5,589 research outputs found

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Enhancing Power Efficient Design Techniques in Deep Submicron Era

    Get PDF
    Excessive power dissipation has been one of the major bottlenecks for design and manufacture in the past couple of decades. Power efficient design has become more and more challenging when technology scales down to the deep submicron era that features the dominance of leakage, the manufacture variation, the on-chip temperature variation and higher reliability requirements, among others. Most of the computer aided design (CAD) tools and algorithms currently used in industry were developed in the pre deep submicron era and did not consider the new features explicitly and adequately. Recent research advances in deep submicron design, such as the mechanisms of leakage, the source and characterization of manufacture variation, the cause and models of on-chip temperature variation, provide us the opportunity to incorporate these important issues in power efficient design. We explore this opportunity in this dissertation by demonstrating that significant power reduction can be achieved with only minor modification to the existing CAD tools and algorithms. First, we consider peak current, which has become critical for circuit's reliability in deep submicron design. Traditional low power design techniques focus on the reduction of average power. We propose to reduce peak current while keeping the overhead on average power as small as possible. Second, dual Vt technique and gate sizing have been used simultaneously for leakage savings. However, this approach becomes less effective in deep submicron design. We propose to use the newly developed process-induced mechanical stress to enhance its performance. Finally, in deep submicron design, the impact of on-chip temperature variation on leakage and performance becomes more and more significant. We propose a temperature-aware dual Vt approach to alleviate hot spots and achieve further leakage reduction. We also consider this leakage-temperature dependency in the dynamic voltage scaling approach and discover that a commonly accepted result is incorrect for the current technology. We conduct extensive experiments with popular design benchmarks, using the latest industry CAD tools and design libraries. The results show that our proposed enhancements are promising in power saving and are practical to solve the low power design challenges in deep submicron era

    MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper

    Get PDF

    공정변이를 고려한 3차원 집적 회로 설계 및 패키징 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 김태환.As CMOS scaling down, The control of variation in chip performance (i.e. speed and power) becomes highly important to improve the chip yield. The increased variation of chip performance demands additional design efforts such as the increase of guard-band or longer design turnaround time (TAT), which cause degradation of both chip performance and economic profit. Meanwhile, through-silicon via (TSV) based 3D technology has been regarded as the promising solution for long interconnect wire and huge die size problem. Since a 3D IC is manufactured by stacking multiple dies which are fabricated in different wafers, integration of the dies that have far different process characteristic can enlarge the difference of device performance on different dies within a single chip. In this dissertation, we analyze the effect of on-package (within-chip) variation on 3D IC and presents effective methods to mitigate the onpackage variation. First, a parametric yield improvement method is presented to resolve the mismatches of dies having different process characteristic. Comprehensive 3D integration algorithms considering post-silicon tuning technique is developed for the multi-layered 3D IC. Then, we show that a careful clock edge embedding in 3D clock tree can greatly reduce the impact of on-package variation on 3D clock skew and propose a two-step solution for the problem of on-package variation-aware layer embedding in 3D clock tree synthesis. In summary, this dissertation presents effective 3D integration method and 3D clock tree synthesis algorithm for process-variation tolerant 3D IC designs.Abstract i Contents ii List of Figures iv List of Tables vii 1 Introduction 1 1.1 Process Variation in 3D ICs . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . 6 2 Post-silicon Tuning Aware Die/WaferMatching Algorithms for Enhancing Parametric Yield of 3D IC Design 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 The Die-to-Die Matching Problem and Proposed Algorithm Considering Body Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Motivation and Problem Definition . . . . . . . . . . . . . . 13 2.3.2 The Proposed Die-to-Die Matching Algorithm . . . . . . . . 15 2.4 TheWafer-to-Wafer Matching Problem and Proposed Algorithm Considering Body Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 Problem Definition and The Proposed Wafer-to-Wafer Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Edge Layer Embedding Algorithm for Mitigating On-Package Variation in 3D Clock Tree Synthesis 32 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Problem Definitions and Motivation . . . . . . . . . . . . . . . . . . 35 3.3 The Proposed Algorithm for On-Package Variation Aware Edge Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Algorithm for Maximizing Layer Sharing of Edges . . . . . . 39 3.3.2 Refinement: Partial Edge Embedding on Layers . . . . . . . . 47 3.3.3 Clock Tree Routing and Buffer Insertion . . . . . . . . . . . . 49 3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Conclusion 64 4.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Abstract in Korean 72Docto

    Asynchronous 3D (Async3D): Design Methodology and Analysis of 3D Asynchronous Circuits

    Get PDF
    This dissertation focuses on the application of 3D integrated circuit (IC) technology on asynchronous logic paradigms, mainly NULL Convention Logic (NCL) and Multi-Threshold NCL (MTNCL). It presents the Async3D tool flow and library for NCL and MTNCL 3D ICs. It also analyzes NCL and MTNCL circuits in 3D IC. Several FIR filter designs were implement in NCL, MTNCL, and synchronous architecture to compare synchronous and asynchronous circuits in 2D and 3D ICs. The designs were normalized based on performance and several metrics were measured for comparison. Area, interconnect length, power consumption, and power density were compared among NCL, MTNCL, and synchronous designs. The NCL and MTNCL designs showed improvements in all metrics when moving from 2D to 3D. The 3D NCL and MTNCL designs also showed a balanced power distribution in post-layout analysis. This could alleviate the hotspot problem prevalently found in most 3D ICs. NCL and MTNCL have the potential to synergize well with 3D IC technology
    corecore