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ABSTRACT 

Spinal cord injury (SCI) is a devastating, life-altering injury that presents a 

variety of rehabilitative and long-term medical management challenges. Not 

only must the inability to ambulate, which is generally of primary concern to the 

patient, be addressed, but also the inherent degenerative and deconditioning 

effects of SCI which may ultimately lead to various secondary complications. 

Recently, functional electrical stimulation (FES) has been the subject of a 

variety of research concerning the rehabilitation of individuals with SCI. FES is 

a means of activating alpha motor neurons to stimulate muscular contraction 

and elicit a therapeutic or functional effect. 

The purpose of this paper is to examine and review current uses of FES 

in the spinal cord injured individual to restore functional movement of the lower 

extremities. Specifically, it will focus on muscle conditioning, cardiovascular 

conditioning, and control of standing and ambulation with an explanation of the 

physiologic effect of each of these activities. The role of FES in combating and 

preventing secondary complications of SCI will also be reviewed. 

This paper will involve an extensive literature review of the topics. The 

results of this paper will aid physical therapists in the clinical management of 

SCI through the use of FES. 

v 



CHAPTER I 

INTRODUCTION 

Spinal cord injury (SCI) is a devastating, life-altering injury that is of major 

public health importance. While the number of individuals with spinal cord 

injury is relatively small with an incidence of 2.5 cases per 100,000,1 the overall 

health care expense is estimated to be 30 to 40 billion dollars annually.2 

Enormous medical management costs are largely due to subsequent 

hospitalizations and complications secondary to SCI rather than the initial 

expense of acute and rehabilitation management. 

Traditionally, long-term medical management was not well developed due 

to the high incidence of death stemming from acute complications soon after 

the initial trauma. Medical care advances, such as improved transportation 

techniques, efficient critical care, advances in technology, and improved urinary 

and respiration management, have greatly improved survival and life 

expectancy rates. 3 With increased life expectancy, the deconditioning and 

degenerative effects, which ultimately predispose SCI individuals to a variety of 

secondary complications, require significant consideration. 

Muscular atrophy, demineralization of bone, decreased circulation and 

oxygen uptake in paralyzed musculature, and decreased stress on the 

1 
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cardiovascular system increase risk for development of pressure sores, 

fractures, thrombophlebitis, respiratory disease, and, the number one cause of 

death in SCI population, cardiovascular disease. 

Cardiovascular conditions in SCI are caused by a number of cumulative 

factors. It is well known that in the general population, an inverse relationship 

exists between high density lipoproteins (HDL) and coronary artery disease. 

Serum HDL is speculated to be increased with regular aerobic activity. SCI 

individuals have been shown to demonstrate decreased levels of HDL as 

compared to nondisabled population4 which is speculated to stem from 

decreased aerobic physical activity. In addition to decreased levels of HDL, 

documentation has evidenced that cardiopulmonary fitness is reduced by 

SCI5
,6,7,8 due to insufficient voluntary muscle mass available to produce the 

necessary cardiovascular stress for maintenance of an adequate fitness level. 

Although regular upper extremity ergometry does produce increased strength 

and endurance of upper extremity musculature, it is generally not sufficient to 

increase central cardiovascular fitness. 8 It is thought that with upper extremity 

exercise alone, compensatory vasodilatation does not occur in paralyzed 

musculature; therefore, distribution of blood to exercising musculature is poor, 

blood pressure is lowered, and cardiac output is inadequate. Also, complete 

cervical and high thoracic lesions result in reduced cardiovascular exercise 

response (maximum heart rate and cardiac output) due to loss of supraspinal 

sympathetic control. 
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Deep venous thrombosis (DVT) formation is a life-threatening 

complication of SCI. It is postulated that increased incidence in this population 

is due to loss of the pumping effect generated from muscle contractions in 

nonparalyzed musculature. Decreased circulation and venous stasis causes 

increased concentration of coagulants in a localized area and impaired 

fibrinolytic activity resulting in formation of DVTs.9 Absence of muscle 

contractions and the pumping effect, in conjunction with chronic dependent 

position of lower extremities, leads to chronic foot and leg edema. 

Long-term weight gain after initial weight loss is very common in SCI 

population due to sedentary lifestyle. This is not only of medical concern but 

also of functional concern as increased weight may interfere with mobility and 

performance of activities of daily living. Body composition studies have shown 

even in absence of obesity a disproportionately higher amount of body fat to 

muscle mass exists in paralyzed musculature. Weight gain and composition 

changes are at least in part due to lack of physical exercise. 

Osteoporosis is typically found to some degree in SCI individuals. A lack 

of mechanical stress due to absence of muscle contraction and significant 

decreased weight-bearing fails to facilitate proper bone remodeling as bone 

reabsorption exceeds bone formation and results in osteoporosis. 

Disuse atrophy is also very pronounced with spinal cord injured 

population. In paralyzed musculature, histochemical changes take place along 

with changes in muscle fiber type.10 A predominance of Type 1\ muscle fibers 
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which are fast twitch anaerobic over Type I slow twitch fibers exists. Also, a 

reduction in mitochondria concentration, oxidative enzyme level, and number of 

capillaries takes place in atrophied muscle.4 Gluteal atrophy is of particular 

importance as it predisposes SCI individuals to ischial pressure sores. In 

addition, disuse of musculature is hypothesized to influence somatic and 

automatic spinal reflexes contributing to dyssynergic neurogenic bladder, 

irregular evacuation of bowels, autonomic dysreflexia, circulation disturbances, 

and spasticity.4 

For the most part, rehabilitation of SCI currently focuses on strengthening 

of volitionally intact musculature and training for optimal self-sufficiency in daily 

life. Generally, passive range of motion is carried out for paralyzed limbs and 

fitness training is not a focus. Following initial rehabilitation, the vast majority of 

SCI individuals become sedentary and rarely partake in any form of regular 

fitness training. 11 Typical SCI individuals are, therefore, left with insufficient 

means to maintain an adequate fitness leveI.8,12,13 

Secondary complications commonly associated with SCI have been 

shown to be related to or aggravated by the lack of physical exercise.14 It is 

also speculated that secondary complications can be avoided or reduced 

through fitness training achieved utilizing functional electrical stimulation (FES) 

of the lower extremities for a therapeutic or functional effect. Physiological 

benefits of FES induced exercise and ambulation in conjunction with orthotics 

may include prevention of osteoporosis, increased strength of muscles receiving 
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stimulation, increased endurance, increased aerobic metabolism, increased 

cardiac output, and improved physiological function. 15 Of equal importance are 

the psychological benefits associated with exercise and the ability to stand 

independently. 



CHAPTER II 

Functional electrical stimulation, also known as neuromuscular electrical 

stimulation, has served the purpose of restoring purposeful movements in 

paralyzed musculature (UMNL in nature) for the last quarter of a century.16 

Through technological advances, FES has been utilized to produce complex 

motor activities for the purpose of performing FES induced exercise and 

functional ambulation (with orthosis) in the spinal cord injured population. 

The term Active Physical Therapy (APT) was coined by Petrofsky and 

Phi"ips17 to describe activities in which FES is utilized to superimpose 

movement of paralyzed extremities in SCI individuals. In active physical 

therapy, muscle contractions are elicited which act upon their environment to 

produce an exercise effect with useful external work, as compared to 

conventional physical therapy (no FES) in which the environment acts upon 

paralyzed musculature to produce its effects.18 

Two components, the isokinetic leg trainer and FES bicycle ergometer, 

were initially described by Petrofsky and Phillips for the purpose of performing 

APT. 17 After the development of a functional ambulation system, FES in 

conjunction with orthosis, walking systems became the focus of attention by 

many researchers. Candidates for FES augmented ambulation, however, are 

6 
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required to also participate in strength and endurance training with the isokinetic 

leg trainer and bicycle ergometer prior to ambulation. 

The simplest form of APT, weight lifting, is provided by the isokinetic leg 

trainer which was developed to provide a means of isokinetic exercise for 

paralyzed musculature.18 A relatively simple system of quadriceps muscular 

stimulation was developed to achieve this goal. The SCI patient simply sits in a 

chair much like those found in conventional isokinetic machines while 

stimulation to the quadriceps is achieved by electrodes placed over respective 

quadricep motor points. This allows for alternative stimulation to different 

musculature heads, thereby decreasing musculature fatigue and providing 

smooth contractions of the muscle.2 A stirrup connected to a series of pulleys 

and affixed to a weight pan is placed around the ankle. When the quadriceps 

are stimulated and an adequate muscle contraction is achieved, work is 

produced as the lower leg movement elevates the weight pan. Closed loop 

control is achieved with a sensor placed in series with the weight pan to provide 

input for the computer which, in turn, stimulates muscular contractions in a slow 

and smooth manner to prevent hyperextension of the knee. Repetitions of 

equal velocity contractions through the above described mechanisms are 

produced at the knee resulting in repetitive cycles of knee flexion and 

extension. Recently, adaptive control (as opposed to closed loop control) has 

been successfully implemented in laboratory research with use in leg trainers;19 

however, this has not been widely applied. Clinically feasible systems have 
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also been similarly reproduced through portable neuromuscular stimulators with 

ramped current output and ankle weights.20 

While differing protocols and training programs have been described as a 

precursor to lower extremity bicycle ergometry and ambulation, some of the 

more common ones advocate stimulation parameters and adjustments of weight 

to achieve fatigue of muscles within a given time frame of repetitive flexion and 

extension cycles on each leg.18
,19,20 Fatigue has been defined as the point at 

which maximum stimulation levels are unable to produce a preset number of 

degrees (usually 30° to 40°) of knee extension. 

A training effect has been documented with regular use of the previously 

described leg trainer. A doubling of quadriceps strength was reported by 

Petrofsky and Phillips 17 over a three-week period and Collins et al18 found a 

sevenfold increase in quadriceps strength in a 12-week time frame with use of 

high intensity protocols. Similar studies19
,20 have demonstrated increases in 

thigh girth and quadriceps strength through FES augmented leg training. 

Faghri et al20 also found FES knee extension training to provide a reduction in 

spasticity, although the exact mechanism is not currently fully understood. A 

reduction of spasticity is reported to occur with repetitive and prolonged 

stretching of paralyzed musculature through autogenic inhibition of tendon 

stretch reflexes and activation of muscle spindle afferents to inhibit motor 

neurons.20 Whether the same process takes place with exercise elicited by 

FES is yet to be proven. 
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Generally, FES knee extension training is carried out prior to bicycle 

ergometry training to build muscular strength which may be significantly 

decreased depending on length of injury. While use of the isokinetic leg trainer 

has proven to be a highly effective means of gaining strength in UMNL 

paralyzed musculature, a need for endurance and cardiovascular training was 

provided by the development of computerized electrical stimulation bicycle 

ergometer.22 Originally, Petrofsky and colleagues23 designed a system allowing 

SCI individuals to pedal on an ergometer through computer controlled, 

sequential impulses delivered to paralyzed lower extremity musculature with 

closed loop control. This system was approved by the Federal Drug 

Administration (FDA) in 1984 and is currently available for clinical and home 

use as the Regys and Ergys clinical rehabilitation system. Regys is used in the 

clinical setting for bicycle ergometry, but also has the added feature of a chair 

that rotates which allows for the performance of leg lifts. The Ergys is designed 

for home use by experienced cyclers. Both ergometers consist of the following 

three main components: lower extremity ergometers, stimulus control unit, and 

patient's chair.16 

The ergometer is like that of a standard ergometer with modifications to 

achieve reduction in resistance levels and safety through position sensors. The 

stimulus control unit is a computer which integrates information from sensors 

and controls and monitors output of electrical stimulation according to 

parameters entered through a remote control keyboard. Six channels, generally 
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delivering stimulation to the quadriceps, hamstrings, and gluteal musculature, 

are available in this computer controlled, closed loop system. The frequency 

and pulse duration are entered into the computer, while the amplitude ranging 

from 0-132 milliamps is chosen by the stimulus control unit according to input 

from various sensors. Sensors relaying pedal position continuously monitor 

instantaneous position and average velocity. This information is used by the 

stimulator to determine precise stimulus amplitude required for each of the six 

muscle groups at any point in time to maintain a constant predetermined speed 

of fifty revolutions per minute (rpm).4,16 Continuous closed-loop feedback, such 

as that provided by the pedal position sensor, allows for control of rate of 

pedaling and stimulation sequence ensuring a smooth and rhythmic pedaling 

movement.4 The amplitude is maintained through constant current output 

unless pedaling speed drops below 35 rpm at which time the muscle will be 

considered to be fatigued, or a voltage of 220 volts or an impedance of 166 

ohms 16 is attained at which time the computer will assume an electrode or wire 

is loose. In both cases, discontinuation of stimulation will ensue. In addition to 

pedal sensors, resistance sensors input information into the computer to 

guarantee that prescribed resistance is being carried out. 

In bicycle ergometers designed for SCI usage, the chair is equipped with 

adjustable height and seat depth for the production of optimal firing angles and 

shoulder and lap belts to maintain posture. Also, seats are made to rapidly 

recline to the horizonal position. Knee stabilizers and leg restraints allow for 
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pedaling to only take place in a planar motion and generally protective boots 

are worn to prevent skin abrasions while cycling. 

Protocols and stimulation parameters have varied in the research setting 

with uses of different ergometry systems. The use of lower extremity FES 

stimulation with the clinically available Ergys system has been safely 

accomplished with the following parameters.20
,24,25 Stimulation voltage output 

may range from 0 to 130 mA with a maximum of 130 mA, while pulse 

frequency has shown to be effective and safe at 30 Hz in conjunction with 

monophasic rectangular waveforms at .375 msec pulse duration. 

Resistance in bicycle ergometry is set according to individual muscular 

strength and capabilities with increasing loads determined by preset criteria; 

i.e., successful completion of fifteen minutes of uninterrupted cycling at a given 

resistance prior to increase in load by small predetermined increments at the 

next training session. A maximum of a 7 kg load is recommended for safety by 

Faghri et al.20 He20 has set the following parameters for termination of FES 

induced bicycle ergometry as safety precautions: 1) fatigue of muscle 

determined by inability to maintain a pedaling speed greater than 35 rpms with 

maximum stimulation of 130 mA, 2) spasticity interfering with the ability to 

perform smooth muscular contractions, 3) heart rate that surpasses 85% of the 

predicted maximum value or arterial blood pressure exceeds 200/120 mmHg, 

and 4) arterial blood pressure that falls below 70/40 mmHg or any symptoms of 

hypotension. 
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With the knowledge that SCI interrupts autonomic sympathetic outflow, it 

was postulated that cardiorespiratory responses would be difficult to achieve 

with FES induced exercise. This has proven to be untrue despite autonomic 

sympathetic disturbances. Lower extremity bicycle ergometry has been shown 

to elicit relatively high levels of metabolic and cardiopulmonary 

responses. 16,23,25,26,27 

In the paraplegic population, the post-training effects of FES ergometry 

are similar to adaptations experienced by the general population for aerobic 

exercise. Decreases in resting blood pressure and heart rate along with 

increases in stroke volume and cardiac output during submaximal exercise are 

produced in both groups. On the contrary, FES ergometry has been shown to 

produce an opposite effect in quadriplegics producing increases in resting blood 

pressure and heart rate with short-term training protocols.25
,28,29 Quadriplegics 

typically, even at rest, exhibit low cardiac output, hypotension, and bradycardia 

due to loss of suprasegmental control over the sympathetic nervous system. 

The exact mechanism for the increases in heart rate and blood pressure are 

not currently known, although it is postulated that long-term FES bicycle 

ergometry can stabilize resting blood pressure and alleviate orthostatic 

hypotension by alterations of blood pressure and heart rate. 

Short-term FES induced lower extremity cycling has been shown to 

increase peak aerobic metabolism and oxygen uptake which is used as an 

index for cardiovascular fitness. Significant post-training increases in peak 
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pulmonary ventilation, stroke volume, and cardiac output have been 

produced4
,9,19,24,25 indicating greater cardiorespiratory capacity and, therefore, 

more appropriate cardiorespiratory responses at rest and during exercise. SCI 

individuals who demonstrate greater cardiorespiratory capacity may experience 

less stress during activities of daily living and become more functional due to 

requiring a lower percentage of cardiorespiratory capability when performing 

activities.25
,3o In addition, reduction of secondary cardiovascular disabilities may 

be achieved. 

However, the above noted theories as to increased central (cardiac) 

training effects have not been unequivocally proven and some controversy 

exists as to whether proven increases in peak aerobic metabolism and power 

output when exercising are to be attributed to central cardiac training effects, 

peripheral muscle training effects, or a combination of both.24
,25 Significant 

increases in power output indicating increases in strength and endurance were 

found after completion of FES ergometry training and hypothesized to be in part 

due to local histochemical changes within the active muscle. Increases in 

power output may also be due to enhanced oxygen and energy substrate 

delivery to the trained muscles along with facilitation of metabolic end product 

removal. 

Hypothesis for improvement include both central and peripheral metabolic 

and circulatory adaptations.20 In the peripheral muscular system, it is believed 

that FES induced ergometry may cause histochemical changes in the paralyzed 
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musculature that are able to support greater levels of aerobic and anaerobic 

metabolism.16,2o Histochemical changes may include increased concentrations 

of glycogen, mitochondria, oxidative and glycolytic enzymes combined with 

increased capillary density in musculature and, therefore, greater blood 

perfusion.16,2o,25,31 Increases in endurance are in part attributed to hypertrophy 

of muscular fibers and changes in muscle fiber characteristics from fast 

anaerobic, Type II fibers to slow, aerobic Type I fibers.4,16 

Centrally, FES may increase end diastolic volume and, therefore, 

increase the volume load of the heart by facilitating venous return of blood.20 

This results in increased stroke volume and cardiac output. Ultimately the 

above noted improved capacity supports higher levels of muscle performance 

by improving delivery of blood, oxygen, and fuel to exercising muscles and 

remove metabolic end products. Further research is required to determine 

which effects are due to peripheral training effects and which are due to central 

training effects. 

Aside from physiological responses, FES has also been postulated to 

have positive effects on secondary complications related to SCI. A study was 

performed comparing data on secondary medical complications of a group of 51 

SCI subjects who underwent FES lower extremity ergometry for one year to 

data on a group of 6,000 SCI injured patients from 17 national spinal cord 

centers.32 A lower incidence of pressure sores, fractures, kidney and bladder 

infections, and thrombophlebitis was found in the group undergoing lower 
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extremity FES ergometry. Health care costs were also found to be significantly 

reduced in this study as none of the patients in the exercising group required 

re-hospitalization during the one year spent performing FES ergometry. An 

estimated $12,000 (in 1985 dollars) per year was spent on the comparison 

group with approximately $7,000 associated with re-hospitalization costs. 

Petrofskr has estimated medical savings over a patient's lifetime to be two 

million dollars per SCI patient. 

SCI individuals must meet specific medical criteria and be carefully 

screened before being allowed to participate in any type of FES training. 

Phillips18 has extensively outlined medical criteria for patient participation in 

electrical stimulation programs. It is generally agreed upon that the upper level 

of neurological injury for FES induced exercise is CiC5 as phrenic nerve (C3-C4-

C5) stimulation is required to allow sufficient diaphragm function and adequate 

ventilation to sustain exercise. The upper limit for participation in FES in 

conjunction with orthosis ambulation appears to be slightly lower at C6/C7.
20 

The lower level of neurological injury for both FES exercise and ambulation with 

an orthosis is T11iT12• Injuries lower than T12 result primarily in lower motor 

neuron lesions which cannot be successfully stimulated with functional electrical 

stimulation. 

Spasticity must be minimal or under sufficient control by medication 

before SCI patients are allowed to participate in FES induced exercise. Special 

adaptations are made with the previously described ergometry system that 
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allow for detection of muscular spasms and subsequent computer 

discontinuation of stimulation for patient's safety. Frequent episodes of 

computer shutdown, however, essentially make a program of regular exercise 

impossible to maintain and, therefore, are not allowed. 

As spontaneous fractures are often experienced in SCI population and 

are primarily due to disuse osteoporosis, it is recommended that all possible 

candidates for FES exercise undergo conventional radiographs to determine the 

thickness of lower extremity cortical bone. It has been advised that only 

patients with moderate osteoporosis or better (on a five level scale of normal, 

mild, moderate, moderate-severe, or severe) be allowed to participate in FES 

induced exercise.2 Patients exhibiting moderate to severe degenerative joint 

disease should not be candidates for FES exercise. 

Patients presenting with angina, coronary artery disease, chronic 

obstructive pulmonary disease, chronic renal disease, and chronic skin diseases 

must be closely monitored by respective specialists prior to and during any type 

of FES exercise program. Absolute contraindications to participation in an FES 

exercise program include patients with uncontrolled hypertension, respiratory 

infections, and chronic renal disease. 



CHAPTER III 

Numerous benefits have been discussed with respect to attaining an 

upright posture through utilization of standing devices in the spinal cord injured 

population.28
,33,34 Alleviation of the chronic sitting posture through standing 

produces such benefits as prevention of contracture formation, reduction of 

pressure sore incidence, minimization of osteoporosis, stimulation of circulation, 

and reduction of spasticity. Standing has also been credited with the 

improvement of internal organ position and bowel and bladder function. For 

these reasons, standing has been stressed in many SCI rehabilitation 

programs. 

Traditionally, standing was accomplished through the use of standing 

frames, orthotics, such as long leg braces or specialized wheelchair 

attachments, while ambulation was achieved through the use of calipers and 

crutches.35 Recently, rehabilitation engineering research has focused on two 

approaches for improved ease of standing and ambulation in SCI patients. The 

improvement of orthotics has been explored by some while the application of 

electrical stimulation for functional activation of the lower extremities has been 

focused on by others. 

17 
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Rose36 has identified fundamental requirements for ambulation that must 

be met regardless of the system chosen. They include stabilization of the multi

segmental structure of the body to prevent collapsing or toppling, 

superimposition of propulsive forces and the control of both stability and 

propulsive forces. These conditions are required for any form of ambulation. In 

addition, to produce reciprocal ambulation, a mechanism allowing for the 

transmission of weight-bearing to the stance leg and for clearing of the 

contralateral swing is required in conjunction with the ability to perform forward 

swing and forward progression of the trunk over the stance leg. 

A variety of systems have been developed in an attempt to satisfy the 

above objectives with varying degrees of success. The most widely prescribed 

system for standing, knee-ankle-foot orthotics (KAFO) or hip-knee-ankle-foot 

orthotics (HKAFO) provide a safe and stable form of mechanical support 

against gravity. A major drawback is the inherently high energy costs which 

have been shown to be five to twelve times that of normal gait.33,37 Long term 

use of such braces is particularly low for this reason. One recent studiB states 

that only 26% of patients who had received braces during their rehabilitation 

continued to use them for any purpose and only 4% use them as a sole means 

of mobility. Craig-Scott 0rthosis, an updated version of the KAFO, exhibit 

improved patient compliance rates although energy cost remains high for 

ambulation and therefore long-term functional use is very limited. Other 

orthoses, such as the ORLAU swivel walker,39 hip guidance orthosis (HGO),40 
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and reciprocal gait orthosis (RGO)41 have been developed for gait facilitation. 

While ambulation has been achieved in a safe manner and improvements in 

energy expenditure are noted, the most energy efficient system of these, 

RGOs, still require three times the energy consumption of normal gait.42 

A second area of walking systems research in rehabilitation engineering, 

functional electrical stimulation, was sparked by the work of Kantronite43 and 

Lieberson44 in the early 1960s as they reported standing through FES in 

paralyzed subjects in two separate studies. Since those reports, approximately 

30 years ago, several research studies have been dedicated to the application 

of a neural prosthesis for standing and ambulation in the spinal cord injured 

individual through a variety of approaches. 

Kralj33,45 and others31 ,46,47,48 have focused on surface electrode placement 

with open-loop control. Kralj33,45 focused on utilization of a patient's remaining 

capabilities, namely preserved spinal cord reflexes, to reduce the need and 

complexity of external hardware used in other research. For example, the 

swing phase of gait in this approach is accomplished by peroneal nerve 

stimulation which triggers a reflex synergistic flexion response thereby reducing 

the numbers required to be stimulated for flexion and advancement of the lower 

extremity. The stance phase is achieved by locking the knee into extension 

through continual stimulation of the quadriceps while the patient stands in a 

hyperlordotic posture which enables hip stabilization through natural 

ligamentous tension. Difficulty stabilizing the ankle in stance has been 
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encountered in all research projects solely using FES because the joint is far 

away from its anatomical limits of extension and flexion and it inherently has a 

high degree of freedom; therefore, bracing is generally utilized. With this 

approach, the author has been able to facilitate gait solely using a four-channel 

stimulator. 

Percutaneous electrode systems which involve direct electrode placement 

on motor points through a needle-like sheath have also produced laboratory 

ambulation with open loop control.49
,50 This system allows a higher number of 

muscles to be stimulated without time consuming procedures related to 

repeated surface electrode placement. Also less intensity of stimulation is 

required due to lack of skin impedance with greater selectivity for deep 

musculature. Disadvantages specific to this system include increased risk of 

infection and a tendency for electrodes to move away from their original site or 

break. Results have shown electrode failure to be as high as 60% within six 

months of placement.3 Implant systems have also been described in which 

extensive surgery procedures are required for implementation of as many as 

100 electrodes.51 Implantable pacemaker underdevelopment, lead wire 

breakage, and electrode breakage have all limited the usefulness of this 

system.2 Research has also been difficult with this procedure due to the lack of 

subjects willing to undergo such evasive procedures. 

The above described systems all have produced ambulation with 

assistive devices through different methods. An unfortunate commonality is that 
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they are nonfunctional outside of laboratory use primarily due to the very high 

energy consumption associated with their use. Marsolasis2 found energy 

consumption with open loop control systems to be up to 20 times that of normal 

standing and walking. The best subjects are limited to ambulating up to 20 feet 

with crutches or 700 to 800 feet with a walker prior to total fatigue. Also of 

concern in open loop systems is the possibility of producing Charcots joints and 

degenerative joint disease due to continued forced hypoextension on an 

anesthetic joint during stance phase. 

To provide for a feedback system of jOint position and allow for a more 

energy efficient system, closed-loop feedback has been investigated. Close

loop control also known as computer controlled walking uses the input from 

sensors to modify electrical stimulation output of the stimulator.37 Sensors are 

generally placed on hips, knees, and/or ankles to provide joint position 

information. These systems process information from the sensors and produce 

just enough stimulation to obtain coordinated movement necessary for standing 

and walking and, therefore, are more energy efficient. With the increased 

capabilities of closed loop control also comes increased complexity of the 

system, which makes it less reliable. To attain acceptable posture with this 

system, large numbers of electrodes and sensors are required contributing to 

the high probability of malfunction. Postural stability and prevention from falling 

are not guaranteed with such a closed loop system. Due to the complexity, 

lack of safety features, and commercially unavailability of FES closed-loop 
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control systems, they are unable to be used outside the controlled laboratory 

environment, although they are quite promising for the future.37 

The most clinically feasible system appears to be a "hybrid" orthosis; one 

that combines a reciprocating gait orthosis (RGO) with functional electrical 

stimulation. This system was first described by Petrofsky et al in 1985.37 He 

postulated that electrical stimulation of the lower extremities would reduce the 

long lever arm associated with inducing movement of the lower extremities 

through upper body movement in conventional bracing systems and, therefore, 

make ambulation more efficient. Also, the implementation of RGOs into a FES 

system allows for a significant decrease in the number of muscles required to 

produce ambulation as the knees and hips are restricted to two-dimensional 

movement by the orthosis. 

Essentially, the RGO is a bilateral HKAFO with hip and knee joints, a 

pelvic band, a cable system, and thoracic support straps which offer stability for 

high level paraplegics or tetraplegics. This particular orthosis has distinctive 

biomechanical features which allow for transference of mechanical energy 

through a cabling system.53 

Two cables are attached to the anterior and posterior aspect of each hip 

joint which creates a push pull mechanism allowing for a reciprocating action to 

take place at the hips. Upon extension of the stance leg in a closed kinetic 

chain, the cable is biomechanically put into a state of tension. As a result, 
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mechanical energy is transferred to the opposite hip joint and the contralateral 

limb is flexed to accomplish swing through. 

Another important engineering feature of the RGO is setting of the ankle-

foot orthosis (AFO) in seven degrees of plantar flexion to assist in raising the 

body's center of gravity during heel-off through toe-off phases of gait.53 

Prior to the coupling of this orthosis with FES, ambulation was achieved 

by lateral flexion of the upper trunk and excessive lumbar lordosis exerting a 

force on the posterior strap and hip extension to activate the cable system. 

Although this allowed for independent ambulation, it required great upper body 

strength and trunk control with its largest limitation being the high costs in 

energy for ambulation. The RGO system was also impractical for sit to stand 

transfers as the knee was required to be locked in extension throughout the 

procedure. The above disadvantages and lack of functional usefulness 

prompted Petrofsky to superimpose electrical stimulation on the previously 

described RGO system.37 He did so using a laboratory based computer which 

modulated electrical stimulation to the lower extremities through a closed loop 

system with sensors on the orthosis generating feedback. From this model, a 

portable computer has been developed which is small enough to be worn on 

the wrist.37 Stimulators that were specially designed for electrical stimulated 

gait in the laboratory have also been reported.53 They generally have separate 

programs for exercising, standing, and walking. Most recently, studies have 
. 

focused on transformation of research protocols into clinical models that contain 
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physician prescribable, commercially available components.15,54-56 By using 

commercially available electrical muscle stimulations (EMS), researchers were 

able to achieve a reduction in size and weight of the power source. Previously, 

power packs weighing up to eight pounds were carried on the user's back.55,56 

The power pack in the new system (EMS utilization) consists of a single nine 

volt alkaline battery housed in the EMS weighing a total of six ounces. The 

need for specially designed switches for system control has been replaced as 

the new system is able to utilize remote switches which are available as 

accessories to the EMS units. EMS provides complete stand-up and sit-down 

capabilities as well as walking; whereas, the previous systems required an 

additional unit to achieve sit-down, stand-up functions. In addition, the EMS 

system is much less costly. 

In clinical use, four to six portable electrical muscle stimulators are worn 

on a belt. With dual channel utilization, 14 to 16 surface electrodes are applied 

to the quadriceps, gluteal musculature, and hamstrings through the use of 

transcutaneous transducer garments (TIGS).2 TIGs are baSically tight fitting 

shorts made of electrically conductive material with embedded electrodes which 

have significantly decreased the complexity of individual electrode placement. 

TTGs interface with the stimulator through snap connectors and offer the 

advantages of non-exposed wires, ease of use, and rapid application of 

electrodes. 



25 

Remote on/off switches available with the EMS units are incorporated 

into the system to allow for patient control. The switches are attached to the 

patient's walker, allowing for thumb or forefinger control, and connected through 

a cable to the manual override jack on the side of their respective muscle 

stimulators. When the switch is moved to the on position, the EMS unit is 

activated and stimulation current is allowed to flow through both channels of the 

unit to the electrodes of respective muscle groups. Systems have been 

described where two to four EMS units control quadriceps function and two 

units control gluteal and hamstring stimulation. Through the use of four to six 

units, complete stand up, walking, turning, and sit down functions are 

avai lab Ie. 54-56 

The procedure to allow for standing from a sitting position requires the 

patient to sit with his/her lower legs bent at an angle slightly greater than 90° 

and to lean forward with the hips also flexed less than 90°.54 Standing is 

achieved through constant activation of the quadriceps musculature. Once in 

an upright position, the patient inclines backwards on their heels to lock the 

RGOs into extension. The two hamstring and gluteal units are then activated 

just long enough to provide hip extension and obtain a locked position of the 

hips. At this time, the patient is stable in standing and the quadriceps are 

deactivated as they are allowed to ramp down. Walking can be achieved 

through the transfer of weight to the intended stance leg and activation of that 

leg's hip extensors. By utilizing hip extension in a closed chain and the 
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reciprocal action of the posterior cables, contralateral hip flexion is achieved. 

The process of reciprocal ambulation is accomplished by repeating the above 

procedure. Backward walking is also described using this system as open 

kinetic hip extension is activated with weight shift to the contralateral limb.55 

The sitting procedure requires the patient to stand four to six inches from the 

desired seat.56 Unlocking of the hip joint is performed manually with the 

patient's hands and stimulation is applied to the hip extensors to maintain 

standing position. Activation of the quadriceps in the continuous mode is 

required with allowance of time to ramp up to maintain standing while knee 

locks are released. EMS quadriceps units are then deactivated and the sitting 

position is attained as the unit ramps down. 

Utilization of the hybrid system has consistently produced a substantial 

reduction in energy expenditure when compared to other forms of ambulation in 

the SCI injured population.15
,53-59 Hirokawa et al57 found a hybrid system of 

RGOs and FES similar to that outlined above to require the least energy 

expenditure (Kcal/kg-m) and energy cost (Kcal/kg-min) when compared with 

ambulation systems of RGOs alone, FES alone, and HGO and long leg braces. 

Similarly, Isakov et al53 found hybrid systems to produce more efficient 

ambulation than RGOs alone or FES alone, with increased cadence and greater 

velocities of gait attainable. The physiological cost index measured in beats per 

minute (bts/min) was significantly decreased from 2.55 (bts/min) with RGOs 

alone to 1.54 bts/min with hybrid system_ FES in conjunction with RGO 
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ambulation has been shown to produce a chronic training effect. Petrofsky et 

al60 have observed an average of 18% decrease in energy requirements from 

pre- to post-training measure with ambulation one hour, five times a week for a 

period of three months. They have also noted hybrid ambulation to require an 

oxygen consumption of only one and a half times that of normal ambulation. 

Hybrid ambulation provides a plausible alternative to continuous 

wheelchair transportation for individuals meeting the criteria for usage.19,42,56,57,59 

Ambulation with combined RGOs/FES may include the added benefits of 

prevention of osteoporosis and pressure sores; improving cardiovascular, 

kidney, bladder, and circulatory function;61 and improving ability to perform 

activities of daily living.57 Psychological benefits, such as improved sense of 

well being, enhanced self image, and a feeling of independence, have also 

been associated with standing. 



CONCLUSION 

Functional electrical stimulation has been successfully applied in SCI 

patients to serve as a crude replacement for central control of alpha motor 

neurons. In doing so, functional lower extremity movement has been 

accomplished for the performance of a variety of activities to elicit a functional 

or therapeutic effect. 

Through FES augmented strength tr~ining, SCI individuals are able to 

build strength and muscle girth of paralyzed musculature. This in and of itself 

does not produce a functional activity; however, it is required as a precursor to 

ambulation with a FES system. 

FES induced lower extremity ergometry has been shown to increase 

pulmonary ventilation, stroke volume, and cardiac output. It has also been 

proven to increase peak aerobic metabolism and oxygen uptake indicating 

improved cardiovascular fitness. However, question still exists as to whether 

improvement in the above noted are due to central or peripheral circulatory 

adaptations. FES lower extremity ergometry has also been used with FES 

ambulation protocols prior to actual FES ambulation. 

Investigations of superimposing electrical stimulation to produce lower 

extremity movement for the purpose of ambulation have utilized a number of 

28 
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approaches with varying degrees of success. Many approaches, such as those 

incorporating closed loop control, are still in the laboratory stage of 

development. Others, such as open loop purely FES ambulation systems and 

"hybrid" systems, have been used clinically. Open loop FES systems, while 

successful at producing ambulation, have been found to be inefficient in terms 

of energy expenditure. This problem has been addressed with the use of 

"hybrid" systems, particularly reciprocal gait orthosis combined with FES which 

has produced safe, independent ambulation with reduced energy expenditure. 

This system has been described as a physician prescribable, commercially 

available system which is safe for clinical use. 

A number of physiological and psychological benefits have been 

proposed with the use of FES for exercise and/or ambulation; however, 

uncertainty exists as to practicality of widespread, generalized usage as 

utilization has thus far been limited to selective, small subject population. 
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