2 (s1 + s2 + s3)κ3)

− cos ((s1 + s2)κ3) + cos (2 (s1 + s2)κ3)]}

−mg
d2

{
1

κ21

[
sin (s1κ1)−

1

2
sin (2s1κ1)

]
+

1

κ22

[
sin ((s1 + s2)κ2)−

1

2
sin (2 (s1 + s2)κ2)

− sin (s1κ2) +
1

2
sin (2s1κ2)

]
+

1

κ23
[sin ((s1 + s2 + s3)κ3)

−1

2
sin (2 (s1 + s2 + s3)κ3)

− sin ((s1 + s2)κ3) +
1

2
sin (2 (s1 + s2)κ3)

]}

G3 ,
mg

d

1

κ3
[cos ((s1 + s2 + s3)κ3) (114)

− cos (2 (s1 + s2 + s3)κ3)]

−mg
d2

{
1

κ21

[
sin (s1κ1)−

1

2
sin (2s1κ1)

]
+

1

κ22

[
sin ((s1 + s2)κ2)−

1

2
sin (2 (s1 + s2)κ2)

− sin (s1κ2) +
1

2
sin (2s1κ2)

]
+

1

κ23
[sin ((s1 + s2 + s3)κ3)

−1

2
sin (2 (s1 + s2 + s3)κ3)

− sin ((s1 + s2)κ3) +
1

2
sin (2 (s1 + s2)κ3)

]}
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G4 , −2mg

dκ31

[
sin (s1κ1)−

1

2
sin (2s1κ1)

]
+
mgs1
κ21

[cos (s1κ1)− sin (2s1κ1)] (115)

G5 , −2mg

dκ32

[
sin ((s1 + s2)κ2)−

1

2
sin (2 (s1 + s2)κ2)

− sin (s1κ2) +
1

2
sin (2s1κ2)

]
+
mg

dκ22
{(s1 + s2) [cos ((s1 + s2)κ2)

− cos (2 (s1 + s2)κ2)]

−s1 [cos (s1κ2)− cos (2s1κ2)]} (116)

G6 , −2mg

dκ33
[sin ((s1 + s2 + s3)κ3)

−1

2
sin (2 (s1 + s2 + s3)κ3)

− sin ((s1 + s2)κ3) +
1

2
sin (2 (s1 + s2)κ3)

]
+
mg

dκ23
{(s1 + s2 + s3) [cos ((s1 + s2 + s3)κ3)

− cos (2 (s1 + s2 + s3)κ3)]

− (s1 + s2) [cos ((s1 + s2)κ3)

− cos (2 (s1 + s2)κ3)]} (117)
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D.4 Bending Terms

The entries of B (q) are given as follows

B1 =
1

2
kb1

(
π − 1

2
s1κ1

)2

+
1

2
kb2

{(
π − 1

2
(s1 + s2)κ2

)2

−
(
π − 1

2
s1κ2

)2
}

+
1

2
kb3

{(
π − 1

2
(s1 + s2 + s3)κ3

)2

−
(
π − 1

2
(s1 + s2)κ3

)2
}

(118)

B2 =
1

2
kb2

(
π − 1

2
(s1 + s2)κ2

)2

+
1

2
kb3

{(
π − 1

2
(s1 + s2 + s3)κ3

)2

−
(
π − 1

2
(s1 + s2)κ3

)2
}

(119)

B3 =
1

2
kb3

(
π − 1

2
(s1 + s2 + s3)κ3

)2

(120)

B4 (t) =
1

2
kb1

[
−1

2
πs21 +

1

6
πs31κ1

]
(121)
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B5 (t) =
1

2
kb2

{[
−1

2
π (s1 + s2)

2 +
1

6
π (s1 + s2)

3 κ2

]
−
[
−1

2
πs21 +

1

6
πs31κ2

]}
(122)

B6 (t) =
1

2
kb3

{[
−1

2
π (s1 + s2 + s3)

2 (123)

+
1

6
π (s1 + s2 + s3)

3 κ3

]
−
[
−1

2
π (s1 + s2)

2 +
1

6
π (s1 + s2)

3 κ3

]}

D.5 Extension Terms

The entries of E (q) are given as follows

E1 = ke1 (s1 (t)− s∗1) (124)

E2 = ke2 (s2 (t)− s∗2) (125)

E3 = ke3 (s3 (t)− s∗3) (126)

E4 = 0, E5 = 0, E6 = 0 (127)
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