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ABSTRACT

Continuum robots are becoming increasingly popular due to the capabilities they offer, es-
pecially when operating in cluttered environments, where their dexterity, maneuverability and
compliance represent a significant advantage. The subset of continuum robots that also belong
to the soft robots category has seen rapid development in recent years, showing great promise.
However, despite the significant attention received by these devices, various aspects of their
kinematics remain unresolved, limiting their adoption and obscuring their potential. In this pa-
per, the kinematics of continuum robots with the ability to bend and extend are studied, and
analytical, closed-form solutions to both the direct and inverse kinematics are presented. The
results obtained expose the redundancies of these devices, which are subsequently explored. The
solution to the inverse kinematics derived here is shown to provide an analytical, closed-form
expression describing the curve associated to these redundancies, which is also presented and
analyzed. A condition on the reachable end-effector poses for robots with six actuation degrees
of freedom (DOFs) is then distilled. The kinematics of robot layouts with over six actuation
DOFs are subsequently considered. Finally, simulated results of the inverse kinematics are pro-
vided, verifying the study.
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1 Introduction

Robots composed of sections that bend continuously along their elastic structure can be classified

as continuum robots [1]. The field of continuum robots has received significant attention over the past

decade, both in terms of theoretical research and practical applications [2]. This is not least because of

the advantages they offer in manipulation, dexterity and locomotion inside cluttered environments.

Soft robots are commonly defined as devices with a low-stiffness elastic structure [3], a field that

currently shows great promise [4]. A significant overlap exists between continuum robots and soft

robots, which renders the study of robots belonging to both categories highly relevant. These robots

are generally actuated by means of a pressurized fluid. The flexible micro-actuator (FMA) [5, 6] was

among the pioneering concepts in this class of robots, and its layout remains relevant nowadays. Since

it was first proposed [7], a myriad of robots with designs inspired by it have been developed, e.g. [8–12].

However, the development of soft, continuum robots is not limited to FMA-type devices. Noticeable

examples of alternative designs include robotic manipulators [13], [14], assistive wearable devices [15,

16], the OctArm robot [17, 18] with the corresponding MiniOct input device for teleoperation [19], a

miniature actuator [20], actuators similar to fingers [21], or Pneunets [22].

The capability of bending and extending is common in soft, continuum robots actuated by a pres-

surized fluid. This provides the robots with dexterity that, in specific applications, can surpass that

of traditional serial manipulators. However, solutions to the kinematics problems, and particularly the

inverse kinematics, are necessary to determine and exploit these robots’ full potential.

The kinematics can be decoupled in a robot-specific mapping, between actuator space and config-

uration space, and a robot-independent mapping, between actuator space and task space, as proposed

in [1]. This paper focuses on the robot-independent mapping for robots composed of sections that can

both elongate and bend with constant curvature, such as the device illustrated in Fig. 1. The kinematics

problem considering the capability of both elongating and bending represents a general and therefore

relevant kinematics problem in soft and continuum robots, which applies to a variety of robots including

FMA-type devices [5], or tendon-driven devices with extensible backbone [23], [24], [25].

Various studies of the kinematics of continuum and soft robots exist in the literature [1], although

the inverse kinematics for a specified end-effector pose remains an open problem. A relatively complete
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Fig. 1. Illustration of a robot configuration corresponding to the inverse kinematics solution for a specified end-effector pose, in a robot

composed of two sections with a total of six actuation degrees of freedom.

formulation of the kinematics is presented in [26], although it does not provide a closed-form solution to

the inverse kinematics. A modal approach that allows numerical calculation of the inverse kinematics is

proposed in [27, 28], and is extended in [29]. However, these approaches rely on approximations of the

robot geometry that do not match the common constant curvature bending kinematics. An algorithm to

calculate the inverse kinematics of the distal end position is introduced in [30], but it does not account

for the tip orientation and does not provide closed-form solutions. Various approaches to solving the

JMR-18-1110, GARRIGA-CASANOVAS 3



inverse kinematic control problem have been developed using the robot Jacobian, where [31] and [32]

are recent examples. However, these require some computational time that can vary depending on the

end-effector pose, especially when redundancies exist, and they present issues with singularities. Fur-

thermore, these approaches based on the Jacobian lack insight into the kinematics, which complicates

subsequent path planning and control. Formulations of both the robot-specific and robot-independent

mappings are presented in [33]. However, closed-form solutions to the inverse kinematics are not avail-

able, and a numerical approximation is used. In [34], the self-motion of 2D continuum manipulators

is analyzed, but closed-form solutions to the inverse kinematics are not derived, and the research can-

not be extrapolated to a 3D scenario. An adaptation of the Denavit-Hartenberg parameters is described

in [35], but it does not yield a closed-form solution to the inverse kinematics. An analytical kinematic

formulation is proposed in [36] for a 2D application, although it cannot be extrapolated to 3D. In [37],

a closed-form solution to the inverse kinematics for a specified end-effector position in 3D is presented,

but the approach is not applicable to solve the problem of a specified end-effector pose, hence it cannot

be used in general.

In this paper, the kinematics of soft, continuum robots composed of sections with piece-wise con-

stant curvature bending and extending capabilities are studied, and analytical, closed-form solutions to

the direct and inverse kinematics are presented. The analysis is focused on devices composed of seri-

ally stacked sections operating in 3D space since they represent the most relevant type of robots. The

solution to the inverse kinematics is derived in closed-form thanks to a novel approach that relies on

quaternions to describe the rotations associated to the robot’s sections. This, combined with a strategy

inspired by the Paden-Kahan sub-problems [38] that involves dividing the problem into parts of reduced

complexity, yields a particularly simple formulation of the inverse kinematics, which can be treated an-

alytically, leading to explicit solutions. It should be noted that quaternions have been previously used

to study different aspects of continuum robots. In [39, 40], quaternions are used for the mechanical

modeling of elastic rods, and a similar approach is applied in [41] to study the dynamics of soft robotic

manipulators. Quaternions are also used in [42] to develop efficient finite element methods applica-

ble to continuum rods that can also expand radially. In addition, quaternions can be used to reliably

integrate orientation along the arc length of continuum robots [43, 44], and they are used in [45] to de-
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velop efficient numerical solutions to the kinematics of continuum robots. However, to the best of these

author’s knowledge, the work presented here is the first instance where quaternions are used to derive

closed-form solutions to the full robot kinematics.

A set of relevant considerations that arise from the central study of kinematics are also discussed in

this paper. The number of degrees of freedom (DOFs) at the distal end of the robot is analyzed using

the direct kinematics Jacobian, and redundancies are identified. The solution to the inverse kinematics

is then shown to be a curve that corresponds to such redundancy, and is also obtained in closed-form.

A condition on the reachable end-effector poses with a six actuation DOFs robot is distilled from the

derivation, and it is related to the discussion on the robot’s DOFs. This discussion also shows that a robot

with nine actuation DOFs is required to achieve six end-effector DOFs, and therefore the kinematics of

robots with nine actuation DOFs are also analyzed. It should be noted that the work presented in this

paper, including the closed-form solutions to the full robot kinematics, is for continuum robots made of

sections that can bend and extend, providing 3 DOFs per section. The current work cannot be directly

generalized to continuum robots made of inextensible sections (sections with two bending DOFs).

The paper is structured as follows. The kinematic problem is outlined in section 2, where nomen-

clature is also defined. The direct kinematics are presented in section 3, together with a discussion on

the end-effector DOFs corresponding to robots with six and nine actuation DOFs. The analysis of the

inverse kinematics is presented in section 4, leading to the derivation of closed-form solutions. In ad-

dition, the implications of such solutions are discussed in the same section, including the redundancies

of the solution, the condition on reachable poses, and the analysis of robots with nine actuation DOFs.

Finally, simulations of the robot configuration corresponding to the kinematic solutions are plotted in

section 5, leading to the conclusion of the paper in section 6.

2 Problem Formulation

The kinematics of a robot concern the study of the relation between the configuration of the robot

end-effector, which can be described by gt 2 SE(3) when operating in a 3D workspace, and the robot

joint configuration, which can be described by q 2 Q ⇢ Rn, where n denotes the dimensions of the

configuration space. The direct kinematics correspond to the study of the function g : Q ! SE(3). The
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inverse kinematics concern the study of the solution to

g(q) = gt (1)

for q 2 Q, where gt is a specified end-effector configuration inside the workspace.

The kinematic study presented in this paper considers a continuum robot composed of a set of seri-

ally stacked sections, each of which can be individually controlled to bend in any direction in 3D space

and also extend, providing 3 DOFs. The deformation modes of the sections represent the foundation

for the kinematic study of any continuum robot. Here, the sections are assumed to bend as constant

curvature arcs, and the extension DOF is assumed to be independent of the bending, following the same

circumference arc of the selected bending. It is also assumed that attachments between any two sections

present negligible length, and that adjacent arcs are tangential.

The geometry of the robots considered here can therefore be described by a set of circumference arcs

stacked serially, which correspond to the robot’s sections. Each section can be characterized by three

independent variables. The kinematic mapping g(q) thus corresponds to n/3 subsequent transformations

associated to constant curvature arcs.

This robot layout together with these of assumptions on bending modes satisfactorily model FMA-

type robots [5], which originally motivated this work. However, the kinematic study reported here

is not only limited to an FMA-type robot; it applies to all robots that can be approximated by the

aforementioned bending and extension modes, which can correspond to a variety of devices, such as

[23, 24]. It should be noted that the deformation modes considered in this work are selected according

to their relevance. Robots composed of 3-DOF sections that bend as circumference arcs and also extend

represent a relevant part of the soft, continuum robots introduced in the previous section. In addition, the

kinematics considered here provide a foundation for the kinematics of devices with other deformation

modes. The kinematics, however, are not simplified by the deformation modes considered in this work,

and they differ from the kinematics of traditional multi-linkage robots, calling for a novel approach.

The primary aim in the operation of the serial robots considered in this paper is to control the robot’s
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end-effector pose, commonly for manipulation purposes. Operation in SE(3) generally requires near 6

DOFs at the end-effector. Considering that the devices studied here offer 3 actuation DOFs per section,

the kinematics of robots composed of 2 sections represent the most relevant problem, and are the focus

of this paper. The main objective in the study reported here are the kinematics to attain a desired end-

effector pose. The solution to the inverse kinematics of a robot with n = 6 involves determining the

two tangential arcs required to reach a desired gt . The solution to such a problem is not simple, as

will be seen in the following sections, requiring an innovative derivation. The analysis of the direct and

inverse kinematics also shows that g(q) is neither injective nor surjective, hence configuration spaces

with dimension n > 6 are also considered.

3 Direct Kinematics

Various derivations of the direct kinematics of a continuum robot exist in the literature, e.g. see [1].

However, the specific variables used to describe the robot q 2 Q strongly influence the complexity of

the mapping g(q).

The most suitable description of the robot is discussed in the following subsection 3.1. The direct

kinematics are then derived in subsection 3.2, and the corresponding Jacobian is studied in subsection

3.3 to determine the DOFs of different robot layouts.

3.1 Robot Description

The configuration of the continuum robot is completely determined when the configuration of all its

sections is specified. The description of the sections is crucial to formulate the kinematics in a simple

form, and thus be able to derive closed-form solutions.

There are two main section descriptions that are used in this work, which complement in different

parts of the analysis. Both of them are relative to a reference frame, defined as {F}, situated at the

section’s base, as shown in Fig. 2.

The first description employs si, which is a scalar corresponding to the Euclidean distance between

section i’s base and tip, zi, which is the angle between the vector of the section tip position and the k
F

axis of {F}, and fi, which is the angle between the projection of the section on the i
F , jF plane and the
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[xiF,yiF,ziF]

i

O
i

i=2 i

{F}

iF

kF

jF
wi

Fig. 2. Diagram of one section of the robot (yellow), with the different variables corresponding to the first section description (si,zi,fi),

and the second section description (xF
i ,y

F
i ,z

F
i ), as well as the reference frame at the base of the section {F}, the rotation vector wi,

and rotation angle ri.

i
F axis of {F}, as shown in Fig. 2. It should be noted that the definitions of section base and tip are

arbitrary, and interchangeable. This section description represents a compromise in the complexity of

the transformations corresponding to translation and rotation, and is used for the derivation of the direct

kinematics.

The second description employs the Cartesian coordinates of the tip of a section, defined as xF
i ,y

F
i ,z

F
i ,

relative to a reference frame at its base {F}, as shown in Fig. 2, where the subscripts in xF
i ,y

F
i ,z

F
i indi-

cate the section index, i, and the superscripts the reference frame, {F}. As in the previous description,

the section base and tip are selected arbitrarily, and can be interchanged in each analysis, as applied in

section 4. It should be noted that the position of the reference frame used in the definition of the vari-

ables xF
i ,y

F
i ,z

F
i determines the side of the section corresponding to the base. This second description

simplifies the translation transformation, but generally complicates the rotation transformation. This

description is used in the inverse kinematics derivation in section 4, where its advantages become ap-

parent.
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It should be noted that both section descriptions are directly related. For example, si,zi,fi can be

obtained as a function of xF
i ,y

F
i ,z

F
i using

si =
q

(xF
i )

2 +(yF
i )

2 +(zF
i )

2

zi = arccos zF
ip

(xF
i )

2+(yF
i )

2+(zF
i )

2

fi = arctan yF
i

xF
i

(2)

The bending and extension of a section are coupled in both of these descriptions. A given set of

values of si,zi,fi generally implies both bending and extension of the section. Equally, a set of values

of xF
i ,y

F
i ,z

F
i generally involves both bending and extension of section i. Furthermore, section motions

that involve variations in only one of the variables si,zi or xF
i ,y

F
i ,z

F
i generally lead to variations in both

bending and extension. Similarly, variations in only bending or extension generally involve coupled

variations in si,zi,fi or xF
i ,y

F
i ,z

F
i .

The decoupled bending and extension of a section can be determined from si,zi,fi using the fact

that the triangle shown in blue in Fig. 2 is isosceles, together with trigonometric relations. The resulting

expression is

bi =
2sinzi

si

li =
zisi
sinzi

(3)

where the bending curvature of the section is bi, the arc length of the extended section is li, and the

direction of bending is simply determined by fi. Similarly, for a set of xF
i ,y

F
i ,z

F
i , the bending and

JMR-18-1110, GARRIGA-CASANOVAS 9



extension of a section are determined by

bi =
2
p

(xF
i )

2+(yF
i )

2

(xF
i )

2+(yF
i )

2+(zF
i )

2

li = arcsin(
p

(xF
i )

2+(yF
i )

2p
(xF

i )
2+(yF

i )
2+(zF

i )
2
)
(xF

i )
2+(yF

i )
2+(zF

i )
2

p
(xF

i )
2+(yF

i )
2

fi = arctan yF
i

xF
i

(4)

As can be seen from (3), the section description si,zi,fi yields a relatively simple decoupling of bending

and extension, whereas the decoupling in (4) involves additional complexity. Equations (3) and (4)

also elucidate the specific variations in bending and extension of a section for variations in si,zi,fi or

xF
i ,y

F
i ,z

F
i . In addition, the equations show that, for fixed bending or extension, the possible values of

si,zi,fi or xF
i ,y

F
i ,z

F
i are determined by nonlinear relations with a certain degree of complexity.

Robot section descriptions where bending and extension are directly decoupled in different vari-

ables are also possible. For example, using bi, li,fi, bending is directly determined by bi and fi, and

extension by the total length li. However, these descriptions complicate the formulation of the kine-

matics, rendering the subsequent study of the direct kinematics impractical, and the derivation of the

inverse kinematics practically inviable. In addition, the use of these descriptions does not provide spe-

cific advantages in the study of the kinematics, and the specific bending and extension of sections can

be obtained from the results obtained with the other section descriptions using (3) and (4). Hence, the

section descriptions used in this work are either si,zi,fi or xF
i ,y

F
i ,z

F
i .

The complete robot configuration is determined by the multiple individual sections described using

either of the descriptions above.

3.2 Direct Kinematics Derivation

The direct kinematics mapping of the continuum robot can be obtained by subsequently applying

the transformations corresponding to its serially stacked sections. Here, the sections are described using

si, zi, fi. The orientation of the end-effector is described using ZYZ Euler angles, as introduced at the

latter part of this subsection, since it yields a simpler formulation of the direct kinematics that facilitates
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the subsequent Jacobian-based analysis of DOFs.

The position of the distal end of a section i relative to reference frame {F} is defined as p
F
i . This

position p
F
i corresponds to the translation associated to section i, and can be determined as a function

of si, zi, fi as

p
F
i = [si sinzi cosfi,si sinzi sinfi,si coszi] (5)

The formulation of the rotation corresponding to the orientation at the tip of section i relative to

{F}, defined as Ri, requires some preliminary consideration. The rotation axis corresponding to Ri is

perpendicular to the section’s bending plane, and therefore always lies in plane i
F , jF in Fig. 2. The

rotation axis can thus be expressed in {F} as

wi = [�sinfi,cosfi,0] (6)

The rotation angle associated to section i, defined as ri, can be obtained as a function of zi considering

trigonometric relations. Since the triangle shown in blue in Fig. 2 is isosceles, then

ri = 2zi (7)

Using Rodrigues’ formula [38], Ri can then be directly obtained as a function of zi and fi using (6)

and (7). Thus, the homogeneous transformation associated to a section Ti can be obtained as a function
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of si,zi,fi from Ri and p
F
i , as

Ti =

2

66666664

(sfi)
2(1� c2zi)+ c2zi sficfi(c2zi �1) cfi s2zi siszicfi

sficfi(c2zi �1) (cfi)
2(1� c2zi)+ c2zi sfi s2zi siszi sfi

�cfi s2zi �sfi s2zi c2zi siczi

0 0 0 1

3

77777775

(8)

where cw and sw denote cosw and sinw, respectively. The total transformation of a robot composed of

n/3 sections between its distal and proximal ends then is

Tt =
n/3

’
i=1

Ti (9)

which is a function of si, zi, fi for i = 1, ...,n/3.

The orientation of the robot’s distal end can also be described using ZYZ Euler angles a,b,g, which

is useful for the analysis of DOFs in 3.3. These ZYZ Euler angles can be obtained as a function of the

robot configuration from the rotational component of (9), e.g. see [38], as

a = atan2( Tt23
sinb ,

Tt13
sinb)

b = atan2(
q

T 2
t31 +T 2

t32 ,Tt33)

g = atan2( Tt32
sinb ,�

Tt31
sinb)

(10)

for sinb 6= 0, and where Tti j denotes the components of Tt . Thus, a,b,g can be directly obtained as a

function of si,zi,fi for i = 1, ...,n/3 from (10) with the Tti j determined from (9) combined with (8).

Defining a reference frame at the robot’s proximal end as {G}, which coincides with reference frame

{F} of the first robot section, the position of the robot’s distal end relative to {G} can be denoted by

p
G
t . The expression of p

G
t as a function of the robot configuration can also be directly obtained from Tt
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(determined using (9) combined with (8)). It corresponds to the first three terms in the fourth column of

Tt .

The direct kinematics can thus be determined by the distal end pose, defined by a,b,g and p
G
t ,

obtained as a function of the robot configuration si,zi,fi for i = 1, ...,n/3, as described in the last two

paragraphs.

3.3 Degrees of Freedom Analysis

The DOFs at the distal end of robots composed of two and three sections, which offer six and nine

actuation DOFs from their sections, respectively, are considered in this subsection. It should be noted

that in this analysis the DOFs refer to the end-effector pose, and not to the possibility of continuous

deformation of the robot sections in infinitely different ways. The robot sections are considered to

provide 3 actuation DOFs each, as previously described in section 2.

The DOFs at the end-effector can be determined by studying the Jacobian J corresponding to the

differentiation of the direct kinematics, i.e. differentiation of a,b,g and p
G
t , with respect to si,zi,fi for

i = 1, ...,n/3. The expression is not reproduced here since it has a significant extension, which makes

it impractical to write explicitly. However, it can be calculated using a symbolic toolbox, such as the

Symbolic Math ToolboxT M of Matlab R�(Mathworks Inc.), as implemented in this work.

By studying the rank of the Jacobian for a robot with n = 6, this is found to be 5. One degree of

redundancy therefore exists. This result is also obtained in section 4 using a different derivation, where

the redundancy is also elucidated. The redundancy, however, differs from those in traditional multi-

link robots since the kinematics are fundamentally different, and therefore a geometric analogy is not

available. The fact that a robot with n = 6 provides 5 DOFs at the end-effector also implies a constraint

on the reachable end-effector poses, which is derived in subsection 4.4.

Interestingly, the end-effector orientation is the concatenation of the rotations associated to the robot

sections, as expressed in 9. The rotation associated to a robot section with a given bending and extension

can also be achieved with zero extension and a different, specific bending of the section. This bending

can be directly determined from (3) by imposing the section rotation angle ri = 2zi and the li corre-

sponding to zero extension, and determining the si and corresponding bi. Therefore, an end-effector
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orientation reached using both bending and extension can also be reached using only bending of the

sections, with zero extension, which enables decoupling both types of actuation in this instance. Con-

versely, any end-effector orientation cannot be reached by only selecting the extension of the sections

for a given bending, as a robot with n = 6 only has 2 DOFs corresponding to extension.

A robot with n = 9 provides 6 DOFs at the distal end. This result can be obtained by studying

the rank of the corresponding Jacobian, following an analogous procedure to that described for a two-

section robot. A three-section robot therefore provides the ability to reach any pose in 3D space, as well

as three degrees of redundancy that can be used, for instance, to avoid an obstacle.

4 Inverse Kinematics

The closed-form solution to the inverse kinematics problem is presented in this section. This in-

volves determining the configuration of the two arcs composing a robot with n = 6 to reach a specified

end-effector pose. Despite the apparent simplicity of the problem, its solution is not trivial. Attempts to

solve (1) with g(q) formulated as in the previous section do not yield closed-form solutions. Instead, an

alternative approach is required.

The approach proposed here is conceptually illustrated in Fig. 3. It involves considering the orienta-

tion at the point of junction between the two sections, which can be defined as p
G
m relative to the robot’s

proximal end, as a result of the transformations associated to the sections from the robot’s proximal and

distal ends. For an arbitrary position of p
G
m, the approaches from both ends generally lead to different

orientations. By imposing that both orientations coincide, a set of conditions emerge, which constitute

the inverse kinematics problem.

4.1 Inverse Kinematics Formulation

Simplicity in the conditions constituting the inverse kinematics problem is crucial to enable the

derivation of a closed-form solution. The use of Euler angles to describe the end-effector orientation is

not suitable in the case of the inverse kinematics, as it complicates significantly the problem formulation,

rendering it practically intractable. Instead, in this instance, orientation is described using quaternions,

which are better suited to address the inverse kinematics problem. In addition, the robot sections are

JMR-18-1110, GARRIGA-CASANOVAS 14



q1

pm
G

q2

qt

qt-1

q2-1
q1-1

iG

jG

kG

{G}

{T}

iT

kT
jT

Fig. 3. Conceptual approach to the inverse kinematics solution. The rotations associated to a robot composed of two sections, which are

defined by quaternions, are illustrated. The point of junction p
G
m, and the reference frames {G} and {T} are also included.

described using the second description introduced in subsection 3.1, which employs xF
i ,y

F
i ,z

F
i (Fig. 2).

The combination of quaternions and this section description enables the derivation of the closed-form

solutions to the inverse kinematics reported in the following subsections. A key challenge is finding the

relative orientation between the ends of a section as a function of xF
i ,y

F
i ,z

F
i .

The rotation associated to a general section i is determined by an axis wi and an angle ri, as discussed

in subsection 3.2. The orientation at the section tip can be expressed by a unit quaternion qi relative to

a reference frame at the base of the section {F}, which is

qi = cos
ri

2
+wii sin

ri

2
i
F +wi j sin

ri

2
j
F +wik sin

ri

2
k

F (11)

where i
F , jF ,kF are the unit vectors of the {F} frame, and wii,wi j,wik denote the three components of

wi. It should be noted that wik is zero, as previously introduced in (6), and therefore the orientation of the

section tip corresponds to a rotation of {F} about an axis that lies in the i
F , jF plane. The rotation axis wi

is perpendicular to the plane of bending of section i. Thus, the orientation at the tip of section i described

by quaternion qi in (11) corresponds to a zero twist configuration of section i from a continuum body

perspective. Quaternion qi then correctly represents the full orientation at the tip of section i relative to
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{F} in an actual continuum robot.

It should be noted that in this work we obtain qi in (11) directly as the total rotation from frame

{F} to the orientation at the tip of section i. This approach differs from the three successive rotations

commonly used in the literature [1] to find the orientation at the tip of section i. Still, our approach

leads to an equal resulting orientation at the tip of section i, and is more straightforward when using

quaternions.

Obtaining qi as a simple function of xF
i ,y

F
i ,z

F
i requires some consideration. First, by using the iden-

tity in the scalar product between the vector corresponding to the position of the section’s tip [xF
i ,y

F
i ,z

F
i ]

and the unit vector k
F ,

q
(xF

i )
2 +(yF

i )
2 +(zF

i )
2kk

Fkcos
ri

2
= [0,0,1] · [xF

i ,y
F
i ,z

F
i ] (12)

the cos ri
2 can be obtained as a simple function of xF

i ,y
F
i ,z

F
i .

Then, by using the vector product identity for the same vectors [xF
i ,y

F
i ,z

F
i ] and kF

q
(xF

i )
2 +(yF

i )
2 +(zF

i )
2kk

Fksin
ri

2
= k[xF

i ,y
F
i ,z

F
i ]⇥k

Fk (13)

the sin ri
2 can be obtained as a function of xF

i ,y
F
i ,z

F
i .

The normalized wi as a function of xF
i ,y

F
i ,z

F
i can be obtained as

wi =
k

F ⇥ [xF
i ,y

F
i ,z

F
i ]

kkF ⇥ [xF
i ,y

F
i ,z

F
i ]k

=
[�yF

i ,x
F
i ,0]q

(xF
i )

2 +(yF
i )

2
(14)
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Finally, by combining (12), (13) and (14), qi can be obtained as a function of xF
i ,y

F
i ,z

F
i as

qi =
zF

i � yF
i i

F + xF
i j

F
q

(xF
i )

2 +(yF
i )

2 +(zF
i )

2
(15)

The simplicity of (15) enables the subsequent derivation of a closed-form solution to the inverse kine-

matics.

Considering a robot with n = 6, as illustrated in Fig. 4 by plotting the centerline of the robot’s

sections, the reference frame at the robot’s proximal end is {G}. Another reference frame at the robot’s

distal end can be denoted by {T}. The orientation of {T} is defined so that it coincides with {G} when

the robot is in a straight configuration. The orientation of the robot’s end-effector relative to {G} can be

defined as

qt = k+li
G +µj

G +nk
G (16)

and the corresponding rotation matrix is denoted by Rt .

The configuration of the proximal section (section 1) can be described by the position of its distal

end xG
1 ,y

G
1 ,z

G
1 relative to {G}. This distal end of section 1 is the same as the point of junction between

both sections p
G
m, and thus the Cartesian coordinates xG

1 ,y
G
1 ,z

G
1 correspond to the three components of

p
G
m. The orientation at the distal end of section 1 can then be determined using (15) as

q1 =
zG

1 � yG
1 i

G + xG
1 j

G
q

(xG
1 )

2 +(yG
1 )

2 +(zG
1 )

2
(17)

The configuration of the distal section (section 2) can be described by the position of its proximal

end xT
2 ,y

T
2 ,z

T
2 , relative to {T}. The proximal end of section 2 is p

T
m, which is the same point in space

as p
G
m, but here it is expressed relative to {T}. Thus, in this case the proximal end of section 2 acts
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as the tip of the section, and the base of section 2 lies at the origin of {T} (Fig. 4). The rotation q
�1
2

corresponding to the second section, which is relative to the robot’s distal end reference frame, can

therefore be expressed as a function of xT
2 ,y

T
2 ,z

T
2 as

q
�1
2 =

zT
2 � yT

2 i
T + xT

2 j
T

q
(xT

2 )
2 +(yT

2 )
2 +(zT

2 )
2

(18)

It should be noted that the rotation q
�1
2 corresponds to a section that begins at the robot’s distal end in a

direction opposite to the k
T axis of {T}. Still, expression (18) remains valid due to geometric symmetry.

The vectors [xG
1 ,y

G
1 ,z

G
1 ] and [xT

2 ,y
T
2 ,z

T
2 ] both indicate the position of the point of junction between

the two robot sections relative to {G} and {T}, respectively. Reference frames {T} and {G} are related

through a translation p
G
t and a rotation R

�1
t . The components of R

�1
t can be denoted by R�1

t,i j, which

correspond to row i and column j. These components of R
�1
t are given by the specified end-effector

pose. Thus, vectors [xG
1 ,y

G
1 ,z

G
1 ] and [xT

2 ,y
T
2 ,z

T
2 ] are also directly related for a specified end-effector pose.

The relation can be expressed as

2

66664

xT
2

yT
2

zT
2

3

77775
=

2

66664

R�1
t,11 R�1

t,12 R�1
t,13

R�1
t,21 R�1

t,22 R�1
t,23

R�1
t,31 R�1

t,32 R�1
t,33

3

77775

2

66664

pG
ti � xG

1

pG
t j � yG

1

pG
tk � zG

1

3

77775
(19)

where pG
ti , pG

t j, pG
tk denote the three components of p

G
t .

The rotation q
�1
2 in (18) can then be expressed as a function of xG

1 ,y
G
1 ,z

G
1 using (19). Thus, for any

position of p
G
m, the resulting orientation when approached from the robot’s proximal and distal ends can

be expressed by q1(xG
1 ,y

G
1 ,z

G
1 ) and q

�1
2 (xG

1 ,y
G
1 ,z

G
1 ), respectively.

In the robot configuration corresponding to the inverse kinematics solution, (9) must be satisfied.
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3
{G} {T}

kF

iF

jF

iT

jT

kT

pm

Fig. 4. Reference frames in inverse kinematics solution for a n = 6 robot, with end-effector position at p
G
t =

[2.64,0.92,�0.26] [a.u.] and orientation qt = 0.87+ 0.13i
G � 0.27j

G + 0.40k
G. The centerline of the first section

is plotted in cyan, and the centerline of the second section in magenta, and four lines following the outer surface of both sections of continuum

body separated circumferentially at 90 degrees are plotted in red, green, blue and yellow. Reference frame {G} at the robot’s proximal end

is depicted in turquoise, reference frame {T} at the specified end-effector pose is depicted in purple, and the pose resulting from the robot

configuration is shown in dashed green, with an exact overlap.

Hence, the concatenation of rotations must satisfy

qt = q1q2 (20)
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Defining q
�1
t as the inverse of qt , equation (20) can be reordered as

q
�1
2 = q

�1
t q1 (21)

which is a function of xG
1 ,y

G
1 ,z

G
1 , as well as the end-effector pose, from (17) and (18) combined with

(19). The quaternion components of (21) define the inverse kinematics problem.

4.2 Inverse Kinematics Solution

The solution to (21) is the solution to the inverse kinematics. In the subsequent presentation, x,y,z

is used to indicate xG
1 ,y

G
1 ,z

G
1 . Substituting (17) and (18) into (21) and using the change of variable (19),

the following conditions emerge

lx+µy+nz = 0 (22a)

��µx+ly+kz
h3 · (d�p

G
t )

=
kdk

kd�p
G
t k

(22b)

�nx+ky�lz
h2 · (d�p

G
t )

=
kdk

kd�p
G
t k

(22c)

�kx�ny+µz
h1 · (d�p

G
t )

=
kdk

kd�p
G
t k

(22d)

where d = [x,y,z], and h1 = [R�1
t,11,R

�1
t,12,R

�1
t,13], h2 = [R�1

t,21,R
�1
t,22,R

�1
t,23], h3 = [R�1

t,31,R
�1
t,32,R

�1
t,33], which

correspond to the rows of R
�1
t . The components of R

�1
t are determined by the specified end-effector

orientation, and are thus directly related to qt . It should be noted that the main nonlinearities in (22)

arise from the exponentials related to the moduli on the right hand side.

The equations in the system (22) are not independent. Different approaches to solving it are possible.

This work proposes that (22a) be used, as well as the difference between (22b) and (22c). From (22a),

y =�lx+nz
µ

(23)
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Substituting (23) into the difference between (22b) and (22c), a second order polynomial equation re-

lating x and z is obtained

c4x2 + c3z2 + c2xz+ c1x+ c0z = 0 (24)

where

c4 =�µR�1
t,21 �nR�1

t,31 +
(lR�1

t,22 �kR�1
t,32)l2

µ2 �
(�µR�1

t,22 +lR�1
t,21 �nR�1

t,32 �kR�1
t,31)l

µ

c3 =
(lR�1

t,22 �kR�1
t,32)n2

µ2 +kR�1
t,23 +lR�1

t,33 �
(lR�1

t,23 +kR�1
t,22 �kR�1

t,33 +lR�1
t,32)n

µ

c2 =
2nl(lR�1

t,22 �kR�1
t,32)

µ2 �
(�µR�1

t,22 +lR�1
t,21 �nR�1

t,32 �kR�1
t,31)n

µ
�µR�1

t,23+

kR�1
t,21 �nR�1

t,33 +lR�1
t,31 �

l(lR�1
t,23 +kR�1

t,22 �kR�1
t,33 +lR�1

t,32)

µ

c1 = (µR�1
t,21 +nR�1

t,31)pG
ti +(µR�1

t,22 +nR�1
t,32)pG

t j +(µR�1
t,23 +nR�1

t,33)pG
tk�

l((kR�1
t,31 �lR�1

t,21)pG
ti +(kR�1

t,32 �lR�1
t,22)pG

t j +(kR�1
t,33 �lR�1

t,23)pG
tk)

µ

c0 =
n(kR�1

t,31 pG
ti +kR�1

t,32 pG
t j +kR�1

t,33 pG
tk �lR�1

t,21 pG
ti �lR�1

t,22 pG
t j �lR�1

t,23 pG
tk)

µ
�

kR�1
t,21 pG

ti �kR�1
t,22 pG

t j �kR�1
t,23 pG

tk �lR�1
t,31 pG

ti �lR�1
t,32 pG

t j �lR�1
t,33 pG

tk

(25)

The analytical, closed-form solution to (22) can then be obtained for x

x =
�(c2z+ c1)±

p
(c2z+ c1)2 �4c4(c3z2 + c0z)

2(c4)
(26)

which is the solution to the inverse kinematics problem in combination with (23), as a function of

z, which acts as a parameter. The point x,y,z corresponds to the point of junction between the two

sections, p
G
m, and completely defines the configuration of each of the two robot sections. This solution

JMR-18-1110, GARRIGA-CASANOVAS 21



can also be expressed with the more conventional variables si,zi,fi using the change of variable (5) for

the proximal section, and by using an analogous relation with the change of variables (19) for the distal

section.

The solution to the inverse kinematics is therefore a curve in 3D space of the possible positions of

the point of junction p
G
m. This solution can be expressed as

x = f1(p
G
t ,qt ,z)

y = f2(p
G
t ,qt ,z)

(27)

where the curve is parametrized by z as in (26). This corresponds to a degree of redundancy in the robot

space, which is discussed in the following subsection.

The solution to the inverse kinematics derived here always exists for any gt inside the robot’s

workspace, and is not affected by singularities. The solution is expressed in closed-form by (26) and

(23) for the general case µ 6= 0. For the particular case µ = 0, the solution is determined by substituting

the relation between x and z determined by (22a) with µ = 0 into the difference between (22b) and (22c),

in an analogous manner as previously described in this subsection, but for the simpler case µ = 0. The

resulting expression is equivalent to (26).

The fact that the solution is derived in closed-form implies that it is straightforward to implement in

practice, requiring a negligible computational time. In addition, the solution applies to any reachable gt

without any additional complexity. The closed-form solution can then be used in the design of control

laws and path planning algorithms. The derivation of the inverse kinematics solution in closed-form also

elucidates a kinematic redundancy, which enables one to select the most desirable robot configuration

for each gt , as described in the next subsection.

4.3 Redundancy in Inverse Kinematics

The direct kinematics analysis of subsection 3.3 indicates a degree of redundancy in a robot with

six actuation DOFs operating in SE(3). This is verified and elucidated by the solution to the inverse
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kinematics system (22). For a specified gt inside the workspace, there exists an infinite number of

solutions for the point of junction between the two robot sections [x,y,z] that allow gt to be reached,

which determine the robot’s self-motion.

These solutions define on a curve, determined by (26) and (23) as a function of the parameter z. This

curve lies on a plane determined by l,µ,n, and is elliptical in geometry.

An example of such an ellipse is plotted in orange in Fig. 5 for a gt at p
G
t = [�0.14,5.28,1.02] [a.u.]

position, and qt = 0.1+0.36i
G �0.17j

G +0.91k
G orientation. The different points on the orange curve

are possible positions of the point of junction p
G
m, and thus correspond to different extension and bending

of the robot sections. Two robot configurations corresponding to the inverse kinematics solution for the

same specified gt and different positions of p
G
m on the orange curve of possible solutions are also plotted

in Fig. 5 to help illustrate the kinematic redundancy. The two configurations correspond to different

extension and bending of the sections, but reach the same gt . The most desirable robot configuration to

reach a gt can therefore be selected, which enables avoiding collisions between the robot and obstacles

in the environment, and respecting the physical constraints on extension and bending of the sections.

4.4 Condition on End-Effector Configuration

An alternative, relevant reordering of (20) is

q1 = qtq
�1
2 (28)

Expressing the terms in (28) as explicit functions of x,y,z, and the end-effector pose by using (17),
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Fig. 5. Curve corresponding to the loci of the distal end of the first section, for an n = 6 robot with end-effector position at p
G
t =

[�0.14,5.28,1.02] [a.u.] and orientation qt = 0.1+0.36i
G �0.17j

G +0.91k
G. Two of the possible robot configurations

to reach this specified end-effector pose are also shown, with the distal end of the first section at two of the possible locations on the curve.

(18) and (19), a set of equations equivalent to (22) is obtained as

lh1 · (d�p
G
t )+µh2 · (d�p

G
t )+nh3 · (d�p

G
t ) = 0 (29a)

µh1 · (d�p
G
t )�lh2 · (d�p

G
t )+kh3 · (d�p

G
t ) = �z

kd�p
G
t k

kdk (29b)

nh1 · (d�p
G
t )�kh2 · (d�p

G
t )�lh3 · (d�p

G
t ) = y

kd�p
G
t k

kdk (29c)

kh1 · (d�p
G
t )+nh2 · (d�p

G
t )�µh3 · (d�p

G
t ) = �x

kd�p
G
t k

kdk (29d)

It should be noted that the left hand side of the system of equations (29) is linear.

Since systems (22) and (29) are equivalent, the constituting equations must be concurrently satisfied.

Equations (29a) and (22a) correspond to two parallel planes. However, they are not necessarily coin-
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cident, as this depends on the desired end-effector pose. Thus, the poses gt that simultaneously satisfy

(22a) and (29a) constitute the reachable end-effector configurations.

Comparing (22a) and (29a), and after manipulation, the condition determining the reachable end-

effector configurations can be distilled as

lpG
ti +µpG

t j +npG
tk = 0 (30)

Equation (30) indicates that the position of the robot’s end-effector must be on a plane determined by

l,µ,n, which is the same plane where the distal end of the proximal section, p
G
m, must be. Interestingly,

condition (30) does not constrain k. The condition on the reachable end-effector configurations can also

be expressed in terms of the ZYZ Euler angles by transforming l,µ,n into a,b,g, e.g. as in [46].

Thus, by selecting five variables to specify the desired end-effector pose, one of which must corre-

spond to k or its equivalent in Euler angles, condition (30) can be then used to obtain the 6th variable,

thereby completely defining the robot’s end-effector pose. The inverse kinematics solution can be sub-

sequently determined, as described in the previous subsection.

4.5 Higher Dimensional Robot Configurations

The discussion in the previous subsections shows that a robot with n = 6 provides 5 DOFs at the

end-effector. In order to achieve 6 DOFs at the end-effector, an additional robot section is required, as

justified in (3.3), resulting in a robot with n = 9. The generalization of the work to robots with n = 9 is

outlined in this subsection.

Considering a robot composed of three sections, a reference frame {B} can be defined, which co-

incides with the robot’s proximal end. The configuration of the proximal section can be described by

xB
0 ,y

B
0 ,z

B
0 , which correspond to the position of the proximal section’s distal end relative to {B}. The

orientation of the proximal section’s distal end relative to {B} can be expressed by a quaternion using
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(15) as

q0 =
zB

0 � yB
0 i

B + xB
0 j

B
q

(xB
0 )

2 +(yB
0 )

2 +(zB
0 )

2
(31)

A reference frame can then be defined at the distal end of the proximal section {G0}, the position and

orientation of which are a function of xB
0 ,y

B
0 ,z

B
0 .

The pose of the robot’s end-effector relative to {B} can be denoted by p
B
t and qt. The orientation of

the robot’s end-effector relative to {G0}, which can be defined as q
0
t, can then be obtained as a function

of xB
0 ,y

B
0 ,z

B
0 and qt as

q
0
t = q

�1
0 qt (32)

The robot’s end-effector position relative to {G0}, which can be denoted by p
G0
t , can also be obtained

as a function of the proximal section’s configuration and p
B
t by using the translation [xB

0 ,y
B
0 ,z

B
0 ] and the

rotation associated with q
�1
0 , see [38], yielding

p
G0
t =

2

66664

pB
ti((z

B
0 )

2+(xB
0 )

2)+xB
0 (pB

t jy
B
0 �2pB

tkzB
0 +(zB

0 )
2�(yB

0 )
2+(xB

0 )
2)

pB
t j((z

B
0 )

2�(yB
0 )

2)+yB
0 (2pB

tkzB
0 + pB

tix
B
0 �3(zB

0 )
2�(xB

0 )
2�(yB

0 )
2)

pB
tk((z

B
0 )

2�(yB
0 )

2�(xB
0 )

2)+zB
0 (2pB

tix
B
0 �2pB

t jy
B
0 +3(yB

0 )
2�(zB

0 )
2)

3

77775
(33)

where pB
ti, pB

t j, pB
tk are the three components of p

B
t .

The kinematics subproblem corresponding to the two distal sections of the robot implies a condition

on the reachable p
G0
t , q

0
t, elucidated in (30). Instead, the three-section robot allows 6 DOFs at the end-

effector. Using (32) and (33), condition (30) corresponding to the two distal sections can be translated

into a condition on xB
0 ,y

B
0 ,z

B
0 for a given p

B
t and qt.

JMR-18-1110, GARRIGA-CASANOVAS 26



The inverse kinematics subproblem for the two distal sections can then be solved using (27), for a

pose specified by p
G0
t and q

0
t, which now satisfies (30). Substitution of expressions (32) and (33) into the

p
G0
t and q

0
t of such solution (27) provides the general solution to the inverse kinematics of the complete

robot as a function of xB
0 ,y

B
0 ,z

B
0 , which in turn are related by the aforementioned condition.

Thus, the three-section robot allows for the complete control of the end-effector pose inside the

workspace, and three degrees of redundancy. In a typical scenario, one of them can correspond to the

two distal sections, and the other two may correspond to the proximal section.

5 Simulations

The robot configurations corresponding to the inverse kinematics solution in different scenarios are

simulated in this section for robots with n = 6 in order to help illustrate the results obtained. The

simulations also provide a verification of the work presented in this paper, and show the behavior of

continuum robots with bending and extension capabilities in some representative cases.

The configuration of a robot with a specified end-effector pose p
G
t = [2.64,0.92,�0.26] [a.u.] and

qt = 0.87+0.13i
G �0.27j

G +0.40k
G is illustrated in Fig. 4 with a plot of the centerline of the robot’s

sections, together with four lines that follow the outer contour of the continuum robot, showing that

this does not undergo any twist and that its torsional alignment is correct. The end-effector pose is

selected to satisfy (30). The solution is calculated using (26), (23), with an arbitrary value of z = �3.

The coordinates of the point of junction between the two sections p
G
m are found to be x = 1.40,y =

�3.80,z = �3 [a.u.]. Using (2) and (19), the variables directly describing the two sections can be

obtained as s1 = 5.04,z1 = 2.21,f1 =�1.22,s2 = 5.60,z2 = 1.00,f2 =�0.58. As can be seen in Fig.

4, the tangency of the arcs is respected, and the resulting robot end-effector pose matches the specified

pose exactly.

The robot configuration shown in Fig. 4 is a solution to the inverse kinematics, but it requires

significant room to maneuver, which may not be available when operating in confined environments. In

this regard, different possible robot configurations for the same end-effector pose, which correspond to

the redundancy presented in subsection 4.3, are plotted in Fig 6. These highlight the capability provided

by the inverse kinematics solution to select the most suitable robot configuration to reach a desired
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Fig. 6. Set of inverse kinematics solutions corresponding to a robot with n = 6, for a specified end-effector at p
G
t =

[2.64,0.92,�0.26] [a.u.] and qt = 0.87+0.13i
G �0.27j

G +0.40k
G.

end-effector pose.

Finally, four robot configurations corresponding to the robot moving vertically and with an end-

effector orientation changing gradually are plotted in Fig. 7, with pose values specified in the figure

caption. All four end-effector poses satisfy (30), and the corresponding robot configurations are deter-

mined using the inverse kinematics solution (26), (23), with appropriate z values to prevent excessive

bending or extension of the sections. As can be seen in Fig. 7, these robot configurations result in a

smooth motion of the robot, which illustrates the suitability of the inverse kinematics solution in deter-

mining appropriate robot configurations to execute a desired motion.
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Fig. 7. Four inverse kinematics solutions corresponding to the motion of an n = 6 robot with end-effector poses at p
G
t1 =

[�2,2,2.97] [a.u.] and qt1 = 0.73+ 0.31i
G � 0.39j

G + 0.47k
G, p

G
t2 = [�2,2,3.30] [a.u.] and qt2 = 0.73+

0.29i
G � 0.44j

G + 0.44k
G, p

G
t3 = [�2,2,3.64] [a.u.] and qt3 = 0.73 + 0.27i

G � 0.48j
G + 0.41k

G, and

p
G
t4 = [�2,2,3.97] [a.u.] and qt4 = 0.73+0.24i

G �0.51j
G +0.38k

G.

6 Conclusion

The direct and inverse kinematics of continuum robots with constant curvature bending and extend-

ing capabilities can be solved in closed-form using the approach proposed in this paper. The problem

description is determinant in the complexity of the kinematic mappings. The use of quaternions enables

the derivation of the closed-from solution to the inverse kinematics presented in this work. The kine-

matic analysis required to obtain these solutions also produces additional results, which are of interest.

Among the most prominent of these is the fact that a manipulator with six actuation DOFs is only ca-

pable of five DOFs at the end-effector. This redundancy is translated as a curve corresponding to the

inverse kinematics solution, which can be expressed in closed-form as described in this paper. A condi-

tion on the reachable end-effector poses using a robot with six actuation DOFs therefore exists, which
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is also drawn from the analysis presented in this paper. The kinematic solutions derived for a robot with

six actuation DOFs can also be used to determine the solution to the inverse kinematics of a higher order

system necessary to reach six DOFs at the end-effector, as outlined in this work. Finally, the simulated

solutions presented here show a variety of robot configurations available to reach a desired end-effector

pose, illustrating the possibility of selecting suitable configurations for different scenarios. It should

be noted that this work is for continuum robots made of sections that can both bend and extend. This

current work cannot be directly generalized to continuum robots made of inextensible sections (sections

with 2 bending DOFs).
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8 Nomenclature

a,b,g ZYZ Euler angles denoting orientation of the robot end-effector, primarily used in direct

kinematics

d Differential increment

zi Angle between vector from base to tip of section i and vector tangential to section i at

its base

si Euclidean distance between the base and tip of section i

fi Angle between the projection of section i on the plane perpendicular to its base and the

i
F axis of frame {F} at the section base, defining the direction of bending

q Generic variable denoting an actuation degree of freedom

k,l,µ,n Individual components of quaternion qt

ri Angle of rotation associated to section i

{B} Reference frame B situated at the proximal end of a three-section robot

{F} Reference frame F situated at the base of a specified robot section
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{G} Reference frame G situated at the proximal end of a two-section robot

{G0} Reference frame G situated at the distal end of the first section in a three-section robot

{T} Reference frame T situated at the robot distal end

bi Bending curvature of section i

d Vector equal to [x,y,z]

f1, f2 Functions defining the inverse kinematics solution parametrized by z

gt End-effector pose, with gt 2 SE(3)

g Mapping between actuation degrees of freedom and end-effector pose, used conceptually

h1,h2,h3 Vectors corresponding to the first, second and third rows of R
�1
t , respectively

i Robot section index, commonly used as a subscript

i
F , jF ,kF Unit vectors corresponding to frame {F}

J Robot Jacobian corresponding to the differentiation of the end-effector pose, a,b,g and

p
G
t , with respect to the actuation DOFs si,zi,fi, for i = 1, ...,n/3

J
0 Robot Jacobian corresponding to the differentiation of tana, tanb, tang and p

G
t , with

respect to si,zi,fi, for i = 1, ...,n/3

li Total arc length of extended section i

n Number of actuation degrees of freedom

p
F
i Vector denoting the position of the tip of section i relative to reference frame {F}

p
G
m Vector denoting the position of the point of junction between two sections in a robot

with n = 6

p
G
t Vector denoting the position of the robot end-effector relative to reference frame {G}

pG
ti , pG

t j, pG
tk Individual components of vector p

G
t

p
B
t Vector denoting the position of the robot end-effector relative to frame {B}, used in

three-section robots

pB
ti, pB

t j, pB
tk Individual components of vector p

B
t

qi Unit quaternion corresponding to the rotation associated to section i, primarily used in

inverse kinematics

JMR-18-1110, GARRIGA-CASANOVAS 31



q
�1
i Inverse of quaternion qi

qt Unit quaternion denoting to the orientation of the robot distal end

qt Unit quaternion corresponding to the end-effector orientation relative to the robot base,

for three-section robots

q
0
t Unit quaternion corresponding to the end-effector orientation relative to frame {G0}, for

three-section robots

Ri Matrix of rotation associated to section i

Rt Rotation matrix denoting the orientation of the robot distal end relative to the robot base

R
�1
t Inverse of Rt

R�1
t,i j Individual components of R

�1
t corresponding to row i and column j

Ti Homogeneous transformation associated to section i

Tt Total transformation of a robot between proximal and distal ends

Tti j Individual component of matrix Tt corresponding to the element in row i and column j

xF
i ,y

F
i ,z

F
i Cartesian coordinates of the tip of section i, relative to reference frame {F}

x,y,z Simplified notation for xG
1 ,y

G
1 ,z

G
1 , which denotes the Cartesian coordinates of the tip of

section 1 relative to frame {G}

wi Vector denoting rotation axis associated to section i

wii,wi j,wik Individual components of rotation axis vector associated to section i
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Figure Captions List

Fig. 1 Illustration of a robot configuration corresponding to the inverse kinematics solution for a specified

end-effector pose, in a robot composed of two sections with a total of six actuation degrees of freedom.

Fig. 2 Diagram of one section of the robot (yellow), with the different variables corresponding to the first

section description (si,zi,fi), and the second section description (xF
i ,y

F
i ,z

F
i ), as well as the reference

frame at the base of the section {F}, the rotation vector wi, and rotation angle ri.

Fig. 3 Conceptual approach to the inverse kinematics solution. The rotations associated to a robot

composed of two sections, which are defined by quaternions, are illustrated. The point of junction p
G
m,

and the reference frames {G} and {T} are also included.

Fig. 4 Reference frames in inverse kinematics solution for a n = 6 robot, with end-effector position at

p
G
t = [2.64,0.92,�0.26] [a.u.] and orientation qt = 0.87+0.13i

G �0.27j
G +0.40k

G. The centerline

of the first section is plotted in cyan, and the centerline of the second section in magenta, and four

lines following the outer surface of both sections of continuum body separated circumferentially at

90 degrees are plotted in red, green, blue and yellow. Reference frame {G} at the robot’s proximal

end is depicted in turquoise, reference frame {T} at the specified end-effector pose is depicted in

purple, and the pose resulting from the robot configuration is shown in dashed green, with an exact

overlap.

Fig. 5 Curve corresponding to the loci of the distal end of the first section, for an n = 6 robot with end-

effector position at p
G
t = [�0.14,5.28,1.02] [a.u.] and orientation qt = 0.1+0.36i

G �0.17j
G +0.91k

G.

Two of the possible robot configurations to reach this specified end-effector pose are also shown,

with the distal end of the first section at two of the possible locations on the curve.

Fig. 6 Set of inverse kinematics solutions corresponding to a robot with n = 6, for a specified end-

effector at p
G
t = [2.64,0.92,�0.26] [a.u.] and qt = 0.87+0.13i

G �0.27j
G +0.40k

G.

Fig. 7 Four inverse kinematics solutions corresponding to the motion of an n = 6 robot with end-effector

poses at p
G
t1 = [�2,2,2.97] [a.u.] and qt1 = 0.73+0.31i

G �0.39j
G +0.47k

G, p
G
t2 = [�2,2,3.30] [a.u.]

and qt2 = 0.73+0.29i
G �0.44j

G +0.44k
G, p

G
t3 = [�2,2,3.64] [a.u.] and qt3 = 0.73+0.27i

G�

0.48j
G +0.41k

G, and p
G
t4 = [�2,2,3.97] [a.u.] and qt4 = 0.73+0.24i

G �0.51j
G +0.38k

G.
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