
Clemson University
TigerPrints

All Theses Theses

12-2007

Operational Strategies for Continuum
Manipulators
Matt Csencsits
Clemson University, csencsm@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Robotics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Csencsits, Matt, "Operational Strategies for Continuum Manipulators" (2007). All Theses. 284.
https://tigerprints.clemson.edu/all_theses/284

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=tigerprints.clemson.edu%2Fall_theses%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/284?utm_source=tigerprints.clemson.edu%2Fall_theses%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

OPERATIONAL STRATEGIES FOR CONTINUUM MANIPULATORS

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Engineering

by
Matthew A. Csencsits

December 2007

Accepted by:
Dr. Ian D. Walker, Committee Chair

Dr. Chris Pagano
Dr. Adam Hoover

ii

ABSTRACT

We introduce a novel, intuitive user interface for continuum manipulators

through the use of various joystick mappings. This user interface allows for the

effective use of continuum manipulators in the lab and in the field. A novel

geometric approach is developed to produce a more intuitive understanding of

continuum manipulator kinematics. Using this geometric approach we derive the

first closed-form solution to the inverse kinematics problem for continuum robots.

Using the derived inverse kinematics to convert from workspace coordinates to

configuration space coordinates we develop a potential-field path planner for

continuum manipulators.

iii

DEDICATION

To my parents, I couldn’t have done this without their support.

iv

ACKNOWLEDGMENTS

I’d like to thank Dr. Walker for being a great advisor. He always trusted my

judgment in how to approach various problems and when I had no idea how to go

about solving a problem he always had suggestions. Without the design and

manufacturing skills of the Penn State mechanical engineering team I would never

have had the experience of working with the unique hardware they created. Also, this

work has been supported by DARPA under Contract N66001-C-8043.

v

TABLE OF CONTENTS

Page

TITLE PAGE.. i

ABSTRACT ... ii

DEDICATION... iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES... vii

LIST OF FIGURES ... viii

CHAPTER

 1. INTRODUCTION.. 1

 2. OPERATOR INTERFACE... 6

 Interface Device ... 7
 Joystick Normalization ... 7
 Robot Orientation ... 9
 Mode Selection .. 10
 Activating Sections .. 10
 Mapping Methods .. 11
 Notation.. 11
 Position Mode.. 12
 Independent Velocity Mode .. 14
 Coupled Velocity Mode.. 15
 Velocity Mode for Multiple Sections.. 17
 Experimentation... 21

 3. CONTINUUM KINEMATICS BY GEOMETRY..................................... 26

 Single Section Kinematics... 27
 Forward Kinematics.. 27
 Inverse Kinematics.. 31
 Special Cases (Singularities).. 35
 Multi-Section Kinematics.. 36
 Forward Kinematics Algorithm .. 36
 Inverse Kinematics Algorithm .. 37
 Incorporating Dead-length Sections... 38
 Results .. 39

vi

Table of Contents (Continued)

Page

 4. POTENTIAL FIELD PATH PLANNER .. 43

 Overview of Potential Field Methods ... 44
 Applying Potential Fields to Continuum Manipulators.......................... 44
 Attractive Potential.. 45
 Joint Limit Avoidance Potential.. 46
 Obstacle Avoidance Potential.. 48
 Decision Strategies (Search Methods) .. 50
 Greedy Potential Field Path Planner .. 51
 Experiment.. 54
 Results of Planar Simulation.. 60
 Results of Spatial Simulation.. 63
 Evaluation of Generated Paths ... 68
 Hardware Implementation ... 73
 Summary.. 77

 5. CONCLUSIONS.. 78

APPENDIX ... 83

 Matlab Implementation of Greedy, Potential Field Path Planner 83

REFERENCES.. 107

vii

LIST OF TABLES

Table Page

4.1 OctArm VI Master Continuum Manipulator Parameters 54

4.2 Number of Valid Paths Produced in Spatial Experiments............................... 63

4.3 Raw values for heuristic measures of valid paths from
 planar experiments... 71

4.4 Normalized values for heuristic measures of valid paths
 from planar experiments... 72

viii

LIST OF FIGURES

Figure Page

1.1 OctArm VI Continuum Manipulator .. 3

2.1 OctArm V grasps a water jug, guided by the user interface............................... 6

2.2 Layout of joystick buttons... 10

2.3 Illustration of position mode mapping.. 12

2.4 Illustration of coupled velocity mode mapping ... 16

2.5 Illustration of multiple sections converging ... 20

2.6 OctArm grasps a kick-ball guided by the user interface 22

2.7 OctArm grasps an inactive RPG.. 23

2.8 OctArm holds a PVC pipe with aid of a high-friction, latex skin 24

2.9 OctArm grabs and then drags away multiple air-soft guns 25

3.1 Illustration of model for a continuum manipulator section............................. 27

3.2 Illustration of continuum section parameters .. 28

3.3 Continuum section bending in XZ plane.. 29

3.4 Illustration of the change in orientation from base frame to
 the section end-point... 30

3.5 Computing θ from end-point location, case 1.. 33

3.6 Computing θ from end-point location, case 2.. 35

3.7 Computational cost for the forward kinematics algorithm
 and standard D-H method ... 40

3.8 Using the inverse kinematics algorithm for end-point operation.................... 42

4.1 Illustration of the initial and goal configurations for
 path planning experiments ... 55

ix

List of Figures (Continued)

Figure Page

4.2 Illustration of a manipulator in a local minimum configuration...................... 57

4.3 Illustration of way-point configuration added to the path
 planning experiments .. 58

4.4 Depiction of sets of weights used in path planning experiments.................... 59

4.5 Sets of weights producing valid paths from (49) and OBS1 61

4.6 Sets of weights producing valid paths from (49) and OBS2 62

4.7 Sets of weights producing valid paths from (50) and OBS1 64

4.8 Sets of weights producing valid paths from (49) and OBS1 65

4.9 Sets of weights producing valid paths from (50) and OBS2 66

4.10 Sets of weights producing valid paths from (49) and OBS2 67

4.11 Ten equidistant configurations along the planar path produced by
 weights 0.6935α = , 0.1379β = , and 0.7071λ = and OBS2............... 76

1

CHAPTER ONE
INTRODUCTION

For decades robots have been utilized in industry to automate tasks on

production lines which has allowed for a substantial increase in productivity and a

reduction in cost for manufacturers. Rigid-link robots have been well suited to theses

tasks where the desire for repetitive motions to be performed continuously at high

speeds has allowed for the working environments to be designed around them.

There are, however, numerous applications where it is desirable to utilize robots to

perform tasks in either uncontrolled environments or in environments that are not

well suited for majority of robots used in industry.

Search and rescue efforts as the result of natural disasters [1], mining accidents

[2], and terrorist attacks [3-8] present tasks involving extreme risk to human rescue

workers. Performing these tasks requires the ability to maneuver in unknown,

potentially dynamic, and highly confined or cluttered areas. Traditional rigid-link

robot manipulators are not well suited to these applications. Their inflexible

construction of rigid-links connected by rotational and/or prismatic joints requires a

large number of degrees-of-freedom (DOFs) in order to be capable of fully

exploring significantly confined spaces. The size, weight, and inflexibility of typical

rigid-link robots developed for industry would present safety risks if used in search

and rescue efforts by risking further collapse of damaged structures. Their ability to

penetrate congested areas is also limited by the length of their rigid-links.

As no system has yet been developed which is capable of autonomously carrying

out the high-level tasks needed to perform operations such as search and rescue

2

within collapsed structures, much of the planning and execution of these tasks has

been left to human operators. The increase in the DOFs required to perform these

tasks with rigid-link robots results in a corresponding increase in the complexity of

their operation. Robotic devices capable of performing such tasks with fewer DOFs

(and thus less complex operation), deforming to their environment, and

manipulating a variety of objects without specialized end-effectors are needed.

Continuum-style robots are one such class of robots being explored to meet this

demand.

Continuum-style robots, like the one shown in Figure 1.1, consist of flexible

links/limbs that are capable of bending along their length (and in some cases are

capable of extension as well) [9]. These robots, biologically inspired by cephalopod

(octopus , squid) arms/tentacles and elephant trunks, can be constructed to be highly

compliant, making them capable of conforming to their environment [10]. Many of

the prototypes developed [10-19] have constructions that result in (relatively) light-

weight manipulators. Some commercial continuum manipulators [20-22] have even

been successfully applied to tasks such as aircraft inspection [23] and repairs within

nuclear reactors [24]. However, this unique robot structure still faces new and

challenging problems in its practical operation.

3

Traditional manipulators possess a one-to-one mapping of actuators to joints, so

that moving one actuator causes motion only at that joint, leaving the relative

positions and orientations of the remaining joints unchanged. In contrast, each

section of a continuum robot is typically controlled by two or three actuators and

possesses two or three degrees of freedom in a many-to-many mapping. Producing

useful movements such as rotation, bending, or extension requires coordinated

movements of all actuators for a section. Furthermore, the coupled structure of the

actuators in a continuum section presents unique limits in their configuration space

Figure 1.1 OctArm VI Continuum Manipulator

4

and workspace [25] that must be understood by any operator. The flexibility of

materials that are typically utilized to construct continuum manipulators also gives

rise to challenges in compensating for their compliance.

The use of continuum-style robots in Urban Search and Rescue (USAR)

applications has be curtailed by the fact that their large number of DOFs coupled

with their non-anthropomorphic structure “make teleoperation difficult and

cognitively fatiguing [26].” Alleviating cognitive fatigue requires identifying synergies

as described by Bernstein in [27] to present to the operator that will allow for a

clearer mental model of the robot as well as developing an intuitive interface that will

allow the operator to easily command the robot.

Chapter 2 introduces a new method of providing the operator of continuum

robots with an intuitive interface through the use of joystick mappings. Section 2.1

describes how to perform simple ‘housekeeping’ of the joystick in order to simplify

the development of various mapping methods as well as how the selection of

operating modes and active sections is performed. Section 2.2 describes various

novel user modes (mapping methods) that can be used to operate the continuum

robot using the joystick. Section 2.3 describes the results from use of the various

modes in field exercises.

 Chapter 3 introduces a new approach to computing the forward positional

kinematics for continuum manipulators. This new geometric approach is more

straight-forward and intuitive than previous methods developed and accurately

reflects the structure of continuum manipulators. This approach also provides for

the first time an exact, closed-form solution to the inverse kinematics problem for

continuum manipulators.

5

Chapter 4 uses the kinematics model derived in Chapter 3 to develop a novel,

potential-field based path planner for continuum manipulators. The necessary

potential fields needed to guide a manipulator towards a goal configuration while

avoiding actuator limits and workspace obstacles are described in section 4.2. Section

4.3 presents and discusses the results for a simple obstacle avoidance experiment

using a greedy path planner and the potentials described in section 4.2.

Chapter 5 reviews the results of this thesis and examines the potential for future

research in these areas.

6

CHAPTER TWO
OPERATOR INTERFACE

The structure of continuum robots presents major difficulties to overcome in

designing a human-machine interface which gives an operator efficient and effective

command over their operation. Many traditional rigid-link robot arms can be

intuitively visualized by or mapped to the human arm, providing an easy and obvious

method of operation. However, with continuum robots the body part closest to

accurately depicting the robot’s structure is the human spine, which in most people

lacks the needed dexterity and control required to perform the movements

corresponding to more than a single section of a continuum robot.

The coupled actuation inherent in the design of continuum robot sections

further complicates this operating task. Traditional manipulators possess a one-to-

one mapping of actuators to joints, so that moving one actuator causes motion only

at that joint, leaving the relative positions and orientations of the remaining joints

Figure 2.1 OctArm V grasps a water jug, guided by the user interface.

7

unchanged. In contrast, the shape of each section of a continuum robot is typically

controlled by two or three actuators and possesses two or three degrees of freedom

in a many-to-many mapping. Producing useful movements such as rotation, bending,

or extension requires coordinated movements of all actuators for a section. A

kinematic analysis [28] reveals that the relationship between actuator position and the

trunk’s shape is a set of coupled, non-linear equations. Therefore, operation of the

robot by directly controlling individual actuator positions, though feasible for

traditional robots, cannot be used to effectively control continuum robots.

I. Interface Device

We chose a joystick as the principal interface device for the operator to use

because it is portable, simple, and commonly available. Joysticks are available in

various sizes and with a wide array of different features. In particular we had good

experience with the Wingman™ 3D and Extreme™ 3D Pro [29] joysticks from

Logitech. These joysticks have a three degree of freedom stick (x, y-axes, and twist),

a throttle/slider bar, seven (in the case of the Wingman™ 3D) or twelve (in the case

of the Extreme™ 3D) buttons, and an eight-way-directional hat switch.

The layout of buttons on the joystick enables the user to select a mapping mode

and which sections of the robot to apply that mode to. The following section

describes the design of the user interface, along with the analysis necessary to

normalize joystick input.

A. Joystick Normalization

In order to make the joystick outputs easier to work with they are normalized to

the range [-1, 1] for the x and y axes and for the handle’s rotation, and to the range

8

[0, 1] for the throttle. The normalization for the x and y axes and the handle rotation

is done via the equation

()ˆ

2

center xcenter
center x

rangecenter
x

x xx x
x u x x

xx x

σ
σ

σ

− −−= ⋅ ⋅ − −
− −

 (1)

where x is the current input from a joystick axis, xcenter is the midpoint on the axis,

xrange is the distance between the minimum and maximum points on the axis, σx is a

tunable parameter to change the size of the area around the middle of the axis that

will be mapped to zero (the ‘dead zone’), ()u t is the unit step function (defined as 1

for t >0 and 0 otherwise), and x̂ is the normalized axis coordinate on the range [-1,

1]. The first term in the equation, center

center

x x

x x

−

−
 can only take on the values 1 and -1 and

so determines the sign of x̂ . The second term,

2

center x

range

x

x x

x

σ

σ

− −

−
 maps the joystick inputs

from the minimum to
center x

x σ− and from
center x

x σ+ to the maximum to a number

between 0 and 1, with the minimum and maximum each equating to 1. The last term

takes care of inputs that fall within the range of [
x

σ− ,
x

σ] and maps them to 0.

The throttle is normalized to the range [0, 1] using a much simpler equation:

min

max min

ˆ 1
z z

z
z z

−
= −

−
 (2)

where z is the input coordinate from the joystick throttle/slider and zmin and zmax are

the minimum and maximum values, respectively. The term min

max min

z z

z z

−

−
normalizes the

input to the range [0, 1] and by subtracting that value from 1 we flip the orientation

of the slider so being pushed all the way forward equates to 1 and being pulled all the

way back equates to 0.

9

This normalization of the device allows us to more easily apply it to the various

mapping methods described in section two.

B. Robot Orientation

All of the mapping methods, introduced in section two, assume that the robot is

oriented such that 0 is to the right, π/2 is forward (away from the operator), π is to

the left, and 3π/2 is towards the operator. However that is not always the case in

practice due to the way real manipulators are constructed and/or mounted. Air-

Octor is oriented such that 0 is to the forward and left, π/2 is forward and right, π is

towards the operator and to the right, and 3π/2 is toward the operator and to the

left. The change in coordinate systems requires a 30-degree rotation about the z-axis

and a 180-degree flip about the y-axis. This transformation can take place in two

different places in the control system in order to correct for the difference in

orientation. Before applying any of the mapping methods, multiplying the

transformation matrix

3 1
0

2 2

1 3
0

2 2

0 0 1

 −
 
 
 
 
 
 

− 
  

 by the vector

0

x

y

 
 
 
  

 yields a linear

transformation that can be applied to the joystick coordinates to produce a new set

of coordinates that are aligned with the robot’s true orientation. This produces the

result:

3 1

2 2
x x y

−
′ = ⋅ + ⋅ (3)

1 3

2 2
y x y′ = ⋅ + ⋅ (4)

10

The orientation can also be corrected for after applying the mapping methods to

the joystick coordinates by adjusting the value of φ given.

C. Mode Selection

There are many possible options available for switching between different

mapping methods (see next section). In order to keep the majority of operations on

the joystick, we utilized the eight-directional hat switch to switch between operating

modes. By holding down a button on the base of the joystick and pressing the hat

switch in one of eight directions the system will automatically switch to the

corresponding mapping mode.

D. Activating Sections

In order to allow the operator to select which section(s) of the manipulator to

move without having to remove their hand from the joystick we utilized four

buttons located on top of the joystick. Two buttons situated to the left of the hat

switch are used to select a ‘base’ section. By pressing the button located on top all

currently activated sections (those under control at the present time) are deactivated

Figure 2.2 Layout of joystick buttons

11

and the ‘base’ section is moved up (towards the base of) the manipulator.

Conversely, pressing the bottom button causes the ‘base’ section to move down the

manipulator arm. Two buttons situated to the right of the hat switch are used to

extend the ‘base’ section by activating adjacent sections. When only the ‘base’ section

is active, pressing the top button activates the section above the ‘base’ section.

Pressing the top button again will activate the section adjacent to the previously

activated one. At this point pressing the bottom button will deactivate the top most

active section, continuing to press the bottom button will continue to deactivate the

adjacent sections until the operator is back to the ‘base’ section; afterwards it has the

same effect as pressing the top button except that the sections located below the

‘base’ section will become active.

II. Mapping Methods

A. Notation

 Each of the following described mapping methods are defined and

implemented in discrete time using the given notation:

• ()i nκ , ()i nφ and ()is n are the curvature, orientation, and length, respectively,

for the ith section of the manipulator on the nth iteration of the control loop.

• ()x n and ()y n are the inputs from the joystick’s x and y axes, respectively,

normalized to the range []1,1− and ()z n is the input from the joystick

throttle/slider, normalized to the range []0,1 , on the nth iteration of the

control loop.

12

• max i
κ is the maximum (magnitude) curvature, min i

s and max i
s are the minimum

and maximum lengths allowed, respectively, for the th
i section of the

manipulator.

• κδ , φδ and δ are user determined parameters which are largely system

dependent.

B. Position Mode

Position mode for a single section is defined by equations

() () ()2 2

max1i in x n y nκ κ+ = + , (5)

() ()
()

1
1 tan

i

y n
n

x n
φ −  

+ =   
 

, (6)

and

() () ()min max min
1

i i i i
s n s z n s s+ = + ⋅ − . (7)

With respect to the to manipulator section’s curvature and orientation, and the x and

y input coordinates, the mapping is a simple rectangular to polar conversion from

the joystick’s configuration space to the manipulator section’s configuration space.

Figure 2.3 Illustration of position mode mapping. Polar coordinates of the joystick

determine trunk curvature κ and angle of curvature φ .

13

Assuming both the coordinate system of the joystick and the robot are oriented

in the same manner, these equations create a mapping that causes the manipulator

section to curve in the direction in which the joystick is pushed with the amount of

curvature determined by how far away the joystick is from being centered, as

illustrated by Figure 2.4. Position based operation gives the user command over the

(relative) velocity of the section through manipulating the rate of change in the

joystick’s configuration (i.e. fast movements of the joystick result in fast movements

of the robot and slow movements of the joystick result in slow movements of the

robot). This control method also allows the user to influence the path taken by the

robot to move from one configuration to another by the choice of different paths

used to move the joystick from one configuration to another.

One method of expanding the concept of manipulating a single section of a

continuum arm with this mapping into manipulating multiple sections is to replicate

the desired configuration for one section and apply it to multiple sections, effectively

turning all active sections into one, larger, single section. Providing for a means to

select which sections of the arm are active gives the user a method for controlling

the entire arm that, while can be tedious in practice, is manageable. However, this

method has some drawbacks.

Using the arm in this manner to perform any useful task will require

manipulating a section into a desired shape, then switching to another section, and

then eventually switching back to the previously moved section. When beginning to

move the section again, if the joystick is not in the exact configuration that maps to

the current configuration of the desired section, once activated, the manipulator

section will jerk to the configuration currently represented by the joystick. In

14

situations where slow, careful, and precise movements are required (such as handling

fragile objects) this could result in task failure. This method of operating a

continuum arm also prevents the operator from performing complex movements

requiring multiple sections to move in different directions simultaneously. Such

movements could be reproduced by making many smaller movements section by

section, but having to operate the arm in this manner becomes highly inefficient.

C. Independent Velocity Mode

The independent velocity mode mapping is defined by the equations

() () ()1
i i

n n x n κκ κ δ+ = + ⋅ , (8)

() () ()1
i i

n n y n φφ φ δ+ = + ⋅ , (9)

and

() () ()min max min
1

i i i i
s n s z n s s+ = + ⋅ − , (10)

where κδ and φδ are used to determine how fast the manipulator section can move.

This gives the user command over the velocities of the robot parameters κ and φ

such that the joystick x -axis will cause the curvature to increase or decrease at a rate

proportional to the distance the joystick was moved while the joystick y -axis will

affect the angle of orientation in the same manner.

This approach gives the user the ability to execute movements with much higher

precision than in position mode and the ability to directly vary the speed at which the

robot moves. This method can also produce a much finer set of configurations than

position mode using the joystick inputs because it utilizes the tunable parameters κδ

and φδ where position mode is limited by the resolution of the joystick. However,

while independent velocity mode gives the user more precise movements, the

15

relation between joystick position/movement and manipulator section movement is

sometimes counter-intuitive, as in the following scenario.

When starting with a section in its ‘home’ position (zero curvature, hanging

down vertically) the relation between joystick movement and manipulator section

movement is intuitive as pushing right on the joystick will cause the section to curve

towards the right, and then pushing up or down on the joystick will cause the section

to rotate forward or backward. But, when the section is curved to the left, pushing

right on the joystick causes the section to curve even more to the left and pushing

forward on the joystick will cause it to rotate backward (towards the user) instead of

forwards as it would if curved in the opposite direction. Also, without feedback

relating the exact configuration of the robot it can be difficult to determine the

section’s angle of orientation when its curvature is zero. This can cause the operator

to not know how the robot will move when its curvature is increased.

D. Coupled Velocity Mode

Using the conversion from rectangular coordinates of the joystick to the polar

coordinates of the manipulator section, a method that combines the features of

position mode and velocity mode is next constructed to provide the user with a

mapping that allows for more intuitive and precise movements. The coupled velocity

method is defined by

() () ()() () ()()22

1i ix iyn n x n n y nκ κ δ κ δ+ = + ⋅ + + ⋅ , (11)

()
() ()
() ()

1
1 tan

iy

i

ix

n y n
n

n x n

κ δ
φ

κ δ
−

+ ⋅ 
+ =   + ⋅ 

, (12)

and

() () ()min max min1i i i is n s z n s s+ = + ⋅ − , (13)

16

where

() () ()()cos
ix i i

n n nκ κ φ= ⋅ , (14)

() () ()()sin
iy i i

n n nκ κ φ= ⋅ , (15)

and δ is a user determined parameter that adjusts how fast the active section is able

to move. This set of equations transforms the polar coordinates of the active

section’s configuration into rectangular coordinates, adjusts each rectangular

coordinate according to the current joystick configuration, and then transforms them

back into polar coordinates.

In a sense, this mapping uses the joystick inputs x and y to create a ‘velocity

vector’ in the configuration space of the manipulator section and applies this vector

to the section’s current configuration, producing a new configuration which is at

most 2 δ⋅ away during each iteration. From the operator’s perspective this

Figure 2.4 Illustration of coupled velocity mode mapping, viewed from two different

angles. The 45° angle of the joystick causes the trunk to move along the plane

parallel to the direction of the joystick.

17

operating mode appears to allow one to “push” or “pull” the end-point of the

section in a two-dimensional plane, as shown by Figure 2.5, while the end-point’s

vertical location is still determined by the robot’s kinematic structure given the

current curvature, orientation, and length.

Coupled velocity mode combines the best features of two previously described

mapping methods. This method allows the operator to directly determine the

velocity of the robot giving the ability for precise control while maintaining an

intuitive feel as the relationship between the robot’s movements and the movements

of the joystick are always the same. This mode became the default mode for practical

operation of the Clemson continuum robots. However, it still shares some of the

disadvantages when trying to operate multiple sections together.

 E. Velocity Mode for Multiple Sections

Both velocity mode methods are non-trivial to modify in order to apply them

towards controlling multiple sections of a continuum arm simultaneously. In the case

of any number of adjacent sections with the same configuration, applying either

velocity method to each section simultaneously will result in all (adjacent) active

sections moving as though they were one single section. However, applying either

method to adjacent sections that do not have the same configuration, and may in

general have very different configurations, simultaneously will give rise to utter

confusion as it becomes increasingly difficult to understand how every active section

of the robot will respond to the same joystick input.

Given that a key user task is to use the continuum arm to perform whole-arm

grasping, it is reasonable to assume that any human operator using multiple sections

simultaneously would desire to operate them together in a manner similar to

18

operating a single section. This means that active sections need to have the same

configuration, or at least similar configurations. Using this assumption, to manipulate

multiple sections at the same time we can determine the average (mean) curvature

and orientation, apply the appropriate velocity method to that average configuration,

and then for each active section apply the current velocity method and apply another

‘velocity vector’ determined by the distance between the active section’s

configuration and the (modified) average configuration. As the sections are

continually moved around they begin to converge, as seen in Figure 2.6. In the

following equations u(t) represents the unit-step function and N denotes the number

of active manipulator sections. For the independent velocity mode the following

equations illustrate the above approach.

First, the mean configuration of all the active sections is computed and the

independent velocity mapping is applied by

() () ()1 N

avg i

i

n k n x n
N

κκ δ
 

= + ⋅ 
 
∑ , (16)

() () ()1 N

avg i

i

n n y n
N

φφ φ δ
 

= + ⋅ 
 
∑ . (17)

Then the average configuration is converted into rectangular coordinates by

() () ()()cosavgx avg avgn n nκ κ φ= ⋅ , (18)

() () ()()sinavgy avg avgn n nκ κ φ= ⋅ . (19)

Next, for each active section, the ‘velocity vector’ between section i and the average

configuration is calculated by

() () ()() () () ()()2 2

max max

cosavgx i i

ix

avg i

n n n
n u x n y n

κ κ φ

κ κ

− ⋅
∆ = ⋅+

+
 (20)

and

19

() () ()() () () ()()2 2

max max

sin
avgy i i

iy

avg i

n n n
n u x n y n

κ κ φ

κ κ

− ⋅
∆ = ⋅+

+
 (21)

where
max avgκ is the mean of

max i
κ for all of the active sections. The terms

() () ()()cos
avgx i i

n n nκ κ φ− ⋅ and () () ()()sin
avgy i i

n n nκ κ φ− ⋅ each find the distance (in the x

and y rectangular directions) from the average configuration to the current

configuration of section i and by dividing by
max maxavg iκ κ+ this value is normalized to

the range [-1, 1]. The term () ()()2 2
u x n y n+ is zero when the joystick is centered and

one otherwise and so prevents the active sections from moving when the user has

not moved the joystick. With the ‘velocity vector’ constructed, it can be applied to

section i along with the independent velocity mapping by

() () ()() () ()() ()cosix i k i ixn n x n n y n nφκ κ δ φ δ δ= + ⋅ ⋅ + ⋅ + ∆ ⋅ (22)

and

() () ()() () ()() ()siniy i k i iyn n x n n y n nφκ κ δ φ δ δ= + ⋅ ⋅ + ⋅ + ∆ ⋅ . (23)

Finally the rectangular coordinates for section i can be converted back into polar

coordinates by

() () ()2 2
1i ix iyn n nκ κ κ+ = + , (24)

()
()
()

1
1 tan

iy

i

ix

n
n

n

κ
φ

κ
−  

+ =   
 

, (25)

and

() () ()min max min
1

i i i i
s n s z n s s+ = + ⋅ − . (26)

For the coupled velocity mode, calculating the next set of configurations follows the

same approach, with only a few small differences.

20

Figure 2.5 Illustration of multiple sections converging.

21

The mean configuration of all the active sections is computed the same but the

mapping is not yet applied:

() ()1 N

avg i

i

n k n
N

κ = ∑ (27)

() ()1 N

avg i

i

n n
N

φ φ= ∑ . (28)

With the average configuration calculated, it is converted into rectangular

coordinates and the coupled velocity mapping is now applied as

() () ()() ()cosavgx avg avgn n n x nκ κ φ δ= ⋅ + ⋅ (29)

() () ()() ()sinavgy avg avgn n n y nκ κ φ δ= ⋅ + ⋅ . (30)

For each active section the ‘velocity vector’ between section i and the average

configuration is calculated the same as previously shown in (20) and (21). The next

step is to apply the coupled velocity mapping and the ‘velocity vector’ to the

configuration of each active section:

() () ()() () ()()cosix i i ixn n n x n nκ κ φ δ= ⋅ + + ∆ ⋅ (31)

() () ()() () ()()siniy i i iyn n n y n nκ κ φ δ= ⋅ + + ∆ ⋅ . (32)

Finally the rectangular coordinates for section i are converted back into polar

coordinates just as in (24) through (26).

III. Experimentation

The usefulness of the mappings was demonstrated during March 2005 [30] and

April 2006 DARPA demos and the Coupled Velocity Mode was evaluated through

usability experiments in [31]. Photos from the demos are shown in Figures 2.7

through 2.10. Through the field trials from the DARPA demos it was observed that

22

the human operator used the modes introduced in this chapter to position the

separate arm sections into a suitable configuration with which to grasp an object.

Once the arm was in this configuration, the distal sections of the arm were then

carefully curved in the direction of the object in order to “constrictively” grasp the

object. The sections used to form the grasp were then no longer modified unless the

grasp needed to be tightened or loosened. The other sections of the arm were then

used to either support the grasp or to reposition the object [32].

Figure 2.6 OctArm grasps a kick-ball guided by the user interface.

23

Experience in operating the OctArm and Air-Octor continuum manipulators

using the joystick interface has also provided 0.0005, 0.0001, and 0.001 as ‘good’

values for δ , κδ , and φδ , respectively, as they provide a good range of slow (but not

too slow) and fast (but not too fast) movements. These ‘good’ values will vary from

system to system depending on the rate of the control loop. In later experiments the

length of each section was fixed to a specific length, freeing up the joystick slider to

be used to adjust the three δ-values on-the-fly, allowing for more precise operation

[32].

Figure 2.7 OctArm grasps an inactive RPG

24

The results of the usability experiments from [31] provided recommendations for

improving the user interface and subjective data revealing a group of users’

preference for the coupled velocity mode over typical end-point control

accomplished through the use of an inverse Jacobian. This work also showed

improved results in the use of coupled velocity mode in [31] after a number of the

previous recommendation had been implemented.

Figure 2.8 OctArm holds a PVC pipe with the aid of a high-friction, latex skin.

25

Figure 2.9 OctArm grabs and then drags away multiple air-soft guns.

26

CHAPTER THREE
CONTINUUM KINEMATICS BY GEOMETRY

Several approaches have been developed to date that address the kinematic

modeling of continuum manipulators [14, 25, 33-37]. However, the majority of these

methods provide only approximate solutions to positional and/or orientation

kinematics or solutions for limited cases. Chirikjian and Burdick reduce the number

of degrees of freedom needed to control a hyper-redundant robot by fitting it to a

general mathematical curve in [33-35]. Hannan [37] models the parameters for a

continuum manipulator as a ‘phantom’ rigid-link manipulator and utilizes standard

Denavitt-Hartenburg techniques to arrive at a transformation matrix. Jones later

extends this technique in [25], correcting for previous errors in orientation, to

incorporate extension (changes in arc-length).

This chapter introduces a new approach to computing the forward positional and

orientation kinematics for continuum manipulators. This new geometric approach is

more straight-forward and intuitive than the methods described previously and

accurately reflects the structure of continuum manipulators. This approach also

provides for the first time an exact, closed-form solution to the inverse kinematics

problem for continuum manipulators.

27

I. Single-Section Kinematics

A. Forward Kinematics

For our analysis we model a single section of a continuum manipulator as an arc

with one end-point,O fixed to the origin of a right-handed Euclidean frame, the

other end-point, P located anywhere in the space, and the center of the arc,C in the

XY plane (see Figure 3.1). We assume that the section bends with constant

curvature. This reflects the physical structure of many continuum manipulators such

as Air-Octor [19] and the OctArm [38] series of manipulators, which we have

developed. We parameterize a section of a continuum manipulator by its arc-

Figure 3.1 Illustration of model for continuum manipulator section.

28

length, s its curvature,κ and its orientation,φ as is previously done in [25] (see

Figure 3.2).

From these parameters the tip-location of a single continuum section, P can be

expressed parametrically as

() ()() ()

() ()() ()

() ()

1 1 cos cos

1 1 cos sin .

1 sin

s
x

P y s

z
s

κ φκ

κ φκ

κκ

 ⋅ − ⋅ ⋅
  
  = = ⋅ − ⋅ ⋅  
    ⋅ ⋅  

 (33)

This can be shown by first examining the planar-case of a single section with some

arbitrary length and curvature, and an orientation equal to zero (see Figure 3.3). This

Figure 3.2 Illustration of continuum section parameters.

29

produces an arc within the XZ plane. The angle subtended by the arc,θ is simply the

product of the arc-length and the curvature (sθ κ= ⋅), where curvature is the inverse

of the radius of the arc (1
r

κ =). The x-coordinate of P is then simply ()cosr r θ− ⋅ ,

and after factorization and substitution:

() ()()1 1 cosx s κκ= − ⋅ . (34)

The z-coordinate of P is trivially ()sinr θ⋅ , and substituting for r and θ :

() ()1 sinz s κκ= ⋅ ⋅ . (35)

Figure 3.3 Continuum section bending in XZ plane.

30

For non-planar cases where 0φ ≠ the result simply involves a rotation about the

z-axis by φ thus

() ()()

() ()

() ()() ()

() ()() ()

() ()

,

1 1 cos cos1 1 cos

10 1 cos sin

1 sin 1 sin

z

ss

P R s

s s

φ

κ φκ κκ
κ φκ

κ κκ κ

 ⋅ − ⋅ ⋅ ⋅ − ⋅   
   = ⋅ = ⋅ − ⋅ ⋅    
  ⋅ ⋅ ⋅ ⋅    

, (36)

where ,zR φ   is a counter-clockwise rotation about the z-axis by φ as described in

[39]. This result accurately determines the tip-location of the section based on the

, ,s κ φ parameters but does not take into account the change in orientation of the tip.

Figure 3.4 Illustration of change in orientation from base frame to section end-
point.

31

In order to correctly determine the final tip-location of a multi-section

continuum manipulator the change in orientation between each section must be

determined. We assume that the continuum section is free from torsion along its

entire length. The orientation change at the end of any single section can be

expressed by a rotation about a vector, k which is perpendicular to the plane of

bending, by an angle ofθ . For the planar case 0φ = all rotations are about the y-axis

by θ . For spatial cases k is simply a unit vector oriented along the y-axis and rotated

about the z-axis byφ . Thus () ()sin cos 0
T

k φ φ= −   and ()
1

0 ,k s
R R κ⋅

   =    , where

1

0R   is the rotation from the base frame to the end-point frame (see Figure 3.4). We

can now create a standard transformation matrix

()

() () ()
() () ()

,

2 1

2 1

1

0 0 0 1

s 1 c c s c 1 c c s 1 c c

s c 1 c c 1 c c s s 1 c s

c s s s c s

0 0 0 1

k s

s s s s s

s s s s s

s s s s

R p
A

κ

φ κ κ φ φ κ φ κ κ φ

φ φ κ φ κ κ φ κ κ φ

φ κ φ κ κ κ

κ
κ

κ

⋅

−

−

−

  
  =
  

 ⋅ − + − ⋅ ⋅ − ⋅ ⋅ − ⋅
 
− ⋅ ⋅ − ⋅ − + ⋅ ⋅ − ⋅ =
 − ⋅ − ⋅ ⋅
 
  

, (37)

 where the notation ()s sina a

b
b= and ()c cosa a

b
b= . These results match those

produced by Jones in [25].

B. Inverse Kinematics

The , ,s κ φ parameters can be determined by the end-point location, P (having

coordinates , ,x y z) in a closed form expression. The angle of orientation,φ for a

single continuum section can be trivially determined by dividing the x and

y coordinates giving

32

()1
tan

y
x

φ −= (38)

The (inverse) curvature can be determined by finding the distance from the

origin to the center of the arc formed by the continuum section. Rotating P about

the z-axis by φ− produces a point 'P with coordinates ', ', 'x y z such

that 2 2
' , ' 0, 'x x y y z z= + = =and . This creates an arc of the same curvature in the

XZ plane. Our model restricts the center of the arc to be in the XY plane; after

rotation, this center must lie along the x axis. Therefore, the center of the arc, 'C

must lie at the point (),0r in the XZ plane, where r is the radius of the arc and

1
r

κ
= . Noting that 'P and O lie equidistant from 'C at a distance of r , we can

write an expression for the circle of radius r , centered at 'C , which passes through

'P and O as

()2 2 2' 'x r z r− + = . (39)

 By solving for r and taking the reciprocal we can determine the curvature, κ . Thus

()2 2 2

2 2 2 2

2 2

2 2

' '

' 2 ' '

' 2 ' ' 0

' '

2 '

x r z r

x r x r z r

x r x z

x z
r

x

− + =

− ⋅ ⋅ + + =

− ⋅ ⋅ + =

+
=

⋅

.

33

Noting that 1r κ −= and substituting for 'x and 'z ,

2 2

2 2 2

2 x y

x y z
κ

+
=

+ +
. (40)

Lastly, the arc-length can be determined by multiplying the reciprocal of the

curvature, κ by the angle, θ subtended by the arc:

1
s θ

κ
= ⋅ (41)

The angle θ can be calculated from the curvature and the Cartesian coordinates

of P . Looking at the planar case of 'P , where
1

'xP
κ

< , θ can be computed as

Figure 3.5 Computing θ from end-point location, case1.

34

()1cos d κ− ⋅ where
1

'xd P
κ

= − (see Figure 3.5). Substituting for d and simplifying

provides us with

()1cos 1 'xPθ κ−= − ⋅ . (42)

In the planar case of P′ , where
1

xP
κ

′ > ,
2
θ can be computed as ()1cos d κ− ⋅ where

1
xd P

κ
′= − and

2
θ π θ= − (see Figure 3.6). After substituting for d and

2
θ ,

()1cos 1xPθ π κ− ′= − ⋅ − . (43)

Noting that () ()1 1cos cos , 0z z zπ− −= − − ≥ , and substituting into (43) gives

() ()1 1cos 1 cos 1x xP Pπ κ κ− −′ ′− ⋅ − = − ⋅ . (44)

Since (42) and (44) are equal, we can express θ in terms of κ and P′ as

()1cos 1 xPθ κ− ′= − ⋅ . (45)

When
1

xP
κ

′ = then () ()1 1cos 1 cos 0 2xPθ κ θ π− −′= − ⋅ → = = , which is the correct value

for θ when 0
z

P′ > .

In all three cases θ is calculated independent of
z

P′ and only correct

when 0zP′ ≥ . This means that the same value for θ is computed when ' 0zP < but θ

should actually be 2π minus that value, so when ' 0zP < use

()12 cos 1 'xPθ π −= − − . (46)

Putting (45) and (46) together piece-wise and substituting for x′ (noting that the

rotation of P does not affect the arc-length) yields

35

()
()

1 2 2

1 2 2

cos 1 , 0

2 cos 1 , 0

x y z

x y z

κ
θ

π κ

−

−

 − ⋅ + >


=
 − − ⋅ + ≤


. (47)

C. Special Cases (Singularities)

End-point coordinates along the z-axis present singularities in the inverse

kinematics calculations and can be grouped into three different cases:

0z > , 0z = , 0z < . End-point coordinates along the z-axis with a value 0z > produce

correct curvature values of zero. However, this creates a divide-by-zero condition in

the arc-length calculation. When 0x = and 0y = the orientation calculation also

produces the divide-by-zero condition. This case is easily handled by assigning φ to

Figure 3.6 Computing θ from end-point location, case 2.

36

some arbitrary value and determining the arc-length as s z= .

In the second case, when []T0 0 0P = , multiple solutions exist as an arc

forming a complete circle with any radius at any orientation satisfies this condition.

To date, no continuum devices have been developed which can create this condition.

For the case of such a device, and for the purposes of simulation, various methods

could be developed to handle this singularity. For example, φ and s could be chosen

such that 0φ =&& and 0s =&& and then 2 sκ π= . Alternatively, φ and s could be chosen

arbitrarily and κ determined as before.

The last case occurs when P exists along the z-axis where 0z < . This case poses

an impossibility given the physical constraints of a continuum manipulator section.

II. Multi-Section Kinematics

A. Forward Kinematics Algorithm

A forward kinematics algorithm can be constructed by iteratively computing the

Euclidean coordinates for each section along with the rotation due to each section

and consecutively applying these rotations and translations to more distal sections as

they are computed. Starting from the base section, its end-point is computed along

with its change in orientation (i.e. rotation due to its movement). These values are

used to update the total change in orientation and end-point location of the arm. For

each section remaining, the same values are computed, the total change in

orientation of the arm is applied to the end-point computed for the current section,

the total translation of the arm thus far is then added to the end-point for the current

section (then making it the new total translation of the arm), and finally the rotation

37

due to the current section is applied to the total change in orientation of the arm.

This process is then continued until all distal sections have been evaluated.

[]

[]

T

T

0 0 0

base_section tip_section

compute , , for section i

apply total rotation due to previous sections to , ,

add to , , and assign

apply rotation due to sec

Total

Current

Current Current

R I

P

for i

x y z

x y z

P x y z P x y z

=

=

←

=

K

tion to Totali R

endfor

B. Inverse Kinematics Algorithm

The inverse kinematics, derived previously, can also be iteratively applied to

multiple, serially-linked continuum sections to model an n-section continuum

manipulator. Given a list of endpoints (one for each section), the values of s , κ ,

and φ can be determined for each section by first determining the values of s , κ ,

and φ for the base section (by directly applying the inverse kinematics for a single

section), then subtracting the translation due to the base section from the remaining

end-points, applying the opposite rotation due to the base section to the remaining

end-points, and then repeating this process with the remaining sections.

base_section tip_section

compute , , for section i

1 tip_section

subtract translation due to section from section

apply opposite rotation due to section to section

for i

s

for j i

i j

i j

endfor

endfor

κ ϕ
←

← +

K

K

38

C. Incorporating Dead-Length Sections

Many actual continuum manipulator devices contain lengths of space between

each section that do not bend. There are three ways to represent these ‘dead’ lengths

as part of each section. The non-bending length of each section can be included at

either end of the section or split between the two. If we take the approach of

including the non-bending length at the end of each section, then incorporating

these ‘dead’ lengths can be easily handled by adding an appropriate translation at the

end of the loop in the forward algorithm, and at the beginning of each loop in the

inverse algorithm.

[]T0 0 0

base_section tip_section

compute , , for section i

apply total rotation due to previous sections to , ,

add to , ,

apply rotation due to section to

Total

Current

Current

Total

Current

R I

P

for i

x y z

x y z

P x y z

i R

P

=

=

←

=

K

[] T

0 0 CurrentTotalR deadLength i P

endfor

 ⋅ + 

base_section tip_section

compute , , for section i

1 tip_section

subtract translation due to section from section

apply opposite rotation due to section to section

subtract dead length

for i

s

for j i

i j

i j

κ ϕ
←

← +

K

K

of section from -coordinate of section i z j

endfor

endfor

39

III. Results

Through a straight-forward, geometrical derivation the forward kinematics

presented in this chapter provides a more intuitive method than previously proposed

models. The integration based method described by Chirikjian and Burdick in [33]

(while providing a correct solution that includes modeling torsion) requires the

analysis and understanding of the vectors tangent to the curve along its length. The

method proposed by Hannan in [37] and extended by Jones in [25] fits a rigid-link

robot to match the kinematics of a continuum manipulator. This requires the

addition of numerous extra joints (DOFs) to the model to arrive at the same results

presented in this chapter.

Traditionally (i.e. for rigid-link robots) the forward kinematics are calculated by

multiplying the transformation matrices of each link together to form the total

transformation matrix [39]. This gives the orientation and location of the end-

effector in terms of the base frame. Given the complexity of the transformation

matrix given by (37), this method of computing the forward kinematics requires

()54 112 1n n⋅ + ⋅ − floating-point operations for a continuum manipulator with

n sections. In comparison, using the forward kinematics algorithm (modified to

include dead-lengths) given in the previous section requires 137 n⋅ floating-point

operations. Figure 3.7 shows that the traditional method of multiplying

transformation matrices requires fewer floating-point operations for continuum

manipulators with fewer than 4 sections but the algorithm presented in this chapter

performs better in that respect when 4n ≥ .

40

The final transformation matrix can be symbolically constructed by hand and

simplified in order to create a method of computing the forward kinematics that is

more efficient than either of the two previously mentioned. However as the number

of sections increases so does the complexity of the resulting transformation matrix,

making this method less practical. Jones discusses in [40] the use of available

software packages to aid in the symbolic construction of the final transformation

matrix. Jones’ method is limited by available system memory, making it practical for

only up to 3 sections, though in theory could be used for any number of sections.

The forward kinematics algorithm presented in this chapter stays the same regardless

of the number of sections in the manipulator and its performance is limited only by

the speed of the processor.

Figure 3.7 Computational cost for the forward kinematics algorithm and standard
D-H method.

41

The inverse kinematics approach derived in this chapter is the first closed-form

solution to the inverse kinematics problem for continuum manipulators. The

algorithm presented for computing inverse kinematics of an n-section manipulator

presents an alternative to end-point control through using the Jacobian by allowing

the desired location of the end-points to be specified directly in the Cartesian

workspace coordinates. Jacobian based methods for end-point control involved

finding the approximate changes in joint variables (actuator lengths for continuum

manipulators) needed in order to produce the desired end-point trajectory. With the

inverse kinematics presented in this chapter the desired end-point trajectory can be

applied directly (see Figure 3.8). Since the inverse kinematics require specifying the

desired location of each end-point, in order to allow end-point control similar to

Jacobian based methods (i.e. operating only a single end-point), methods of

automatically determining a desired location for the un-constrained end-points are

needed. One such method is presented by Neppalli and Jones (in collaboration with

the author at Clemson) in [41] to compute possible locations for the intermediate

end-point locations given a desired location for the final end-point, desired distances

between end-points, and desired orientations for the intermediate end-points.

42

Figure 3.8 Using the inverse kinematics algorithm, the end-point of the middle
section is moved to the left while the other two end-points remain stationary.

43

CHAPTER FOUR
POTENTIAL FIELD PATH PLANNER

Fully automated path planning will probably never be adopted for USAR tasks as

the nature of urban search and rescue involves operating in highly irregular spaces

often filled with thick dust and debris. Current path planning techniques and sensor

technology available today are not adequate to overcome this challenge [4, 7, 8].

However, advances in path planning for continuum manipulators could provide

insight into beneficial, semi-automated features for user interfaces which could aid

operators during USAR operations. While fully automated path planning may not be

suitable to USAR, the automation of tasks that need to be performed in confined

(yet structured) spaces by continuum manipulators is desired and highly beneficial.

The reasons for automation of continuum manipulators are the same as for

typical rigid-link robots used by industry: continuous, faster, cheaper operation.

Where rigid-link robots used by industry often replace human workers in mundane,

repetitive tasks along an assembly line, continuum manipulators can be utilized for

more complicated tasks requiring a higher degree of dexterity in confined spaces that

pose a safety risk for human workers.

Numerous approaches to path planning for rigid-link manipulators and mobile

robots have been developed and are described / surveyed in [42]. None of these

methods, however, have been reported as being implemented for continuum style

manipulators. In this chapter we develop a novel path planner for continuum robots

based on the potential field method.

44

I. Overview of Potential Field Methods

Potential Field methods for robot path planning are well established and have

been studied for almost thirty years [43]. They have been applied to numerous path

planning problems involving mobile robots [44, 45] and rigid-link manipulators [46,

47] in both static and dynamic environments [48, 49].

Typically potential field methods involve expressing a potential as a scalar

function of a robot’s configuration and taking from the gradient of this potential

function the desired forces/torques to apply to the robot in order to reach the goal

configuration. This potential function is usually composed of two or more

elementary potential functions with the individual purpose of pulling the robot

towards its goal configuration or pushing it away from obstacles and joint limits.

These elementary potentials usually have a weight associated with them for the

purpose of scaling their magnitudes and adjusting the resulting total potential field

[42].

II. Applying Potential Fields to Continuum Manipulators

The configuration of a continuum manipulator is determined by the length of its

actuators but can equivalently be represented by the Euclidean location of the end-

points of each section or by the arc-length, curvature, and orientation of each

section. Let XYZ
Q , S

Q
κφ , and l

Q be matrices that represent a configuration for a

continuum manipulator with n sections where the superscript XYZ denotes

representation in the Euclidean workspace, sκφ denotes representation in the

cylindrical ‘shape’ coordinates (arc-length, curvature, and orientation), and l denotes

representation in the space of actuator lengths. The work in this chapter is based on

45

a three actuators per section construction, but any construction could be used

provided the mapping between actuator lengths and shape coordinates is known.

3

0 1 1

0 1 1

0 1 1

3

0 1 1

0 1 1

0 1 1

3

1,0 1,1 1, 1

2,0 2,1 2, 1

3,0 3,1 3, 1

n

n
XYZ

n

n

n

n
s

n

n

n

n

l
n

n

x x x

Q y y y

z z z

s s s

Q

l l l

Q l l l

l l l

κφ κ κ κ
φ φ φ

×

−

−

−

×

−

−

−

×

−

−

−

 
 
 
 
 

 
 
 
 
 

 
 
 
 
  

=

=

=

K

K

K

K

K

K

K

K

K

Developing a potential field path planner for a continuum manipulator requires

defining three potential fields: (),attr goalU Q Q , to pull the robot to its desired

configuration, ()limitU Q , to push the robot away from its joint/actuator limits, and

()ObsU Q , to push the robot away from obstacles in the workspace. Taking a weighted

sum of these three potentials yields the total potential

() () () ()limit, ,total goal attr goal ObsU Q Q U Q Q U Q U Qα β λ= ⋅ + ⋅ + ⋅ . (48)

By adjusting the values ofα , β , and λ , ()totalU Q can be tuned to modify the behavior

of the path planner.

A. Attractive Potential

The attractive potential can be defined similarly to the potentials for mobile or

rigid-link robots as a measure of distance between a given current configuration,Q ,

and the goal configuration,
goal

Q . Many distance measures exist that could suffice to

produce a potential that will attract the robot to the goal configuration. The effects

of utilizing one distance measure over another in constructing the attractive potential

46

have currently not been well established. In order to create an intuitive attractive

potential field we propose two Euclidean based distance measures. The first is simply

the Euclidean distance between Q and Q
goal

 as two 3n -dimensional points.

() ()
3 2

,
,

1 1

,
n

XYZ XYZ

attr goal i j goal
i j

i j

U Q Q Q Q
= =

= −∑∑ (49)

The second is a sum of the Euclidean distance between each end-point along the

arm with its corresponding desired configuration.

 () ()
1

,
n

XYZ XYZ

attr goal i goal

i

U Q Q col Q Q
=

= −∑ (50)

In both (49) and (50) as Q approachesQ
goal

, ,U Q Q
attr goal

 
 
 

 approaches 0.

B. Joint Limit Avoidance Potential

Due to the construction of continuum manipulators and the unique way in which

they move the joint-limit avoidance potential for a continuum manipulator requires a

different approach than has been used in the past for rigid-link manipulators. In [46]

Khatib proposes implementing joint limits on rigid-link manipulators in a similar

manner as configuration space obstacles by creating a repulsive potential centered at

each joint stop for each rigid-link. While this method could be used to ensure that

each actuator in a continuum manipulator remained within its length limits it would

also produce the effect of ‘pushing’ sections away from their maximum curvature as

individual actuators neared their minimum or maximum lengths. This would place

un-necessary, artificial limits on the movements of a continuum manipulator.

47

Jones [25] explored the effects that the construction used in the OctArm series

of continuum manipulators (three equidistant linear actuators) has on their joint

limits. Joint limits can be enforced either in the actuator-length space by checking

that min maxi
l l l≤ ≤ or in the sκφ space by ensuring the desired value for κ is

attainable with the given values of s andφ . Jones showed that the minimum and

maximum actuator lengths determined the maximum achievable curvature for any

given value of s andφ , and specifically that

()

max max min min max

max max min

max

max min min maxmin

min max min

,

l s f l f l
when s

sdf f f
s

f l f ll s
when s

sdf f f

κ φ

− − ≥ −
= 

−− ≤
 −

 (51)

where d is the distance from the center of the continuum section to the center of an

actuator,

()max max sin ,sin , cos
3 6

f
π π

φ φ φ
    = − + − +    

    
, (52)

 and

()min min sin ,sin , cos
3 6

f
π π

φ φ φ
    = − + − +    

    
. (53)

It is desirable to attract the manipulator towards a configuration which provides

it more maneuverability in order to avoid any local minima created by approaching

joint limits. A continuum section has the most maneuverability when its arc-length,

s , is closer to the middle of its possible range [25]. This can be attained by using

() 1,

limit

1 max min

2 i

i i

k
sn
i mid

i

Q s
U Q

s s

κφ

=

 −
= ⋅  − 
∑ (54)

48

where
mini

s and
max i

s are the minimum and maximum arc-lengths, respectively, for

section i , ()max min 2
i i imids s s= + , and k is a positive, even integer. When

1, i

s

i mid
Q sκφ = for each section ()limit 0U Q = , thus minimizing (54) results in each

section being pulled towards
imids . Placing a similar potential on each individual

actuator length creates the additional, and undesired, effect of attracting the

manipulator sections to configurations where 0κ = .

A hard constraint based on (51) and on s is also needed to enforce the limits of

the individual actuators. When ()2, max 1, 3,,s s s

i i iQ Q Q
κφ κφ κφκ> or when 1,

s

i
Q κφ is outside the

range of maxi
s and mini

s section i violates joint limits by bending more than the

actuators’ length limits allow and should have a high potential value in order to

indicate this condition. We can combine (51) and (54) piece-wise producing

() ()

1,

1 max min

limit 2, max 1, 3, min 1, max

2 ,

, ,

,

i

i i

i i

k
sn
i mid

i

s s s s

i i i i

Q s
when

s s

U Q Q Q Q s Q s

otherwise

κφ

κφ κφ κφ κφκ

=

  −
 ⋅   −  


=  ≤ ≤ ≤

∞

∑

. (55)

C. Obstacle Avoidance Potential

Mapping workspace obstacles into the configuration space is difficult and

intensive for high DOF robots [43]. For this reason potentials for avoiding obstacles

are often computed based on the robot’s workspace [42]. To create ()obs
U Q we

sample a number of points along the arm and take the inverse of the minimum

distance of those points to the obstacle. Let (),XYZ
f Q j be the Euclidean

49

coordinates of the thj point along the arm and ()
iobs

d p be the distance from the 3-

dimensional Euclidean point p to the closest point on obstacle i in the workspace,

where () 0
iobsd p = when ip obs∈ . The potential for obstacle i can then be

expressed by

() ()()()
1

1 min ,
i i

n m
XYZ

obs obs
j

U Q d f Q j
⋅

=
= , (56)

where m is the number of sample points per section. If a point along the arm exists

either on or within the boundaries of obstacle i then ()()()
1

min , 0
i

n m
XYZ

obs
j

d f Q j
⋅

=
=

and the resulting potential value equals ∞, indicating a collision with the obstacle.

Summing over all of the obstacles yields the total obstacle potential

() ()
1

i

M

obs obs

i

U Q U Q
=

=∑ , (57)

where M is the total number of obstacles in the workspace. The obstacle avoidance

potential as depicted in (57) weights the potential field around each individual

obstacle evenly. However, other weighting schemes for summing up the potential

values due to the individual obstacles could be used. The effectiveness of using an

un-even weighting to handle multiple obstacles is not known and not addressed in

this work.

The result of the function (),XYZ
f Q j can easily be computed by a simple

modification to the forward kinematics algorithm presented in Chapter 3. The

distance function ()obs
i

d p for each obstacle is dependent on the shape of the

obstacle. While this function has to be determined by hand for off-line computation,

specifying it as the minimum distance to an obstacle allows it to be equivalent to

50

taking the minimum distance reading from each sensor located along the arm in an

on-line situation.

D. Decision Strategies (Search Methods)

Potential fields alone (even those without local minima) do not produce a path.

Some technique is required to generate a path from potential fields that take the

robot to its desired goal configuration. Many methods of doing so have been

developed previously and are discussed in [42, 43]. These methods can be divided

into two categories, with one category being methods that use the potential field to

control the robot directly and the other being methods that use the potential field to

guide a search through the robots configuration and/or workspace.

Methods that use the potential field directly are often well suited for on-line path

planning. The desired forces/torques to be applied to the robot can be computed by

taking the gradient of the potential field. If the potential field is represented in the

robot’s configuration space, then the forces/torques taken from the gradient can be

directly applied to the robot. If the potential is represented in the workspace then the

forces/torques desired of the robot’s end-points must be converted into joint

forces/torques.

Methods that use the potential field to guide a search algorithm simply evaluate

the value of the potential field over a discrete number of configurations. Numerous

search algorithms have been combined with potential fields and implemented as path

planners. The most common/prevalent are Depth-first, Breadth-first, Best-first, Bi-

directional, and A* [43]. In the next section we describe a new greedy (for simplicity)

path-planner based on the potentials fields for continuum manipulators presented

earlier in this chapter.

51

E. Greedy Potential Field Path Planner

A Greedy algorithm uses a heuristic to make locally optimum choices in the hope

that they will lead to the global optimum [50]. In this case we wish to minimize

(),total goalU Q Q . Greedy algorithms do not perform a search and thus do not

guarantee a solution will be found even one exists. However, they have the benefit of

being fast when compared to other methods which exhaustively search a space.

A non-greedy (best-first) planner could be implemented which returns to a

previous configuration when it runs into a local minimum and chooses the next best

configuration until it reaches the goal. We opt to explore the effects of adjusting the

weights for each potential field in order to determine a path that reaches the desired

configuration in a single shot while avoiding all obstacles in the workspace. It is

possible that if multiple sets of weights producing successful paths with a greedy

path-planner exist then the set of elementary potentials may be well suited to an on-

line implementation.

The majority of potential field methods that have been developed utilize two

arbitrary scaling factors. One scalar is used to adjust the region of influence of a

potential field (mainly for obstacles) and another to adjust the relative weight of each

potential field. While the majority of potential field methods utilize these gains,

presently no substantial research has been done into how to optimally select them.

Adjustment of these gains is still very much done by trial and error.

In order to reduce the difficulty of tuning gains, each elementary potential field is

normalized across all the 3 n⋅ -neighbors (all the configurations having at most 3 n⋅

coordinates different from the current configuration [42] by a distance, δ , and

including the current configuration). This allows the process of choosing the

52

appropriate weights to be simplified down to determining an ideal ratio between

each potential, eliminating the need to arbitrarily scale the magnitudes of each

potential. If we enforce that the magnitude of a vector formed by the weights used is

equal to one, then the process of determining an ideal ratio can be easily performed

by iterating through a sampling of points located in the first quadrant on the unit

sphere.

For a given elementary potential function the potential values are normalized

across the 3 n⋅ -neighborhood by subtracting the minimum raw potential value and

dividing by the range of the potential values. In the cases of the joint limit and

obstacle avoidance potentials which indicate actuator length limit violations and

obstacle collisions with a value of infinity, the maximum potential value is taken as

the largest non-infinite value. This results in all of the scalar potential values for

configurations that do not violate actuator limits or collide with obstacles being

normalized to the range []0,1 while the scalar potential values for configurations that

do remain equal to infinity.

Under the assumption that the current configuration and the previous

configuration do not violate joint limits nor collide with the obstacle we can always

determine a minimum value and a non-infinite, maximum value. While if the

manipulator were to move into a region where the potential values formed a plateau

the normalization would create a 0
0
 condition, in practice this never occurs.

Let ()3 n
P Q

⋅ represent the set of configurations in the 3 n⋅ -neighborhood of Q

where ()3 n

iP Q
⋅ is the thi configuration in the set. Let ()max i

i
S

∞/ represent the

53

maximum value over a set, S , which is less than infinity. Using this notation the

normalized elementary potential functions can be written as

()()
()() ()()()
()()() ()()()

3

3 3

3 3

ˆ , ,

, min ,

max , min ,

n

attr j goal

n n

attr j goal attr i goal
i

n n

attr i goal attr i goal
ii

U P Q Q Q

U P Q Q U P Q Q

U P Q Q U P Q Q

⋅

⋅ ⋅

⋅ ⋅

=

−

−

, (58)

()()
()() ()()()

()()() ()()()

3 3

limit limit3

limit 3 3

limit limit

min
ˆ ,

max min

n n

j in i
j n n

i i
ii

U P Q U P Q
U P Q Q

U P Q U P Q

⋅ ⋅

⋅

⋅ ⋅∞/

−
=

−
, (59)

and

()()
()() ()()()

()()() ()()()

3 3

3

3 3

min
ˆ ,

max min

n n

obs j obs in i
obs j n n

obs i obs i
ii

U P Q U P Q
U P Q Q

U P Q U P Q

⋅ ⋅

⋅

⋅ ⋅∞/

−
=

−
. (60)

Given the normalized potential functions, an initial configuration,
init

Q , a goal

configuration, goalQ , and a set of weights, , ,α β and λ , the greedy path-planner

becomes a simple matter of computing the potential values for every local

configuration (the 3 n⋅ -neighborhood) and choosing the configuration with the

minimum value as the next configuration. This iterative process continues until

either the goal configuration is reached or a previous configuration is repeated

(indicating that either a local minimum has been reached or that the arm will begin a

repeating cycle).

III. Experiment

This section describes the implementation and results of a path planning

experiment based on the methods presented in the previous section. Simulations

54

were performed in Matlab (see Appendix) based on the parameters of the OctArmVI

Master Continuum Manipulator (see Table 4.1).

OctArmVI Master Continuum Manipulator Parameters

Section
minl maxl d dead-length

Base 28.0 42.0 3.0 6.0

Middle 26.5 44.0 3.0 6.0

Tip 32.5 53.5 1.7321 4.0

Table 4.1

The goal for the experiment was to generate valid paths (i.e. paths that do not

violate joint limits or collide with obstacle) to maneuver the arm from an initial

configuration, around a single obstacle, to a goal configuration. The initial

configuration was given as

0.0 0.0 0.0 30.0 30.0 35.0

0.0 0.0 0.0 0.0 0.0 0.0

30.0 66.0 107.0 0.0 0.0 0.0

sXYZ
init initQ Q κφ= ↔ = ,

and the goal configuration as

0.0 0.0 0.0 35.1712 33.7493 44.0609

3.0 29.0 65.0 0.0049 0.0474 0.0398

35.0 58.0 81.0 1.5708 1.5708 1.5708

sXYZ
goal goal

Q Q κφ= − − − ↔ =
− −

.

The obstacle selected was a cylinder oriented along the x-axis and centered on the

point ()0, 30,80− with a radius equal to 8.5. The obstacle is modeled as extending

indefinitely in the +x and –x directions. The obstacle’s position places it directly in

the manipulator’s free-space path to the goal configuration, forcing it to maneuver

around the obstacle (as opposed to simply narrowing the region in which the

55

manipulator could linearly approach the goal configuration). The obstacle is also

situated such that when restricting the manipulator to operate within the YZ plane it

can still attain maximum curvature in all sections given by (51). Figure 4.1 illustrates

the initial and goal configurations in relation to the obstacle.

Eight experiments were performed. These experiments are grouped into to two

cases where in the first case the manipulator is restricted to operating within the YZ

plane and in the second case operates in 3d space. Within each of these two main

experiments two different attractive potential functions as well as two different

obstacle avoidance potential functions were tested.

The joint-limit avoidance potential was implemented as described in section 2.B

with []max 42.0 44.0 53.5s = and []min 28.0 26.5 32.5s = for the OctArm6 Master

Figure 4.1 Illustration of the initial and goal configurations for the path planning
experiments.

56

Manipulator and k chosen to be 2. The two attractive potential functions used were

those given by (49) and (50). For the obstacle avoidance potentials the distance

function, ()obsd p , is defined as the Euclidean distance in the YZ plane from the

point along the arm to the center of the bar minus the radius of the bar and the

radius of the manipulator. To ensure that points within the radius of the bar produce

a distance of zero, the distance function is describe piece-wise as

()
() ()

30 30
8.5 4.5 , 8.5 4.5

80 80

0

y y

obs z z

p p

d p p p

otherwise

 − −      
− − + − > +       =        




. (61)

The first obstacle avoidance potential was implemented as given by (61) and (56),

and is referenced later on as OBS1. The second obstacle avoidance potential tested

was the same as OBS1 with the addition of the average z-coordinate among the

sample points of the arm (referenced as OBS2).

()
()()()

()
1

1

1 1
,

min ,

n m
XYZ

obs zn m
XYZ j

obs
j

U Q f Q j
n m

d f Q j

⋅

⋅
=

=

= +
⋅ ∑ (62)

Preliminary simulations showed the manipulator had a tendency to attempt going

around the outside of the obstacle (see Figure 4.2), effectively trapping itself in a

local minimum. This second obstacle avoidance potential was developed to attempt

to guide the manipulator around the inside of the obstacle (i.e. between the obstacle

and the base of the arm) on its own.

57

Even with the additional incentive to keep the arm close to its base it would

maneuver around the outside of the obstacle and become stuck. In light of this issue

an intermediate ‘way-point’ configuration was added that would guide the tip-section

of the arm to be between the obstacle and the base. Therefore the results of the

experiments presented in the following sections are of the greedy path-planner

guiding the arm from the initial configuration to the way-point configuration (see

Figure 4.3),

0.0 0.0 0.0 33.1041 34.1924 40.4600

12.0 15.0 25.0 0.0230 0.0467 0.0419

30.0 65.0 65.0 1.5708 1.5708 1.5708

sXYZ
mid mid

Q Q κφ= − ↔ =
− − ,

and then to the goal configuration (regardless of the arm actually attaining the way-

point configuration).

Figure 4.2 Illustration of a manipulator in a local minimum configuration.

58

For each experiment (set of elementary potential functions) sixty-four

simulations were run using different ratios for the values of , ,α β andλ . Figure 4.4

illustrates the sixty-four sets of weights as three dimensional points where their x, y,

and z components correspond to , ,α β andλ respectively.

Figure 4.3 Illustration of way-point configuration added to the path planning
experiments.

59

Figure 4.4 Depiction of sets of weights used in path planning experiments.

60

A. Results of Planar Simulation

When restricted to operating in the plane the only attractive potential that

produced valid paths was (49). The combination of (49) and OBS1 produced 18

valid paths from the 64 tested sets of weights while the combination of (49) and

OBS2 produced 19 valid paths. Figures 4.5 and 4.6 show the sets of weights which

produced valid paths with respect to the sets of weights tested. The line in Figures

4.5 and 4.6 shows where α λ= . The majority of valid paths exist within the region

defined by α λ> . This result makes logical and intuitive sense as when λ α> a

larger weight is placed on moving away from the obstacle than on moving towards

the goal configuration. Thus choosing λ α> produces paths that tend to move

away from the obstacle without approaching the goal configuration. Similarly

choosing ,β α λ>> results in paths where the arm moves primarily in response to

the joint limit avoidance potential.

61

Figure 4.5 Sets of weights producing valid paths from (49) and OBS1.

62

Figure 4.6 Sets of weights producing valid paths from (49) and OBS2.

63

B. Results of Spatial Simulation

When the continuum manipulator is allowed to use its full range of motion (not

restricted to planar movements) each combination of the attractive potentials, (49)

and (50), with the obstacle avoidance potentials, OBS1 and OBS2, produced valid

paths. The number of valid paths produces by each combination of attractive and

obstacle avoidance potentials is given in table 4.2. While the attractive potential given

by (50) produces valid paths in the spatial case, the potential given by (49) produces

more valid paths with each of the obstacle avoidance potentials tested. Also, as with

the planar experiments, the majority of the sets of weights producing valid paths

exist within the region defined by α λ> . Figures 4.7 through 4.10 show the sets of

weights which produced valid paths for each combination of attractive and obstacle

avoidance potentials.

Number of Valid Paths Produced in Spatial Experiments

 (50) (49)

OBS1 4 24

OBS2 12 19

Table 4.2

64

Figure 4.7 Sets of weights producing valid paths from (50) and OBS1.

65

Figure 4.8 Sets of weights producing valid paths from (49) and OBS1.

66

Figure 4.9 Sets of weights producing valid paths from (50) and OBS2.

67

Figure 4.10 Sets of weights producing valid paths from (49) and OBS2.

68

C. Evaluation of Generated Paths

Given the numerous valid paths generated some method of determining an ideal

path is needed. In this section we present a number of heuristic measurements in

order to help identify and evaluate the characteristics of the valid paths generated in

the planar and spatial experiments. The individual heuristics described can be

combined in a weighted sum, allowing for the tailoring of the importance of certain

characteristics for a specific task. For example, in the case of the experiments

described previously, importance could be placed on staying as far from the obstacle

as possible, allowing for the risk of collision due to errors in positioning from the

controller to be minimized. When the OctArm is operating on-board the Talon

robot [51] there is a limited supply of compressed air, therefore it may be more

important to choose a path which requires fewer changes in the length of the

actuators, thus minimizing the amount of compressed air used.

Let Ω be an ordered set of configurations (i.e. a path) where
i

Ω represents the

thi configuration, Ω is the cardinality of the path (i.e. number of configurations

contained within the path), and 1 i≤ ≤ Ω .

For certain tasks (such as IED disposal) it may be considered desirable for the

manipulator to move as little as possible through the workspace in order to minimize

the movement of the pay-load. A path could be measured for this characteristic by

() ()
3 2

1 , , , , 1
2 1 1

n
XYZ XYZ
j k i j k i

i j k

η
Ω

−
= = =

Ω = Ω −Ω∑ ∑∑ . (63)

This heuristic sums the Euclidean distance between each configuration in the path. A

simpler heuristic could limit the distance computation to only consider the most

69

distal section or any section where the pay-load would be located closest to. As

mentioned earlier, limiting the arm’s proximity to an obstacle would be desirable if

positional errors due to the controller could cause a collision with the obstacle. A

simple method of measuring the arm’s proximity could be to sum the value of the

obstacle avoidance potential over the entire path,

() ()2
1

iobs
i

Uη
Ω

=
Ω = Ω∑ . (64)

Smaller values for ()
2η Ω imply that the path Ω stays farther away from the obstacle

on average. In order to ensure a path stayed the farthest away from the obstacle at all

times the maximum value of the obstacle avoidance potential could be used,

() ()()3 max iobsi
Uη Ω = Ω . (65)

Minimizing the amount of energy (or air) used over a path involves minimizing the

total change in actuator lengths,

()
3

4 , , , , 1
2 1 1

n
l l
j k i j k i

i j k

η
Ω

−
= = =

Ω = Ω −Ω∑∑∑ . (66)

A heuristic measuring the average ratio between the curvature of a section and its

maximum curvature over the path,

() () ()2, ,
max 1, , 3, ,

5 max 1, , 3, ,
1 1

, , 0
,

0,

s
j i s sn

j i j is s
j i j i

i j

otherwise

κφ
κφ κφ

κφ κφ
κ

η κ
Ω

= =







Ω
Ω Ω >

Ω = Ω Ω∑∑ , (67)

 or measuring the maximum ratio between the curvature of a section and its

maximum curvature,

70

()
() ()

,3
2, ,

max6 1, , 3, ,1, 1
max 1, , 3, ,

max . . , 0
,

s
j i s s

j i j is si j
j i j i

s t

κφ
κφ κφ

κφ κφ
η κ

κ

Ω

= =

 
 
  
 

Ω
Ω = Ω Ω >

Ω Ω
, (68)

 could describe how well a continuum manipulator stays away from its joint limits.

Numerous other heuristics can easily be developed to evaluate specific characteristics

of paths such as the average angle subtended by a specific section over the path.

Table 4.4 shows the values of each heuristic described by (63) through (68) for

the valid paths generated in the planar experiments. Table 4.4 shows these values

after normalizing across the valid paths. The minimum and maximum values for

each heuristic are highlighted.

71

α β λ η1 η2 η3 η4 η5 η6

0.9808 0.0000 0.1951 255.5929 5.2773 0.0769 607.6115 1.6161 0.9943

0.9619 0.1913 0.1951 247.2082 5.2729 0.0769 542.8530 1.4518 0.9997

0.9061 0.3753 0.1951 274.7645 6.0537 0.0767 597.0344 1.2019 0.9787

0.8155 0.5449 0.1951 243.4508 5.3722 0.0769 474.6521 0.9485 0.9161

0.6935 0.6935 0.1951 247.5929 5.3046 0.0769 501.9349 0.9626 0.9618

0.5449 0.8155 0.1951 263.9066 5.7082 0.0769 455.2880 0.9324 0.9237

0.3753 0.9061 0.1951 285.1198 5.6629 0.0755 455.6852 0.9383 0.9436

0.9239 0.0000 0.3827 299.0488 5.5622 0.0767 688.2350 1.5235 0.9970

0.9061 0.1802 0.3827 284.7351 5.5317 0.0767 612.5542 1.3589 0.9869

0.8536 0.3536 0.3827 273.4924 5.7056 0.0760 553.0932 1.3157 0.9869

0.7682 0.5133 0.3827 243.9361 5.0215 0.0747 481.4463 0.9628 0.9028

0.6533 0.6533 0.3827 252.9066 4.5674 0.0724 480.6512 0.9849 0.9475

0.5133 0.7682 0.3827 302.7767 4.9154 0.0737 537.5488 0.9847 0.9916

0.8315 0.0000 0.5556 302.7473 4.8317 0.0767 655.7873 1.5487 0.9996

0.8155 0.1622 0.5556 307.7473 4.8810 0.0755 640.1064 1.4590 0.9957

0.7682 0.3182 0.5556 309.8478 4.9915 0.0742 613.5824 1.4076 0.9845

0.6913 0.4619 0.5556 331.4752 5.1308 0.0717 661.9014 1.3920 0.9995

0.6935 0.1379 0.7071 351.3330 4.4256 0.0509 1014.9432 1.7752 0.9999

0.9808 0.0000 0.1951 253.9066 5.3548 0.0769 775.5321 1.7136 0.9924

0.9619 0.1913 0.1951 268.3503 6.1196 0.0769 635.7310 1.4793 0.9871

0.9061 0.3753 0.1951 266.1787 6.1725 0.0769 586.5717 1.3801 0.9871

0.8155 0.5449 0.1951 291.8356 6.2961 0.0769 653.1805 1.2205 0.9988

0.6935 0.6935 0.1951 256.4214 5.3536 0.0769 492.7709 0.9741 0.9582

0.5449 0.8155 0.1951 278.4924 5.6983 0.0769 473.5305 0.9555 0.9874

0.3753 0.9061 0.1951 277.4924 5.7140 0.0769 478.7913 0.9860 0.9436

0.9239 0.0000 0.3827 278.3919 6.1515 0.0769 716.7737 1.7531 0.9984

0.9061 0.1802 0.3827 282.1493 6.1742 0.0769 711.1388 1.6096 0.9877

0.8536 0.3536 0.3827 275.9066 6.2367 0.0769 610.7422 1.4316 0.9976

0.7682 0.5133 0.3827 282.3503 6.1298 0.0768 619.2108 1.3131 0.9976

0.6533 0.6533 0.3827 291.1493 6.1779 0.0769 634.6933 1.2899 0.9988

0.5133 0.7682 0.3827 295.8772 5.4906 0.0769 597.0491 1.3556 0.9988

0.8315 0.0000 0.5556 292.8772 6.4268 0.0768 741.2028 1.8358 0.9976

0.8155 0.1622 0.5556 299.3625 6.4655 0.0769 779.1857 1.7075 0.9898

0.7682 0.3182 0.5556 287.3625 6.2282 0.0769 690.1187 1.6304 0.9871

0.6913 0.4619 0.5556 290.6346 6.3864 0.0769 659.6776 1.5478 0.9976

0.5879 0.5879 0.5556 281.2203 5.0691 0.0769 631.4823 1.4839 0.9871

0.6935 0.1379 0.7071 320.6346 6.8875 0.0768 897.7103 1.7652 0.9928

Table 4.3 Raw values for heuristic measures of valid paths from planar

experiments. Light grey corresponds to OBS1 and dark grey corresponds to

OBS2.

72

α β λ η1 η2 η3 η4 η5 η6

0.9808 0.0000 0.1951 0.1125 0.3459 0.9978 0.2722 0.7568 0.9425

0.9619 0.1913 0.1951 0.0348 0.3442 0.9978 0.1565 0.5749 0.9986

0.9061 0.3753 0.1951 0.2903 0.6613 0.9934 0.2533 0.2983 0.7821

0.8155 0.5449 0.1951 0.0000 0.3845 0.9994 0.0346 0.0179 0.1375

0.6935 0.6935 0.1951 0.0384 0.3570 0.9982 0.0833 0.0335 0.6084

0.5449 0.8155 0.1951 0.1896 0.5210 0.9999 0.0000 0.0000 0.2152

0.3753 0.9061 0.1951 0.3862 0.5026 0.9469 0.0007 0.0066 0.4205

0.9239 0.0000 0.3827 0.5154 0.4617 0.9934 0.4162 0.6543 0.9708

0.9061 0.1802 0.3827 0.3827 0.4493 0.9934 0.2810 0.4721 0.8667

0.8536 0.3536 0.3827 0.2785 0.5199 0.9658 0.1748 0.4243 0.8660

0.7682 0.5133 0.3827 0.0045 0.2421 0.9150 0.0467 0.0337 0.0000

0.6533 0.6533 0.3827 0.0876 0.0576 0.8261 0.0453 0.0581 0.4606

0.5133 0.7682 0.3827 0.5499 0.1990 0.8767 0.1470 0.0579 0.9153

0.8315 0.0000 0.5556 0.5496 0.1649 0.9934 0.3583 0.6822 0.9971

0.8155 0.1622 0.5556 0.5960 0.1850 0.9450 0.3302 0.5829 0.9570

0.7682 0.3182 0.5556 0.6155 0.2299 0.8954 0.2828 0.5260 0.8416

0.6913 0.4619 0.5556 0.8159 0.2864 0.8007 0.3692 0.5088 0.9959

0.6935 0.1379 0.7071 1.0000 0.0000 0.0000 1.0000 0.9329 1.0000

0.9808 0.0000 0.1951 0.0969 0.3774 0.9977 0.5722 0.8647 0.9230

0.9619 0.1913 0.1951 0.2308 0.6881 1.0000 0.3224 0.6054 0.8685

0.9061 0.3753 0.1951 0.2107 0.7096 0.9984 0.2346 0.4956 0.8685

0.8155 0.5449 0.1951 0.4485 0.7598 0.9986 0.3536 0.3189 0.9893

0.6935 0.6935 0.1951 0.1202 0.3770 0.9993 0.0670 0.0462 0.5707

0.5449 0.8155 0.1951 0.3248 0.5170 0.9983 0.0326 0.0255 0.8718

0.3753 0.9061 0.1951 0.3155 0.5233 0.9982 0.0420 0.0593 0.4205

0.9239 0.0000 0.3827 0.3239 0.7010 1.0000 0.4672 0.9084 0.9847

0.9061 0.1802 0.3827 0.3587 0.7102 0.9998 0.4572 0.7496 0.8749

0.8536 0.3536 0.3827 0.3008 0.7357 0.9986 0.2778 0.5526 0.9762

0.7682 0.5133 0.3827 0.3606 0.6922 0.9951 0.2929 0.4214 0.9762

0.6533 0.6533 0.3827 0.4421 0.7118 0.9975 0.3206 0.3957 0.9893

0.5133 0.7682 0.3827 0.4860 0.4326 0.9984 0.2533 0.4684 0.9893

0.8315 0.0000 0.5556 0.4582 0.8128 0.9964 0.5109 1.0000 0.9762

0.8155 0.1622 0.5556 0.5183 0.8286 0.9998 0.5787 0.8579 0.8962

0.7682 0.3182 0.5556 0.4070 0.7322 0.9998 0.4196 0.7726 0.8685

0.6913 0.4619 0.5556 0.4374 0.7964 0.9984 0.3652 0.6812 0.9762

0.5879 0.5879 0.5556 0.3501 0.2614 0.9993 0.3148 0.6104 0.8685

0.6935 0.1379 0.7071 0.7154 1.0000 0.9962 0.7905 0.9218 0.9273

Table 4.4 Normalized values for heuristic measures of valid paths from planar

experiments. Light grey corresponds to OBS1 and dark grey corresponds to

OBS2.

73

D. Hardware Implementation

The paths produced from the path planner consist of a discrete set of

configurations. The resolution between these configurations is determined by the

step size, δ . The current controller [52] for the OctArm requires a high resolution

input for smooth, accurate operation. This is largely due to the complex dynamics of

the OctArm and the lack of an accurate dynamic model for it. In order to create a

path solely utilizing the path planner of the necessary resolution to run smoothly

would require an excessively long runtime to compute (approx. 47 hours when

restricted to planar movement for the current implementation). Instead of directly

computing a high-resolution path, configurations in a path can be interpolated to

create the resolution needed for the controller. Interpolating in the l space ensures

that actuators stay within their length limits. Converting ,k φ into equivalent

rectangular coordinates and then linearly interpolating between configurations also

ensures that actuators stay within their length limits [25]. Provided the path has a

high enough resolution interpolations will not produce configurations which collide

with obstacles.

In order to alleviate gravitational effects on the OctArm a path from the planar

experiments was chosen for implementation. Restricting the OctArm to maneuver

within the plane allowed for it to operate while lying flat. While the effect of gravity

on the tip section of the OctArm manipulator is negligible, the sag due to gravity on

the base and middle sections coupled with the relative weakness of the actuators can

be significant. This causes the current controller to be ineffective at precisely

74

positioning the arm in configurations requiring the base or middle sections to be

significantly bent, making implementation of a spatial path currently impossible.

Of the valid paths from the planar experiment, the path derived by

weights 0.6935α = , 0.1379β = , and 0.7071λ = using OBS2 (see Figure 4.11) was

originally chosen to be implemented on the arm because it stays the farthest away

from the obstacle according to (65). However, while following this path the Octarm

manipulator routinely deviated causing a collision with the obstacle. Other paths

were chosen and all of the paths tested on the OctArm had similar problems.

With enough interpolations between configurations in the path the position error

remains negligible until the tip sections of the arm begins to move above the

obstacle. During this moment large positional errors develop in the middle section

causing the tip section to collide and push through the obstacle. Analysis of the

actuator lengths during this error shows that while they are within their length limits,

1l falls short of its desired length by approximately 1cm. This reduces the curvature

of the middle section resulting in the collision between the tip section and the

obstacle.

The controller’s inability to correct this small error stems from the lack of

available pressure needed to increase the length of 1l . While increasing the maximum

available pressure would potentially allow the controller to correct this error in

length, it is believed that this is indicative of un-modeled effects particular to the

OctArm’s pneumatic construction. The length limit models described by Jones in

[25] are absent of any dynamic interaction between the actuators. These dynamic

interactions appear minimal in cable-actuated devices like Air-Octor [19]. However,

in the case of the OctArm, an increase in length requires an increase in pressure,

75

which results in an increase in force. The tight coupling between the OctArm

actuators results in the forces of each actuator pushing and pulling against each

other. These additional forces affect the relationship between actuator length and

pressure. If these forces and their effects can be modeled then they can be taken into

account during path planning and teleoperation.

76

Figure 4.11 Ten equidistant configurations along the planar path produced by

weights 0.6935α = , 0.1379β = , and 0.7071λ = and OBS2

77

IV. Summary

In this chapter we have developed the necessary potential functions to

implement a potential field based greedy path planner. While the use of potential

fields for path planning is not new, the application of potential fields to continuum

manipulators had, until now, not been considered. The potential functions in this

chapter for guiding the manipulator towards its goal configuration and avoiding

obstacles use the same strategies used previously for rigid-link manipulators.

However, we developed a novel potential function necessary for keeping a

continuum manipulator within its joint limits based on [25].

We additionally presented a normalization scheme to reduce the complexity of

choosing gains for the elementary potential functions. Results from testing a

sampling of possible gains revealed an intuitive grouping of weights that produced

valid paths for the experimental simulations.

While numerous valid paths were generated by the path planner, none were

successfully implemented on the OctArm manipulator. Lab experiments revealed un-

modeled, and previously unknown, constraints on the actuator limits specific to the

utilization of McKibben actuators. Modeling of these constraints would provide for a

better and more complete understanding of the workspace of the OctArm.

78

CHAPTER FIVE
CONCLUSIONS

Continuum manipulators present a potential solution to the risk entailed in the

use of human workers to perform necessary tasks in dangerous situations including

operating within confined and/or unstable workspaces or in the presence of

dangerous materials. The utilization of continuum manipulators for these tasks

largely still requires human operation. Therefore an intuitive user interface is needed

to overcome the complex, non-linear nature of their movements for their successful

application in the field. For tasks simple enough to be performed without direct

human interaction, advanced methods of generating movements to complete the

required tasks are needed in order to gain the equivalent benefits that traditional

rigid-link robots afford to industry today. Both of these efforts require a strong

understanding of continuum kinematics.

The work presented in Chapter 2 describes a novel, intuitive user interface for

continuum manipulators. The effectiveness of this user interface has been

demonstrated through numerous in-lab experiments and field demonstrations. The

geometrically derived forward kinematics developed in Chapter 3 provides a more

intuitive approach to the modeling of continuum kinematics than those previously

existing in the literature. The novel inverse kinematics derived in this chapter is the

first closed-form solution to the inverse kinematics problem for continuum

manipulators. The algorithm presented for computing inverse kinematics of an n-

section manipulator presents an alternative to end-point control through using the

Jacobian by allowing the desired location of the end-points to be specified directly in

79

the Cartesian workspace coordinates. The simulation results from Chapter 4 show

the applicability of potential fields to path planning for continuum manipulators. A

novel, normalization scheme was developed to reduce the complexity in determining

ideal weights and utilized to analyze the effectiveness of the elementary potential

functions also introduced in Chapter 4. Numerous methods for the evaluation of

valid paths generated by path planners were also introduced. Implementation of valid

paths on actual hardware exposed new and un-modeled constraints specific to

pneumatically actuated continuum devices.

While the construction of the OctArm series of manipulators presents many

useful characteristics like speed and natural compliance, this same constructions also

produces complex dynamics which make accurately positioning the arm at desired

speeds currently impossible. In order for the usefulness of the interface developed in

Chapter 2 to be capable of being generally deployed on the OctArm platform

requires developing methods of negating these dynamic effects. The dynamics of the

OctArm’s pneumatic actuation needs to be investigated and incorporated into the

OctArm’s controller for this to happen.

In addition to investigating the dynamics of the OctArm manipulator for the

purposes of control, the effects that forces between coupled McKibben actuators

have on their length limits needs to be modeled so that it can be incorporated into

the user interface and path planner. A preliminary investigation of these effects could

be initiated through measuring the discrepancy between the configurations satisfying

the actuator length limits described by (Jones, 2006) and the configurations actually

attainable through the controller.

80

The current Matlab implementation requires on average 42.9 seconds per

configuration in the path for spatial path planning running on a Windows machine

with a 1.666GHz processor and 2GB of RAM. While simply optimizing the current

Matlab code or converting into C/C++ would provide a decreased runtime, other

techniques could provide faster computing times. The computation of

()()3
,

n

total goalU P Q Q
⋅ is trivially parallelizable due to the independence of the

elementary potential functions with respect to neighboring configurations. In

addition to parallelization, the run-time of the path planner can be decreased by

reducing the number of redundant computations. For an n -section continuum

manipulator, every iteration there are at most ()3 1
2 3

n− and at least 32 n redundant

computations of
total

U when planning a path through 3d space. For a manipulator

with as few as 3 sections, like the OctArm, this means there are already as many as

13,122 redundant computations of
total

U occurring every iteration. By determining

how to map () ()3 3n n

i jP Q P Q
⋅ ⋅↔ when ()3 n

j i
Q P Q⋅∈ and ()3 n

i jQ P Q
⋅∈ , the run-

time of any iterative potential field path planner could be significantly reduced.

The most significant issue plaguing potential field methods is the existence of

local minima. The majority of research in potential field path planning has focused

on either producing potential fields with the fewest local minima possible or into

developing methods of escaping from local minima [42]. The difficulty with local

minima in potential fields is, at least partially, due to the lack of directionality in the

repulsive potentials surrounding obstacles. For example, in the case of an obstacle

existing directly between the robot and its goal configuration the attractive potential

pulls the robot directly towards it while at the same time the repulsive potential

81

pushes the robot directly away from it. This results in there being a configuration

between the robot and the obstacle where each potential is equal in magnitude, thus

the robot reaches this configuration and stays there. The use of a carefully designed

vector field could provide the directionality needed in the repulsive potential by, in a

sense, communicating to the robot which direction to go in order to maneuver

around the obstacle.

While numerous avenues of exploration and research, like those described above,

still exist which could aid in the operation and application of continuum

manipulators, this work represents a significant step towards the usability of

continuum manipulators through the creation of a novel user interface, intuitive

geometrical modeling of the forward and inverse kinematics, and the development of

a greedy, potential field path planner.

82

83

APPENDIX

Matlab Implementation of Greedy, Potential Field Path Planner

The contents of the Matlab files used to perform the planar and spatial experiments
described in Chapter 4 are given below.

run_planar1.m

--

% Run planar1 experiment with weights determined

% by rot_step

rot_step = pi/16;

for y_rot=-rot_step:-rot_step:-(pi/2)

 [Ry] = rotation_k([0 1 0], y_rot);

 if(y_rot ~= -(pi/2))

 for z_rot=0:rot_step:(pi/2)

 [Rz] = rotation_k([0 0 1], z_rot);

 weights = Rz * Ry * [1; 0; 0;];

 alpha = weights(1)

 beta = weights(2)

 lambda = weights(3)

 planar_experiment1(alpha, beta, lambda);

 end

 else

 weights = Ry * [1; 0; 0;];

 alpha = weights(1)

 beta = weights(2)

 lambda = weights(3)

 planar_experiment1(alpha, beta, lambda);

 end

end

84

planar_experiment1.m

--

%Setup and run experiment 1 with weights alpha, beta, lambda

function planar_experiment1(alpha, beta, lambda)

% 6 inch PVC pipe has an outer diameter of 17 cm,

% radius = 8.5cm

circle_y = -30;

circle_z = 80;

circle_r = 8.5 + 4.5;

% 4.5 added to account for radius of OctArm

circleFuncHandle = @pField_for_circle_in_yz; % OBS1

%circleFuncHandle = @pField_for_circle_in_yz2; % OBS2

%[minLengths; maxLengths; trunkRadii; deadLengths];

actuatorLimits = [28.0 26.5 32.5; 42.0 44.0 53.5;

 3.0000 3.0000 1.7321; 6.0 6.0 4.0];

% initial configuration for the arm

%[x x x; y y y; z z z]

% straight arm, section lengths of 30, 30, and 35 cm

initContourXYZ = [0 0 0; 0 0 0; 30.0 60.0+6.0 95.0+12.0];

[initContourSKP] =

xyz_to_skp(initContourXYZ, actuatorLimits(4,:));

% waypoint configuration for the arm

wayPointXYZ = [0 0 0; 12 15 -25; 30 65 65];

wayPointSKP = xyz_to_skp(wayPointXYZ, actuatorLimits(4,:));

% desired configuration for the arm

finalContourXYZ = [0 0 0; -3.0 -29.0 -65; 35 58 81];

[finalContourSKP] =

xyz_to_skp(finalContourXYZ, actuatorLimits(4,:));

stepSize = 1.0; %Movement resolution for end-points in cm

maxIter = 1000; %Arbitrary limit on length of path computed

weights = [alpha beta lambda];

threshold = 5; %Parameter to adjust measure of success

% Plan path from initial configuration

% to waypoint configuration

[SKP1, time1] =

activeContinuumContourV2(initContourXYZ, wayPointXYZ,

initContourSKP, wayPointSKP, actuatorLimits, stepSize,

maxIter, weights, circleFuncHandle, circle_y, circle_z,

circle_r);

sizeMAT1 = size(SKP1);

if(numel(sizeMAT1) == 2) iterSKP1 = 1;

else iterSKP1 = sizeMAT1(3);

end

[XYZ] = skp_to_xyz(SKP1(:,:,iterSKP1), actuatorLimits(4,:));

85

% Plan path from current configuration to goal configuration

[SKP2, time2] =

activeContinuumContourV2(XYZ, finalContourXYZ,

SKP1(:,:,iterSKP1), finalContourSKP, actuatorLimits, stepSize,

maxIter, weights, circleFuncHandle, circle_y, circle_z,

circle_r);

sizeMAT2 = size(SKP2);

if(numel(sizeMAT2) == 2) iterSKP2 = 1;

else iterSKP2 = sizeMAT2(3);

end

% Combine configuration lists

for i=1:iterSKP1

 SKP(:,:,i) = SKP1(:,:,i);

end

for i=1:iterSKP2

 tempIter = iterSKP1 + i;

 SKP(:,:,tempIter) = SKP2(:,:,i);

end

% Save configuration list to a file:

"planar1_alpha_beta_lambda.txt"

fileName = ['planar1_' num2str(alpha,'%.4f') '_'

num2str(beta,'%.4f') '_' num2str(lambda,'%.4f') '.txt'];

writeConfigList(SKP, fileName);

end

86

activeContinuumContourV2.m

--

% Potential field path planner

function [SKP, avgCompTime] =

activeContinuumContourV2(initContourXYZ, finalContourXYZ,

initContourSKP, finalContourSKP, actuatorLimits, step,

maxCount, weights, pfunc, varargin)

%initialize path planner variables

count = 0; %length of path

delta = 1; %keeps track of movement

nextContourXYZ = initContourXYZ;

s = size(initContourXYZ);

num_sections = s(2);

%create matrix to determine local neighborhood

perturbation = perturbationMatrix(s(2), step);

avgCompTime = 0;

repeat_flag = 0;

while(delta > 0 && count < maxCount && repeat_flag ~= 1)

 tic;

 [nextContourXYZ, nextContourSKP, delta] =

 activeContinuumContourIterV2(nextContourXYZ,

 finalContourXYZ, actuatorLimits, perturbation,

 weights, pfunc, varargin{:});

 time(1) = toc;

 % check for a repeated configuration: indicates

 % either local minima or beginning of a cycle

 i=count;

 while(i > 0 && repeat_flag ~= 1)

 if(sum(sum(SKP(:,:,i) == nextContourSKP)) ==

 3*num_sections)

 repeat_flag = 1;

 end

 i = i - 1;

 end

 count = count + 1;

 SKP(:,:,count) = nextContourSKP;

 fprintf('count: %d\tdelta: %.2f\talpha: %.2f\tbeta: %.2f\t

 lambda: %.2f\n', count, delta, weights(1),

 weights(2), weights(3));

 fprintf('Time to compute next contour: %f\n', time(1));

 avgCompTime = avgCompTime + time(1);

end

avgCompTime = avgCompTime/count;

87

activeContinuumContourIterV2.m

--

% Function to determine next configuration using

% potential field path planner

function [nextContourXYZ, nextContourSKP, delta] =

activeContinuumContourIterV2(currentContour, desiredContour,

actuatorLimits, perturbation, weights, pfunc, varargin)

s = size(currentContour);

num_sections = s(2);

% planar case

local = zeros(3, num_sections, 9^num_sections);

SKP = zeros(3, num_sections, 9^num_sections);

% spatial case

%local = zeros(3, num_sections, 27^num_sections);

%SKP = zeros(3, num_sections, 27^num_sections);

min_index = 1;

for i=1:9^num_sections % planar case

%for i=1:27^num_sections % spatial case

 %determine local perturbations of currentContour

 local(:,:,i) = currentContour + perturbation(:,:,i);

 %compute s, kappa, phi for all local

 %perturbations of currentContour

 [SKP(:,:,i)] = xyz_to_skp(local(:,:,i),

 actuatorLimits(4,:));

end

%compute energy for every perturbation

[energy, violation, collision] =

computeEnergy(local, SKP, desiredContour, actuatorLimits,

weights, pfunc, varargin{:});

minCount = 0;

min_index = ceil((9^num_sections)/2); % planar case

%min_index = ceil(27^num_sections)/2); % spatial case

for i=1:9^num_sections % planar case

%for i=1:27^num_sections % spatial case

 if(violation(i) == 0 && collision(i) == 0)

 if(energy(i) == energy(min_index))

 minCount = minCount + 1;

 min_index = i;

 end

 if(energy(i) < energy(min_index) ||

 (violation(min_index) ~= 0 ||

 collision(min_index) ~= 0))

 minCount = 1;

 min_index = i;

88

 end

 end

end

fprintf(1, '# of minimizing configurations: %d\tnext chosen:

 %d\n', minCount, min_index);

fprintf(1, '%d of %d configurations violate actuator

 limits\n', sum(violation), 9^num_sections);

fprintf(1, '%d of %d configurations collide with obstacle\n',

 sum(collision), 9^num_sections);

nextContourXYZ = local(:,:,min_index);

nextContourSKP = SKP(:,:,min_index);

delta = sum(sum(abs(perturbation(:,:,min_index))));

89

computeEnergy.m

--

% Compute potential field values for local neighborhood

function [energy, violation, collision] =

computeEnergy(XYZ, SKP, desired, actuatorLimits, weights,

pfunc, varargin)

% energy: sum of the normalized values computed for

% internal, external, and potential energy multiplied by

% their corresponding weights (alpha, beta, lamda).

% violation: binary array stating whether the corresponding

% configuration violates the joint constraints.

% XYZ: 3 x N x 27^N (9^N for planar) matrix containing

% euclidean coordinates for the end-point of each section for

%every local perturbation of the current configuration

% SKP: 3 x N x 27^N (9^N for planar) matrix containing C-space

% coordinates (arc-length, curvature, and orientation) for

% each section of every local perturbation of the current

% configuration

% desired: 3 x N matrix containing the desired locations for

% the end-points of each section expressed in euclidean

% coordinates

% actuatorLimits: 4 x N matrix giving the minimum and maximum

% length for actuators, the radius of every section, and the

% length at the end of each section that doesn't bend

% (deadLength)

% pfunc: handle to function that evaluates given configuration

% in given potential field (function of potential field being

% used).

% varargin: arguments for potential field function (pfunc)

% weights: 1 x 3 array containing the values for alpha, beta,

% and lambda

sizeMatrix = size(XYZ);

num_sections = sizeMatrix(2);

external = zeros(1,sizeMatrix(3)); % attrative potential

potential = zeros(1,sizeMatrix(3)); % obstacle avoidance

internal = zeros(1,sizeMatrix(3)); % joint limit avoidance

violation = zeros(1,sizeMatrix(3));

collision = zeros(1,sizeMatrix(3));

min_s = actuatorLimits(1,:); % minimum length

max_s = actuatorLimits(2,:); % maximum length

mid_s = (max_s + min_s)/2; % compute the middle length

d = actuatorLimits(3,:); % radius for each secion

90

deadLengths = actuatorLimits(4,:); % non-bending length at end

 % of each section

alpha = weights(1); % external

beta = weights(2); % internal

lambda = weights(3); % potential

min_ext = inf;

max_ext = -inf;

min_pot = inf;

max_pot = -inf;

min_int = inf;

max_int = -inf;

% for every perturbation compute the external,

% internal, and potential energy

for config=1:sizeMatrix(3)

 %compute potential energy term for configuration

 potential(config) =

 pfunc(XYZ(:,:,config), SKP(:,:,config), deadLengths,

 varargin{:});

 %note any configurations that collide with obstacle

 if(potential(config) == inf)

 collision(config) = 1;

 end

 diff = XYZ(:,:,config) - desired;

 external(config) =

 sqrt(sum(sum(diff .* diff))); % attractive potential

 % defined by (49)

 for i=1:num_sections

 %compute external energy term for each perturbation

 %attractive potential defined by (50)

 %external(config) = external(config) + mag(diff(:,i));

 %compute internal energy term for each perturbation

 internal(config) =

 internal(config) + (2*(SKP(1,i,config) –

 mid_s(i))/(max_s(i) - min_s(i)))^2;

 f = [-sin(SKP(3,i,config)) sin(pi/3 + SKP(3,i,config))

 -cos(pi/6 + SKP(3,i,config))];

 fmax = max(f);

 fmin = min(f);

 %compute maximum kappa for given s,phi from Jones

 if(SKP(1,i,config) >=

 (fmax*min_s(i)-fmin*max_s(i))/(fmax-fmin))

 kmax = (max_s(i)-SKP(1,i,config))/

 (SKP(1,i,config)*d(i)*fmax);

 else

 kmax = (min_s(i)-SKP(1,i,config))/

 (SKP(1,i,config)*d(i)*fmin);

91

 end

 %check to enforce actuator limits

 if(SKP(2,i,config) > kmax ||

 SKP(1,i,config) < min_s(i) ||

 SKP(1,i,config) > max_s(i))

 violation(config) = 1;

 internal(config) = inf;

 end

 end

 if(collision(config) ~= 1 && violation(config) ~= 1)

 if(external(config) < min_ext)

 min_ext = external(config);

 end

 if(external(config) > max_ext)

 max_ext = external(config);

 end

 if(potential(config) < min_pot)

 min_pot = potential(config);

 end

 if(potential(config) > max_pot)

 max_pot = potential(config);

 end

 if(internal(config) < min_int)

 min_int = internal(config);

 end

 if(internal(config) > max_int)

 max_int = internal(config);

 end

 end

end

%normalize energy terms across each configuration

external = (external - min_ext) / (max_ext - min_ext);

potential = (potential - min_pot) / (max_pot - min_pot);

internal = (internal - min_int) / (max_int - min_int);

%compute total energy for each configuration

energy = alpha * external + beta * internal + lambda *

potential;

92

perturbationMatrix.m

--

% Function used to compute local neighborhoods

function [perturb] = perturbationMatrix(numPoints, step)

dimensions = 3;

num_elements = numPoints * (dimensions-1); % planar case

%num_elements = numPoints * (dimensions); % spatial case

perturb = zeros(dimensions, numPoints, 3^(num_elements));

pos = zeros(1,numPoints);

for i=0:(3^num_elements)-1

 for j=0:numPoints-1

 % determine determine change in position

 % for jth neighbor

 % planar case (yz plane)

 perturb(1,j+1, i+1) = 0;

 perturb(2,j+1, i+1) = xCoord(0, pos(j+1), step);

 perturb(3,j+1, i+1) = yCoord(0, pos(j+1), step);

 % spatial case

 %perturb(1,j+1, i+1) = xCoord(0, pos(j+1), step);

 %perturb(2,j+1, i+1) = yCoord(0, pos(j+1), step);

 %perturb(3,j+1, i+1) = zCoord(0, pos(j+1), step);

 end

 pos(1) = pos(1) + 1;

 for k=1:numPoints-1;

 if (pos(k) > 8) % planar case (3^2 - 1)

 %if (pos(k) > 26) % spatial case (3^3 - 1)

 pos(k) = 0;

 pos(k+1) = pos(k+1) + 1;

 end

 end

end

93

pField_for_circle_in_yz.m

--

% Function to compute OBS1

function [potential] =

pField_for_circle_in_yz(XYZ, SKP, deadLengths, y, z, r)

% XYZ: Euclidean coordinates for each section

% SKP: shape-space coordinates for each section

% y,z: y and z euclidean coordinate locations for center

% of circle

% r: radius of circle

size_matrix = size(XYZ);

num_sections = size_matrix(2);

% sample points along arm

[X, Y, Z] = skp_to_contour(SKP, deadLengths, 16);

% compute euclidean distances to bar

d = sqrt((Y(:) - y).^2 + (Z(:) - z).^2);

if (min(d)- 1.0e-006) <= r % check for any collisions

 potential = inf; % set to infinity if collision

else

 potential = 1/min(d); % compute potential if not

end

pField_for_circle_in_yz2.m

--

%Function to compute OBS2

function [potential] = pField_for_circle_in_yz2(XYZ, SKP,

deadLengths, y, z, r)

% XYZ: Euclidean coordinates for each section

% SKP: shape-space coordinates for each section

% y,z: y and z euclidean coordinate locations for center

% of circle

% r: radius of circle

size_matrix = size(XYZ);

num_sections = size_matrix(2);

% sample points along arm

[X, Y, Z] = skp_to_contour(SKP, deadLengths, 16);

% compute euclidean distances to bar

d = sqrt((Y(:) - y).^2 + (Z(:) - z).^2);

if min(d - 1.0e-006) <= r % check for any collisions

 potential = inf; % set to infinity if collisions

else

 % compute potential if no collisions

 potential = 1/min(d) + sum(sum(Z))/numel(Z);

end

94

xyz_to_skp.m

--

% Inverse Kinematics Algorithm

function [SKP] = xyz_to_skp(XYZ, deadLengths)

matrixSize = size(XYZ);

num_sections = matrixSize(2);

C = zeros(num_sections, 3);

V = XYZ';

for (i=1:num_sections)

 %convert x,y,z to phi,kappa,s

 if(abs(V(i,1)) < 0.0001 && abs(V(i,2)) < 0.0001)

 if(abs(V(i, 3)) == 0.0)

 C(i, 1) = 0.0; %phi = 0

 C(i, 2) = (2*pi)/10; %kappa = full circle

 C(i, 3) = 10; %s = 10 (set standard length)

 else

 C(i, 1) = 0.0; %phi = 0

 C(i, 2) = 0.0; %kappa = 0

 C(i, 3) = V(i, 3); %s = z-coordinate

 end

 theta = 0;

 else

 C(i, 1) = atan2(V(i, 2), V(i,1)); %phi

 C(i, 2) =

 (2 * sqrt(V(i,1)*V(i,1) + V(i,2)*V(i,2))) /

 (V(i,1)*V(i,1) + V(i,2)*V(i,2) + V(i,3)*V(i,3));

 if(V(i, 3) > 0.0)

 theta =

 acos(((1 / C(i,2)) - sqrt(V(i, 1)*V(i, 1) +

 V(i, 2)*V(i, 2))) / (1 / C(i,2)));

 else

 theta =

 2*pi - acos(((1 / C(i,2)) - sqrt(V(i, 1)*V(i, 1) +

 V(i, 2)*V(i, 2))) / (1 / C(i,2)));

 end

 C(i, 3) = (1 / C(i, 2)) * theta; %s

 end

 for(j=(i+1):num_sections)

 %undo translation due to section i

 for(k=1:3)

 V(j,k) = V(j,k) - V(i,k);

 end

 %undo rotation due to section i

 R = rotation_k([0 0 1], C(i,1));

 p = R * [0; 1; 0];

 R = rotation_k(p, -theta);

 V(j, 1:3) = (R * V(j, 1:3)')';

95

 %undo translation due to dead length

 V(j,3) = V(j,3) - deadLengths(i);

 end

end

temp = C';

SKP = [temp(3,:); temp(2,:); temp(1,:)];

96

skp_to_xyz.m

--

% Forward Kinematics Algorithm

function [XYZ] = skp_to_xyz(skp, deadLengths)

matrixSize = size(skp);

num_sections = matrixSize(2);

s = skp(1,:);

kappa = skp(2,:);

phi = skp(3,:);

V = zeros(num_sections, 3);

R_total = eye(3,3);

end_point = [0 0 0];

Z = zeros(3, 3, num_sections);

for(i = 1:num_sections)

 %convert phi, kappa, s for section i to x, y, z

 if(kappa(i) == 0.0)

 V(i, 1) = 0.0;

 V(i, 2) = 0.0;

 V(i, 3) = s(i);

 else

 V(i, 1) = (1 / kappa(i))*(1-cos(s(i)*kappa(i)))*

 cos(phi(i));

 V(i, 2) = (1 / kappa(i))*(1-cos(s(i)*kappa(i)))*

 sin(phi(i));

 V(i, 3) = (1 / kappa(i))*sin(s(i)*kappa(i));

 end

 %determine new rotation change due to configuration

 R = rotation_k([0 0 1], phi(i));

 p = R * [0; 1; 0];

 theta = kappa(i) * s(i);

 %apply previous rotation changes

 V(i, 1:3) = (R_total * V(i, 1:3)')';

 %apply translation due to previous sections

 for(j = 1:3)

 V(i, j) = V(i, j) + end_point(j);

 end_point(j) = V(i, j);

 end

 %add new rotation change to total rotation change

 R = rotation_k(p, theta);

 R_total = R_total * R;

 %add translation from deadLengths

 end_point =

 end_point + (R_total * [0; 0; deadLengths(i)])';

end

XYZ = V';

97

skp_to_contour.m

--

%Compute sample points along arm in Euclidean space

function [X, Y, Z] =

skp_to_contour(SKP, deadLengths, numPoints)

sizeMatrix = size(SKP);

num_sections = sizeMatrix(2);

s = SKP(1,:); % arc-length for each section

kappa = SKP(2,:); % curvature for each section

phi = SKP(3,:); % orientation for each section

step = 1/numPoints;

t = step:step:1;

X = zeros(num_sections, numPoints+2);

Y = zeros(num_sections, numPoints+2);

Z = zeros(num_sections, numPoints+2);

R_total = eye(3,3);

end_point = [0 0 0];

for(i = 1:num_sections)

 %convert phi, kappa, s for section i to x, y, z

 if(kappa(i) == 0.0)

 X(i, 1:numel(t)) = t * 0.0;

 Y(i, 1:numel(t)) = t * 0.0;

 Z(i, 1:numel(t)) = t * s(i);

 else

 X(i, 1:numel(t)) =

 (1 / kappa(i))*(1-cos(s(i)*kappa(i)*t))*cos(phi(i));

 Y(i, 1:numel(t)) =

 (1 / kappa(i))*(1-cos(s(i)*kappa(i)*t))*sin(phi(i));

 Z(i, 1:numel(t)) =

 (1 / kappa(i))*sin(s(i)*kappa(i)*t);

 end

 %determine new rotation change due to configuration

 R = rotation_k([0 0 1], phi(i));

 p = R * [0; 1; 0];

 theta = kappa(i) * s(i);

 %apply previous rotation changes

 for(k = 1:numPoints)

 x_rot = R_total(1,:) * ([X(i,k) Y(i,k) Z(i,k)])';

 y_rot = R_total(2,:) * ([X(i,k) Y(i,k) Z(i,k)])';

 z_rot = R_total(3,:) * ([X(i,k) Y(i,k) Z(i,k)])';

 X(i,k) = x_rot + end_point(1);

 Y(i,k) = y_rot + end_point(2);

 Z(i,k) = z_rot + end_point(3);

 end

 %apply translation due to previous sections

 end_point(1) = X(i,numPoints);

 end_point(2) = Y(i,numPoints);

98

 end_point(3) = Z(i,numPoints);

 %add new rotation change to total rotation change

 R = rotation_k(p, theta);

 R_total = R_total * R;

 % add translation due to dead length

 dl = (R_total * [0; 0; deadLengths(i)])';

 X(i,numel(t)+1) = dl(1)/2 + end_point(1);

 Y(i,numel(t)+1) = dl(2)/2 + end_point(2);

 Z(i,numel(t)+1) = dl(3)/2 + end_point(3);

 X(i,numel(t)+2) = dl(1) + end_point(1);

 Y(i,numel(t)+2) = dl(2) + end_point(2);

 Z(i,numel(t)+2) = dl(3) + end_point(3);

 end_point = end_point + dl;

end

99

rotation_k.m

--

%Compute rotation of theta radians about vector k

function [R] = rotation_k(k, theta)

R = [k(1)*k(1)*(1 - cos(theta))+cos(theta),

 k(1)*k(2)*(1-cos(theta))-k(3)*sin(theta),

 k(1)*k(3)*(1-cos(theta))+k(2)*sin(theta);

 k(1)*k(2)*(1-cos(theta))+k(3)*sin(theta),

 k(2)*k(2)*(1-cos(theta))+cos(theta),

 k(2)*k(3)*(1-cos(theta))-k(1)*sin(theta);

 k(1)*k(3)*(1-cos(theta))-k(2)*sin(theta),

 k(2)*k(3)*(1-cos(theta))+k(1)*sin(theta),

 k(3)*k(3)*(1-cos(theta))+cos(theta)];

mag.m

--

% Return magnitude of a vector, array

function [magnitude] = mag(x)

[width, height] = size(x);

if(width > 1 && height > 1)

 magnitude = -1;

else

 if(width == 1)

 limit = height;

 else

 limit = width;

 end

 sumSquared = 0.0;

 for(i = 1:limit)

 sumSquared = sumSquared + (x(i)*x(i));

 end

 magnitude = sqrt(sumSquared);

end

100

xCoord.m

--

% Determine x coordinate for neighbor 'position'

function [newx] = xCoord(x, position, step)

newx = (mod(mod(position, 9), 3)-1)*step + x;

yCoord.m

--

% Determine y coordinate for neighbor 'position'

function [newy] = yCoord(y, position, step)

newy = (floor(mod(position, 9)/3)-1)*step + y;

zCoord.m

--

% Determine z coordinate for neighbor 'position'

function [newz] = zCoord(z, position, step)

newz = (floor(position/9)-1)*step + z;

readConfigList.m

--

% Read in path from text file

function [SKP] = readConfigList(fileName)

fid = fopen(fileName, 'r');

num_sections = fscanf(fid, '%d\n', 1);

SKP = zeros(3,3,num_sections);

for i=1:num_sections

 for j=1:3

 [temp] = fscanf(fid, '%f %f %f\n', 3);

 SKP(j,:,i) = temp';

 end

end

fclose(fid);

101

writeConfigList.m

--

%Write path to text file

function writeConfigList(SKP, fileName)

sizeMatrix = size(SKP);

if(numel(sizeMatrix) == 3)

 num_configs = sizeMatrix(3);

else

 num_configs = 1;

end

num_sections = sizeMatrix(2);

fid = fopen(fileName, 'w');

fprintf(fid, '%d\n', num_configs);

for i=1:num_configs

 for j=1:3

 for k=1:num_sections

 fprintf(fid, '%.20f ', SKP(j,k,i));

 end

 fprintf(fid, '\n');

 end

end

fclose(fid);

% file written as:

% num_configs

% s s s s s

% k k k k k

% p p p p p

% s s s s s

% k k k k k

% p p p p p

%

%

%

102

checkPaths.m

--

% Compute heuristic measures for valid paths

function [measure, normMeasure, goodWeights, testWeights] =

checkPaths(finalXYZ, actuatorLimits)

% goodWeights is a list of weights that produce a final

% configuration that was close enough to the desired final

% configuration.

% measure is a set of heuristics for each of the set of

% weights in goodWeights.

% measure(i,1) is a measure of the total distance traveled by

% path i

% measure(i,2) is a measure of the average distance from the

% obstacle over path i

% measure(i,3) is a measure of the minimum distance to the

% obstacle for path i

% measure(i,4) is a measure of total change in lengths over

% (=amount of air used) path i

% measure(i,5) is a measure of average curvature used over

% path i (k/kmax)

% measure(i,6) is a measure of the maximum amount of curvature

% used (max(k/kmax))

% measure(i,7) is a measure of how much section 2 stays bent

% over path i

% measure(i,8) is a measure of the max amount section 2 is

% bent on path i

min_s = actuatorLimits(1,:);

max_s = actuatorLimits(2,:);

d = actuatorLimits(3,:);

deadLengths = actuatorLimits(4,:);

% read in all paths

threshold = 5;

rot_step = pi/16;

count = 0;

measure = [];

goodWeights = [];

testWeights = [];

normMeasure = [];

for y_rot=-rot_step:-rot_step:-(pi/2)

 [Ry] = rotation_k([0 1 0], y_rot);

 for z_rot=0:rot_step:(pi/2)

 [Rz] = rotation_k([0 0 1], z_rot);

 SKP = []; % clear previous path

 weights = Rz * Ry * [1; 0; 0;];

 alpha = weights(1);

 beta = weights(2);

 lambda = weights(3);

 testWeights = [testWeights; alpha beta lambda];

103

 fileName =

 ['planar1_' num2str(alpha, '%.4f') '_'

 num2str(beta, '%.4f') '_' num2str(lambda, '%.4f')

 '.txt'];

 [SKP] = readConfigList(fileName);

 sizeMat = size(SKP);

 if(numel(sizeMat) == 2) numIter = 1;

 else numIter = sizeMat(3);

 end

 XYZ = skp_to_xyz(SKP(:,:,numIter), deadLengths);

 sqrs = (XYZ - finalXYZ).^2;

 % idetify paths that reach desired configuration

 if(sum(sqrt(sum(sqrs))) <= 3*threshold)

 count = count + 1;

 goodWeights(count, :) = [alpha beta lambda];

 measure(count,:) = [0 0 0 0 0 0 0 0];

 for j=2:numIter

 [XYZprev] = skp_to_xyz(SKP(:,:,j-1),

 deadLengths);

 [XYZcurr] = skp_to_xyz(SKP(:,:,j),

 deadLengths);

 sqrs = (XYZprev - XYZcurr).^2;

 measure(count,1) = measure(count,1) +

 sum(sqrt(sum(sqrs)));

 for k=1:3

 %measure4: Sum of changes in length of

 %actuators over path (amount of air used)

 [Lprev] = skp_to_l(SKP(1,k,j-1),

 SKP(2,k,j-1),

 SKP(3,k,j-1),

 actuatorLimits(3,k));

 [Lcurr] = skp_to_l(SKP(1,k,j), SKP(2,k,j),

 SKP(3,k,j), actuatorLimits(3,k));

 measure(count,4) = measure(count,4) +

 sum(abs(Lcurr-Lprev));

 %compute maximum kappa for given

 %s,phi from Jones

 f = [-sin(SKP(3,k,j)) sin(pi/3 +

 SKP(3,k,j)) -cos(pi/6 + SKP(3,k,j))];

 fmax = max(f);

 fmin = min(f);

104

 if(SKP(1,k,j) >= (fmax*min_s(k)-

 fmin*max_s(k))/(fmax-fmin))

 kmax = (max_s(k)-SKP(1,k,j))/

 (SKP(1,k,j)*d(k)*fmax);

 else

 kmax = (min_s(k)-SKP(1,k,j))/

 (SKP(1,k,j)*d(k)*fmin);

 end

 if(kmax ~= 0)

 measure(count,5) = measure(count,5) +

 (SKP(2,k,j)/kmax);

 if((SKP(2,k,j)/kmax) >

 measure(count,6))

 measure(count,6) =

 SKP(2,k,j)/kmax;

 end

 end

 end

 theta = SKP(1,2,j) * SKP(2,2,j);

 measure(count,7) = measure(count,7) + theta;

 if(theta > measure(count, 8))

 measure(count,8) = theta;

 end

 end

 pot = [];

 for j=1:numIter

 XYZ = skp_to_xyz(SKP(:,:,j), deadLengths);

 pot(j) =

 pField_for_circle_in_yz(XYZ, SKP(:,:,j),

 deadLengths, -30, 80, 8.5+4.5);

 end

 measure(count,2) = sum(pot);

 measure(count,3) = max(pot);

 measure(count,5) = measure(count,5) / numIter;

 measure(count,7) = measure(count,7) / numIter;

 end

 end

end

for i=1:count

 normMeasure(i,:) = (measure(i,:) - min(measure)) ./

 (max(measure) - min(measure));

end

end

105

function [l] = skp_to_l(s,k,phi,d)

l = zeros(1,3);

l(1) = s * (1 - k*d*sin(phi));

l(2) = s * (1 + k*d*sin(pi/3+phi));

l(3) = s * (1 - k*d*cos(pi/6+phi));

end

106

107

REFERENCES

[1] J. L. Burke, R. R. Murphy, M. D. Coovert and D. L. Riddle, "Moonlight in
Miami: A Field Study of Human-Robot Interaction in the Context of an
Urban Search and Rescue Disaster Response Training Exercise," Human-
Computer Interaction, vol. 19, pp. 85-116, 2004.

[2] Associated Press, "Robotics camera to be sent into Utah mine," Sun. August
26, 2007.

[3] R. R. Murphy and J. L. Burke, "Up from the Rubble: Lessons Learned about
HRI from Search and Rescue," Proc. of the 49th Annual Meetings of the HFES,
vol. 49, pp. 437, 2005.

[4] J. Casper and R. R. Murphy, "Human-Robot Interactions During the Robot-
Assisted Urban Search and Rescue Response at the World Trade Center,"
IEEE Trans. on Systems, Man, and Cybernetics, vol. 33, pp. 367-385, June. 2003.

[5] A. Davids, "Urban search and rescue robots: from tragedy to technology,"
IEEE Intelligent Systems, vol. 17, pp. 81-83, 2002.

[6] R. Murphy, J. Casper, J. Hyams, M. Micire and B. Minten, "Mobility and
sensing demands in USAR," 26th Annual Conference of the IEEE Industrial
Electronics Society, vol. 1, 2000.

[7] R. R. Murphy, "Human-robot interaction in rescue robotics," IEEE Trans. on
Systems, Man, and Cybernetics, vol. 34, pp. 138-153, 2004.

[8] R. R. Murphy, "Rescue robotics for homeland security," Communications of the
ACM, vol. 47, pp. 66-68, March. 2004.

[9] G. Robinson and J. B. C. Davies, "Continuum robots - a state of the art,"
Proc. IEEE Intl. Conf. Robotics and Automation, pp. 2849-2854, May. 1999.

[10] W. McMahan, B. A. Jones, I. D. Walker, V. Chitrakaran, A. Seshadri and D.
Dawson, "Robotic Manipulators Inspired by Cephalopod Limbs," Proc.
CDEN Design Conference, pp. 1-10, 2004.

[11] R. Cieslak and A. Morecki, "Elephant trunk type elastic manipulator - a tool
for bulk and liquid type materials transportation," Robotica, vol. 17, pp. 11-16,
1999.

[12] I. A. Gravagne, C. D. Rahn and I. D. Walker, "Large deflection dynamics and
control for planar continuum robots," IEEE/ASME Trans. on Mechatronics,
vol. 8, pp. 299-307, 2003.

108

[13] H. Ohno and S. Hirose, "Design of slim slime robot and its gait of
locomotion," Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp.
707-715, Oct. 2001.

[14] S. Hirose, Biologically Inspired Robots. Oxford University Press, 1993,

[15] T. Aoki, A. Ochiai and S. Hirose, "Study on Slime Robot," Proc. IEEE Intl.
Conf. Robotics and Automation, pp. 2808-2813, 2004.

[16] K. Suzumori, S. Iikura and H. Tanaka, "Development of flexible
microactuator and its applications to robotic mechanisms," Proc. IEEE Intl.
Conf. Robotics and Automation, pp. 1622-1627, April. 1991.

[17] D. M. Lane, J. B. C. Davies, G. Robinson, D. J. O'Brien, J. Sneddon, E.
Seaton and A. Elfstrom, "The AMADEUS dextrous subsea hand - design,
modeling, and sensor processing," IEEE Journal of Oceanic Engineering, vol. 24,
pp. 96-111, Jan. 1999.

[18] M. Ivanescu, N. Bizdoaca and D. Pana, "Dynamic control for a tentacle
manipulator with SMA actuators," Proc. IEEE Intl. Conf. Robotics and
Automation, pp. 2079-2084, May. 2003.

[19] W. McMahan, B. A. Jones and I. D. Walker, "Design and implementation of
a multi-section continuum robot: Air-Octor," Proc. IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, pp. 3345-3352, Aug. 2005.

[20] Temple Allen Industries, 2007, www.templeallen.com.

[21] R. Buckingham, "Snake arm robots," Industrial Robot: An International Journal,
vol. 29, pp. 242-245, 2002.

[22] G. Immega and K. Antonelli, "The KSI tentacle manipulator," Proc. IEEE
Intl. Conf. Robotics and Automation, pp. 3149-3154, May. 1995.

[23] OCRobotics, "Snake-arm robots for aircraft assembly," 2007.

[24] OCRobotics, "Nuclear reactor maintenance," 2007.

[25] B. A. Jones, W. McMahan and I. D. Walker, "Practical Kinematics for Real-
Time Implementation of Continuum Robots," Proc. IEEE Intl. Conf. Robotics
and Automation, pp. 1840-1847, May. 2006.

[26] R. R. Murphy, "Marsupial and shape-shifting robots for urban search and
rescue," IEEE Intelligent Systems, vol. 15, pp. 14-19, March/April. 2000.

[27] N. Bernstein, The Coordination and Regulation of Movement. Pergomon Press,
London, 1967.

109

[28] B. A. Jones and I. D. Walker, "A new approach to Jacobian formulation for a
class of multi-section continuum robots," Proc. IEEE Intl. Conf. Robotics and
Automation, pp. 3279-3284, April. 2005.

[29] Logitech, "Extreme™ 3D Pro," 2007.

[30] W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. D. Walker, B. A.
Jones, M. Pritts, D. Dienno, M. Grissom and C. D. Rahn, "Field trials and
testing of the OctArm continuum manipulator," Proc. IEEE Intl. Conf.
Robotics and Automation, pp. 2336-2341, 2006.

[31] K. S. Moore, W. M. Rodes, M. A. Csencsits, M. J. Kwoka, J. A. Gomer and
C. C. Pagano, "Interface evaluation for soft robotic manipulators," Proc. of the
SPIE Defense & Security Symposium, vol. 6230, pp. 62301C1-62301C11, 2006.

[32] M. Csencsits, B. A. Jones, W. McMahan, V. Iyengar and I. D. Walker, "User
interfaces for continuum robot arms," Proc. IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, pp. 3011-3018, Aug. 2005.

[33] G. S. Chirikjian and J. W. Burdick, "A modal approach to hyper-redundant
manipulator kinematics," IEEE Trans. on Robotics and Automation, vol. 10, pp.
343-354, June. 1994.

[34] G. S. Chirikjian, "Hyper-redundant manipulator dynamics: a continuum
approximation," Advanced Robotics, vol. 9, pp. 217-243, 1995.

[35] G. S. Chirikjian, "Design and analysis of some nonanthropomorphic,
biologically inspired robots: An overview," Journal of Robotic Systems, vol. 18,
pp. 701-713, 2001.

[36] F. Fahimi, H. Ashrafiuon and C. Nataraj, "An improved inverse kinematic
and velocity solution for spatial hyper-redundant robots," IEEE Trans. on
Robotics and Automation, vol. 18, pp. 103-107, 2002.

[37] M. W. Hannan and I. D. Walker, "Kinematics and the Implementation of an
elephant's trunk manipulator and other continuum style robots," Journal of
Robotic Systems, vol. 20, pp. 45-63, Feb. 2003.

[38] M. Pritts and C. D. Rahn, "Design of an Artificial Muscle Continuum
Robot," Proc. IEEE Intl. Conf. Robotics and Automation, pp. 4742-4746, 2004.

[39] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control. John Wiley &
Sons, Inc., 1989,

[40] B. A. Jones, Kinematics and Implementation of Continuum Manipulators, PhD
Dissertation, Clemson University, 2005.

110

[41] M. A. Csencsits, S. Neppalli, I. D. Walker and B. A. Jones, "A Geometrical
Approach to Inverse Kinematics for Continuum Manipulators,” submitted to
IEEE International Conference on Robotics and Automation, 2008.

[42] J. Latombe, Robot Motion Planning. ,7th ed.Kluwer Academic Publishers, 1991,

[43] Y. K. Hwang and N. Ahuja, "Gross motion planning—a survey,” ACM
Computing Surveys (CSUR), vol. 24, pp. 219-291, Sept. 1992.

[44] K. Kedem and M. Sharir, "An efficient algorithm for planning collision-free
translational motion of a convex polygonal object in 2-dimensional space
amidst polygonal obstacles," Proceedings of the First Annual Symposium on
Computational Geometry, pp. 75-80, 1985.

[45] C. E. Thorpe, "Path Relaxation: Path Planning for a Mobile Robot,”
National Conference on Artificial Intelligence, pp. 318-321, 1984.

[46] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile
robots,” IEEE International Conference on Robotics and Automation, vol. 2, pp.
500-505, 1985.

[47] B. Faverjon and P. Tournassoud, "A local based approach for path planning
of manipulators with a high number of degrees of freedom," IEEE
International Conference on Robotics and Automation, vol. 4, pp. 1152-1159, 1987.

[48] J. Barraquand, B. Langlois and J. C. Latombe, "Numerical potential field
techniques for robot path planning," IEEE Trans. on Systems, Man, and
Cybernetics, vol. 22, pp. 224-241, 1992.

[49] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge, MA: MIT
Press, 1988,

[50] M. A. Weiss, Data Structures and Algorithm Analysis in C++, 3rd ed.Boston,
MA: Greg Tobin, 2006,

[51] Foster-Miller, "TALON Military Robots, EOD, SWORDS, and Hazmat
Robots - Foster-Miller," 2007,

[52] D. Braganza, D. M. Dawson, I. D. Walker and N. Nath, "Neural Network
Grasping Controller for Continuum Robots,” 45th IEEE Conference on Decision
and Control, pp. 6445-6449, 2006.

	Clemson University
	TigerPrints
	12-2007

	Operational Strategies for Continuum Manipulators
	Matt Csencsits
	Recommended Citation

	Microsoft Word - 104601-1197572361-Operational_Strategies_for_Continuum_Manipulators.doc

