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ABSTRACT 

 
We introduce a novel, intuitive user interface for continuum manipulators 

through the use of various joystick mappings. This user interface allows for the 

effective use of continuum manipulators in the lab and in the field. A novel 

geometric approach is developed to produce a more intuitive understanding of 

continuum manipulator kinematics. Using this geometric approach we derive the 

first closed-form solution to the inverse kinematics problem for continuum robots. 

Using the derived inverse kinematics to convert from workspace coordinates to 

configuration space coordinates we develop a potential-field path planner for 

continuum manipulators. 
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CHAPTER ONE 
INTRODUCTION 

 
 

For decades robots have been utilized in industry to automate tasks on 

production lines which has allowed for a substantial increase in productivity and a 

reduction in cost for manufacturers. Rigid-link robots have been well suited to theses 

tasks where the desire for repetitive motions to be performed continuously at high 

speeds has allowed for the working environments to be designed around them. 

There are, however, numerous applications where it is desirable to utilize robots to 

perform tasks in either uncontrolled environments or in environments that are not 

well suited for majority of robots used in industry.  

Search and rescue efforts as the result of natural disasters [1], mining accidents 

[2], and terrorist attacks [3-8] present tasks involving extreme risk to human rescue 

workers. Performing these tasks requires the ability to maneuver in unknown, 

potentially dynamic, and highly confined or cluttered areas. Traditional rigid-link 

robot manipulators are not well suited to these applications. Their inflexible 

construction of rigid-links connected by rotational and/or prismatic joints requires a 

large number of degrees-of-freedom (DOFs) in order to be capable of fully 

exploring significantly confined spaces. The size, weight, and inflexibility of typical 

rigid-link robots developed for industry would present safety risks if used in search 

and rescue efforts by risking further collapse of damaged structures. Their ability to 

penetrate congested areas is also limited by the length of their rigid-links. 

As no system has yet been developed which is capable of autonomously carrying 

out the high-level tasks needed to perform operations such as search and rescue 
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within collapsed structures, much of the planning and execution of these tasks has 

been left to human operators. The increase in the DOFs required to perform these 

tasks with rigid-link robots results in a corresponding increase in the complexity of 

their operation. Robotic devices capable of performing such tasks with fewer DOFs 

(and thus less complex operation), deforming to their environment, and 

manipulating a variety of objects without specialized end-effectors are needed. 

Continuum-style robots are one such class of robots being explored to meet this 

demand. 

Continuum-style robots, like the one shown in Figure 1.1, consist of flexible 

links/limbs that are capable of bending along their length (and in some cases are 

capable of extension as well) [9]. These robots, biologically inspired by cephalopod 

(octopus , squid) arms/tentacles and elephant trunks, can be constructed to be highly 

compliant, making them capable of conforming to their environment [10]. Many of 

the prototypes developed [10-19] have constructions that result in (relatively) light-

weight manipulators. Some commercial continuum manipulators [20-22] have even 

been successfully applied to tasks such as aircraft inspection [23] and repairs within 

nuclear reactors [24]. However, this unique robot structure still faces new and 

challenging problems in its practical operation. 
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Traditional manipulators possess a one-to-one mapping of actuators to joints, so 

that moving one actuator causes motion only at that joint, leaving the relative 

positions and orientations of the remaining joints unchanged. In contrast, each 

section of a continuum robot is typically controlled by two or three actuators and 

possesses two or three degrees of freedom in a many-to-many mapping. Producing 

useful movements such as rotation, bending, or extension requires coordinated 

movements of all actuators for a section. Furthermore, the coupled structure of the 

actuators in a continuum section presents unique limits in their configuration space 

Figure 1.1 OctArm VI Continuum Manipulator 
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and workspace [25] that must be understood by any operator. The flexibility of 

materials that are typically utilized to construct continuum manipulators also gives 

rise to challenges in compensating for their compliance.  

The use of continuum-style robots in Urban Search and Rescue (USAR) 

applications has be curtailed by the fact that their large number of DOFs coupled 

with their non-anthropomorphic structure “make teleoperation difficult and 

cognitively fatiguing [26].”  Alleviating cognitive fatigue requires identifying synergies 

as described by Bernstein in [27] to present to the operator that will allow for a 

clearer mental model of the robot as well as developing an intuitive interface that will 

allow the operator to easily command the robot. 

Chapter 2 introduces a new method of providing the operator of continuum 

robots with an intuitive interface through the use of joystick mappings. Section 2.1 

describes how to perform simple ‘housekeeping’ of the joystick in order to simplify 

the development of various mapping methods as well as how the selection of 

operating modes and active sections is performed. Section 2.2 describes various 

novel user modes (mapping methods) that can be used to operate the continuum 

robot using the joystick. Section 2.3 describes the results from use of the various 

modes in field exercises. 

 Chapter 3 introduces a new approach to computing the forward positional 

kinematics for continuum manipulators. This new geometric approach is more 

straight-forward and intuitive than previous methods developed and accurately 

reflects the structure of continuum manipulators. This approach also provides for 

the first time an exact, closed-form solution to the inverse kinematics problem for 

continuum manipulators.  
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Chapter 4 uses the kinematics model derived in Chapter 3 to develop a novel, 

potential-field based path planner for continuum manipulators. The necessary 

potential fields needed to guide a manipulator towards a goal configuration while 

avoiding actuator limits and workspace obstacles are described in section 4.2. Section 

4.3 presents and discusses the results for a simple obstacle avoidance experiment 

using a greedy path planner and the potentials described in section 4.2. 

Chapter 5 reviews the results of this thesis and examines the potential for future 

research in these areas.  
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CHAPTER TWO 
OPERATOR INTERFACE 

 
The structure of continuum robots presents major difficulties to overcome in 

designing a human-machine interface which gives an operator efficient and effective 

command over their operation. Many traditional rigid-link robot arms can be 

intuitively visualized by or mapped to the human arm, providing an easy and obvious 

method of operation. However, with continuum robots the body part closest to 

accurately depicting the robot’s structure is the human spine, which in most people 

lacks the needed dexterity and control required to perform the movements 

corresponding to more than a single section of a continuum robot. 

The coupled actuation inherent in the design of continuum robot sections 

further complicates this operating task. Traditional manipulators possess a one-to-

one mapping of actuators to joints, so that moving one actuator causes motion only 

at that joint, leaving the relative positions and orientations of the remaining joints 

 

Figure 2.1 OctArm V grasps a water jug, guided by the user interface. 
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unchanged. In contrast, the shape of each section of a continuum robot is typically 

controlled by two or three actuators and possesses two or three degrees of freedom 

in a many-to-many mapping. Producing useful movements such as rotation, bending, 

or extension requires coordinated movements of all actuators for a section. A 

kinematic analysis [28] reveals that the relationship between actuator position and the 

trunk’s shape is a set of coupled, non-linear equations. Therefore, operation of the 

robot by directly controlling individual actuator positions, though feasible for 

traditional robots, cannot be used to effectively control continuum robots. 

I. Interface Device 

We chose a joystick as the principal interface device for the operator to use 

because it is portable, simple, and commonly available. Joysticks are available in 

various sizes and with a wide array of different features. In particular we had good 

experience with the Wingman™ 3D and Extreme™ 3D Pro [29] joysticks from 

Logitech. These joysticks have a three degree of freedom stick (x, y-axes, and twist), 

a throttle/slider bar, seven (in the case of the Wingman™ 3D) or twelve (in the case 

of the Extreme™ 3D) buttons, and an eight-way-directional hat switch. 

The layout of buttons on the joystick enables the user to select a mapping mode 

and which sections of the robot to apply that mode to. The following section 

describes the design of the user interface, along with the analysis necessary to 

normalize joystick input. 

A. Joystick Normalization 

In order to make the joystick outputs easier to work with they are normalized to 

the range [-1, 1] for the x and y axes and for the handle’s rotation, and to the range 
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[0, 1] for the throttle. The normalization for the x and y axes and the handle rotation 

is done via the equation 

( )ˆ

2

center xcenter
center x

rangecenter
x

x xx x
x u x x

xx x

σ
σ

σ

− −−= ⋅ ⋅ − −
− −

    (1) 

where x is the current input from a joystick axis, xcenter is the midpoint on the axis, 

xrange is the distance between the minimum and maximum points on the axis, σx is a 

tunable parameter to change the size of the area around the middle of the axis that 

will be mapped to zero (the ‘dead zone’), ( )u t is the unit step function (defined as 1 

for t >0 and 0 otherwise), and x̂  is the normalized axis coordinate on the range [-1, 

1]. The first term in the equation, center

center

x x

x x

−

−
 can only take on the values 1 and -1 and 

so determines the sign of x̂ . The second term,

2

center x

range

x

x x

x

σ

σ

− −

−
 maps the joystick inputs 

from the minimum to 
center x

x σ− and from 
center x

x σ+ to the maximum to a number 

between 0 and 1, with the minimum and maximum each equating to 1. The last term 

takes care of inputs that fall within the range of [
x

σ− ,
x

σ ] and maps them to 0.  

The throttle is normalized to the range [0, 1] using a much simpler equation: 

min

max min

ˆ 1
z z

z
z z

−
= −

−
         (2) 

where z is the input coordinate from the joystick throttle/slider and zmin and zmax are 

the minimum and maximum values, respectively. The term min

max min

z z

z z

−

−
normalizes the 

input to the range [0, 1] and by subtracting that value from 1 we flip the orientation 

of the slider so being pushed all the way forward equates to 1 and being pulled all the 

way back equates to 0.  
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This normalization of the device allows us to more easily apply it to the various 

mapping methods described in section two. 

B. Robot Orientation 

All of the mapping methods, introduced in section two, assume that the robot is 

oriented such that 0 is to the right, π/2 is forward (away from the operator), π is to 

the left, and 3π/2 is towards the operator. However that is not always the case in 

practice due to the way real manipulators are constructed and/or mounted. Air-

Octor is oriented such that 0 is to the forward and left, π/2 is forward and right, π is 

towards the operator and to the right, and 3π/2 is toward the operator and to the 

left. The change in coordinate systems requires a 30-degree rotation about the z-axis 

and a 180-degree flip about the y-axis. This transformation can take place in two 

different places in the control system in order to correct for the difference in 

orientation. Before applying any of the mapping methods, multiplying the 

transformation matrix 

3 1
0

2 2

1 3
0

2 2

0 0 1

 −
 
 
 
 
 
 

− 
  

 by the vector 

0

x

y

 
 
 
  

 yields a linear 

transformation that can be applied to the joystick coordinates to produce a new set 

of coordinates that are aligned with the robot’s true orientation. This produces the 

result: 

3 1

2 2
x x y

−
′ = ⋅ + ⋅         (3) 

1 3

2 2
y x y′ = ⋅ + ⋅         (4) 
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The orientation can also be corrected for after applying the mapping methods to 

the joystick coordinates by adjusting the value of φ  given. 

C. Mode Selection 

There are many possible options available for switching between different 

mapping methods (see next section). In order to keep the majority of operations on 

the joystick, we utilized the eight-directional hat switch to switch between operating 

modes. By holding down a button on the base of the joystick and pressing the hat 

switch in one of eight directions the system will automatically switch to the 

corresponding mapping mode. 

 

D. Activating Sections 

In order to allow the operator to select which section(s) of the manipulator to 

move without having to remove their hand from the joystick we utilized four 

buttons located on top of the joystick. Two buttons situated to the left of the hat 

switch are used to select a ‘base’ section. By pressing the button located on top all 

currently activated sections (those under control at the present time) are deactivated 

Figure 2.2 Layout of joystick buttons 
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and the ‘base’ section is moved up (towards the base of) the manipulator. 

Conversely, pressing the bottom button causes the ‘base’ section to move down the 

manipulator arm. Two buttons situated to the right of the hat switch are used to 

extend the ‘base’ section by activating adjacent sections. When only the ‘base’ section 

is active, pressing the top button activates the section above the ‘base’ section. 

Pressing the top button again will activate the section adjacent to the previously 

activated one. At this point pressing the bottom button will deactivate the top most 

active section, continuing to press the bottom button will continue to deactivate the 

adjacent sections until the operator is back to the ‘base’ section; afterwards it has the 

same effect as pressing the top button except that the sections located below the 

‘base’ section will become active. 

II. Mapping Methods 

A. Notation 

 Each of the following described mapping methods are defined and 

implemented in discrete time using the given notation: 

• ( )i nκ , ( )i nφ  and ( )is n  are the curvature, orientation, and length, respectively, 

for the ith section of the manipulator on the nth iteration of the control loop. 

• ( )x n  and ( )y n  are the inputs from the joystick’s x and y axes, respectively, 

normalized to the range [ ]1,1−  and ( )z n  is the input from the joystick 

throttle/slider, normalized to the range [ ]0,1 , on the nth iteration of the 

control loop. 
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• max i
κ  is the maximum (magnitude) curvature, min i

s  and max i
s  are the minimum 

and maximum lengths allowed, respectively, for the th
i section of the 

manipulator. 

• κδ , φδ  and δ  are user determined parameters which are largely system 

dependent. 

B. Position Mode 

Position mode for a single section is defined by equations  

( ) ( ) ( )2 2

max1i in x n y nκ κ+ = + ,      (5) 

( ) ( )
( )

1
1 tan

i

y n
n

x n
φ −  

+ =   
 

,       (6) 

and 

( ) ( ) ( )min max min
1

i i i i
s n s z n s s+ = + ⋅ − .      (7) 

With respect to the to manipulator section’s curvature and orientation, and the x and 

y input coordinates, the mapping is a simple rectangular to polar conversion from 

the joystick’s configuration space to the manipulator section’s configuration space. 

 

 

 

Figure 2.3 Illustration of position mode mapping. Polar coordinates of the joystick 

determine trunk curvature κ  and angle of curvature φ . 
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Assuming both the coordinate system of the joystick and the robot are oriented 

in the same manner, these equations create a mapping that causes the manipulator 

section to curve in the direction in which the joystick is pushed with the amount of 

curvature determined by how far away the joystick is from being centered, as 

illustrated by Figure 2.4. Position based operation gives the user command over the 

(relative) velocity of the section through manipulating the rate of change in the 

joystick’s configuration (i.e. fast movements of the joystick result in fast movements 

of the robot and slow movements of the joystick result in slow movements of the 

robot). This control method also allows the user to influence the path taken by the 

robot to move from one configuration to another by the choice of different paths 

used to move the joystick from one configuration to another. 

One method of expanding the concept of manipulating a single section of a 

continuum arm with this mapping into manipulating multiple sections is to replicate 

the desired configuration for one section and apply it to multiple sections, effectively 

turning all active sections into one, larger, single section. Providing for a means to 

select which sections of the arm are active gives the user a method for controlling 

the entire arm that, while can be tedious in practice, is manageable. However, this 

method has some drawbacks. 

Using the arm in this manner to perform any useful task will require 

manipulating a section into a desired shape, then switching to another section, and 

then eventually switching back to the previously moved section. When beginning to 

move the section again, if the joystick is not in the exact configuration that maps to 

the current configuration of the desired section, once activated, the manipulator 

section will jerk to the configuration currently represented by the joystick. In 
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situations where slow, careful, and precise movements are required (such as handling 

fragile objects) this could result in task failure. This method of operating a 

continuum arm also prevents the operator from performing complex movements 

requiring multiple sections to move in different directions simultaneously. Such 

movements could be reproduced by making many smaller movements section by 

section, but having to operate the arm in this manner becomes highly inefficient. 

C.  Independent Velocity Mode 

The independent velocity mode mapping is defined by the equations  

( ) ( ) ( )1
i i

n n x n κκ κ δ+ = + ⋅ ,       (8) 

( ) ( ) ( )1
i i

n n y n φφ φ δ+ = + ⋅ ,       (9) 

and 

( ) ( ) ( )min max min
1

i i i i
s n s z n s s+ = + ⋅ − ,      (10) 

where κδ  and φδ  are used to determine how fast the manipulator section can move. 

This gives the user command over the velocities of the robot parameters κ  and φ  

such that the joystick x -axis will cause the curvature to increase or decrease at a rate 

proportional to the distance the joystick was moved while the joystick y -axis will 

affect the angle of orientation in the same manner. 

This approach gives the user the ability to execute movements with much higher 

precision than in position mode and the ability to directly vary the speed at which the 

robot moves. This method can also produce a much finer set of configurations than 

position mode using the joystick inputs because it utilizes the tunable parameters κδ  

and φδ  where position mode is limited by the resolution of the joystick. However, 

while independent velocity mode gives the user more precise movements, the 
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relation between joystick position/movement and manipulator section movement is 

sometimes counter-intuitive, as in the following scenario. 

When starting with a section in its ‘home’ position (zero curvature, hanging 

down vertically) the relation between joystick movement and manipulator section 

movement is intuitive as pushing right on the joystick will cause the section to curve 

towards the right, and then pushing up or down on the joystick will cause the section 

to rotate forward or backward. But, when the section is curved to the left, pushing 

right on the joystick causes the section to curve even more to the left and pushing 

forward on the joystick will cause it to rotate backward (towards the user) instead of 

forwards as it would if curved in the opposite direction. Also, without feedback 

relating the exact configuration of the robot it can be difficult to determine the 

section’s angle of orientation when its curvature is zero. This can cause the operator 

to not know how the robot will move when its curvature is increased. 

D. Coupled Velocity Mode 

Using the conversion from rectangular coordinates of the joystick to the polar 

coordinates of the manipulator section, a method that combines the features of 

position mode and velocity mode is next constructed to provide the user with a 

mapping that allows for more intuitive and precise movements. The coupled velocity 

method is defined by 

( ) ( ) ( )( ) ( ) ( )( )22

1i ix iyn n x n n y nκ κ δ κ δ+ = + ⋅ + + ⋅ ,    (11) 

( )
( ) ( )
( ) ( )

1
1 tan

iy

i

ix

n y n
n

n x n

κ δ
φ

κ δ
−

+ ⋅ 
+ =   + ⋅ 

,      (12) 

and 

( ) ( ) ( )min max min1i i i is n s z n s s+ = + ⋅ − ,      (13) 
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where 

( ) ( ) ( )( )cos
ix i i

n n nκ κ φ= ⋅ ,       (14) 

( ) ( ) ( )( )sin
iy i i

n n nκ κ φ= ⋅ ,       (15) 

and δ  is a user determined parameter that adjusts how fast the active section is able 

to move. This set of equations transforms the polar coordinates of the active 

section’s configuration into rectangular coordinates, adjusts each rectangular 

coordinate according to the current joystick configuration, and then transforms them 

back into polar coordinates. 

In a sense, this mapping uses the joystick inputs x and y to create a ‘velocity 

vector’ in the configuration space of the manipulator section and applies this vector 

to the section’s current configuration, producing a new configuration which is at 

most 2 δ⋅  away during each iteration. From the operator’s perspective this 

 

 

 

 

Figure 2.4 Illustration of coupled velocity mode mapping, viewed from two different 

angles. The 45°  angle of the joystick causes the trunk to move along the plane 

parallel to the direction of the joystick. 
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operating mode appears to allow one to “push” or “pull” the end-point of the 

section in a two-dimensional plane, as shown by Figure 2.5, while the end-point’s 

vertical location is still determined by the robot’s kinematic structure given the 

current curvature, orientation, and length. 

Coupled velocity mode combines the best features of two previously described 

mapping methods. This method allows the operator to directly determine the 

velocity of the robot giving the ability for precise control while maintaining an 

intuitive feel as the relationship between the robot’s movements and the movements 

of the joystick are always the same. This mode became the default mode for practical 

operation of the Clemson continuum robots. However, it still shares some of the 

disadvantages when trying to operate multiple sections together. 

 E.  Velocity Mode for Multiple Sections 

Both velocity mode methods are non-trivial to modify in order to apply them 

towards controlling multiple sections of a continuum arm simultaneously. In the case 

of any number of adjacent sections with the same configuration, applying either 

velocity method to each section simultaneously will result in all (adjacent) active 

sections moving as though they were one single section. However, applying either 

method to adjacent sections that do not have the same configuration, and may in 

general have very different configurations, simultaneously will give rise to utter 

confusion as it becomes increasingly difficult to understand how every active section 

of the robot will respond to the same joystick input. 

Given that a key user task is to use the continuum arm to perform whole-arm 

grasping, it is reasonable to assume that any human operator using multiple sections 

simultaneously would desire to operate them together in a manner similar to 
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operating a single section. This means that active sections need to have the same 

configuration, or at least similar configurations. Using this assumption, to manipulate 

multiple sections at the same time we can determine the average (mean) curvature 

and orientation, apply the appropriate velocity method to that average configuration, 

and then for each active section apply the current velocity method and apply another 

‘velocity vector’ determined by the distance between the active section’s 

configuration and the (modified) average configuration. As the sections are 

continually moved around they begin to converge, as seen in Figure 2.6. In the 

following equations u(t) represents the unit-step function and N denotes the number 

of active manipulator sections. For the independent velocity mode the following 

equations illustrate the above approach. 

First, the mean configuration of all the active sections is computed and the 

independent velocity mapping is applied by  

( ) ( ) ( )1 N

avg i

i

n k n x n
N

κκ δ
 

= + ⋅ 
 
∑ ,      (16) 

( ) ( ) ( )1 N

avg i

i

n n y n
N

φφ φ δ
 

= + ⋅ 
 
∑ .      (17) 

Then the average configuration is converted into rectangular coordinates by  

( ) ( ) ( )( )cosavgx avg avgn n nκ κ φ= ⋅ ,      (18) 

( ) ( ) ( )( )sinavgy avg avgn n nκ κ φ= ⋅ .      (19) 

Next, for each active section, the ‘velocity vector’ between section i  and the average 

configuration is calculated by 

( ) ( ) ( )( ) ( ) ( ) ( )( )2 2

max max

cosavgx i i

ix

avg i

n n n
n u x n y n

κ κ φ

κ κ

− ⋅
∆ = ⋅+

+
   (20) 

and 
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( ) ( ) ( )( ) ( ) ( ) ( )( )2 2

max max

sin
avgy i i

iy

avg i

n n n
n u x n y n

κ κ φ

κ κ

− ⋅
∆ = ⋅+

+
   (21) 

where 
max avgκ is the mean of 

max i
κ for all of the active sections. The terms 

( ) ( ) ( )( )cos
avgx i i

n n nκ κ φ− ⋅ and ( ) ( ) ( )( )sin
avgy i i

n n nκ κ φ− ⋅ each find the distance (in the x 

and y rectangular directions) from the average configuration to the current 

configuration of section i and by dividing by 
max maxavg iκ κ+ this value is normalized to 

the range [-1, 1]. The term ( ) ( )( )2 2
u x n y n+ is zero when the joystick is centered and 

one otherwise and so prevents the active sections from moving when the user has 

not moved the joystick. With the ‘velocity vector’ constructed, it can be applied to 

section i  along with the independent velocity mapping by  

( ) ( ) ( )( ) ( ) ( )( ) ( )cosix i k i ixn n x n n y n nφκ κ δ φ δ δ= + ⋅ ⋅ + ⋅ + ∆ ⋅    (22) 

and 

( ) ( ) ( )( ) ( ) ( )( ) ( )siniy i k i iyn n x n n y n nφκ κ δ φ δ δ= + ⋅ ⋅ + ⋅ + ∆ ⋅ .   (23) 

Finally the rectangular coordinates for section i  can be converted back into polar 

coordinates by 

( ) ( ) ( )2 2
1i ix iyn n nκ κ κ+ = + ,      (24) 

( )
( )
( )

1
1 tan

iy

i

ix

n
n

n

κ
φ

κ
−  

+ =   
 

,       (25) 

and 

( ) ( ) ( )min max min
1

i i i i
s n s z n s s+ = + ⋅ − .      (26) 

For the coupled velocity mode, calculating the next set of configurations follows the 

same approach, with only a few small differences.
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Figure 2.5 Illustration of multiple sections converging. 
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The mean configuration of all the active sections is computed the same but the 

mapping is not yet applied: 

( ) ( )1 N

avg i

i

n k n
N

κ = ∑        (27) 

( ) ( )1 N

avg i

i

n n
N

φ φ= ∑ .       (28) 

With the average configuration calculated, it is converted into rectangular 

coordinates and the coupled velocity mapping is now applied as 

( ) ( ) ( )( ) ( )cosavgx avg avgn n n x nκ κ φ δ= ⋅ + ⋅      (29) 

( ) ( ) ( )( ) ( )sinavgy avg avgn n n y nκ κ φ δ= ⋅ + ⋅ .     (30) 

For each active section the ‘velocity vector’ between section i  and the average 

configuration is calculated the same as previously shown in (20) and (21). The next 

step is to apply the coupled velocity mapping and the ‘velocity vector’ to the 

configuration of each active section: 

( ) ( ) ( )( ) ( ) ( )( )cosix i i ixn n n x n nκ κ φ δ= ⋅ + + ∆ ⋅      (31) 

( ) ( ) ( )( ) ( ) ( )( )siniy i i iyn n n y n nκ κ φ δ= ⋅ + + ∆ ⋅ .     (32) 

Finally the rectangular coordinates for section i  are converted back into polar 

coordinates just as in (24) through (26). 

III. Experimentation 

The usefulness of the mappings was demonstrated during March 2005 [30] and 

April 2006 DARPA demos and the Coupled Velocity Mode was evaluated through 

usability experiments in [31]. Photos from the demos are shown in Figures 2.7 

through 2.10. Through the field trials from the DARPA demos it was observed that 
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the human operator used the modes introduced in this chapter to position the 

separate arm sections into a suitable configuration with which to grasp an object. 

Once the arm was in this configuration, the distal sections of the arm were then 

carefully curved in the direction of the object in order to “constrictively” grasp the 

object. The sections used to form the grasp were then no longer modified unless the 

grasp needed to be tightened or loosened. The other sections of the arm were then 

used to either support the grasp or to reposition the object [32]. 

  

Figure 2.6 OctArm grasps a kick-ball guided by the user interface. 
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Experience in operating the OctArm and Air-Octor continuum manipulators 

using the joystick interface has also provided 0.0005, 0.0001, and 0.001 as ‘good’ 

values for δ , κδ , and φδ , respectively, as they provide a good range of slow (but not 

too slow) and fast (but not too fast) movements. These ‘good’ values will vary from 

system to system depending on the rate of the control loop. In later experiments the 

length of each section was fixed to a specific length, freeing up the joystick slider to 

be used to adjust the three δ-values on-the-fly, allowing for more precise operation 

[32]. 

 

 

 

 

Figure 2.7 OctArm grasps an inactive RPG 
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The results of the usability experiments from [31] provided recommendations for 

improving the user interface and subjective data revealing a group of users’ 

preference for the coupled velocity mode over typical end-point control 

accomplished through the use of an inverse Jacobian. This work also showed 

improved results in the use of coupled velocity mode in [31] after a number of the 

previous recommendation had been implemented.  

 

 

Figure 2.8 OctArm holds a PVC pipe with the aid of a high-friction, latex skin. 
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Figure 2.9 OctArm grabs and then drags away multiple air-soft guns. 
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CHAPTER THREE 
CONTINUUM KINEMATICS BY GEOMETRY 

 
Several approaches have been developed to date that address the kinematic 

modeling of continuum manipulators [14, 25, 33-37]. However, the majority of these 

methods provide only approximate solutions to positional and/or orientation 

kinematics or solutions for limited cases. Chirikjian and Burdick reduce the number 

of degrees of freedom needed to control a hyper-redundant robot by fitting it to a 

general mathematical curve in [33-35]. Hannan [37] models the parameters for a 

continuum manipulator as a ‘phantom’ rigid-link manipulator and utilizes standard 

Denavitt-Hartenburg techniques to arrive at a transformation matrix. Jones later 

extends this technique in [25], correcting for previous errors in orientation, to 

incorporate extension (changes in arc-length).  

This chapter introduces a new approach to computing the forward positional and 

orientation kinematics for continuum manipulators. This new geometric approach is 

more straight-forward and intuitive than the methods described previously and 

accurately reflects the structure of continuum manipulators. This approach also 

provides for the first time an exact, closed-form solution to the inverse kinematics 

problem for continuum manipulators.  
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I. Single-Section Kinematics 

A. Forward Kinematics 

For our analysis we model a single section of a continuum manipulator as an arc 

with one end-point,O  fixed to the origin of a right-handed Euclidean frame, the 

other end-point, P  located anywhere in the space, and the center of the arc,C  in the 

XY plane (see Figure 3.1). We assume that the section bends with constant 

curvature. This reflects the physical structure of many continuum manipulators such 

as Air-Octor [19] and the OctArm [38] series of manipulators, which we have 

developed. We parameterize a section of a continuum manipulator by its arc-

Figure 3.1 Illustration of model for continuum manipulator section. 
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length, s  its curvature,κ  and its orientation,φ  as is previously done in [25] (see 

Figure 3.2).  

From these parameters the tip-location of a single continuum section, P  can be 

expressed parametrically as  

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )

1 1 cos cos

1 1 cos sin .

1 sin

s
x

P y s

z
s

κ φκ

κ φκ

κκ

 ⋅ − ⋅ ⋅
  
  = = ⋅ − ⋅ ⋅  
    ⋅ ⋅  

     (33) 

 

This can be shown by first examining the planar-case of a single section with some 

arbitrary length and curvature, and an orientation equal to zero (see Figure 3.3). This 

Figure 3.2 Illustration of continuum section parameters. 
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produces an arc within the XZ plane. The angle subtended by the arc,θ  is simply the 

product of the arc-length and the curvature ( sθ κ= ⋅ ), where curvature is the inverse 

of the radius of the arc ( 1
r

κ = ). The x-coordinate of P  is then simply ( )cosr r θ− ⋅ , 

and after factorization and substitution: 

( ) ( )( )1 1 cosx s κκ= − ⋅ .       (34) 

The z-coordinate of P  is trivially ( )sinr θ⋅ , and substituting for r  and θ : 

( ) ( )1 sinz s κκ= ⋅ ⋅ .        (35) 

 

Figure 3.3 Continuum section bending in XZ plane. 



 

 

30 

 

For non-planar cases where 0φ ≠  the result simply involves a rotation about the 

z-axis by φ  thus 

( ) ( )( )

( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )

,

1 1 cos cos1 1 cos

10 1 cos sin

1 sin 1 sin

z

ss

P R s

s s

φ

κ φκ κκ
κ φκ

κ κκ κ

 ⋅ − ⋅ ⋅ ⋅ − ⋅   
   = ⋅ = ⋅ − ⋅ ⋅    
  ⋅ ⋅ ⋅ ⋅    

,  (36) 

where ,zR φ    is a counter-clockwise rotation about the z-axis by φ  as described in 

[39]. This result accurately determines the tip-location of the section based on the 

, ,s κ φ  parameters but does not take into account the change in orientation of the tip. 

 

Figure 3.4 Illustration of change in orientation from base frame to section end-
point. 
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In order to correctly determine the final tip-location of a multi-section 

continuum manipulator the change in orientation between each section must be 

determined. We assume that the continuum section is free from torsion along its 

entire length. The orientation change at the end of any single section can be 

expressed by a rotation about a vector, k  which is perpendicular to the plane of 

bending, by an angle ofθ . For the planar case 0φ =  all rotations are about the y-axis 

by θ . For spatial cases k  is simply a unit vector oriented along the y-axis and rotated 

about the z-axis byφ . Thus ( ) ( )sin cos 0
T

k φ φ= −   and ( )
1

0 ,k s
R R κ⋅

   =    , where 

1

0R   is the rotation from the base frame to the end-point frame (see Figure 3.4). We 

can now create a standard transformation matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

,

2 1

2 1

1

0 0 0 1

s 1 c c s c 1 c c s 1 c c

s c 1 c c 1 c c s s 1 c s

c s s s c s

0 0 0 1

k s

s s s s s

s s s s s

s s s s

R p
A

κ

φ κ κ φ φ κ φ κ κ φ

φ φ κ φ κ κ φ κ κ φ

φ κ φ κ κ κ

κ
κ

κ

⋅

−

−

−

  
  =
  

 ⋅ − + − ⋅ ⋅ − ⋅ ⋅ − ⋅
 
− ⋅ ⋅ − ⋅ − + ⋅ ⋅ − ⋅ =
 − ⋅ − ⋅ ⋅
 
  

, (37) 

 where the notation ( )s sina a

b
b=  and ( )c cosa a

b
b= . These results match those 

produced by Jones in [25]. 

B. Inverse Kinematics 

The , ,s κ φ  parameters can be determined by the end-point location, P  (having 

coordinates , ,x y z ) in a closed form expression. The angle of orientation,φ  for a 

single continuum section can be trivially determined by dividing the x and 

y coordinates giving 
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( )1
tan

y
x

φ −=         (38) 

The (inverse) curvature can be determined by finding the distance from the 

origin to the center of the arc formed by the continuum section. Rotating P  about 

the z-axis by φ−  produces a point 'P  with coordinates ', ', 'x y z  such 

that 2 2
' , ' 0, 'x x y y z z= + = =and . This creates an arc of the same curvature in the 

XZ plane. Our model restricts the center of the arc to be in the XY plane; after 

rotation, this center must lie along the x axis. Therefore, the center of the arc, 'C  

must lie at the point ( ),0r  in the XZ plane, where r  is the radius of the arc and 

1
r

κ
= . Noting that 'P  and O  lie equidistant from 'C  at a distance of r , we can 

write an expression for the circle of radius r , centered at 'C , which passes through 

'P  and O  as  

( )2 2 2' 'x r z r− + = .       (39) 

 By solving for r  and taking the reciprocal we can determine the curvature, κ . Thus 

( )2 2 2

2 2 2 2

2 2

2 2

' '

' 2 ' '

' 2 ' ' 0

' '

2 '

x r z r

x r x r z r

x r x z

x z
r

x

− + =

− ⋅ ⋅ + + =

− ⋅ ⋅ + =

+
=

⋅

. 
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Noting that 1r κ −= and substituting for 'x  and 'z , 

2 2

2 2 2

2 x y

x y z
κ

+
=

+ +
.        (40) 

Lastly, the arc-length can be determined by multiplying the reciprocal of the 

curvature, κ  by the angle, θ  subtended by the arc: 

1
s θ

κ
= ⋅          (41) 

The angle θ  can be calculated from the curvature and the Cartesian coordinates 

of P . Looking at the planar case of 'P , where 
1

'xP
κ

< , θ  can be computed as 

Figure 3.5 Computing θ from end-point location, case1. 
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( )1cos d κ− ⋅  where 
1

'xd P
κ

= − (see Figure 3.5). Substituting for d  and simplifying 

provides us with 

( )1cos 1 'xPθ κ−= − ⋅ .        (42) 

In the planar case of P′ , where 
1

xP
κ

′ > , 
2
θ  can be computed as ( )1cos d κ− ⋅  where 

1
xd P

κ
′= −  and 

2
θ π θ= − (see Figure 3.6). After substituting for d  and 

2
θ , 

( )1cos 1xPθ π κ− ′= − ⋅ − .       (43) 

Noting that ( ) ( )1 1cos cos , 0z z zπ− −= − − ≥ , and substituting into (43) gives 

( ) ( )1 1cos 1 cos 1x xP Pπ κ κ− −′ ′− ⋅ − = − ⋅ .      (44) 

Since (42) and (44) are equal, we can express θ  in terms of κ  and P′  as 

( )1cos 1 xPθ κ− ′= − ⋅ .        (45) 

When 
1

xP
κ

′ = then ( ) ( )1 1cos 1 cos 0 2xPθ κ θ π− −′= − ⋅ → = = , which is the correct value 

for θ  when 0
z

P′ > .  

In all three cases θ  is calculated independent of 
z

P′  and only correct 

when 0zP′ ≥ . This means that the same value for θ  is computed when ' 0zP < but θ  

should actually be 2π minus that value, so when ' 0zP <  use  

( )12 cos 1 'xPθ π −= − − .       (46) 

Putting (45) and (46) together piece-wise and substituting for x′  (noting that the 

rotation of P  does not affect the arc-length) yields 
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( )
( )

1 2 2

1 2 2

cos 1 , 0

2 cos 1 , 0

x y z

x y z

κ
θ

π κ

−

−

 − ⋅ + >


=
 − − ⋅ + ≤


.      (47) 

C. Special Cases (Singularities) 

End-point coordinates along the z-axis present singularities in the inverse 

kinematics calculations and can be grouped into three different cases: 

0z > , 0z = , 0z < . End-point coordinates along the z-axis with a value 0z > produce 

correct curvature values of zero. However, this creates a divide-by-zero condition in 

the arc-length calculation. When 0x = and 0y =  the orientation calculation also 

produces the divide-by-zero condition. This case is easily handled by assigning φ  to 

Figure 3.6 Computing θ from end-point location, case 2. 
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some arbitrary value and determining the arc-length as s z= . 

In the second case, when [ ]T0 0 0P = , multiple solutions exist as an arc 

forming a complete circle with any radius at any orientation satisfies this condition. 

To date, no continuum devices have been developed which can create this condition. 

For the case of such a device, and for the purposes of simulation, various methods 

could be developed to handle this singularity. For example, φ and s could be chosen 

such that 0φ =&& and 0s =&& and then 2 sκ π= . Alternatively, φ and s could be chosen 

arbitrarily and κ determined as before. 

The last case occurs when P  exists along the z-axis where 0z < . This case poses 

an impossibility given the physical constraints of a continuum manipulator section.  

II. Multi-Section Kinematics 

A. Forward Kinematics Algorithm 

A forward kinematics algorithm can be constructed by iteratively computing the 

Euclidean coordinates for each section along with the rotation due to each section 

and consecutively applying these rotations and translations to more distal sections as 

they are computed. Starting from the base section, its end-point is computed along 

with its change in orientation (i.e. rotation due to its movement). These values are 

used to update the total change in orientation and end-point location of the arm. For 

each section remaining, the same values are computed, the total change in 

orientation of the arm is applied to the end-point computed for the current section, 

the total translation of the arm thus far is then added to the end-point for the current 

section (then making it the new total translation of the arm), and finally the rotation 
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due to the current section is applied to the total change in orientation of the arm. 

This process is then continued until all distal sections have been evaluated. 

[ ]

[ ]

T

T

0 0 0

base_section tip_section

compute , , for section i

apply total rotation due to previous sections to , ,

add  to , ,  and assign 

apply rotation due to sec

Total

Current

Current Current

R I

P

for i

x y z

x y z

P x y z P x y z

=

=

←

=

K

tion  to Totali R

endfor

 

B. Inverse Kinematics Algorithm 

The inverse kinematics, derived previously, can also be iteratively applied to 

multiple, serially-linked continuum sections to model an n-section continuum 

manipulator. Given a list of endpoints (one for each section), the values of s , κ , 

and φ  can be determined for each section by first determining the values of s , κ , 

and φ  for the base section (by directly applying the inverse kinematics for a single 

section), then subtracting the translation due to the base section from the remaining 

end-points, applying the opposite rotation due to the base section to the remaining 

end-points, and then repeating this process with the remaining sections. 

base_section tip_section

compute , , for section i

1 tip_section

subtract translation due to section  from section 

apply opposite rotation due to section  to section  

for i

s

for j i

i j

i j

endfor

endfor

κ ϕ
←

← +

K

K
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C. Incorporating Dead-Length Sections 

 
Many actual continuum manipulator devices contain lengths of space between 

each section that do not bend. There are three ways to represent these ‘dead’ lengths 

as part of each section. The non-bending length of each section can be included at 

either end of the section or split between the two. If we take the approach of 

including the non-bending length at the end of each section, then incorporating 

these ‘dead’ lengths can be easily handled by adding an appropriate translation at the 

end of the loop in the forward algorithm, and at the beginning of each loop in the 

inverse algorithm. 

[ ]T0 0 0

base_section tip_section

compute , , for section i

apply total rotation due to previous sections to , ,

add  to , ,

apply rotation due to section  to 

Total

Current

Current

Total

Current

R I

P

for i

x y z

x y z

P x y z

i R

P

=

=

←

=

K

[ ] T

0 0 CurrentTotalR deadLength i P

endfor

 ⋅ + 

 

 

base_section tip_section

compute , , for section i

1 tip_section

subtract translation due to section  from section 

apply opposite rotation due to section  to section  

subtract dead length 

for i

s

for j i

i j

i j

κ ϕ
←

← +

K

K

of section  from -coordinate of section i z j

endfor

endfor
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III. Results 

Through a straight-forward, geometrical derivation the forward kinematics 

presented in this chapter provides a more intuitive method than previously proposed 

models. The integration based method described by Chirikjian and Burdick in [33] 

(while providing a correct solution that includes modeling torsion) requires the 

analysis and understanding of the vectors tangent to the curve along its length. The 

method proposed by Hannan in [37] and extended by Jones in [25] fits a rigid-link 

robot to match the kinematics of a continuum manipulator. This requires the 

addition of numerous extra joints (DOFs) to the model to arrive at the same results 

presented in this chapter. 

Traditionally (i.e. for rigid-link robots) the forward kinematics are calculated by 

multiplying the transformation matrices of each link together to form the total 

transformation matrix [39]. This gives the orientation and location of the end-

effector in terms of the base frame. Given the complexity of the transformation 

matrix given by (37), this method of computing the forward kinematics requires 

( )54 112 1n n⋅ + ⋅ −  floating-point operations for a continuum manipulator with 

n sections. In comparison, using the forward kinematics algorithm (modified to 

include dead-lengths) given in the previous section requires 137 n⋅ floating-point 

operations. Figure 3.7 shows that the traditional method of multiplying 

transformation matrices requires fewer floating-point operations for continuum 

manipulators with fewer than 4 sections but the algorithm presented in this chapter 

performs better in that respect when 4n ≥ . 
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The final transformation matrix can be symbolically constructed by hand and 

simplified in order to create a method of computing the forward kinematics that is 

more efficient than either of the two previously mentioned. However as the number 

of sections increases so does the complexity of the resulting transformation matrix, 

making this method less practical. Jones discusses in [40] the use of available 

software packages to aid in the symbolic construction of the final transformation 

matrix. Jones’ method is limited by available system memory, making it practical for 

only up to 3 sections, though in theory could be used for any number of sections. 

The forward kinematics algorithm presented in this chapter stays the same regardless 

of the number of sections in the manipulator and its performance is limited only by 

the speed of the processor. 

Figure 3.7 Computational cost for the forward kinematics algorithm and standard 
D-H method. 
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The inverse kinematics approach derived in this chapter is the first closed-form 

solution to the inverse kinematics problem for continuum manipulators. The 

algorithm presented for computing inverse kinematics of an n-section manipulator 

presents an alternative to end-point control through using the Jacobian by allowing 

the desired location of the end-points to be specified directly in the Cartesian 

workspace coordinates. Jacobian based methods for end-point control involved 

finding the approximate changes in joint variables (actuator lengths for continuum 

manipulators) needed in order to produce the desired end-point trajectory. With the 

inverse kinematics presented in this chapter the desired end-point trajectory can be 

applied directly (see Figure 3.8). Since the inverse kinematics require specifying the 

desired location of each end-point, in order to allow end-point control similar to 

Jacobian based methods (i.e. operating only a single end-point), methods of 

automatically determining a desired location for the un-constrained end-points are 

needed. One such method is presented by Neppalli and Jones (in collaboration with 

the author at Clemson) in [41] to compute possible locations for the intermediate 

end-point locations given a desired location for the final end-point, desired distances 

between end-points, and desired orientations for the intermediate end-points. 
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Figure 3.8 Using the inverse kinematics algorithm, the end-point of the middle 
section is moved to the left while the other two end-points remain stationary. 
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CHAPTER FOUR 
POTENTIAL FIELD PATH PLANNER  

 
Fully automated path planning will probably never be adopted for USAR tasks as 

the nature of urban search and rescue involves operating in highly irregular spaces 

often filled with thick dust and debris. Current path planning techniques and sensor 

technology available today are not adequate to overcome this challenge [4, 7, 8]. 

However, advances in path planning for continuum manipulators could provide 

insight into beneficial, semi-automated features for user interfaces which could aid 

operators during USAR operations. While fully automated path planning may not be 

suitable to USAR, the automation of tasks that need to be performed in confined 

(yet structured) spaces by continuum manipulators is desired and highly beneficial. 

The reasons for automation of continuum manipulators are the same as for 

typical rigid-link robots used by industry: continuous, faster, cheaper operation. 

Where rigid-link robots used by industry often replace human workers in mundane, 

repetitive tasks along an assembly line, continuum manipulators can be utilized for 

more complicated tasks requiring a higher degree of dexterity in confined spaces that 

pose a safety risk for human workers.  

Numerous approaches to path planning for rigid-link manipulators and mobile 

robots have been developed and are described / surveyed in [42]. None of these 

methods, however, have been reported as being implemented for continuum style 

manipulators. In this chapter we develop a novel path planner for continuum robots 

based on the potential field method.
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I. Overview of Potential Field Methods 

Potential Field methods for robot path planning are well established and have 

been studied for almost thirty years [43]. They have been applied to numerous path 

planning problems involving mobile robots [44, 45] and rigid-link manipulators [46, 

47] in both static and dynamic environments [48, 49]. 

Typically potential field methods involve expressing a potential as a scalar 

function of a robot’s configuration and taking from the gradient of this potential 

function the desired forces/torques to apply to the robot in order to reach the goal 

configuration. This potential function is usually composed of two or more 

elementary potential functions with the individual purpose of pulling the robot 

towards its goal configuration or pushing it away from obstacles and joint limits. 

These elementary potentials usually have a weight associated with them for the 

purpose of scaling their magnitudes and adjusting the resulting total potential field 

[42].  

II. Applying Potential Fields to Continuum Manipulators 

The configuration of a continuum manipulator is determined by the length of its 

actuators but can equivalently be represented by the Euclidean location of the end-

points of each section or by the arc-length, curvature, and orientation of each 

section. Let XYZ
Q , S

Q
κφ , and l

Q be matrices that represent a configuration for a 

continuum manipulator with n  sections where the superscript XYZ  denotes 

representation in the Euclidean workspace, sκφ  denotes representation in the 

cylindrical ‘shape’ coordinates (arc-length, curvature, and orientation), and l  denotes 

representation in the space of actuator lengths. The work in this chapter is based on 
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a three actuators per section construction, but any construction could be used 

provided the mapping between actuator lengths and shape coordinates is known. 
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Developing a potential field path planner for a continuum manipulator requires 

defining three potential fields: ( ),attr goalU Q Q , to pull the robot to its desired 

configuration, ( )limitU Q , to push the robot away from its joint/actuator limits, and 

( )ObsU Q , to push the robot away from obstacles in the workspace. Taking a weighted 

sum of these three potentials yields the total potential 

( ) ( ) ( ) ( )limit, ,total goal attr goal ObsU Q Q U Q Q U Q U Qα β λ= ⋅ + ⋅ + ⋅ .  (48) 

By adjusting the values ofα , β , and λ , ( )totalU Q can be tuned to modify the behavior 

of the path planner. 

A. Attractive Potential 

The attractive potential can be defined similarly to the potentials for mobile or 

rigid-link robots as a measure of distance between a given current configuration,Q , 

and the goal configuration, 
goal

Q . Many distance measures exist that could suffice to 

produce a potential that will attract the robot to the goal configuration. The effects 

of utilizing one distance measure over another in constructing the attractive potential 
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have currently not been well established. In order to create an intuitive attractive 

potential field we propose two Euclidean based distance measures. The first is simply 

the Euclidean distance between Q  and Q
goal

 as two 3n -dimensional points. 

( ) ( )
3 2

,
,

1 1

,
n

XYZ XYZ

attr goal i j goal
i j

i j

U Q Q Q Q
= =

= −∑∑     (49) 

The second is a sum of the Euclidean distance between each end-point along the 

arm with its corresponding desired configuration. 

 ( ) ( )
1

,
n

XYZ XYZ

attr goal i goal

i

U Q Q col Q Q
=

= −∑     (50) 

In both (49) and (50) as Q  approachesQ
goal

, ,U Q Q
attr goal

 
 
 

 approaches 0. 

B. Joint Limit Avoidance Potential 

Due to the construction of continuum manipulators and the unique way in which 

they move the joint-limit avoidance potential for a continuum manipulator requires a 

different approach than has been used in the past for rigid-link manipulators. In [46] 

Khatib proposes implementing joint limits on rigid-link manipulators in a similar 

manner as configuration space obstacles by creating a repulsive potential centered at 

each joint stop for each rigid-link. While this method could be used to ensure that 

each actuator in a continuum manipulator remained within its length limits it would 

also produce the effect of ‘pushing’ sections away from their maximum curvature as 

individual actuators neared their minimum or maximum lengths. This would place 

un-necessary, artificial limits on the movements of a continuum manipulator. 
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Jones [25] explored the effects that the construction used in the OctArm series 

of continuum manipulators (three equidistant linear actuators) has on their joint 

limits. Joint limits can be enforced either in the actuator-length space by checking 

that min maxi
l l l≤ ≤ or in the sκφ  space by ensuring the desired value for κ is 

attainable with the given values of s andφ . Jones showed that the minimum and 

maximum actuator lengths determined the maximum achievable curvature for any 

given value of s andφ , and specifically that  

( )

max max min min max

max max min

max

max min min maxmin

min max min

,

l s f l f l
when s

sdf f f
s

f l f ll s
when s

sdf f f

κ φ

− − ≥ −
= 

−− ≤
 −

    (51) 

where d is the distance from the center of the continuum section to the center of an 

actuator,  

( )max max sin ,sin , cos
3 6

f
π π

φ φ φ
    = − + − +    

    
,   (52) 

 and  

( )min min sin ,sin , cos
3 6

f
π π

φ φ φ
    = − + − +    

    
.   (53) 

It is desirable to attract the manipulator towards a configuration which provides 

it more maneuverability in order to avoid any local minima created by approaching 

joint limits. A continuum section has the most maneuverability when its arc-length, 

s , is closer to the middle of its possible range [25]. This can be attained by using  

( ) 1,

limit

1 max min

2 i

i i

k
sn
i mid

i

Q s
U Q

s s

κφ

=

 −
= ⋅  − 
∑      (54) 
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where 
mini

s  and 
max i

s are the minimum and maximum arc-lengths, respectively, for 

section i , ( )max min 2
i i imids s s= + , and k is a positive, even integer. When 

1, i

s

i mid
Q sκφ = for each section ( )limit 0U Q = , thus minimizing (54) results in each 

section being pulled towards 
imids . Placing a similar potential on each individual 

actuator length creates the additional, and undesired, effect of attracting the 

manipulator sections to configurations where 0κ = . 

A hard constraint based on (51) and on s is also needed to enforce the limits of 

the individual actuators. When ( )2, max 1, 3,,s s s

i i iQ Q Q
κφ κφ κφκ>  or when 1,

s

i
Q κφ is outside the 

range of maxi
s and mini

s section i violates joint limits by bending more than the 

actuators’ length limits allow and should have a high potential value in order to 

indicate this condition. We can combine (51) and (54) piece-wise producing 

( ) ( )

1,

1 max min

limit 2, max 1, 3, min 1, max

2 ,

, ,

,

i

i i

i i

k
sn
i mid

i

s s s s

i i i i

Q s
when

s s

U Q Q Q Q s Q s

otherwise

κφ

κφ κφ κφ κφκ

=

  −
 ⋅   −  


=  ≤ ≤ ≤

∞

∑

. (55) 

C. Obstacle Avoidance Potential 

Mapping workspace obstacles into the configuration space is difficult and 

intensive for high DOF robots [43]. For this reason potentials for avoiding obstacles 

are often computed based on the robot’s workspace [42]. To create ( )obs
U Q  we 

sample a number of points along the arm and take the inverse of the minimum 

distance of those points to the obstacle. Let ( ),XYZ
f Q j  be the Euclidean 
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coordinates of the thj  point along the arm and ( )
iobs

d p  be the distance from the 3-

dimensional Euclidean point p  to the closest point on obstacle i  in the workspace, 

where ( ) 0
iobsd p = when ip obs∈ . The potential for obstacle i can then be 

expressed by 

( ) ( )( )( )
1

1 min ,
i i

n m
XYZ

obs obs
j

U Q d f Q j
⋅

=
= ,      (56) 

where m is the number of sample points per section. If a point along the arm exists 

either on or within the boundaries of obstacle i then ( )( )( )
1

min , 0
i

n m
XYZ

obs
j

d f Q j
⋅

=
=  

and the resulting potential value equals ∞, indicating a collision with the obstacle. 

Summing over all of the obstacles yields the total obstacle potential 

( ) ( )
1

i

M

obs obs

i

U Q U Q
=

=∑ ,       (57) 

where M is the total number of obstacles in the workspace. The obstacle avoidance 

potential as depicted in (57) weights the potential field around each individual 

obstacle evenly. However, other weighting schemes for summing up the potential 

values due to the individual obstacles could be used. The effectiveness of using an 

un-even weighting to handle multiple obstacles is not known and not addressed in 

this work.  

The result of the function ( ),XYZ
f Q j  can easily be computed by a simple 

modification to the forward kinematics algorithm presented in Chapter 3. The 

distance function ( )obs
i

d p  for each obstacle is dependent on the shape of the 

obstacle. While this function has to be determined by hand for off-line computation, 

specifying it as the minimum distance to an obstacle allows it to be equivalent to 
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taking the minimum distance reading from each sensor located along the arm in an 

on-line situation. 

D. Decision Strategies (Search Methods) 

Potential fields alone (even those without local minima) do not produce a path. 

Some technique is required to generate a path from potential fields that take the 

robot to its desired goal configuration. Many methods of doing so have been 

developed previously and are discussed in [42, 43]. These methods can be divided 

into two categories, with one category being methods that use the potential field to 

control the robot directly and the other being methods that use the potential field to 

guide a search through the robots configuration and/or workspace. 

Methods that use the potential field directly are often well suited for on-line path 

planning. The desired forces/torques to be applied to the robot can be computed by 

taking the gradient of the potential field. If the potential field is represented in the 

robot’s configuration space, then the forces/torques taken from the gradient can be 

directly applied to the robot. If the potential is represented in the workspace then the 

forces/torques desired of the robot’s end-points must be converted into joint 

forces/torques. 

Methods that use the potential field to guide a search algorithm simply evaluate 

the value of the potential field over a discrete number of configurations. Numerous 

search algorithms have been combined with potential fields and implemented as path 

planners. The most common/prevalent are Depth-first, Breadth-first, Best-first, Bi-

directional, and A* [43]. In the next section we describe a new greedy (for simplicity) 

path-planner based on the potentials fields for continuum manipulators presented 

earlier in this chapter. 
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E. Greedy Potential Field Path Planner 

A Greedy algorithm uses a heuristic to make locally optimum choices in the hope 

that they will lead to the global optimum [50]. In this case we wish to minimize 

( ),total goalU Q Q . Greedy algorithms do not perform a search and thus do not 

guarantee a solution will be found even one exists. However, they have the benefit of 

being fast when compared to other methods which exhaustively search a space. 

A non-greedy (best-first) planner could be implemented which returns to a 

previous configuration when it runs into a local minimum and chooses the next best 

configuration until it reaches the goal. We opt to explore the effects of adjusting the 

weights for each potential field in order to determine a path that reaches the desired 

configuration in a single shot while avoiding all obstacles in the workspace. It is 

possible that if multiple sets of weights producing successful paths with a greedy 

path-planner exist then the set of elementary potentials may be well suited to an on-

line implementation. 

The majority of potential field methods that have been developed utilize two 

arbitrary scaling factors. One scalar is used to adjust the region of influence of a 

potential field (mainly for obstacles) and another to adjust the relative weight of each 

potential field. While the majority of potential field methods utilize these gains, 

presently no substantial research has been done into how to optimally select them. 

Adjustment of these gains is still very much done by trial and error.  

In order to reduce the difficulty of tuning gains, each elementary potential field is 

normalized across all the 3 n⋅ -neighbors (all the configurations having at most 3 n⋅  

coordinates different from the current configuration [42] by a distance, δ , and 

including the current configuration). This allows the process of choosing the 
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appropriate weights to be simplified down to determining an ideal ratio between 

each potential, eliminating the need to arbitrarily scale the magnitudes of each 

potential. If we enforce that the magnitude of a vector formed by the weights used is 

equal to one, then the process of determining an ideal ratio can be easily performed 

by iterating through a sampling of points located in the first quadrant on the unit 

sphere.  

For a given elementary potential function the potential values are normalized 

across the 3 n⋅ -neighborhood by subtracting the minimum raw potential value and 

dividing by the range of the potential values. In the cases of the joint limit and 

obstacle avoidance potentials which indicate actuator length limit violations and 

obstacle collisions with a value of infinity, the maximum potential value is taken as 

the largest non-infinite value. This results in all of the scalar potential values for 

configurations that do not violate actuator limits or collide with obstacles being 

normalized to the range [ ]0,1 while the scalar potential values for configurations that 

do remain equal to infinity. 

Under the assumption that the current configuration and the previous 

configuration do not violate joint limits nor collide with the obstacle we can always 

determine a minimum value and a non-infinite, maximum value. While if the 

manipulator were to move into a region where the potential values formed a plateau 

the normalization would create a 0
0
 condition, in practice this never occurs. 

Let ( )3 n
P Q

⋅ represent the set of configurations in the 3 n⋅ -neighborhood of Q  

where ( )3 n

iP Q
⋅ is the thi configuration in the set. Let ( )max i

i
S

∞/  represent the 
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maximum value over a set, S , which is less than infinity. Using this notation the 

normalized elementary potential functions can be written as 

( )( )
( )( ) ( )( )( )
( )( )( ) ( )( )( )

3

3 3

3 3

ˆ , ,

, min ,

max , min ,

n

attr j goal

n n

attr j goal attr i goal
i

n n

attr i goal attr i goal
ii

U P Q Q Q

U P Q Q U P Q Q

U P Q Q U P Q Q

⋅

⋅ ⋅

⋅ ⋅

=

−

−

,  (58) 

( )( )
( )( ) ( )( )( )

( )( )( ) ( )( )( )

3 3

limit limit3

limit 3 3

limit limit

min
ˆ ,

max min

n n

j in i
j n n

i i
ii

U P Q U P Q
U P Q Q

U P Q U P Q

⋅ ⋅

⋅

⋅ ⋅∞/

−
=

−
, (59) 

and 

( )( )
( )( ) ( )( )( )

( )( )( ) ( )( )( )

3 3

3

3 3

min
ˆ ,

max min

n n

obs j obs in i
obs j n n

obs i obs i
ii

U P Q U P Q
U P Q Q

U P Q U P Q

⋅ ⋅

⋅

⋅ ⋅∞/

−
=

−
. (60) 

Given the normalized potential functions, an initial configuration, 
init

Q , a goal 

configuration, goalQ , and a set of weights, , ,α β  and λ , the greedy path-planner 

becomes a simple matter of computing the potential values for every local 

configuration (the 3 n⋅ -neighborhood) and choosing the configuration with the 

minimum value as the next configuration. This iterative process continues until 

either the goal configuration is reached or a previous configuration is repeated 

(indicating that either a local minimum has been reached or that the arm will begin a 

repeating cycle).  

III. Experiment 

This section describes the implementation and results of a path planning 

experiment based on the methods presented in the previous section. Simulations 
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were performed in Matlab (see Appendix) based on the parameters of the OctArmVI 

Master Continuum Manipulator (see Table 4.1).  

 

OctArmVI Master Continuum Manipulator Parameters 

Section 
minl  maxl  d  dead-length 

Base 28.0 42.0 3.0 6.0 

Middle 26.5 44.0 3.0 6.0 

Tip 32.5 53.5 1.7321 4.0 

Table 4.1 

The goal for the experiment was to generate valid paths (i.e. paths that do not 

violate joint limits or collide with obstacle) to maneuver the arm from an initial 

configuration, around a single obstacle, to a goal configuration. The initial 

configuration was given as  

0.0 0.0 0.0 30.0 30.0 35.0

0.0 0.0 0.0 0.0 0.0 0.0

30.0 66.0 107.0 0.0 0.0 0.0

sXYZ
init initQ Q κφ= ↔ = , 

and the goal configuration as  

0.0 0.0 0.0 35.1712 33.7493 44.0609

3.0 29.0 65.0 0.0049 0.0474 0.0398

35.0 58.0 81.0 1.5708 1.5708 1.5708

sXYZ
goal goal

Q Q κφ= − − − ↔ =
− −

. 

The obstacle selected was a cylinder oriented along the x-axis and centered on the 

point ( )0, 30,80−  with a radius equal to 8.5. The obstacle is modeled as extending 

indefinitely in the +x and –x directions. The obstacle’s position places it directly in 

the manipulator’s free-space path to the goal configuration, forcing it to maneuver 

around the obstacle (as opposed to simply narrowing the region in which the 
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manipulator could linearly approach the goal configuration). The obstacle is also 

situated such that when restricting the manipulator to operate within the YZ plane it 

can still attain maximum curvature in all sections given by (51). Figure 4.1 illustrates 

the initial and goal configurations in relation to the obstacle. 

 

 

 

 

 

Eight experiments were performed. These experiments are grouped into to two 

cases where in the first case the manipulator is restricted to operating within the YZ 

plane and in the second case operates in 3d space. Within each of these two main 

experiments two different attractive potential functions as well as two different 

obstacle avoidance potential functions were tested. 

The joint-limit avoidance potential was implemented as described in section 2.B 

with [ ]max 42.0 44.0 53.5s =  and [ ]min 28.0 26.5 32.5s =  for the OctArm6 Master 

Figure 4.1 Illustration of the initial and goal configurations for the path planning 
experiments. 
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Manipulator and k chosen to be 2. The two attractive potential functions used were 

those given by (49) and (50). For the obstacle avoidance potentials the distance 

function, ( )obsd p , is defined as the Euclidean distance in the YZ plane from the 

point along the arm to the center of the bar minus the radius of the bar and the 

radius of the manipulator. To ensure that points within the radius of the bar produce 

a distance of zero, the distance function is describe piece-wise as 

( )
( ) ( )

30 30
8.5 4.5 , 8.5 4.5

80 80

0

y y

obs z z

p p

d p p p

otherwise

 − −      
− − + − > +       =        




. (61) 

The first obstacle avoidance potential was implemented as given by (61) and (56), 

and is referenced later on as OBS1. The second obstacle avoidance potential tested 

was the same as OBS1 with the addition of the average z-coordinate among the 

sample points of the arm (referenced as OBS2). 

( )
( )( )( )

( )
1

1

1 1
,

min ,

n m
XYZ

obs zn m
XYZ j

obs
j

U Q f Q j
n m

d f Q j

⋅

⋅
=

=

= +
⋅ ∑    (62) 

Preliminary simulations showed the manipulator had a tendency to attempt going 

around the outside of the obstacle (see Figure 4.2), effectively trapping itself in a 

local minimum. This second obstacle avoidance potential was developed to attempt 

to guide the manipulator around the inside of the obstacle (i.e. between the obstacle 

and the base of the arm) on its own.  
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Even with the additional incentive to keep the arm close to its base it would 

maneuver around the outside of the obstacle and become stuck. In light of this issue 

an intermediate ‘way-point’ configuration was added that would guide the tip-section 

of the arm to be between the obstacle and the base. Therefore the results of the 

experiments presented in the following sections are of the greedy path-planner 

guiding the arm from the initial configuration to the way-point configuration (see 

Figure 4.3), 

0.0 0.0 0.0 33.1041 34.1924 40.4600

12.0 15.0 25.0 0.0230 0.0467 0.0419

30.0 65.0 65.0 1.5708 1.5708 1.5708

sXYZ
mid mid

Q Q κφ= − ↔ =
− − , 

and then to the goal configuration (regardless of the arm actually attaining the way-

point configuration). 

Figure 4.2 Illustration of a manipulator in a local minimum configuration. 
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For each experiment (set of elementary potential functions) sixty-four 

simulations were run using different ratios for the values of , ,α β  andλ . Figure 4.4 

illustrates the sixty-four sets of weights as three dimensional points where their x, y, 

and z components correspond to , ,α β  andλ  respectively.  

 

 

 

 

 

 

 

 

 

Figure 4.3 Illustration of way-point configuration added to the path planning 
experiments. 



 

 

59 

 

 

 

 

 

 

 

Figure 4.4 Depiction of sets of weights used in path planning experiments. 
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A. Results of Planar Simulation 

When restricted to operating in the plane the only attractive potential that 

produced valid paths was (49). The combination of (49) and OBS1 produced 18 

valid paths from the 64 tested sets of weights while the combination of (49) and 

OBS2 produced 19 valid paths. Figures 4.5 and 4.6 show the sets of weights which 

produced valid paths with respect to the sets of weights tested. The line in Figures 

4.5 and 4.6 shows where α λ= . The majority of valid paths exist within the region 

defined by α λ> . This result makes logical and intuitive sense as when λ α>  a 

larger weight is placed on moving away from the obstacle than on moving towards 

the goal configuration. Thus choosing λ α>  produces paths that tend to move 

away from the obstacle without approaching the goal configuration. Similarly 

choosing ,β α λ>>  results in paths where the arm moves primarily in response to 

the joint limit avoidance potential. 
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Figure 4.5 Sets of weights producing valid paths from (49) and OBS1. 
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Figure 4.6 Sets of weights producing valid paths from (49) and OBS2. 
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B. Results of Spatial Simulation 

When the continuum manipulator is allowed to use its full range of motion (not 

restricted to planar movements) each combination of the attractive potentials, (49) 

and (50), with the obstacle avoidance potentials, OBS1 and OBS2, produced valid 

paths. The number of valid paths produces by each combination of attractive and 

obstacle avoidance potentials is given in table 4.2. While the attractive potential given 

by (50) produces valid paths in the spatial case, the potential given by (49) produces 

more valid paths with each of the obstacle avoidance potentials tested. Also, as with 

the planar experiments, the majority of the sets of weights producing valid paths 

exist within the region defined by α λ> . Figures 4.7 through 4.10 show the sets of 

weights which produced valid paths for each combination of attractive and obstacle 

avoidance potentials. 

 

Number of Valid Paths Produced in Spatial Experiments 

 (50) (49) 

OBS1 4 24 

OBS2 12 19 

Table 4.2 
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Figure 4.7 Sets of weights producing valid paths from (50) and OBS1. 
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Figure 4.8 Sets of weights producing valid paths from (49) and OBS1. 
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Figure 4.9 Sets of weights producing valid paths from (50) and OBS2. 
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Figure 4.10 Sets of weights producing valid paths from (49) and OBS2. 
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C. Evaluation of Generated Paths 

Given the numerous valid paths generated some method of determining an ideal 

path is needed. In this section we present a number of heuristic measurements in 

order to help identify and evaluate the characteristics of the valid paths generated in 

the planar and spatial experiments. The individual heuristics described can be 

combined in a weighted sum, allowing for the tailoring of the importance of certain 

characteristics for a specific task. For example, in the case of the experiments 

described previously, importance could be placed on staying as far from the obstacle 

as possible, allowing for the risk of collision due to errors in positioning from the 

controller to be minimized. When the OctArm is operating on-board the Talon 

robot [51] there is a limited supply of compressed air, therefore it may be more 

important to choose a path which requires fewer changes in the length of the 

actuators, thus minimizing the amount of compressed air used.  

Let Ω be an ordered set of configurations (i.e. a path) where 
i

Ω represents the 

thi configuration, Ω is the cardinality of the path (i.e. number of configurations 

contained within the path), and 1 i≤ ≤ Ω . 

For certain tasks (such as IED disposal) it may be considered desirable for the 

manipulator to move as little as possible through the workspace in order to minimize 

the movement of the pay-load. A path could be measured for this characteristic by 

( ) ( )
3 2

1 , , , , 1
2 1 1

n
XYZ XYZ
j k i j k i

i j k

η
Ω

−
= = =

Ω = Ω −Ω∑ ∑∑ .    (63) 

This heuristic sums the Euclidean distance between each configuration in the path. A 

simpler heuristic could limit the distance computation to only consider the most 
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distal section or any section where the pay-load would be located closest to. As 

mentioned earlier, limiting the arm’s proximity to an obstacle would be desirable if 

positional errors due to the controller could cause a collision with the obstacle. A 

simple method of measuring the arm’s proximity could be to sum the value of the 

obstacle avoidance potential over the entire path, 

( ) ( )2
1

iobs
i

Uη
Ω

=
Ω = Ω∑ .       (64) 

Smaller values for ( )
2η Ω imply that the path Ω  stays farther away from the obstacle 

on average. In order to ensure a path stayed the farthest away from the obstacle at all 

times the maximum value of the obstacle avoidance potential could be used, 

( ) ( )( )3 max iobsi
Uη Ω = Ω .      (65) 

Minimizing the amount of energy (or air) used over a path involves minimizing the 

total change in actuator lengths, 

( )
3

4 , , , , 1
2 1 1

n
l l
j k i j k i

i j k

η
Ω

−
= = =

Ω = Ω −Ω∑∑∑ .     (66) 

A heuristic measuring the average ratio between the curvature of a section and its 

maximum curvature over the path, 

( ) ( ) ( )2, ,
max 1, , 3, ,

5 max 1, , 3, ,
1 1

, , 0
,

0,

s
j i s sn

j i j is s
j i j i

i j

otherwise

κφ
κφ κφ

κφ κφ
κ

η κ
Ω

= =







Ω
Ω Ω >

Ω = Ω Ω∑∑  ,  (67) 

 or measuring the maximum ratio between the curvature of a section and its 

maximum curvature, 
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( )
( ) ( )

,3
2, ,

max6 1, , 3, ,1, 1
max 1, , 3, ,

max . . , 0
,

s
j i s s

j i j is si j
j i j i

s t

κφ
κφ κφ

κφ κφ
η κ

κ

Ω

= =

 
 
  
 

Ω
Ω = Ω Ω >

Ω Ω
, (68) 

 could describe how well a continuum manipulator stays away from its joint limits. 

Numerous other heuristics can easily be developed to evaluate specific characteristics 

of paths such as the average angle subtended by a specific section over the path. 

Table 4.4 shows the values of each heuristic described by (63) through (68) for 

the valid paths generated in the planar experiments. Table 4.4 shows these values 

after normalizing across the valid paths. The minimum and maximum values for 

each heuristic are highlighted. 
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α β λ η1 η2 η3 η4 η5 η6

0.9808 0.0000 0.1951 255.5929 5.2773 0.0769 607.6115 1.6161 0.9943

0.9619 0.1913 0.1951 247.2082 5.2729 0.0769 542.8530 1.4518 0.9997

0.9061 0.3753 0.1951 274.7645 6.0537 0.0767 597.0344 1.2019 0.9787

0.8155 0.5449 0.1951 243.4508 5.3722 0.0769 474.6521 0.9485 0.9161

0.6935 0.6935 0.1951 247.5929 5.3046 0.0769 501.9349 0.9626 0.9618

0.5449 0.8155 0.1951 263.9066 5.7082 0.0769 455.2880 0.9324 0.9237

0.3753 0.9061 0.1951 285.1198 5.6629 0.0755 455.6852 0.9383 0.9436

0.9239 0.0000 0.3827 299.0488 5.5622 0.0767 688.2350 1.5235 0.9970

0.9061 0.1802 0.3827 284.7351 5.5317 0.0767 612.5542 1.3589 0.9869

0.8536 0.3536 0.3827 273.4924 5.7056 0.0760 553.0932 1.3157 0.9869

0.7682 0.5133 0.3827 243.9361 5.0215 0.0747 481.4463 0.9628 0.9028

0.6533 0.6533 0.3827 252.9066 4.5674 0.0724 480.6512 0.9849 0.9475

0.5133 0.7682 0.3827 302.7767 4.9154 0.0737 537.5488 0.9847 0.9916

0.8315 0.0000 0.5556 302.7473 4.8317 0.0767 655.7873 1.5487 0.9996

0.8155 0.1622 0.5556 307.7473 4.8810 0.0755 640.1064 1.4590 0.9957

0.7682 0.3182 0.5556 309.8478 4.9915 0.0742 613.5824 1.4076 0.9845

0.6913 0.4619 0.5556 331.4752 5.1308 0.0717 661.9014 1.3920 0.9995

0.6935 0.1379 0.7071 351.3330 4.4256 0.0509 1014.9432 1.7752 0.9999

0.9808 0.0000 0.1951 253.9066 5.3548 0.0769 775.5321 1.7136 0.9924

0.9619 0.1913 0.1951 268.3503 6.1196 0.0769 635.7310 1.4793 0.9871

0.9061 0.3753 0.1951 266.1787 6.1725 0.0769 586.5717 1.3801 0.9871

0.8155 0.5449 0.1951 291.8356 6.2961 0.0769 653.1805 1.2205 0.9988

0.6935 0.6935 0.1951 256.4214 5.3536 0.0769 492.7709 0.9741 0.9582

0.5449 0.8155 0.1951 278.4924 5.6983 0.0769 473.5305 0.9555 0.9874

0.3753 0.9061 0.1951 277.4924 5.7140 0.0769 478.7913 0.9860 0.9436

0.9239 0.0000 0.3827 278.3919 6.1515 0.0769 716.7737 1.7531 0.9984

0.9061 0.1802 0.3827 282.1493 6.1742 0.0769 711.1388 1.6096 0.9877

0.8536 0.3536 0.3827 275.9066 6.2367 0.0769 610.7422 1.4316 0.9976

0.7682 0.5133 0.3827 282.3503 6.1298 0.0768 619.2108 1.3131 0.9976

0.6533 0.6533 0.3827 291.1493 6.1779 0.0769 634.6933 1.2899 0.9988

0.5133 0.7682 0.3827 295.8772 5.4906 0.0769 597.0491 1.3556 0.9988

0.8315 0.0000 0.5556 292.8772 6.4268 0.0768 741.2028 1.8358 0.9976

0.8155 0.1622 0.5556 299.3625 6.4655 0.0769 779.1857 1.7075 0.9898

0.7682 0.3182 0.5556 287.3625 6.2282 0.0769 690.1187 1.6304 0.9871

0.6913 0.4619 0.5556 290.6346 6.3864 0.0769 659.6776 1.5478 0.9976

0.5879 0.5879 0.5556 281.2203 5.0691 0.0769 631.4823 1.4839 0.9871

0.6935 0.1379 0.7071 320.6346 6.8875 0.0768 897.7103 1.7652 0.9928  

Table 4.3 Raw values for heuristic measures of valid paths from planar 

experiments. Light grey corresponds to OBS1 and dark grey corresponds to 

OBS2. 
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α β λ η1 η2 η3 η4 η5 η6

0.9808 0.0000 0.1951 0.1125 0.3459 0.9978 0.2722 0.7568 0.9425

0.9619 0.1913 0.1951 0.0348 0.3442 0.9978 0.1565 0.5749 0.9986

0.9061 0.3753 0.1951 0.2903 0.6613 0.9934 0.2533 0.2983 0.7821

0.8155 0.5449 0.1951 0.0000 0.3845 0.9994 0.0346 0.0179 0.1375

0.6935 0.6935 0.1951 0.0384 0.3570 0.9982 0.0833 0.0335 0.6084

0.5449 0.8155 0.1951 0.1896 0.5210 0.9999 0.0000 0.0000 0.2152

0.3753 0.9061 0.1951 0.3862 0.5026 0.9469 0.0007 0.0066 0.4205

0.9239 0.0000 0.3827 0.5154 0.4617 0.9934 0.4162 0.6543 0.9708

0.9061 0.1802 0.3827 0.3827 0.4493 0.9934 0.2810 0.4721 0.8667

0.8536 0.3536 0.3827 0.2785 0.5199 0.9658 0.1748 0.4243 0.8660

0.7682 0.5133 0.3827 0.0045 0.2421 0.9150 0.0467 0.0337 0.0000

0.6533 0.6533 0.3827 0.0876 0.0576 0.8261 0.0453 0.0581 0.4606

0.5133 0.7682 0.3827 0.5499 0.1990 0.8767 0.1470 0.0579 0.9153

0.8315 0.0000 0.5556 0.5496 0.1649 0.9934 0.3583 0.6822 0.9971

0.8155 0.1622 0.5556 0.5960 0.1850 0.9450 0.3302 0.5829 0.9570

0.7682 0.3182 0.5556 0.6155 0.2299 0.8954 0.2828 0.5260 0.8416

0.6913 0.4619 0.5556 0.8159 0.2864 0.8007 0.3692 0.5088 0.9959

0.6935 0.1379 0.7071 1.0000 0.0000 0.0000 1.0000 0.9329 1.0000

0.9808 0.0000 0.1951 0.0969 0.3774 0.9977 0.5722 0.8647 0.9230

0.9619 0.1913 0.1951 0.2308 0.6881 1.0000 0.3224 0.6054 0.8685

0.9061 0.3753 0.1951 0.2107 0.7096 0.9984 0.2346 0.4956 0.8685

0.8155 0.5449 0.1951 0.4485 0.7598 0.9986 0.3536 0.3189 0.9893

0.6935 0.6935 0.1951 0.1202 0.3770 0.9993 0.0670 0.0462 0.5707

0.5449 0.8155 0.1951 0.3248 0.5170 0.9983 0.0326 0.0255 0.8718

0.3753 0.9061 0.1951 0.3155 0.5233 0.9982 0.0420 0.0593 0.4205

0.9239 0.0000 0.3827 0.3239 0.7010 1.0000 0.4672 0.9084 0.9847

0.9061 0.1802 0.3827 0.3587 0.7102 0.9998 0.4572 0.7496 0.8749

0.8536 0.3536 0.3827 0.3008 0.7357 0.9986 0.2778 0.5526 0.9762

0.7682 0.5133 0.3827 0.3606 0.6922 0.9951 0.2929 0.4214 0.9762

0.6533 0.6533 0.3827 0.4421 0.7118 0.9975 0.3206 0.3957 0.9893

0.5133 0.7682 0.3827 0.4860 0.4326 0.9984 0.2533 0.4684 0.9893

0.8315 0.0000 0.5556 0.4582 0.8128 0.9964 0.5109 1.0000 0.9762

0.8155 0.1622 0.5556 0.5183 0.8286 0.9998 0.5787 0.8579 0.8962

0.7682 0.3182 0.5556 0.4070 0.7322 0.9998 0.4196 0.7726 0.8685

0.6913 0.4619 0.5556 0.4374 0.7964 0.9984 0.3652 0.6812 0.9762

0.5879 0.5879 0.5556 0.3501 0.2614 0.9993 0.3148 0.6104 0.8685

0.6935 0.1379 0.7071 0.7154 1.0000 0.9962 0.7905 0.9218 0.9273  

Table 4.4 Normalized values for heuristic measures of valid paths from planar 

experiments. Light grey corresponds to OBS1 and dark grey corresponds to 

OBS2.  
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D. Hardware Implementation 

The paths produced from the path planner consist of a discrete set of 

configurations. The resolution between these configurations is determined by the 

step size, δ . The current controller [52] for the OctArm requires a high resolution 

input for smooth, accurate operation. This is largely due to the complex dynamics of 

the OctArm and the lack of an accurate dynamic model for it. In order to create a 

path solely utilizing the path planner of the necessary resolution to run smoothly 

would require an excessively long runtime to compute (approx. 47 hours when 

restricted to planar movement for the current implementation). Instead of directly 

computing a high-resolution path, configurations in a path can be interpolated to 

create the resolution needed for the controller. Interpolating in the l  space ensures 

that actuators stay within their length limits. Converting ,k φ  into equivalent 

rectangular coordinates and then linearly interpolating between configurations also 

ensures that actuators stay within their length limits [25]. Provided the path has a 

high enough resolution interpolations will not produce configurations which collide 

with obstacles. 

In order to alleviate gravitational effects on the OctArm a path from the planar 

experiments was chosen for implementation. Restricting the OctArm to maneuver 

within the plane allowed for it to operate while lying flat. While the effect of gravity 

on the tip section of the OctArm manipulator is negligible, the sag due to gravity on 

the base and middle sections coupled with the relative weakness of the actuators can 

be significant. This causes the current controller to be ineffective at precisely 
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positioning the arm in configurations requiring the base or middle sections to be 

significantly bent, making implementation of a spatial path currently impossible. 

Of the valid paths from the planar experiment, the path derived by 

weights 0.6935α = , 0.1379β = , and 0.7071λ =  using OBS2 (see Figure 4.11) was 

originally chosen to be implemented on the arm because it stays the farthest away 

from the obstacle according to (65). However, while following this path the Octarm 

manipulator routinely deviated causing a collision with the obstacle. Other paths 

were chosen and all of the paths tested on the OctArm had similar problems.  

With enough interpolations between configurations in the path the position error 

remains negligible until the tip sections of the arm begins to move above the 

obstacle. During this moment large positional errors develop in the middle section 

causing the tip section to collide and push through the obstacle. Analysis of the 

actuator lengths during this error shows that while they are within their length limits, 

1l falls short of its desired length by approximately 1cm. This reduces the curvature 

of the middle section resulting in the collision between the tip section and the 

obstacle. 

The controller’s inability to correct this small error stems from the lack of 

available pressure needed to increase the length of 1l . While increasing the maximum 

available pressure would potentially allow the controller to correct this error in 

length, it is believed that this is indicative of un-modeled effects particular to the 

OctArm’s pneumatic construction. The length limit models described by Jones in 

[25] are absent of any dynamic interaction between the actuators. These dynamic 

interactions appear minimal in cable-actuated devices like Air-Octor [19]. However, 

in the case of the OctArm, an increase in length requires an increase in pressure, 
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which results in an increase in force. The tight coupling between the OctArm 

actuators results in the forces of each actuator pushing and pulling against each 

other. These additional forces affect the relationship between actuator length and 

pressure. If these forces and their effects can be modeled then they can be taken into 

account during path planning and teleoperation. 
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Figure 4.11 Ten equidistant configurations along the planar path produced by 

weights 0.6935α = , 0.1379β = , and 0.7071λ = and OBS2 
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IV.  Summary 

In this chapter we have developed the necessary potential functions to 

implement a potential field based greedy path planner. While the use of potential 

fields for path planning is not new, the application of potential fields to continuum 

manipulators had, until now, not been considered. The potential functions in this 

chapter for guiding the manipulator towards its goal configuration and avoiding 

obstacles use the same strategies used previously for rigid-link manipulators. 

However, we developed a novel potential function necessary for keeping a 

continuum manipulator within its joint limits based on [25]. 

We additionally presented a normalization scheme to reduce the complexity of 

choosing gains for the elementary potential functions. Results from testing a 

sampling of possible gains revealed an intuitive grouping of weights that produced 

valid paths for the experimental simulations. 

While numerous valid paths were generated by the path planner, none were 

successfully implemented on the OctArm manipulator. Lab experiments revealed un-

modeled, and previously unknown, constraints on the actuator limits specific to the 

utilization of McKibben actuators. Modeling of these constraints would provide for a 

better and more complete understanding of the workspace of the OctArm. 
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CHAPTER FIVE 
CONCLUSIONS 

 
Continuum manipulators present a potential solution to the risk entailed in the 

use of human workers to perform necessary tasks in dangerous situations including 

operating within confined and/or unstable workspaces or in the presence of 

dangerous materials. The utilization of continuum manipulators for these tasks 

largely still requires human operation. Therefore an intuitive user interface is needed 

to overcome the complex, non-linear nature of their movements for their successful 

application in the field. For tasks simple enough to be performed without direct 

human interaction, advanced methods of generating movements to complete the 

required tasks are needed in order to gain the equivalent benefits that traditional 

rigid-link robots afford to industry today. Both of these efforts require a strong 

understanding of continuum kinematics. 

The work presented in Chapter 2 describes a novel, intuitive user interface for 

continuum manipulators. The effectiveness of this user interface has been 

demonstrated through numerous in-lab experiments and field demonstrations. The 

geometrically derived forward kinematics developed in Chapter 3 provides a more 

intuitive approach to the modeling of continuum kinematics than those previously 

existing in the literature. The novel inverse kinematics derived in this chapter is the 

first closed-form solution to the inverse kinematics problem for continuum 

manipulators. The algorithm presented for computing inverse kinematics of an n-

section manipulator presents an alternative to end-point control through using the 

Jacobian by allowing the desired location of the end-points to be specified directly in 
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the Cartesian workspace coordinates. The simulation results from Chapter 4 show 

the applicability of potential fields to path planning for continuum manipulators. A 

novel, normalization scheme was developed to reduce the complexity in determining 

ideal weights and utilized to analyze the effectiveness of the elementary potential 

functions also introduced in Chapter 4. Numerous methods for the evaluation of 

valid paths generated by path planners were also introduced. Implementation of valid 

paths on actual hardware exposed new and un-modeled constraints specific to 

pneumatically actuated continuum devices.  

While the construction of the OctArm series of manipulators presents many 

useful characteristics like speed and natural compliance, this same constructions also 

produces complex dynamics which make accurately positioning the arm at desired 

speeds currently impossible. In order for the usefulness of the interface developed in 

Chapter 2 to be capable of being generally deployed on the OctArm platform 

requires developing methods of negating these dynamic effects. The dynamics of the 

OctArm’s pneumatic actuation needs to be investigated and incorporated into the 

OctArm’s controller for this to happen.  

In addition to investigating the dynamics of the OctArm manipulator for the 

purposes of control, the effects that forces between coupled McKibben actuators 

have on their length limits needs to be modeled so that it can be incorporated into 

the user interface and path planner. A preliminary investigation of these effects could 

be initiated through measuring the discrepancy between the configurations satisfying 

the actuator length limits described by (Jones, 2006) and the configurations actually 

attainable through the controller. 
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The current Matlab implementation requires on average 42.9 seconds per 

configuration in the path for spatial path planning running on a Windows machine 

with a 1.666GHz processor and 2GB of RAM. While simply optimizing the current 

Matlab code or converting into C/C++ would provide a decreased runtime, other 

techniques could provide faster computing times. The computation of 

( )( )3
,

n

total goalU P Q Q
⋅ is trivially parallelizable due to the independence of the 

elementary potential functions with respect to neighboring configurations. In 

addition to parallelization, the run-time of the path planner can be decreased by 

reducing the number of redundant computations. For an n -section continuum 

manipulator, every iteration there are at most ( )3 1
2 3

n−  and at least 32 n redundant 

computations of 
total

U when planning a path through 3d space. For a manipulator 

with as few as 3 sections, like the OctArm, this means there are already as many as 

13,122 redundant computations of 
total

U  occurring every iteration. By determining 

how to map ( ) ( )3 3n n

i jP Q P Q
⋅ ⋅↔  when ( )3 n

j i
Q P Q⋅∈ and ( )3 n

i jQ P Q
⋅∈ , the run-

time of any iterative potential field path planner could be significantly reduced. 

The most significant issue plaguing potential field methods is the existence of 

local minima. The majority of research in potential field path planning has focused 

on either producing potential fields with the fewest local minima possible or into 

developing methods of escaping from local minima [42]. The difficulty with local 

minima in potential fields is, at least partially, due to the lack of directionality in the 

repulsive potentials surrounding obstacles. For example, in the case of an obstacle 

existing directly between the robot and its goal configuration the attractive potential 

pulls the robot directly towards it while at the same time the repulsive potential 
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pushes the robot directly away from it. This results in there being a configuration 

between the robot and the obstacle where each potential is equal in magnitude, thus 

the robot reaches this configuration and stays there. The use of a carefully designed 

vector field could provide the directionality needed in the repulsive potential by, in a 

sense, communicating to the robot which direction to go in order to maneuver 

around the obstacle. 

While numerous avenues of exploration and research, like those described above, 

still exist which could aid in the operation and application of continuum 

manipulators, this work represents a significant step towards the usability of 

continuum manipulators through the creation of a novel user interface, intuitive 

geometrical modeling of the forward and inverse kinematics, and the development of 

a greedy, potential field path planner. 
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APPENDIX 
 

Matlab Implementation of Greedy, Potential Field Path Planner 
 
 
 

The contents of the Matlab files used to perform the planar and spatial experiments 
described in Chapter 4 are given below. 

 
 
 

run_planar1.m 

-------------------------------------------------------------- 

% Run planar1 experiment with weights determined 

% by rot_step 

 

rot_step = pi/16; 

for y_rot=-rot_step:-rot_step:-(pi/2) 

    [Ry] = rotation_k([0 1 0], y_rot); 

     

    if(y_rot ~= -(pi/2)) 

        for z_rot=0:rot_step:(pi/2) 

            [Rz] = rotation_k([0 0 1], z_rot); 

 

            weights = Rz * Ry * [1; 0; 0;]; 

            alpha = weights(1) 

            beta = weights(2) 

            lambda = weights(3) 

 

            planar_experiment1(alpha, beta, lambda); 

        end 

    else 

        weights = Ry * [1; 0; 0;]; 

        alpha = weights(1) 

        beta = weights(2) 

        lambda = weights(3) 

 

        planar_experiment1(alpha, beta, lambda); 

    end 

end 
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planar_experiment1.m 

-------------------------------------------------------------- 

%Setup and run experiment 1 with weights alpha, beta, lambda 

function planar_experiment1(alpha, beta, lambda) 

 

% 6 inch PVC pipe has an outer diameter of 17 cm, 

% radius = 8.5cm 

circle_y = -30; 

circle_z = 80; 

circle_r = 8.5 + 4.5;  

% 4.5 added to account for radius of OctArm 

 

circleFuncHandle = @pField_for_circle_in_yz;   % OBS1 

%circleFuncHandle = @pField_for_circle_in_yz2; % OBS2 

 

%[minLengths; maxLengths; trunkRadii; deadLengths]; 

actuatorLimits = [28.0 26.5 32.5; 42.0 44.0 53.5;  

                  3.0000 3.0000 1.7321; 6.0 6.0 4.0]; 

 

% initial configuration for the arm 

%[x x x; y y y; z z z] 

% straight arm, section lengths of 30, 30, and 35 cm 

initContourXYZ = [0 0 0; 0 0 0; 30.0 60.0+6.0 95.0+12.0];   

[initContourSKP] =  

xyz_to_skp(initContourXYZ, actuatorLimits(4,:)); 

 

% waypoint configuration for the arm 

wayPointXYZ = [0 0 0; 12 15 -25; 30 65 65]; 

wayPointSKP = xyz_to_skp(wayPointXYZ, actuatorLimits(4,:)); 

 

% desired configuration for the arm 

finalContourXYZ = [0 0 0; -3.0 -29.0 -65; 35 58 81]; 

[finalContourSKP] =  

xyz_to_skp(finalContourXYZ, actuatorLimits(4,:)); 

 

stepSize = 1.0;  %Movement resolution for end-points in cm 

maxIter = 1000;  %Arbitrary limit on length of path computed 

weights = [alpha beta lambda]; 

threshold = 5;   %Parameter to adjust measure of success 

 

% Plan path from initial configuration  

% to waypoint configuration 

[SKP1, time1] =  

activeContinuumContourV2(initContourXYZ, wayPointXYZ, 

initContourSKP, wayPointSKP, actuatorLimits, stepSize, 

maxIter, weights, circleFuncHandle, circle_y, circle_z, 

circle_r); 

 

sizeMAT1 = size(SKP1); 

if(numel(sizeMAT1) == 2) iterSKP1 = 1; 

else                     iterSKP1 = sizeMAT1(3); 

end 

 

[XYZ] = skp_to_xyz(SKP1(:,:,iterSKP1), actuatorLimits(4,:)); 
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% Plan path from current configuration to goal configuration 

[SKP2, time2] =  

activeContinuumContourV2(XYZ, finalContourXYZ, 

SKP1(:,:,iterSKP1), finalContourSKP, actuatorLimits, stepSize, 

maxIter, weights, circleFuncHandle, circle_y, circle_z, 

circle_r); 

 

sizeMAT2 = size(SKP2); 

if(numel(sizeMAT2) == 2) iterSKP2 = 1; 

else                     iterSKP2 = sizeMAT2(3); 

end 

 

% Combine configuration lists      

for i=1:iterSKP1 

    SKP(:,:,i) = SKP1(:,:,i); 

end 

for i=1:iterSKP2 

    tempIter = iterSKP1 + i; 

    SKP(:,:,tempIter) = SKP2(:,:,i); 

end 

 

% Save configuration list to a file: 

"planar1_alpha_beta_lambda.txt" 

fileName = ['planar1_' num2str(alpha,'%.4f') '_' 

num2str(beta,'%.4f') '_' num2str(lambda,'%.4f') '.txt']; 

writeConfigList(SKP, fileName); 

end 
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activeContinuumContourV2.m 

-------------------------------------------------------------- 

% Potential field path planner 

function [SKP, avgCompTime] =  

activeContinuumContourV2(initContourXYZ, finalContourXYZ, 

initContourSKP, finalContourSKP, actuatorLimits, step, 

maxCount, weights, pfunc, varargin) 

 

%initialize path planner variables 

count = 0;                          %length of path 

delta = 1;                          %keeps track of movement 

nextContourXYZ = initContourXYZ; 

s = size(initContourXYZ); 

num_sections = s(2); 

 

%create matrix to determine local neighborhood 

perturbation = perturbationMatrix(s(2), step);  

 

avgCompTime = 0; 

repeat_flag = 0; 

 

while(delta > 0 && count < maxCount && repeat_flag ~= 1) 

    tic; 

    [nextContourXYZ, nextContourSKP, delta] = 

         activeContinuumContourIterV2(nextContourXYZ, 

         finalContourXYZ, actuatorLimits, perturbation, 

         weights, pfunc, varargin{:}); 

    time(1) = toc; 

     

   % check for a repeated configuration: indicates  

   % either local minima or beginning of a cycle 

    i=count; 

    while( i > 0 && repeat_flag ~= 1) 

        if( sum(sum( SKP(:,:,i) == nextContourSKP )) == 

        3*num_sections ) 

            repeat_flag = 1; 

        end 

        i = i - 1; 

    end 

     

    count = count + 1; 

    SKP(:,:,count) = nextContourSKP; 

         

    fprintf('count: %d\tdelta: %.2f\talpha: %.2f\tbeta: %.2f\t 

             lambda: %.2f\n', count, delta, weights(1), 

             weights(2), weights(3)); 

    fprintf('Time to compute next contour: %f\n', time(1)); 

     

    avgCompTime = avgCompTime + time(1); 

end 

avgCompTime = avgCompTime/count; 
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activeContinuumContourIterV2.m 

-------------------------------------------------------------- 

% Function to determine next configuration using  

% potential field path planner 

function [nextContourXYZ, nextContourSKP, delta] = 

activeContinuumContourIterV2(currentContour, desiredContour, 

actuatorLimits, perturbation, weights, pfunc, varargin) 

 

s = size(currentContour); 

num_sections = s(2); 

 

% planar case 

local = zeros(3, num_sections, 9^num_sections); 

SKP = zeros(3, num_sections, 9^num_sections); 

 

% spatial case 

%local = zeros(3, num_sections, 27^num_sections); 

%SKP = zeros(3, num_sections, 27^num_sections); 

 

min_index = 1; 

 

for i=1:9^num_sections % planar case 

%for i=1:27^num_sections % spatial case 

    %determine local perturbations of currentContour 

    local(:,:,i) = currentContour + perturbation(:,:,i); 

 

    %compute s, kappa, phi for all local  

    %perturbations of currentContour 

    [SKP(:,:,i)] = xyz_to_skp(local(:,:,i), 

                                         actuatorLimits(4,:)); 

end 

 

 

%compute energy for every perturbation 

[energy, violation, collision] =  

computeEnergy(local, SKP, desiredContour, actuatorLimits, 

weights, pfunc, varargin{:}); 

 

minCount = 0; 

min_index = ceil((9^num_sections)/2); % planar case 

%min_index = ceil(27^num_sections)/2); % spatial case 

     

for i=1:9^num_sections % planar case 

%for i=1:27^num_sections % spatial case 

    if(violation(i) == 0 && collision(i) == 0) 

        if(energy(i) == energy(min_index)) 

            minCount = minCount + 1; 

            min_index = i; 

        end 

        if(energy(i) < energy(min_index) || 

           (violation(min_index) ~= 0 || 

           collision(min_index) ~= 0)) 

            minCount = 1; 

            min_index = i; 
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        end 

    end 

end 

 

fprintf(1, '# of minimizing configurations: %d\tnext chosen:  

            %d\n', minCount, min_index); 

fprintf(1, '%d of %d configurations violate actuator 

            limits\n', sum(violation), 9^num_sections); 

fprintf(1, '%d of %d configurations collide with obstacle\n', 

            sum(collision), 9^num_sections); 

nextContourXYZ = local(:,:,min_index); 

nextContourSKP = SKP(:,:,min_index); 

delta = sum(sum(abs(perturbation(:,:,min_index)))); 

 



 

 

89 

 

computeEnergy.m 

-------------------------------------------------------------- 

% Compute potential field values for local neighborhood 

function [energy, violation, collision] =  

computeEnergy(XYZ, SKP, desired, actuatorLimits, weights, 

pfunc, varargin) 

 

% energy: sum of the normalized values computed for  

% internal, external, and potential energy multiplied by  

% their corresponding weights (alpha, beta, lamda). 

 

% violation: binary array stating whether the corresponding  

% configuration violates the joint constraints. 

 

% XYZ: 3 x N x 27^N (9^N for planar) matrix containing  

% euclidean coordinates for the end-point of each section for  

%every local perturbation of the current configuration 

 

% SKP: 3 x N x 27^N (9^N for planar) matrix containing C-space  

% coordinates (arc-length, curvature, and orientation) for 

% each section of every local perturbation of the current  

% configuration 

 

% desired: 3 x N matrix containing the desired locations for  

% the end-points of each section expressed in euclidean  

% coordinates 

 

% actuatorLimits: 4 x N matrix giving the minimum and maximum  

% length for actuators, the radius of every section, and the  

% length at the end of each section that doesn't bend  

% (deadLength) 

 

% pfunc: handle to function that evaluates given configuration  

% in given potential field (function of potential field being 

% used). 

 

% varargin: arguments for potential field function (pfunc) 

 

% weights: 1 x 3 array containing the values for alpha, beta,  

% and lambda 

 

sizeMatrix = size(XYZ); 

num_sections = sizeMatrix(2); 

 

external  = zeros(1,sizeMatrix(3)); % attrative potential 

potential = zeros(1,sizeMatrix(3)); % obstacle avoidance 

internal  = zeros(1,sizeMatrix(3)); % joint limit avoidance 

violation = zeros(1,sizeMatrix(3)); 

collision = zeros(1,sizeMatrix(3)); 

 

min_s = actuatorLimits(1,:);       % minimum length 

max_s = actuatorLimits(2,:);       % maximum length 

mid_s = (max_s + min_s)/2;         % compute the middle length 

d = actuatorLimits(3,:);           % radius for each secion 
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deadLengths = actuatorLimits(4,:); % non-bending length at end  

                                   % of each section 

 

alpha  = weights(1);               % external 

beta   = weights(2);               % internal 

lambda = weights(3);               % potential 

 

min_ext = inf; 

max_ext = -inf; 

min_pot = inf; 

max_pot = -inf; 

min_int = inf; 

max_int = -inf; 

 

% for every perturbation compute the external,  

% internal, and potential energy 

for config=1:sizeMatrix(3) 

    %compute potential energy term for configuration 

    potential(config) =  

    pfunc(XYZ(:,:,config), SKP(:,:,config), deadLengths,  

    varargin{:}); 

     

    %note any configurations that collide with obstacle 

    if(potential(config) == inf) 

        collision(config) = 1; 

    end 

     

    diff = XYZ(:,:,config) - desired; 

    external(config) =  

    sqrt(sum(sum(diff .* diff))); % attractive potential  

                                  % defined by (49) 

    for i=1:num_sections 

        %compute external energy term for each perturbation 

        %attractive potential defined by (50)        

        %external(config) = external(config) + mag(diff(:,i)); 

 

        %compute internal energy term for each perturbation 

        internal(config) =  

        internal(config) + (2*(SKP(1,i,config) –  

        mid_s(i))/(max_s(i) - min_s(i)))^2; 

         

        f = [-sin(SKP(3,i,config)) sin(pi/3 + SKP(3,i,config))  

             -cos(pi/6 + SKP(3,i,config))]; 

        fmax = max(f); 

        fmin = min(f); 

         

        %compute maximum kappa for given s,phi from Jones 

        if(SKP(1,i,config) >=  

        (fmax*min_s(i)-fmin*max_s(i))/(fmax-fmin)) 

            kmax = (max_s(i)-SKP(1,i,config))/ 

                   (SKP(1,i,config)*d(i)*fmax); 

        else 

            kmax = (min_s(i)-SKP(1,i,config))/ 

                   (SKP(1,i,config)*d(i)*fmin); 
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        end 

         

        %check to enforce actuator limits 

        if(SKP(2,i,config) > kmax ||  

           SKP(1,i,config) < min_s(i) ||  

           SKP(1,i,config) > max_s(i)) 

            violation(config) = 1; 

            internal(config) = inf; 

        end 

    end 

     

    if(collision(config) ~= 1 && violation(config) ~= 1) 

        if(external(config) < min_ext) 

            min_ext = external(config); 

        end 

        if(external(config) > max_ext) 

            max_ext = external(config); 

        end 

        if(potential(config) < min_pot) 

            min_pot = potential(config); 

        end 

        if(potential(config) > max_pot) 

            max_pot = potential(config); 

        end 

        if(internal(config) < min_int) 

            min_int = internal(config); 

        end 

        if(internal(config) > max_int) 

            max_int = internal(config); 

        end 

    end 

end 

 

%normalize energy terms across each configuration 

external  =  (external - min_ext) / (max_ext - min_ext); 

potential = (potential - min_pot) / (max_pot - min_pot); 

internal  =  (internal - min_int) / (max_int - min_int); 

 

%compute total energy for each configuration 

energy = alpha * external + beta * internal + lambda * 

potential; 
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perturbationMatrix.m 

-------------------------------------------------------------- 

% Function used to compute local neighborhoods 

function [perturb] = perturbationMatrix(numPoints, step) 

dimensions = 3; 

num_elements = numPoints * (dimensions-1);  % planar case 

%num_elements = numPoints * (dimensions);   % spatial case 

perturb = zeros(dimensions, numPoints, 3^(num_elements)); 

pos = zeros(1,numPoints); 

 

for i=0:(3^num_elements)-1 

    for j=0:numPoints-1 

         

        % determine determine change in position  

        % for jth neighbor 

 

        % planar case (yz plane) 

        perturb(1,j+1, i+1) = 0; 

        perturb(2,j+1, i+1) = xCoord(0, pos(j+1), step); 

        perturb(3,j+1, i+1) = yCoord(0, pos(j+1), step); 

         

        % spatial case 

        %perturb(1,j+1, i+1) = xCoord(0, pos(j+1), step); 

        %perturb(2,j+1, i+1) = yCoord(0, pos(j+1), step); 

        %perturb(3,j+1, i+1) = zCoord(0, pos(j+1), step); 

    end 

     

    pos(1) = pos(1) + 1; 

    for k=1:numPoints-1; 

        if (pos(k) > 8)   % planar case (3^2 - 1) 

        %if (pos(k) > 26) % spatial case (3^3 - 1) 

            pos(k) = 0; 

            pos(k+1) = pos(k+1) + 1; 

        end 

    end 

     

end 
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pField_for_circle_in_yz.m 

-------------------------------------------------------------- 

% Function to compute OBS1 

function [potential] =  

pField_for_circle_in_yz(XYZ, SKP, deadLengths, y, z, r) 

% XYZ: Euclidean coordinates for each section 

% SKP: shape-space coordinates for each section 

% y,z: y and z euclidean coordinate locations for center  

%      of circle 

% r: radius of circle 

 

size_matrix = size(XYZ); 

num_sections = size_matrix(2); 

 

% sample points along arm  

[X, Y, Z] = skp_to_contour(SKP, deadLengths, 16);       

 

% compute euclidean distances to bar  

d = sqrt((Y(:) - y).^2 + (Z(:) - z).^2);                

 

 

if (min(d)- 1.0e-006) <= r      % check for any collisions 

    potential = inf;            % set to infinity if collision 

else 

    potential = 1/min(d);       % compute potential if not 

end 

 
 
pField_for_circle_in_yz2.m 

-------------------------------------------------------------- 

%Function to compute OBS2 

function [potential] = pField_for_circle_in_yz2(XYZ, SKP, 

deadLengths, y, z, r) 

% XYZ: Euclidean coordinates for each section 

% SKP: shape-space coordinates for each section 

% y,z: y and z euclidean coordinate locations for center  

%      of circle 

% r: radius of circle 

 

size_matrix = size(XYZ); 

num_sections = size_matrix(2); 

 

% sample points along arm 

[X, Y, Z] = skp_to_contour(SKP, deadLengths, 16);       

 

% compute euclidean distances to bar  

d = sqrt((Y(:) - y).^2 + (Z(:) - z).^2);                

if min(d - 1.0e-006) <= r      % check for any collisions 

    potential = inf;           % set to infinity if collisions 

else 

    % compute potential if no collisions  

    potential = 1/min(d) + sum(sum(Z))/numel(Z);        

end 
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xyz_to_skp.m 

-------------------------------------------------------------- 

% Inverse Kinematics Algorithm 

function [SKP] = xyz_to_skp(XYZ, deadLengths) 

 

matrixSize = size(XYZ); 

num_sections = matrixSize(2); 

 

C = zeros(num_sections, 3);  

V = XYZ'; 

 

for (i=1:num_sections) 

    %convert x,y,z to phi,kappa,s 

    if(abs(V(i,1)) < 0.0001 && abs(V(i,2)) < 0.0001) 

        if(abs(V(i, 3)) == 0.0) 

            C(i, 1) = 0.0;       %phi = 0 

            C(i, 2) = (2*pi)/10; %kappa = full circle 

            C(i, 3) = 10;        %s = 10 (set standard length) 

        else 

            C(i, 1) = 0.0;       %phi = 0 

            C(i, 2) = 0.0;       %kappa = 0 

            C(i, 3) = V(i, 3);   %s = z-coordinate 

        end 

        theta = 0; 

    else 

        C(i, 1) = atan2(V(i, 2), V(i,1));  %phi 

        C(i, 2) =  

        (2 * sqrt( V(i,1)*V(i,1) + V(i,2)*V(i,2) )) /  

        (V(i,1)*V(i,1) + V(i,2)*V(i,2) + V(i,3)*V(i,3)); 

 

        if(V(i, 3) > 0.0) 

            theta =  

            acos(((1 / C(i,2)) - sqrt(V(i, 1)*V(i, 1) +  

                  V(i, 2)*V(i, 2))) / (1 / C(i,2))); 

        else 

            theta =  

            2*pi - acos(((1 / C(i,2)) - sqrt(V(i, 1)*V(i, 1) +  

                         V(i, 2)*V(i, 2))) / (1 / C(i,2))); 

        end 

        C(i, 3) = (1 / C(i, 2)) * theta;   %s 

    end 

     

     

    for(j=(i+1):num_sections) 

        %undo translation due to section i 

        for(k=1:3) 

            V(j,k) = V(j,k) - V(i,k); 

        end 

     

        %undo rotation due to section i 

        R = rotation_k([0 0 1], C(i,1)); 

        p = R * [0; 1; 0]; 

        R = rotation_k(p, -theta); 

        V(j, 1:3) = (R * V(j, 1:3)')'; 
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        %undo translation due to dead length 

        V(j,3) = V(j,3) - deadLengths(i); 

    end 

     

end 

temp = C'; 

SKP = [temp(3,:); temp(2,:); temp(1,:)]; 
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skp_to_xyz.m 

-------------------------------------------------------------- 

% Forward Kinematics Algorithm 

function [XYZ] = skp_to_xyz(skp, deadLengths) 

 

matrixSize = size(skp); 

num_sections = matrixSize(2); 

 

s = skp(1,:); 

kappa = skp(2,:); 

phi = skp(3,:); 

V = zeros(num_sections, 3); 

R_total = eye(3,3); 

end_point = [0 0 0]; 

Z = zeros(3, 3, num_sections); 

 

for(i = 1:num_sections) 

    %convert phi, kappa, s for section i to x, y, z 

    if(kappa(i) == 0.0) 

        V(i, 1) = 0.0; 

        V(i, 2) = 0.0; 

        V(i, 3) = s(i); 

    else 

        V(i, 1) = (1 / kappa(i))*(1-cos(s(i)*kappa(i)))* 

                  cos(phi(i)); 

        V(i, 2) = (1 / kappa(i))*(1-cos(s(i)*kappa(i)))* 

                  sin(phi(i)); 

        V(i, 3) = (1 / kappa(i))*sin(s(i)*kappa(i)); 

    end 

     

    %determine new rotation change due to configuration 

    R = rotation_k([0 0 1], phi(i)); 

    p = R * [0; 1; 0]; 

     

    theta = kappa(i) * s(i); 

     

    %apply previous rotation changes 

    V(i, 1:3) = (R_total * V(i, 1:3)')'; 

     

    %apply translation due to previous sections 

    for(j = 1:3) 

        V(i, j) = V(i, j) + end_point(j); 

        end_point(j) = V(i, j); 

    end 

     

    %add new rotation change to total rotation change 

    R = rotation_k(p, theta); 

    R_total = R_total * R; 

     

    %add translation from deadLengths 

    end_point =  

    end_point + (R_total * [0; 0; deadLengths(i)])'; 

end 

XYZ = V'; 
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skp_to_contour.m 

-------------------------------------------------------------- 

%Compute sample points along arm in Euclidean space 

function [X, Y, Z] =  

skp_to_contour(SKP, deadLengths, numPoints) 

 

sizeMatrix = size(SKP); 

num_sections = sizeMatrix(2); 

 

s = SKP(1,:);        % arc-length for each section 

kappa = SKP(2,:);    % curvature for each section 

phi = SKP(3,:);      % orientation for each section 

 

step = 1/numPoints; 

 

t = step:step:1; 

X = zeros(num_sections, numPoints+2); 

Y = zeros(num_sections, numPoints+2); 

Z = zeros(num_sections, numPoints+2); 

R_total = eye(3,3); 

end_point = [0 0 0]; 

 

for(i = 1:num_sections) 

    %convert phi, kappa, s for section i to x, y, z 

    if(kappa(i) == 0.0) 

        X(i, 1:numel(t)) = t * 0.0; 

        Y(i, 1:numel(t)) = t * 0.0; 

        Z(i, 1:numel(t)) = t * s(i); 

    else 

        X(i, 1:numel(t)) =  

        (1 / kappa(i))*(1-cos(s(i)*kappa(i)*t))*cos(phi(i)); 

        Y(i, 1:numel(t)) =  

        (1 / kappa(i))*(1-cos(s(i)*kappa(i)*t))*sin(phi(i)); 

        Z(i, 1:numel(t)) =  

        (1 / kappa(i))*sin(s(i)*kappa(i)*t); 

    end 

     

    %determine new rotation change due to configuration 

    R = rotation_k([0 0 1], phi(i)); 

    p = R * [0; 1; 0]; 

    theta = kappa(i) * s(i); 

     

    %apply previous rotation changes 

    for(k = 1:numPoints) 

        x_rot = R_total(1,:) * ([X(i,k) Y(i,k) Z(i,k)])'; 

        y_rot = R_total(2,:) * ([X(i,k) Y(i,k) Z(i,k)])'; 

        z_rot = R_total(3,:) * ([X(i,k) Y(i,k) Z(i,k)])'; 

        X(i,k) = x_rot + end_point(1); 

        Y(i,k) = y_rot + end_point(2); 

        Z(i,k) = z_rot + end_point(3); 

    end 

    %apply translation due to previous sections 

    end_point(1) = X(i,numPoints); 

    end_point(2) = Y(i,numPoints); 
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    end_point(3) = Z(i,numPoints); 

     

    %add new rotation change to total rotation change 

    R = rotation_k(p, theta); 

    R_total = R_total * R; 

     

    % add translation due to dead length 

    dl = (R_total * [0; 0; deadLengths(i)])'; 

    X(i,numel(t)+1) = dl(1)/2 + end_point(1); 

    Y(i,numel(t)+1) = dl(2)/2 + end_point(2); 

    Z(i,numel(t)+1) = dl(3)/2 + end_point(3); 

     

    X(i,numel(t)+2) = dl(1) + end_point(1); 

    Y(i,numel(t)+2) = dl(2) + end_point(2); 

    Z(i,numel(t)+2) = dl(3) + end_point(3); 

     

    end_point = end_point + dl; 

end 
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rotation_k.m 

-------------------------------------------------------------- 

%Compute rotation of theta radians about vector k 

function [R] = rotation_k(k, theta) 

R = [k(1)*k(1)*(1 - cos(theta))+cos(theta),  

     k(1)*k(2)*(1-cos(theta))-k(3)*sin(theta),  

     k(1)*k(3)*(1-cos(theta))+k(2)*sin(theta);  

     k(1)*k(2)*(1-cos(theta))+k(3)*sin(theta),  

     k(2)*k(2)*(1-cos(theta))+cos(theta),  

     k(2)*k(3)*(1-cos(theta))-k(1)*sin(theta);  

     k(1)*k(3)*(1-cos(theta))-k(2)*sin(theta),  

     k(2)*k(3)*(1-cos(theta))+k(1)*sin(theta),  

     k(3)*k(3)*(1-cos(theta))+cos(theta)]; 

 
 
mag.m 

-------------------------------------------------------------- 

% Return magnitude of a vector, array 

function [magnitude] = mag(x) 

[width, height] = size(x); 

 

if(width > 1 && height > 1) 

    magnitude = -1; 

else 

    if(width == 1) 

        limit = height; 

    else 

        limit = width; 

    end 

     

    sumSquared = 0.0; 

    for(i = 1:limit) 

        sumSquared = sumSquared + (x(i)*x(i)); 

    end 

     

    magnitude = sqrt(sumSquared); 

end 
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xCoord.m 

-------------------------------------------------------------- 

% Determine x coordinate for neighbor 'position' 

function [newx] = xCoord(x, position, step) 

newx = (mod(mod(position, 9), 3)-1)*step + x; 

 
 
yCoord.m 

-------------------------------------------------------------- 

% Determine y coordinate for neighbor 'position' 

function [newy] = yCoord(y, position, step) 

newy = (floor(mod(position, 9)/3)-1)*step + y; 

 
 
zCoord.m 

-------------------------------------------------------------- 

% Determine z coordinate for neighbor 'position' 

function [newz] = zCoord(z, position, step) 

newz = (floor(position/9)-1)*step + z; 

 
 
readConfigList.m 

-------------------------------------------------------------- 

% Read in path from text file 

function [SKP] = readConfigList(fileName) 

 

fid = fopen(fileName, 'r'); 

num_sections = fscanf(fid, '%d\n', 1); 

SKP = zeros(3,3,num_sections); 

 

for i=1:num_sections 

    for j=1:3 

        [temp] = fscanf(fid, '%f %f %f\n', 3); 

        SKP(j,:,i) = temp'; 

    end 

end 

 

fclose(fid); 
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writeConfigList.m 

-------------------------------------------------------------- 

%Write path to text file 

function writeConfigList(SKP, fileName) 

sizeMatrix = size(SKP); 

if(numel(sizeMatrix) == 3) 

    num_configs = sizeMatrix(3); 

else 

    num_configs = 1; 

end 

 

num_sections = sizeMatrix(2); 

 

fid = fopen(fileName, 'w'); 

 

fprintf(fid, '%d\n', num_configs); 

 

for i=1:num_configs 

    for j=1:3 

        for k=1:num_sections 

            fprintf(fid, '%.20f ', SKP(j,k,i)); 

        end 

        fprintf(fid, '\n'); 

    end 

end 

 

fclose(fid); 

 

% file written as: 

% num_configs 

% s s s s s 

% k k k k k  

% p p p p p 

% s s s s s 

% k k k k k 

% p p p p p 

% . . . . . 

% . . . . . 

% . . . . . 
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checkPaths.m 

-------------------------------------------------------------- 

% Compute heuristic measures for valid paths 

function [measure, normMeasure, goodWeights, testWeights] = 

checkPaths(finalXYZ, actuatorLimits) 

% goodWeights is a list of weights that produce a final  

% configuration that was close enough to the desired final  

% configuration.  

% measure is a set of heuristics for each of the set of  

% weights in goodWeights. 

% measure(i,1) is a measure of the total distance traveled by  

%              path i 

% measure(i,2) is a measure of the average distance from the  

%              obstacle over path i 

% measure(i,3) is a measure of the minimum distance to the  

%              obstacle for path i 

% measure(i,4) is a measure of total change in lengths over  

%              (=amount of air used) path i 

% measure(i,5) is a measure of average curvature used over  

%              path i (k/kmax) 

% measure(i,6) is a measure of the maximum amount of curvature  

%              used (max(k/kmax)) 

% measure(i,7) is a measure of how much section 2 stays bent  

%              over path i 

% measure(i,8) is a measure of the max amount section 2 is  

%              bent on path i 

 

min_s = actuatorLimits(1,:); 

max_s = actuatorLimits(2,:); 

d = actuatorLimits(3,:); 

deadLengths = actuatorLimits(4,:); 

% read in all paths 

threshold = 5; 

rot_step = pi/16; 

count = 0; 

measure = []; 

goodWeights = []; 

testWeights = []; 

normMeasure = []; 

for y_rot=-rot_step:-rot_step:-(pi/2) 

    [Ry] = rotation_k([0 1 0], y_rot); 

    for z_rot=0:rot_step:(pi/2) 

        [Rz] = rotation_k([0 0 1], z_rot); 

         

        SKP = [];  % clear previous path 

         

        weights = Rz * Ry * [1; 0; 0;]; 

        alpha = weights(1); 

        beta = weights(2); 

        lambda = weights(3); 

         

        testWeights = [testWeights; alpha beta lambda]; 
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        fileName =  

        ['planar1_' num2str(alpha, '%.4f') '_'  

         num2str(beta, '%.4f') '_' num2str(lambda, '%.4f')  

         '.txt']; 

        [SKP] = readConfigList(fileName); 

         

        sizeMat = size(SKP); 

        if(numel(sizeMat) == 2) numIter = 1; 

        else                    numIter = sizeMat(3); 

        end 

         

         

        XYZ = skp_to_xyz(SKP(:,:,numIter), deadLengths); 

        sqrs = (XYZ - finalXYZ).^2; 

         

        % idetify paths that reach desired configuration 

        if(  sum(sqrt(sum(sqrs))) <= 3*threshold ) 

            count = count + 1; 

            goodWeights(count, :) = [alpha beta lambda]; 

 

            measure(count,:) = [0 0 0 0 0 0 0 0]; 

            for j=2:numIter 

                [XYZprev] = skp_to_xyz(SKP(:,:,j-1),  

                            deadLengths); 

                [XYZcurr] = skp_to_xyz(SKP(:,:,j),  

                            deadLengths); 

 

                sqrs = (XYZprev - XYZcurr).^2; 

                measure(count,1) = measure(count,1) +  

                                   sum(sqrt(sum(sqrs))); 

                 

                for k=1:3 

                    %measure4: Sum of changes in length of  

                    %actuators over path (amount of air used) 

                    [Lprev] = skp_to_l(SKP(1,k,j-1),  

                                       SKP(2,k,j-1),  

                                       SKP(3,k,j-1),  

                                       actuatorLimits(3,k)); 

                    [Lcurr] = skp_to_l(SKP(1,k,j), SKP(2,k,j),  

                             SKP(3,k,j), actuatorLimits(3,k)); 

                    measure(count,4) = measure(count,4) +  

                                       sum(abs(Lcurr-Lprev)); 

                     

                     

                    %compute maximum kappa for given  

                    %s,phi from Jones 

                    f = [-sin(SKP(3,k,j)) sin(pi/3 +  

                         SKP(3,k,j)) -cos(pi/6 + SKP(3,k,j))]; 

                    fmax = max(f); 

                    fmin = min(f); 
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                    if(SKP(1,k,j) >= (fmax*min_s(k)- 

                       fmin*max_s(k))/(fmax-fmin)) 

                        kmax = (max_s(k)-SKP(1,k,j))/ 

                               (SKP(1,k,j)*d(k)*fmax); 

                    else 

                        kmax = (min_s(k)-SKP(1,k,j))/ 

                               (SKP(1,k,j)*d(k)*fmin); 

                    end 

                     

                    if(kmax ~= 0) 

                        measure(count,5) = measure(count,5) +  

                                           (SKP(2,k,j)/kmax); 

                        if((SKP(2,k,j)/kmax) >  

                        measure(count,6)) 

                            measure(count,6) =  

                            SKP(2,k,j)/kmax; 

                        end 

                    end 

                     

                end 

                 

                theta = SKP(1,2,j) * SKP(2,2,j); 

                measure(count,7) = measure(count,7) + theta; 

                if(theta > measure(count, 8)) 

                    measure(count,8) = theta; 

                end 

            end 

             

            pot = []; 

            for j=1:numIter 

                XYZ = skp_to_xyz(SKP(:,:,j), deadLengths); 

                pot(j) =  

                pField_for_circle_in_yz(XYZ, SKP(:,:,j), 

                deadLengths, -30, 80, 8.5+4.5); 

            end 

            measure(count,2) = sum(pot); 

            measure(count,3) = max(pot); 

             

            measure(count,5) = measure(count,5) / numIter; 

            measure(count,7) = measure(count,7) / numIter; 

        end 

 

    end 

end 

 

for i=1:count 

    normMeasure(i,:) = (measure(i,:) - min(measure)) ./  

                       (max(measure) - min(measure)); 

end 

end 
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function [l] = skp_to_l(s,k,phi,d) 

l = zeros(1,3); 

l(1) = s * (1 - k*d*sin(phi)); 

l(2) = s * (1 + k*d*sin(pi/3+phi)); 

l(3) = s * (1 - k*d*cos(pi/6+phi)); 

end 
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