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Abstract— Soft continuum robots are highly flexible and
adaptable, making them ideal for unstructured environments
such as the human body and agriculture. However, their
high compliance and manoeuvrability make them difficult to
model, sense, and control. Current control strategies focus on
Cartesian space control of the end-effector, but few works have
explored full-body control. This study presents a novel image-
based deep learning approach for closed-loop kinematic shape
control of soft continuum robots. The method combines a local
inverse kinematics formulation in the image-space with deep
convolutional neural networks for accurate shape control that
is robust to feedback noise and mechanical changes in the con-
tinuum arm. The shape controller is fast and straightforward to
implement; it takes only a few hours to generate training data,
train the network, and deploy, requiring only a web camera
for feedback. This method offers an intuitive and user-friendly
way to control the robot’s 3D shape and configuration through
teleoperation using only 2D hand-drawn images of the desired
target state without the need for further user instruction or
consideration of the robot’s kinematics.

I. INTRODUCTION

Soft continuum robots bend continuously along their
length via elastic deformation, making them highly flexible
and adaptable [1]. They provide high dexterity and manoeu-
vrability over constrained unstructured spaces using fewer
actuators and simple control strategies [2]. This makes them
ideal for robotic exploration [3] and inspection [4], [5] in
constrained environments, especially in medical applications
[6]–[10]. An example of this type of robot is the STIFF-
FLOP, designed for minimally invasive robotic surgeries
(see Fig. 1). However, the high mechanical adaptability
and dexterity of soft continuum robots present numerous
challenges in their control.

Unlike the control of rigid robotics, the control of soft
robots is non-trivial [11], [12]. Soft continuum arms exhibit
large to infinitely many degrees of freedom with elastic ma-
terials that are highly non-linear, making accurate analytical
modelling an arduous task. Significant variabilities in their
design and actuation makes the development of a general
modelling framework difficult [13], [14].

Most controllers for soft continuum robots (CR) are based
on some kinematics model. Kinematic controllers take on
a steady-state assumption for the soft manipulator, where
they are treated as quasi-static structures. The most common
modelling technique used for soft continuum arms is the
Constant Curvature (CC) model, where each section of the
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Fig. 1: Prototype of the soft continuum robot arm used in
this paper emerged from the EU-project STIFF-FLOP. This
version has two segments, that have an overall diameter
of 11.5mm and a length of 59mm. Actuation will result
through pneumatic air pressurisation of three chamber pairs,
each has a diameter of 1.5mm.

arm is assumed to bend with constant curvature. Hence, the
kinematic shape of the manipulator can be represented by
the arm length, curvature and its angle [15]–[20]. Piece-wise
Constant Curvature (PCC) is an extension of CC, which
treats the shape of each section itself as a series of finite
curved links [21], [22]. These models, however, assume that
the manipulator or its sections are uniform and symmetrical
with negligible external loads or torsion [15]. More complex
models with increased accuracy have also been proposed
such as the Variable Constant Curvature [23], [24] (VCC),
the Spring-Mass-Damper model [25], the Cosserat Rod [26],
[27] and beam-theory models [16], [28] and Finite Element
models (FEM) [29]–[31].

Once the forward kinematic model is developed, con-
trollers can be developed by inverting the kinematic model.
For CC models, this can be done using several differential
inverse kinematics (IK) based approaches [19], [20], [32].
Similar differential inverse kinematics-based controllers have
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also been developed for PCC [33], [34] and VCC [23]
kinematic models. Alternatively, optimization-based methods
can be used for solving the inverse problem [22]. Camarillo
et al. [28] were able to achieve configuration open-loop
control by direct inversion of the beam theory kinematics.
FEM has demonstrated promise in accurately modelling
and controlling soft systems [29]–[31]. Nonetheless, their
application necessitates pre-existing computational models
of the robot, which may not be readily accessible, and the
need to fine-tune parameters, such as determining the optimal
number of nodes, to maintain sufficient accuracy without
sacrificing real-time control frequency.

Kapadia et al. [17], [18] developed the first dynamic
closed-loop controller using a CC-based kinematic model
and an Euler-Lagrangian dynamic model for a soft arm,
capable of controlling the robot in task space. Another
example which uses the CC model with dynamics is the
work by Falkenhahn et al. [35]. They developed a dynamic
controller which optimised a trajectory in terms of time and
actuator jerk. They also developed a controller with feedback
linearisation capable of fast trajectories that minimises dy-
namical errors [36]. Della Santina et. al [34] extended PCC-
based point mass models and showed impedance control
of the end-effector for interactions with an unstructured
environment. Alqumsan et. al. [37] introduced a sliding mode
dynamical controller for a simulated Cosserat Rod model.
Spinelli et al. [38] utilised Model Predictive Control for the
task space control of a pneumatic CR, which utilised PCC
with augmented Rigid-Body model assumptions.

These model-based controllers are, however, heavily re-
liant on the underlying analytical models, which are devel-
oped with numerous assumptions. These can cause large
discrepancies between the model and the physical robot
if factors such as material hysteresis, friction, mechanical
asymmetry, torsion, fabrication imperfections and other ex-
ternal loads are not considered or compensated for [27], [39].
As a result, researchers have taken interest in controllers that
are hybrid, combining analytical models with learning-based
approaches, as well as model-free controllers. These types
of controllers utilize real-world data to build internal models
and controllers, requiring minimal to no prior knowledge of
the physical robot arm or the surrounding environment.

Regarding hybrid controllers, Braganza et al. [40] utilized
a combination of a feedforward neural network and a non-
linear feedback component to create a control strategy that
compensates for uncertain dynamics during trajectory track-
ing without requiring accurate knowledge of the continuum
robot’s dynamical model. Queißer et al. [41] combined feed-
back control with a feed-forward control that approximates
the continuum arm’s inverse dynamics under equilibrium.
They used this technique for kinesthetic teaching of the
robot’s posture. Wang et al. [42] implemented a hybrid
adaptive control approach that employs neural networks for
learning the robot’s inverse kinematics and online adaption
of PID control parameters for path tracking. Bruder et al.
[43] utilized Koopman-based Model Predictive Controllers
(MPCs) to track trajectories when the manipulator has an

unknown payload. Tang et al. [44] introduced an iterative
learning Model Predictive Control (MPC) method for soft-
bending actuators, using the iterative learning controller
(ILC) to refine the model. Their results demonstrated that
their approach outperformed ILC and MPC independently.

Hanh et al. [45] developed a method which uses dynamic
motion information to refine their FEM’s visco-elastic pa-
rameters. Their approach enabled them to design an open-
loop control strategy in simulation which was executed on a
physical soft robot. However, their work requires the use of
expensive motion capture systems.

For model-free controllers, Yip et al. [46] were one of the
first to introduce a completely model-less controller. They
achieved this through online empirical estimations of the
robot’s Jacobian. Although it allows the robot to navigate
in unstructured environments, it is seemingly limited to the
control of the robot’s tip. Alambeigi et al. [47] estimated the
Jacobian of a continuum arm using the optimisation Broyden
update rule to manipulate a target point on a deformable
material such that it corresponds to the desired point in their
endoscopic camera’s image space. Li et al. [22] employed
an adaptive Kalman-filter controller for trajectory tracking.
Fuzzy-logic controllers have also been explored [48].

Giorelli et al. [49], [50] were the first to implement
feed-forward neural networks for learning a one-to-one IK
mapping of the actuator space to the task space. Hence,
their controller is incapable of tolerating redundant solutions
for the same tip position in real soft continuum arms.
Rolf et al. [51] proposed the use of goal babbling for
obtaining movement samples, which can be used to bootstrap
learnt IK solvers. In the process of generating the samples,
a redundancy weighting scheme is applied to encourage
smooth solutions for target points in the task space. One
major issue with learning the IK is the non-uniqueness of
IK solutions which are enclosed in a concave set, which
makes learning global IK intractable. Thuruthel et al. [52]
proposed a formulation which can achieve direct inversion
of FK through linearisation at the current state. Sahoo et
al. [53] expanded on this work by employing a meta-
learning approach to reduce the training sample required
for adapting the network to unknown tip-loading conditions.
Distal learning is another method for inverting the kinematics
of a redundant robot and has been used for soft robots
by Melingui et al. [54]. Learning-based approaches have
been notably effective for dynamic control of soft robots,
where they have been employed for learning an accurate
forward dynamics model [55]–[57] or for directly learning
a closed-loop control policy using reinforcement learning
[58]–[60]. Irrespective of the method used to control the
soft continuum robot, be it model-based, model-free, or
hybrid models, control approaches require expensive motion-
tracking sensors to achieve closed-loop control [19], [43],
[52].

A. Related Work

All the works mentioned above focused mainly on task
space/end-effector control of the soft continuum arm. Using
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analytical models for controlling the robot’s shape in con-
figuration space through joint space control requires making
simplifying assumptions. As a result, the robot’s actual shape
may differ from that predicted by the model. Complete
authority over the shape of the continuum robot, however,
is critical in scenarios where minimal collisions or whole-
arm path planning are necessary, such as in teleoperated
endoscopy or minimally invasive surgery of the human body
[61], [62].

Shape control of soft continuum robots is a straightforward
problem when simple geometric models are used. Bajo et
al. [63] showed that the use of both extrinsic and intrinsic
sensory information can lead to better regulation and shape
tracking performance, mitigating the effects of actuation
coupling for a CC model. Wang et al. [39] extended the
CC theory with the Kirchoff elastic rod theory for open-
loop shape control of a CR designed for in-situ aero-engine
maintenance. Various works have implemented open-loop
follow-the-leader techniques where desired arm configura-
tions based on CC are traced by extendable robotic arms
[64], [65]. Similarly, Santoso et al. [66] investigated the use
of CC with a damped least-squares Jacobian for the closed-
loop control of an origami-based continuum robot to grow
into desired shape configurations. Bern et al. [67] created
soft ”plush” robots which they modelled using 2D FEM. To
control the robots and move them to a desired 2D position,
they developed a simple and intuitive method of dragging
mesh nodes. It is unclear, however, if this approach can
be scaled up to handle more complex soft robots made of
different materials and non-uniform structures in 3D, which
would require a finer mesh and a larger number of nodes.
Ouyang et al. [68] developed a control approach which used
shape correspondence to command the shape of the robot to
a hand-drawn curve provided by the user. Their controller
uses an online estimation of the Jacobian, with the aim of
minimising the error between the desired curve approximated
by cubic spline interpolation and feature points located on
the robot. The shape of the robot is then approximated by
PCC. Hand-drawn shapes are much more intuitive for users
operating the robot.

Development of completely 3D kinematic shape con-
trollers based on more complex models can extend their
applicability to softer arms capable of more intricate con-
figurations [64], [66]. CC and PCC models approximate a
large degree-of-freedom arm with a lower dimensional and
discretised representation. Extending these control strategies
to more complex geometric models like Cosserat Rod r
Finite-element models however, is not trivial. Although Fi-
nite Element models show promise, they tend to grow in
complexity when dealing with non-homogeneous structures
and materials. Inversion of fully 3D kinematic shape mod-
els scalable to arbitrarily complex robots with appropriate
representations of the target shapes is a challenge yet to be
addressed in this field.

To the best of our knowledge, this work presents the first
demonstration of a model-free shape controller for a soft
continuum robot. We propose a deep visual inverse kinematic

model for the shape control of a soft redundant continuum
robotic manipulator. Based on steady-state assumptions and
differential inverse kinematics, a unique methodology of
representing the state of the soft robot as images is presented.
The method offers relatively straightforward and fast learning
of the differential IK without requiring a priori knowledge
about the arm or its environment, such as shape, size and
geometry, actuators, hysteresis, friction and internal loads,
mechanical asymmetry, and torsion. The method takes only 3
hours to generate motor-babbling data (generation of motion
through random actuation values), train the network, and
deploy on a physical continuum robot.

Furthermore, minimal sensing is needed, requiring only
a simple colour camera to learn the mapping between the
actuator space and the proposed configuration space repre-
sentation. The generalising ability of the deep visual model
enables a more user-friendly and intuitive method of con-
trolling the soft manipulator, simply by drawing the desired
target shapes without any prior training on the dataset, or
the need for further user instruction or consideration of the
robot’s kinematics.

The next section first explains the formulation of the
learning algorithm in task space, followed by the descrip-
tion of the image-based extension. Section III details the
simulated spring-mass-damper continuum arm on which the
image-based method is trialled to show empirical evidence
of the image-based method’s efficacy, which is given in the
section after. Section V then details the physical STIFF-
FLOP manipulator and the experimental setup. This is fol-
lowed by section VI showcasing the experimental results.
The discussion and conclusions are given in section VII.

II. MODEL-FREE STATIC CONTROLLER THEORY

A. Learning Cartesian Kinematic Controllers

For soft robots, kinematic relationships can be formulated
using steady-state models [69]. At steady-state conditions,
the forward kinematics of a soft robot can be represented as
a surjective function from the actuator space q ∈ Rn to the
task space x ∈ Rm.

x = f(q) (1)

The actuator space q typically consists of the state of the
actuators of the soft robot (e.g. pneumatic pressure, tendon
forces, etc.). The task space x is typically represented by the
Cartesian end-effector pose.

Learning the inverse of this forward mapping is not trivial
because of the high redundancy in the system. Due to
the high redundancy of a soft CR, there are infinite valid
solutions to the inverse problem. Moreover, these infinite
solutions do not form a convex set, making the direct
learning of the inverse kinematics invalid [52], [70]. Direct
inversion of the forward differential kinematics, however,
can be done through linearisation at the current state some
arbitrary feasible actuator state q0. The forward differential
kinematics can be obtained by taking the derivative of the
forward kinematics at this state (q0):
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Fig. 2: The convolutional neural network-based kinematic shape controller. The deep network provides the control actions
that iteratively take the robot to the target shape given the current shape and control action.

ẋ = J(q0)q̇ (2)

Where J is the Jacobian matrix that maps the actuator
velocities q̇ to the end-effector velocities ẋ at state q0.
Further discretization of Equation 2 using Taylor expansion
(ignoring second order terms and above) allows for learning
a local Inverse Kinematics [70].

∆x ≈ J(q0)∆q (3)

To frame it as a learning problem, this expression can be
expanded and rearranged as:

J(qi)qi+1 ≈ xi+1 − f(qi) + J(qi)qi (4)

qi+1 = G(xi+1 − xi) + qi (5)

Allowing for the mapping (xi+1,qi,xi) → (qi), where
G is the inverse of the Jacobian matrix, qi and qi+1 are
the actuator states at the current and the next time steps
respectively, and likewise for task space states xi and xi+1.
Training data can then be obtained through random actuator
motion (motor babbling) ensuring spatial locality (|qi+1 −
qi| < E) [52]. This data can then be learnt by a simple neural
network. By providing the target points as xi+1 to the learnt
network, the network outputs, qi+1 which brings the robot
configuration closer to the target. Repeating the process with
the updated qi and xi will eventually bring the Cartesian
end-effector coordinates to the desired location, providing
that the target location is not physically obstructed and is
geometrically reachable, with a task-space tracking sensor
that has reasonable accuracy. This is the learning equivalent
of the resolved motion rate controller, which also makes the
controller robust to inaccuracies in the learned representation
of the Jacobian inverse [71].

B. Learning Kinematic Shape Controllers

The theory described above, which was developed for
controlling the pose of an end-effector in Cartesian space, can
also be applied to other types of task-space representations.
Although control of the tip position is sufficient for many
tasks, due to the redundancy of the system, the resulting
shape of the soft robot is not within our control authority
and is heavily influenced by the initial configuration and
environmental constraints. This is problematic in scenarios
where a certain specific shape is required in order to reduce
environmental interactions, such as endoscopic operations
[61], [62], [72]. Additionally, there are several tasks where
shape control is more intuitive for the user, such as in
Agritech [73] and other constrained environments [74], [75].

Due to the large degrees of freedom for a soft continuum
robot, there is no single method for shape parametrization.
Constant curvature models have largely been used for shape
parametrization, but are based on several simplifying as-
sumptions that parametrize the shape of a soft robot using
low-dimensional representations. In this article, we propose
the extension of the data-driven inverse kinematic controller
(see Fig. 2) to take image states as a high-dimensional hyper-
redundant task space representation I. The static images are a
function of the actuator state q ∈ Rn and the environmental
conditions η.

I = Iq + Iη (6)

The region of the image that is dependent on the actuator
variables obeys the static relationships as described in the
previous section.

Iq = f(q) (7)

İq = J(q0)q̇ (8)
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Fig. 3: Modular mass-spring-damper continuum arm used for validating the learning-based shape controller.

qi+1 = G(Iqi+1 − Iqi) + qi (9)

If Iqi+1 and Iqi can be extracted from the observations
of Ii+1 and Ii, then an image based kinematic controller can
be developed. Assuming that a deep network can extract this
information implicitly, the mapping (Ii+1, Iqi, Ii) → (qi+1)
can be sampled and learned as before. Note that Iqi is the
transformation of the vector qi into a 2D image array to
ease the concatenation of Ii+1, Iqi and Ii as network inputs.
Varying lighting conditions, background noise and camera
displacements, in theory, would not affect the mapping
accuracy as long as Iq is visible. Occlusions, hence, would
affect the accuracy of the mapping. Deep convolutional
neural networks are used to learn the image-based differential
inverse kinematics mapping. These networks are excellent at
extracting image features from noisy images while exhibiting
some shift and scale invariance [76]–[78].

III. SIMULATION ENVIRONMENT

A. Simulation Arm

A simulation environment is used to test and validate
the image-based kinematic shape controller. We created a
simulated continuum arm in MATLAB & Simulink using
the Simscape library.

The continuum arm comprises multiple individual mod-
ules. As shown in Fig. 3, each module is a 3-spring-mass
structure, with three springs attached concentrically to a
disk with mass. Each spring is a force-driven spring-damper
object defined by an equilibrium position, and stiffness and
damping coefficients. The stiffness and damping coefficients
are set to relatively high values 10 kNm−1 and 10 Nsm−1

respectively, to minimise any dynamical behaviours. They
are driven by external force inputs from a controller. Each
disk has three degrees of freedom. A translation in Z axis
and rotations about X and Y axis, relative to the previous
disk. For our simulation, we mounted ten modules in total to
form two sections containing five modules. For each section,

consecutive spring receive the same control signal. For
example, spring objects in Spring 1 receive the same control
signals. This was done to conceptually match the real STIFF-
FLOP arm shown in Section V-A. Our simulation robot was
intentionally created with a distinct geometry, materials, and
actuation mechanism compared to the STIFF-FLOP robot
to demonstrate the image-based inverse kinematic solver’s
capability in controlling vastly different continuum arms.
Gravity was configured to point from the base to the tip,
to simulate a downward mounting arrangement. However,
we deliberately kept the orientations between the robot and
the camera to be different in simulation and in reality
to demonstrate that the controller can effectively operate
even when the camera and the robot have different relative
orientations.

B. Simulation Experimental Setup

Training data were obtained through a quasi-static motor
babbling method [70]. The vector qi holds the individual
actuation values for each of the six springs in the simulation
robot. The actuation input applied to each of the six springs
was limited to 150N to produce an arm configuration with
sufficient complexity without causing instability. Random
shape trajectories were generated by adding stochastic force
values ∆q to the current force inputs that satisfy 0 ≤ qi ≤
150N every 5 seconds. A Sigmoid smooth-step function
S(t) (Equation 10) was multiplied to ∆q to ensure smooth
trajectories in the generated training data. This is done to
ensure that the steady-state assumption used in deriving the
theory remains valid.

S(t) =
a

1 + exp
(

−α(t−t50)
tr

) (10)

The parameters a, t50, tr are used to make the smooth-step
function reach the ∆q values over a time period of 3 seconds,
with 0 ≤ t ≤ 5 seconds such that the newly generated
random shape is reached when the value S(t) is equal to 1.
The values used for the parameters a, t50, tr are 1, 2, and 1,
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Target State overlayed with the Final Feedback State in Simulation

Fig. 4: Examples of target (in red) and final resulting states (in cyan) using the proposed shape controller. Intersecting
regions are shown in black. The images are taken directly from the convolutional network inputs of size 128× 128.

respectively. These were determined empirically. Saturation
after 3 seconds was done to include training examples that
stabilise to a final shape.

12000 seconds of motor babbling data was gathered. State
images I were obtained at a rate of 1Hz via screen capture
giving 12000 data samples. The image states were converted
to grey-scale and down-sampled to 128 × 128 to speed
up learning. Actuator image inputs Iqi were obtained by
repeatedly copying the current actuation signals qi into a
2D image array. This allows us to concatenate the image
state and actuator state easily. The next state Ii+1, current
state Ii, and actuator inputs Iqi were resized to a height and
width of 128 × 128, followed by concatenation to form an
128× 128× 3 input. The six-element vector qi+1 was kept
as is for the data regression labels.

C. Model-Free Deep Visual Network Inverse Kinematic
Solver

The controller uses a bespoke architecture to learn the
mapping (Ii+1, Iqi, Ii) → (qi) (see Fig. 2). The architecture
was built systematically by incrementally adding convo-
lutional and ReLu activations layers until the root mean
squared error on a small 10% subset of the training data
no longer improved. The same architecture is then used for
real-world experiments. The network has six regression node
outputs for controlling the six simulation springs qi+1. The
control loop for the real arm is given in Fig. 11, which is
similar to the simulation control block. The only difference
is that the control outputs are fed into the simulation spring
objects rather than through pneumatic regulators.

Training data was split into 10% and 90% for training
and testing, respectively. The network was trained for 1500
epochs using the Adam optimizer with an initial learning
rate of 0.005 at a learning drop rate of 0.99 which drops
at every 100 epochs. The state images Ii+1 and Ii were
augmented with random speckle noise, random translations
and rotations, and random occlusions to obstruct the visibility
of the target and feedback states during training to make the
controller more robust to noise.

The data was not normalised and no overfitting was
observed. For the experiments, the controller is run at 10Hz,
even though the training data was obtained at 1Hz. It was
observed that this strategy led to smoother trajectories and
faster target convergence.

IV. SIMULATION RESULTS

Four simulation experiments were undertaken. During the
experiments, no online changes were made to the network
weights.

The first experiment was to qualitatively verify the image-
based IK controller for random various target shapes taken
randomly from the validation dataset, shown in Fig. 4. Dur-
ing the experiments, the arm starts from a home configuration
where it is initially straight and all the actuation values are set
to zero. The controller requires multiple steps to converge to
the target shape. Hence, for each case, the controller ran for
60 seconds to obtain the final resulting shape state. Note that
the IK solutions provided by the controller are not unique.
It is dependent on the initial configuration of the robot, and
hence the controller is more robust to model inaccuracies.

The second experiment was to determine the robustness
of the learned controller to feedback Ii translational and
rotational noise to simulate the effect of the camera being
displaced out of position and orientation after learning.
Twenty-five more shapes were gathered to obtain an average
performance of the controller. The overlayed images for
these remaining shapes are given in the supplementary
material. For the translation noise, the feedback images Ii
were translated in the X and Y direction. Black pixels were
used to pad the images after translation (see Fig. 5b for an
example). Results are given in Fig. 6. For the rotational noise,
the feedback images are rotated clockwise and counter-
clockwise. As before, black pixels were used to pad the
images after rotation (see Fig. 5c for an example). The results
are given in 7. The state errors were obtained by the image
pixel subtraction of the final resulting state Ii to the target
state Ii+1 images and averaging the absolute of the error
image. Note that the non-augmented final feedback images
were used to gather state errors.

Figures 6 and 7 demonstrate that the controller’s accuracy
is greater in the absence of noise, as evidenced by lower
means and smaller standard deviations. Despite the increased
severity of both types of noise, the fact that their standard
deviations significantly overlap suggests that the controller’s
performance remains unchanged. However, the higher vari-
ances indicate that the performance of the controller with
noise is also dependent on the target shape.

Note that no direct intervention is applied to the network
to reduce the error between the target and the feedback.
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(a) (b)

(c) (d)

Fig. 5: Examples of the added noise for experiment two (with
translational and rotational) and three (occlusion noise). (a)
Desired target shape. (b) Final feedback state with transla-
tional noise in the X and Y directions. (c) Final feedback
state with rotational noise. (d) Final feedback state with
partial occlusion.

The error reduction arises implicitly based on the learning
architecture and the sample data used for learning.

The third experiment was to verify the robustness of the
controller when the feedback images were partially occluded.
For the same twenty-five shapes used in the third experiment,
a black box is added to the feedback state Ii to simulate
partial occlusion. Although the black box is placed randomly,
the same pixel position was used for all twenty-shapes (see
Fig. 5d for an example of this occlusion). Results are given
in Table I. From this table it can be seen that the standard
deviations between no noise and occlusion noise overlap
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Fig. 6: Average final state errors for twenty-five shapes as the
image state feedback is translated in the X and Y directions.
The error bars are the standard deviations. The state errors
are measured by the image subtraction between state Ii and
Ii+1 and averaging the absolute error.
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Fig. 7: Average final state errors for twenty-five shapes as
the image state feedback is rotated up to positive (counter-
clockwise) and negative (clockwise) 6 degrees. The error bars
are the standard deviations. The state errors are measured
by the image subtraction between state Ii and Ii+1 and
averaging the absolute error.

greatly, indicating that the control is robust even when the
feedback is partially-occluded.

The fourth experiment was to verify the robustness of
the controller to viscoelastic changes in the soft material
properties of physical arms such as creep or stress relaxation.
These can occur from usage over time due to periodic strains
and stresses from actuation, which can induce permanent
deformations [79]. Thus, softening the material over time.
To model this behaviour, we tested the controller on simula-
tions with reduced spring stiffness. The original simulation
stiffness 10kNm−1 was reduced in increments of 5% up
to 20% reduction. Note that 10kNm−1 is the stiffness used
to gather the motor babbling data. The same target shape
was used for all simulation models with varying stiffness
using one of the shapes in Fig. 4. For this particular target
shape configuration, only springs 1, 2 and 6 need to be
actuated. From Fig. 8, it can be seen that the image-based
controller can compensate for the lowered stiffness values
by generally reducing the required springs forces in order to
achieve the desired target shape without requiring any further
re-training. For this shape, only Springs 3 to 5 are utilised.
Interestingly, from Table II, it can be seen that slightly
lower stiffness for the springs resulted in error reductions of
−13.8% and −6.7% for the 5% and 10% stiffness reductions.

TABLE I: Average and standard deviations (σ) of the final
state errors for twenty-five shapes without noise and with the
occlusion noise (see Fig. 5d). The state errors are measured
by the image subtraction between state Ii and Ii+1 and
averaging the absolute error.

Without Noise With Occlussion Noise
Average State Error 2.40, σ ± 1.00 2.66, σ ± 1.38
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Fig. 8: Final state reached by the controller (top) as the
simulation springs stiffness is decreased to model material
creep. The state errors are measured by the image subtraction
between state Ii and Ii+1 and averaging the absolute error.
Percentage differences in the final state errors relative to the
original spring stiffness are given in II.

The performance of the controller decreased rapidly at the
20% stiffness reduction increasing the final state error by
81%. This behaviour is unlikely to be indicative of the
controller’s performance on other shapes. Nevertheless, it
shows the ability of the controller to accommodate changes
in the model’s mechanical properties (see upper section of
Fig. 8).

TABLE II: Percentage difference of the final State Errors
between decreased stiffness models and the original stiffness.
The final state error for each stiffness is measured by the
image subtraction between state Ii and Ii+1 and averaging
the absolute error.

[!b]
Simulation Model Stiffness (kNm−1)
9.5 9 8.5 8

Percentage Error (%) −13.8 −6.7 12.9 81.1

V. PHYSICAL ENVIRONMENT

A. STIFF-FLOP Continuum Robot

Our proposed static shape controller is implemented on
a miniaturised soft, pneumatically actuated manipulator to
validate and demonstrate its efficacy. The fundamental design
and manufacturing process (as shown in Fig. 9) has been
introduced in an EU FP7 project called STIFF-FLOP [80]–
[82]. Hence, the soft robot in this paper is referred to as the
STIFF-FLOP manipulator, a cylindrical robotic device made

of silicone (Ecoflex 00-50 Supersoft, SmoothOn), with six
fully fibre-reinforced chambers. Two adjacent chambers are
internally connected together via 1mm silicone pipes and
actuated as one chamber pair. The moulds are 3D-printed
using Tough2000 resin (Formlabs Form 3). Following a five-
step fabrication process (as illustrated in Fig. 9(a)), the final
robotic manipulator has a diameter of 11.5mm. A central
working channel with a 4.5mm diameter is preserved for
feeding through instruments, e.g., to conduct surgical tasks.
Details on the dimension of the robot can be found in
Fig. 9(b). Two or more manipulators can be connected in
series via 3D-printed connection plates, as shown in Fig. 9(c).

B. Experimental Setup

The STIFF-FLOP continuum arm is mounted upside down
on a table platform (see Fig. 10). Six SMC regulator valves
rated with a maximum pneumatic output of 0.5MPa are
used to actuate the robot’s air chambers. An Arduino Mega
is interfaced with six MCP4725 DACs through a multiplexer
for providing the 0 − 10V analogue voltage control inputs
required by the valves. A Lenovo Webcam with a resolution
of 1920 × 1080 is used to capture the image states of the
robot. A workstation with a RTX 3070 graphics unit and an
Intel i7 processor is used for data processing and learning.
The whole platform is placed inside a photo-booth for better
lighting conditions.

Similar to the simulation arm, training data was obtained
through the described quasi-static motor babbling algorithm.
The training data was not augmented to speed up the learning
progress. The maximum control voltage was set to 3V for
all chambers which correspond to 150KPa, the chamber’s
pressure limit. As before, random shape trajectories were
generated by adding stochastic pressure values ∆q multi-
plied by the Sigmoid function (Equation 10) to the current
pressure value qi. The parameters a, t50, tr all had the
value of 1. These were also determined empirically. A new
trajectory is generated every 5 seconds. Due to the multi-
plexing of the DACs, the fastest control frequency allowable
is at 2.7Hz. The STIFF-FLOP has a tendency to bend more
in its lower module compared to the upper section due to
the influence of gravity on the whole assembly. The upper
module also houses the three actuation pipes of the lower
section which makes it stiffer. Similar to the simulation goal-
babbling, state images I were therefore obtained at a rate of
2.7Hz and were subsequently down-sampled to 0.27Hz for
the training data, resulting in approximately 1200 training
images. It took approximately an hour and 30 minutes to
gather the whole training data including the setup time. The
training took approximately 2 hours using the workstation.
The network takes an average of 0.002 seconds to process
the image inputs. The state images were cropped, grey-
scaled, and resized to 128× 128 followed by concatenation
to form the individual training samples. As done previously
with the simulation setup, the output of the network, which
corresponds to the six actuator inputs for the next time step
qi+1, is used to update qi. This is then transformed into

8



1

iD cpD

cD

rD
c

sD

CROSS-SECTIONAL DIMENSION OF THE SOFT ROBOT

ValueSymbol Description

rD Diameter of the soft robot.

Unit

[mm]11.5

iD Diameter of the central  channel. 4.5 [mm]

cD Diameter of the actuation chambers. 1.5 [mm]

Diameter of the chamber position. 8.0 [mm]cpD

sD Diameter of the slots. 1.5 [mm]

1 Angle between two adjacent chambers. 60.0 [deg]

c Wall thickness of the chambers. 0.5 [mm]'A A− −

Step 1 Step 2 Step 3 Step 4 Step 5

Chamber 

connection 

pipes

Syringe injection

Inner chamber 

mouldsMain chamber 

moulds

Reinforced 

fibre

Alignment 

slotsWall moulds

Channel mould

Positioning stopper

Ecoflex 00-50

Dragon Skin 30

Actuation

 pipes

(a)

(b) (c)

Connection plates

Actuation pipes

1

iD cpD

cD

rD
c

sD

CROSS-SECTIONAL DIMENSION OF THE SOFT ROBOT

ValueSymbol Description

rD Diameter of the soft robot.

Unit

[mm]11.5

iD Diameter of the central  channel. 4.5 [mm]

cD Diameter of the actuation chambers. 1.5 [mm]

Diameter of the chamber position. 8.0 [mm]cpD

sD Diameter of the slots. 1.5 [mm]

1 Angle between two adjacent chambers. 60.0 [deg]

c Wall thickness of the chambers. 0.5 [mm]'A A− −

Step 1 Step 2 Step 3 Step 4 Step 5

Chamber 

connection 

pipes

Syringe injection

Inner chamber 

mouldsMain chamber 

moulds

Reinforced 

fibre

Alignment 

slotsWall moulds

Channel mould

Positioning stopper

Ecoflex 00-50

Dragon Skin 30

Actuation

 pipes

(a)

(b) (c)

5
9

 m
m

1
1

8
 m

m

'AA

Connection 

plates

Actuation pipes

11.5 mm

Fig. 9: Details of the miniaturised soft robot referred to as STIFF-FLOP manipulator. (a) The five-step fabrication process.
Step 1: 3D-printed moulds are assembled, with the fibre densely wrapped around the main chamber moulds; Step 2: Ecoflex
00-50 is poured to the mould assembly to make the main body of the robot; Step 3: Ecoflex 00-50 is injected to the chambers
after the removal of the main chamber moulds, smaller moulds are inserted to make the inner layers of the chambers; Step
4: the bottom and top sides are sealed using Dragon Skin 30, after adding the actuation pipes and connecting two adjacent
chambers; Step 5: the moulds are taken apart to complete the fabrication. (b) The dimensions of the final robot prototype.
Three slots are reserved for positioning the actuation pipes. (c) A two-segment robotic manipulator connected in series
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Fig. 10: Experimental setup for controlling the STIFF-FLOP continuum arm.

a 2D matrix of size 128 × 128 (through repeating values)
and inserted as a layer between states Ii and Ii+1 making
it feasible to input it back into the convolutional network
controller.

The same network architecture and training parameters
were used, however, the network was only trained for 500
epochs due to the lower number of training samples. The
complete control diagram of the experimental setup with
the proposed CNN IK solver is shown in Fig. 11. A low
pass filter is used on the output of the IK solver, where the
difference between the predicted force qi+1 and the current
force qi is multiplied by a small gain value, which is then

subsequently added to qi+1 to form q′
i+1. The low pass filter

was used to ensure that the arm remains quasi-static during
movement. The current state Ii is obtained via the camera
feedback. q′

i+1 is also fed back as the current force inputs
for the next iteration.

VI. EXPERIMENTAL RESULTS

To test and validate the performance of the image-based
IK solver on the real STIFF-FLOP arm, four experiments
were conducted. The first was to qualitatively validate the
controller for six random trajectories taken from the valida-
tion dataset. Similar to the simulation experiments, the arm
starts in a straight home configuration where all the pressure
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Fig. 11: Control diagram of the closed-loop kinematic shape
controller.

actuation input are set to 0V . Fig. 12 shows the ability of the
solver to generalise IK solutions and reach arbitrary target
shapes when starting from the home position. The CNN IK
controller is able to accurately determine the correct pose of
the end-effector, such as pointing towards or away from the
camera, using only the low-resolution 2D input images and
the position of the grey tip of the robot (see Fig. 9). This
gray tip essentially acts as a feature point. Non-uniqueness
of the 3D space projection to the 2D image-plane can occur
when the robot is bending directly away from the camera
(where the tip is fully occluded by the body), however this
issue can be addressed by using additional feature points and
multiple camera views in future work.

Fig. 13 shows the average error for the six target
shapes over time. The errors were obtained by using Otsu-
thresholding [83] on Ii+1 and Ii to obtain their masks, and
subtracting the difference (see Fig. 15b). This was done to
remove the effects of noise caused by the flicker of the
camera and the slight variances in the lighting conditions.
These errors were then normalised and averaged. This metric,
however, does have limitations. As this metric uses image
masks, in some cases such as when the robot is facing
directly towards the camera, non-unique 3D projections can
also occur. However, the six target shapes shown in Fig. 12
do retain their uniqueness when projecting from 3D to 2D,
even after obtaining the image mask. For instance, a posture
bending towards the camera will appear larger. This makes
the masking metric suitable for evaluating the performance of
the controllers on the real robot, and using multiple camera
views will enhance its robustness. In the future, work will
be done to further improve this metric by incorporating 3D
shape sensing technologies.

From Fig. 13, it can be seen that on average, the error
quickly converges at around 10 seconds or 27 time steps.
The relatively high error standard deviations compared to
the repeatability test in the following experiment (see Fig.
15c) shows that the accuracy of the controller is dependent
on the desired target shape. The starting average mask error
between the robot’s straight position and the target shape was
0.0354. At the final step, the average error value dropped
to 0.0133, which represents a 63% decrease in error. This
demonstrates that the control system was able to successfully
match the target, resulting in a reduction in error as seen in
Fig. 12. It is important to reiterate that error reduction arises

implicitly based on the learning formulation. However, the
error does not reach zero, as there are minute differences
between the resulting final and the desired target states, as
seen from Fig. 12. Factors such as the lighting condition,
slight changes in the table position with respect to the
camera, sub-optimal learning, non-linearities in the physical
material properties such as hysteresis, imperfect air sealing,
and the non-uniqueness of the solutions can contribute to the
observed error.

Unlike the simulation environment, the real-world data is
filled with noise and variabilities, even with the arm being
contained in a semi-closed system. An example of this is the
differing average lighting intensities between the target and
feedback images for the six shapes given in Fig. 12, which
can be observed from the histogram in Fig. 14. From this
figure, it can be seen that the feedback states are generally
darker than the desired target states. From the supplementary
video, these variabilities are even more pronounced. Camera
flicker was found to occur due to the frequency difference
between the camera and the light source. Additionally, the
supplementary video also shows that there are changes in
the background shadows between the target and the camera
feedback states due to misalignments. It is important that the
controller is able to tolerate changes in the lighting condition
and background states, and this is indeed observed in our
experimental results.

The second experiment was to validate the repeatability
of the controller. Using one of the target shapes from Fig.
12, given in Fig. 15a, 10 repeatability tests were performed.
Errors between the current state Ii and target state Ii+1

were obtained using the Otsu-masking subtraction method
described before (see Fig. 15b). Fig. 15c shows that although
there are slight variances as it moves towards the target, the
arm is able to converge to a low final error with reasonable
precision, as indicated by the small standard deviations in
error. This is also evident in Fig. 15d, which highlights
the convergence of the valve control voltages to their final
values. The low standard deviations of the final states control
voltages after 60 seconds as given in Table III also proves
the repeatability of the controller. Higher variability before
convergence shows that the trajectory taken by the soft arm
is not unique, even though the starting condition is the
same. For this particular shape, it takes approximately 30
seconds which corresponds to 81 time-steps to reach the final
shape. Three times longer than average. This is likely due
to the non-unique solutions generated by the controller. The
oscillations in the mean error are likely due to the imperfect
pneumatic sealing, variation and lighting as well as the other
factors mentioned previously.

The third experiment was to determine the effects of
adding translation noise to the feedback Ii of the solver. In
order to have full accurate control of the translation, image
feedback states were shifted to the right rather than moving
the camera itself. The feedback images are also cropped
and padded by white 255 pixels as they are translated to
the right. From Fig. 16, despite the loss in accuracy as the
feedback states are translated, the controller remains capable
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Target State overlayed with the Final Feedback State

Fig. 12: Examples of the target (in red) and final resulting states (in cyan) using the proposed shape controller on the
STIFF-FLOP arm. Intersecting regions are shown in black. The images are taken directly from the convolutional network
inputs of size 128× 128. See the supplementary video for the robot trajectories.

of discovering a solution that captures the overall form of
the target. Note that no data augmentation was done to the
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Fig. 13: Average mask error between the target and the
feedback states for the six target shapes given in Fig. 12 over
the duration of 60 seconds. Mask errors were obtained by
the image subtraction between Ii (feedback) and Ii+1 (target)
states after Otsu-thresholding, followed by normalisation and
averaging of the absolute image errors. On average, the
controller converges to the final shape after 10 seconds.
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Fig. 14: Histogram of the average target and final feedback
images for the six targets in Fig. 12. Pixel values of the target
and final feedback states were grouped into sub-divisions of
5 resulting in 51 bins. These bins were averaged accordingly
to the six target shapes. On average, the final feedback states
are darker than the target states.

training data of the physical system to make the controller
robust to these translations, and the emergent behaviour
arises from the learning architecture and data structure.

The fourth and final experiment was to validate the gen-
eralisability and applicability of the controller. Here, we
provide hand-drawn targets to the controller rather than
actual images of the robot. Fig. 17 shows how the hand-dawn
target shapes were made on top of the background image.
First, a template without the arm was created in order to
match the image environment. This template was then loaded
into Microsoft paint. Random target shapes were then created
using the line tools. These images are then given target to
the robot. No retraining is done for the experiment.

Qualitative results for the six random hand-drawn target
trajectories are given in Fig. 18. Even though the drawn
targets are user-defined without consideration of the robot
kinematics, the controller was still able to achieve qual-
itatively similar configurations. We have deliberately kept
the hand-drawn target images ambiguous, omitting tip-like
feature points, to test the generalizability of the network. The
solver was also able to automatically determine a suitable
pose for the robot, despite not being explicitly given in the
target states. For example, in the third image in Fig. 18, the
given target state is a short line. As there were no feature
points, the controller was able to reasonably generalise this
to a shape that is pointing away from the camera. Similar
to the other experiments, the controller was also able to
reduce the error between the target and feedback states
without any intervention and was also able to tolerate varying
thickness in the drawn target shapes. Overall, this shows the
generalizability of the controller due to the deep learning
architecture. This also provides the user with an intuitive

TABLE III: Means and Standard Deviations of Final Pneu-
matic Voltages for the Repeatability Test in Fig. 15d

Valve Voltage Mean with Standard Deviation (V)
Valve 1 2.44± 0.05
Valve 2 2.51± 0.03
Valve 3 1.70± 0.04
Valve 4 2.61± 0.16
Valve 5 0.69± 0.13
Valve 6 2.39± 0.18
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Fig. 15: Repeatability of the IK CNN solver for an example target shape. (a) Target state (left) and resulting final state
(right). (b) Shape state masks for calculating the errors. (c) Average mask errors of 10 repeatability tests over 60 seconds.
(d) Average control voltage of the 10 repeatability tests for the six proportional regulator valves. The final voltage means
and standard deviations are given in Table III.

way to control the shape of the soft robot.

VII. DISCUSSION AND CONCLUSIONS

In this article, we introduce an image-based deep-learning
kinematic controller for continuum robots. The controller
is able to realise desired arbitrary target shapes given only
image inputs with high accuracy and minimal errors. Thus,
giving direct authority over not only the robot’s tip but also
its shape and configuration. We have also shown a simple
yet elegant technique of teleoperating the soft continuum
arm, where 2-D hand-drawn images are used to control the
robot’s 3-D configuration. This is much more user-friendly
and intuitive compared to analytical methods which require
plenty of parameters to define the arc and configuration
for each of the robot’s section [15], [16], [16], [17], [23],
[26]. Hence, due to the generalizability of deep networks,
the controller is able to realise an appropriate pose given
a hand-drawn target without any user guidance or manual
consideration of the robot’s kinematics.

Target State overlayed with Translated Feedback States
No translation 5 Pixels 10 Pixels

15 Pixels 30 Pixels 50 Pixels

Fig. 16: Resulting final shape states for an example trajectory
after translating the image feedback states Ii to the right in
the X direction.

Our control system is versatile and can be applied to any
type of continuum robotic manipulator, regardless of the
actuation method, materials, geometry, kinematics and the
number of degrees of freedom, as evidenced by our simu-
lations and physical tests with vastly different robots. Our
method is also applicable to robotic manipulators with lower
degrees such as robotic fingers or manipulators, provided
they are relatively easy to draw. Similarly, our controller
is also able to operate regardless of the relative orientation
between the robot and camera as shown by our results.
Furthermore, our kinematic controller has a simple learning
process, as demonstrated in our results. In our work, it took
approximately 3 hours to generate samples, train and deploy
the controller on the STIFF-FLOP manipulator. We verified
the efficacy and robustness of the image-based controller in
both simulations and in reality. In the simulation, it was
seen that the deep CNN network is able to tolerate noise
in the image feedback such that the desired shape is reached
when trained with data augmentation techniques such as
random translations, rotations and partial obstructions. More
importantly, it was able to compensate for drastic changes in
mechanical properties for up to 15% reduction in stiffness,
whilst maintaining the accuracy of the resulting final shape
to the desired target shape.

In the physical setup, the controller was shown to tol-
erate noise and variabilities such as inconsistent lighting
conditions and translational noise in the image feedback
inputs even without any training data augmentation. Based
on our simulation experiments, however, we have shown
that data augmentation can increase the performance of the
controller under the presence of noise. Future work will
hence conduct a more thorough analysis of the optimal
level of data augmentation necessary to achieve robustness
of physical systems to feedback noise. The controller also
requires minimal sensors, needing only an inexpensive and
off-the-shelf camera without requiring any calibration. These
are major advantages over sensors used in current work
such as optical markers for end-effector tracking which are
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1. Load in background template with manipulator
edited out into Microsoft's Paint3D

2. Use the line tools to create
the desired target shape 

3. Edit the line into the desired
target shape state 

Fig. 17: Steps for the hand-drawn target shapes.

Drawn Target State overlayed with the Final Feedback State

Fig. 18: Examples of the drawn target (in red) and final resulting states (in cyan) from the CNN controller using the
STIFF-FLOP arm.

expensive and require calibrations [52]. As the camera is
an external form of sensing, it removes the need for addi-
tional fabrication steps, manual labour, and the challenges
of integrating sensors, particularly in the case of soft robots.
The same applies to the process of adding sensors to a pre-
existing robot. Our controller also eliminates the requirement
for additional steps and algorithms to process embedded
sensing.

Model-based prior works have relied on simplifications
and assumptions such as sectional constant curvature, pure
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Fig. 19: Average mask error between the hand-drawn targets
and the feedback states for the six target shapes given in
Fig. 18 over the duration of 60 seconds. Mask errors were
obtained by the image subtraction between Ii (feedback)
and Ii+1 (target) states after Otsu-thresholding, followed by
normalisation and averaging of the absolute image errors. On
average, the controller converges to the final shape after 10
seconds.

symmetry in the structure, and minimal to no torsion in the
exhibited actuated shapes. These assumptions severely limit
the possible shape configurations and the scalability to more
complicated continuum arms, hence affecting the accuracy
of shape controllers based on such models [68]. Feedback
control in these cases also involves an additional stage,
where visual data has to be segmented and parametrized for
comparison to the analytical model. The advantage of our
technique is the whole use of image-state representations
of both the task and the configuration space. This allows
for high-dimensional and hyper-redundant descriptions of
the arm which encodes all of these inherent yet implicit
structural, mechanical and material properties of the arm,
which is wholly controllable in 2-D. Therefore, there is also
no need to formulate specific mappings of the actuator space
to the joint space that is typical of model-based controllers
[15].

Counter-intuitively, the mapping between the shape con-
figuration of the arm and the IK solutions is also not unique.
This is greatly affected by the initial starting configuration,
the material and structural properties, the noise in the image
data, and even temporal dependence. For example, the same
target shape is reachable from infinitely many directions. The
ability to tolerate this redundancy is another major advantage
of our local inverse kinematic formulation compared to
other model-free global IK techniques such as goal babbling
[51] which learn particular and specific solutions to the
IK problem [49]. As shown in Fig. 15c, there are slight
fluctuations in the trajectory leading to convergence for the
same target shape, occurring between 10 to 30 seconds. This
is due to two physical factors. The pneumatic tubes had slight
leaks, which resulted in unexpected and random vibrations
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when the pressure was varied. Additionally, the STIFF-FLOP
is a small silicone-based soft robotic system. Movement is
a dynamic process due to the body’s mass, combined with
the imperfections in the pneumatic system, causing the robot
to act like a 3D pendulum. Despite these fluctuations, our
controller was able to bring the robot to the desired shape
and hold it once it stabilized, which was consistent with our
simulation results where the robot was able to handle changes
in mechanical stiffness (refer to Fig. 8). A direct solution to
this issue of oscillation would be to reduce the low pass filter
gain and the control frequency, at the expense of speed to
convergence.

Enhancements to the shape control accuracy, speed and
robustness can be made to both the control system and
the arm design. One way to improve is by gathering more
training data through image augmentation and a diverse
range of backgrounds and foregrounds typically used in
computer vision. Additionally, using higher-resolution state
images and optimizing the network architecture and hyper-
parameters will increase the controller’s resistance to noise
and decrease steady-state errors. The use of well-established
CNN architectures like ResNet [84], which have demon-
strated effective performance in noisy environments, will
also be taken into consideration. The control frequency
is currently bottle-necked by the multiplexed DACs. The
network takes 2 ms to process the image inputs, thus faster
control frequencies can be achieved by replacing DACs
with a better stand-alone Digital-Analog board. With faster
control frequencies, our work can be extended to dynamic
shape control by combining image state representations and
convolutional networks with recurrent neural networks as
was done in prior work for continuum soft robots [55]. The
issue of non-unique projections will also be addressed using
additional feature points as well as multiple camera views in
future work. Data augmentation would not address the issue
of full occlusions, which are common in medical scenarios
such as minimally invasive surgery or endoscopy. A direct
avenue of future research could be to leverage CT scans
previously performed on medical continuum robots [85].
Alternatively, embedded sensors within the arm that permit
3D shape estimation can also be incorporated.
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