7,383 research outputs found

    The effects of ageing and exercise on skeletal muscle structure and function

    Get PDF
    Musculoskeletal ageing is associated with profound morphological and functional changes that increase fall risk and disease incidence and is characterised by age-related reductions in motor unit number and atrophy of muscle fibres, particularly type II fibres. Decrements in functional strength and power are relatively modest until the 6th decade, after which the rate of loss exponentially accelerates, particularly beyond the 8th decade of life. Physical activity is a therapeutic modality that can significantly attenuate age-related decline. The underlying signature of ageing, as manifested by perturbed redox homeostasis, leads to a blunting of acute and chronic redox regulated exercise adaptations. Impaired redox regulated exercise adaptations are mechanistically related to altered exercise-induced reactive oxygen and nitrogen species generation and a resultant failure to properly activate redox regulated signaling cascades. Despite the aforementioned specific impairment in redox signaling, exercise induces a plethora of beneficial effects, irrespective of age. There is, therefore, strong evidence for promoting regular physical exercise, especially progressive resistance training as a lifelong habitual practice

    The Use of Lower Extremity Functional Electrical Stimulation in Spinal Cord Injured Patients

    Get PDF
    Spinal cord injury (SCI) is a devastating, life-altering injury that presents a variety of rehabilitative and long-term medical management challenges. Not only must the inability to ambulate, which is generally of primary concern to the patient, be addressed, but also the inherent degenerative and deconditioning effects of SCI which may ultimately lead to various secondary complications. Recently, functional electrical stimulation (FES) has been the subject of a variety of research concerning the rehabilitation of individuals with SCI. FES is a means of activating alpha motor neurons to stimulate muscular contraction and elicit a therapeutic or functional effect. The purpose of this paper is to examine and review current uses of FES in the spinal cord injured individual to restore functional movement of the lower extremities. Specifically, it will focus on muscle conditioning, cardiovascular conditioning, and control of standing and ambulation with an explanation of the physiologic effect of each of these activities. The role of FES in combating and preventing secondary complications of SCI will also be reviewed. This paper will involve an extensive literature review of the topics. The results of this paper will aid physical therapists in the clinical management of SCI through the use of FES

    Research opportunities in muscle atrophy

    Get PDF
    A trophy of skeletal muscle; muscle a trophy associated with manned space flight; the nature, causes, and mechanisms of muscle atrophy associated with space flight, selected physiological factors, biochemical aspects, and countermeasures are addressed

    Research opportunities in muscle atrophy

    Get PDF
    Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included

    Effect of Neuromuscular Electrical Muscle Stimulation on Energy Expenditure in Healthy Adults

    Get PDF
    Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES) at different intensities on energy expenditure (oxygen and calories) in healthy adults. The secondary aim was to develop a generalized linear regression (GEE) model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender) associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females) participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1), motor threshold (E2), and maximal intensity comfortably tolerated (E3). Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject’s demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended

    Methods and protocols for incremental exercise testing in tetraplegia, using arm-crank ergometry assisted by Functional Electrical Stimulation

    Get PDF
    Cervical spinal cord injury (SCI) leads to tetraplegia, with paralysis and loss of sensation in the upper and lower limbs. The associated sedentary lifestyle results in an increased risk of cardiovascular disease. To address this, we require the design of exercise modalities aimed specifically at tetraplegia and methods to assess their efficacy. This paper describes methods for arm-crank ergometry (ACE) assisted by Functional Electrical Stimulation (FES) applied to the biceps and triceps. The instrumented ergometer enables work-rate control during exercise, implemented here for incremental exercise testing during FES-ACE. Detailed protocols for the tests are given. Experimental data collected during exercise tests with tetraplegic volunteers are provided to illustrate the feasibility of the proposed approach to testing and data analysis. Incremental tests enabled calculation of peak power output and peak oxygen uptake. We propose that the high-precision exercise testing protocols described here are appropriate to assess the efficacy of the novel exercise modality, FES-ACE, in tetraplegia

    Exercise training in group 2 pulmonary hypertension: which intensity and what modality

    Get PDF
    Pulmonary hypertension (PH) due to left-sided heart disease (LSHD) is a common and disconcerting occurrence. For example, both heart failure (HF) with preserved and reduced ejection fraction (HFpEF and HFrEF) often lead to PH as a consequence of a chronic elevation in left atrial filling pressure. A wealth of literature demonstrates the value of exercise training (ET) in patients with LSHD, which is particularly robust in patients with HFrEF and growing in patients with HFpEF. While the effects of ET have not been specifically explored in the LSHD–PH phenotype (i.e., composite pathophysiologic characteristics of patients in this advanced disease state), the overall body of evidence supports clinical application in this subgroup. Moderate intensity aerobic ET significantly improves peak oxygen consumption, quality of life and prognosis in patients with HF. Resistance ET significantly improves muscle strength and endurance in patients with HF, which further enhance functional capacity. When warranted, inspiratory muscle training and neuromuscular electrical stimulation are becoming recognized as important components of a comprehensive rehabilitation program. This review will provide a detailed account of ET programing considerations in patients with LSHD with a particular focus on those concomitantly diagnosed with PH

    Effect of a neuromuscular electrical stimulation muscle strength training intervention on muscle force and mass, physical health and quality of life in people with spinal cord injury

    Get PDF
    Spinal cord injury (SCI) leads to significant deficits in muscle strength and mass, impacting negatively on physical health and quality of life (QoL). Physical rehabilitation techniques for people with SCI rely on constant updates and the accumulation of evidence regarding the efficacy of available and/or new physical interventions. Neuromuscular electrical stimulation (NMES) is already commonly used to activate skeletal muscles and subsequently reverse muscle atrophy, however NMES as a high-intensity “strength training” intervention appears to be a particularly promising technique for increasing muscle strength and mass and to subsequently improve physical health and quality of life (QoL) in people with SCI. Nonetheless, there are many factors limiting the use of standard NMES protocols, and further evidence pertaining to the use of high-intensity NMES strength training in clinical populations is warranted. The primary aim of the research described in this thesis was to examine the effects of NMES as a high-intensity muscle strength training intervention, specifically using wide-pulse width (1000 μs), low-to-moderate frequency (30 Hz) NMES combined with tendon vibration, on muscle strength and mass, physical health, symptoms of spasticity and QoL in people with SCI. This thesis includes two cross-sectional studies examining the effects of patellar tendon vibration (55 Hz, 7 mm amplitude) superimposed onto wide-pulse width (1000 μs) NMES (e.g. 30 Hz over 2 s) on the peak muscular (knee extensor) force and total impulse elicited by, and rate of recovery from, the intervention in healthy subjects (Study 1) and in people with chronic SCI (Study 2). The results of Study 1 revealed that superimposing tendon vibration onto wide-pulse width NMES leads to an increase in the muscle work performed before fatigue in only some individuals (i.e. positive responders, 50% of individuals in the current study), but decreases it in others (i.e. negative responders). However, it tends to reduce the voluntary force loss that was consistently experienced after a training session using high-intensity NMES, and may thus allow for additional exercise or rehabilitation work to be performed without ongoing voluntary muscle fatigue in healthy people. The results of Study 2 also identified positive and negative responders to tendon vibration in people with SCI, however the responses were less clear and a defined effect of tendon vibration superimposed onto NMES was not discerned. In Study 3, a 12-week (twice-weekly) high-intensity NMES strength training intervention was implemented in people with chronic SCI; based on results of Study 2, high-force contractions were evoked by NMES without superimposed tendon vibration. A significant increase in muscle mass (45%) and strength (tetanic evoked force; 31.8%), amelioration of spasticity symptoms, and improvement in some aspects of physical health and QoL were observed. Therefore, the use of high-intensity NMES strength training appears to be an effective rehabilitation tool to increase muscle force and mass, ameliorate symptoms of spasticity and improve physical and mental health outcomes in people with SCI

    Two Weeks of Ischemic Conditioning Improves Walking Speed and Reduces Neuromuscular Fatigability in Chronic Stroke Survivors

    Get PDF
    This pilot study examined whether ischemic conditioning (IC), a noninvasive, cost-effective, and easy-to-administer intervention, could improve gait speed and paretic leg muscle function in stroke survivors. We hypothesized that 2 wk of IC training would increase self-selected walking speed, increase paretic muscle strength, and reduce neuromuscular fatigability in chronic stroke survivors. Twenty-two chronic stroke survivors received either IC or IC Sham on their paretic leg every other day for 2 wk (7 total sessions). IC involved 5-min bouts of ischemia, repeated five times, using a cuff inflated to 225 mmHg on the paretic thigh. For IC Sham, the cuff inflation pressure was 10 mmHg. Self-selected walking speed was assessed using the 10-m walk test, and paretic leg knee extensor strength and fatigability were assessed using a Biodex dynamometer. Self-selected walking speed increased in the IC group (0.86 ± 0.21 m/s pretest vs. 1.04 ± 0.22 m/s posttest, means ± SD; P\u3c 0.001) but not in the IC Sham group (0.92 ± 0.47 m/s pretest vs. 0.96 ± 0.46 m/s posttest; P= 0.25). Paretic leg maximum voluntary contractions were unchanged in both groups (103 ± 57 N·m pre-IC vs. 109 ± 65 N·m post-IC; 103 ± 59 N·m pre-IC Sham vs. 108 ± 67 N·m post-IC Sham; P = 0.81); however, participants in the IC group maintained a submaximal isometric contraction longer than participants in the IC Sham group (278 ± 163 s pre-IC vs. 496 ± 313 s post-IC, P = 0.004; 397 ± 203 s pre-IC Sham vs. 355 ± 195 s post-IC Sham; P = 0.46). The results from this pilot study thus indicate that IC training has the potential to improve walking speed and paretic muscle fatigue resistance poststroke
    • …
    corecore