2,384 research outputs found

    Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework

    Get PDF
    According to the thin client computing principle, the user interface is physically separated from the application logic. In practice only a viewer component is executed on the client device, rendering the display updates received from the distant application server and capturing the user interaction. Existing remote display frameworks are not optimized to encode the complex scenes of modern applications, which are composed of objects with very diverse graphical characteristics. In order to tackle this challenge, we propose to transfer to the client, in addition to the binary encoded objects, semantic information about the characteristics of each object. Through this semantic knowledge, the client is enabled to react autonomously on user input and does not have to wait for the display update from the server. Resulting in a reduction of the interaction latency and a mitigation of the bursty remote display traffic pattern, the presented framework is of particular interest in a wireless context, where the bandwidth is limited and expensive. In this paper, we describe a generic architecture of a semantic remote display framework. Furthermore, we have developed a prototype using the MPEG-4 Binary Format for Scenes to convey the semantic information to the client. We experimentally compare the bandwidth consumption of MPEG-4 BiFS with existing, non-semantic, remote display frameworks. In a text editing scenario, we realize an average reduction of 23% of the data peaks that are observed in remote display protocol traffic

    Application acceleration for wireless and mobile data networks

    Get PDF
    This work studies application acceleration for wireless and mobile data networks. The problem of accelerating application can be addressed along multiple dimensions. The first dimension is advanced network protocol design, i.e., optimizing underlying network protocols, particulary transport layer protocol and link layer protocol. Despite advanced network protocol design, in this work we observe that certain application behaviors can fundamentally limit the performance achievable when operating over wireless and mobile data networks. The performance difference is caused by the complex application behaviors of these non-FTP applications. Explicitly dealing with application behaviors can improve application performance for new environments. Along this overcoming application behavior dimension, we accelerate applications by studying specific types of applications including Client-server, Peer-to-peer and Location-based applications. In exploring along this dimension, we identify a set of application behaviors that significantly affect application performance. To accommodate these application behaviors, we firstly extract general design principles that can apply to any applications whenever possible. These design principles can also be integrated into new application designs. We also consider specific applications by applying these design principles and build prototypes to demonstrate the effectiveness of the solutions. In the context of application acceleration, even though all the challenges belong to the two aforementioned dimensions of advanced network protocol design and overcoming application behavior are addressed, application performance can still be limited by the underlying network capability, particularly physical bandwidth. In this work, we study the possibility of speeding up data delivery by eliminating traffic redundancy present in application traffics. Specifically, we first study the traffic redundancy along multiple dimensions using traces obtained from multiple real wireless network deployments. Based on the insights obtained from the analysis, we propose Wireless Memory (WM), a two-ended AP-client solution to effectively exploit traffic redundancy in wireless and mobile environments. Application acceleration can be achieved along two other dimensions: network provision ing and quality of service (QoS). Network provisioning allocates network resources such as physical bandwidth or wireless spectrum, while QoS provides different priority to different applications, users, or data flows. These two dimensions have their respective limitations in the context of application acceleration. In this work, we focus on the two dimensions of overcoming application behavior and Eliminating traffic redundancy to improve application performance. The contribution of this work is as follows. First, we study the problem of application acceleration for wireless and mobile data networks, and we characterize the dimensions along which to address the problem. Second, we identify that application behaviors can significantly affect application performance, and we propose a set of design principles to deal with the behaviors. We also build prototypes to conduct system research. Third, we consider traffic redundancy elimination and propose a wireless memory approach.Ph.D.Committee Chair: Sivakumar, Raghupathy; Committee Member: Ammar, Mostafa; Committee Member: Fekri, Faramarz; Committee Member: Ji, Chuanyi; Committee Member: Ramachandran, Umakishor

    Can network coding bridge the digital divide in the Pacific?

    Full text link
    Conventional TCP performance is significantly impaired under long latency and/or constrained bandwidth. While small Pacific Island states on satellite links experience this in the extreme, small populations and remoteness often rule out submarine fibre connections and their communities struggle to reap the benefits of the Internet. Network-coded TCP (TCP/NC) can increase goodput under high latency and packet loss, but has not been used to tunnel conventional TCP and UDP across satellite links before. We report on a feasibility study aimed at determining expected goodput gain across such TCP/NC tunnels into island targets on geostationary and medium earth orbit satellite links.Comment: 5 pages, 3 figures, conference (Netcod2015

    Mitigating Botnet-based DDoS Attacks against Web Servers

    Get PDF
    Distributed denial-of-service (DDoS) attacks have become wide-spread on the Internet. They continuously target retail merchants, financial companies and government institutions, disrupting the availability of their online resources and causing millions of dollars of financial losses. Software vulnerabilities and proliferation of malware have helped create a class of application-level DDoS attacks using networks of compromised hosts (botnets). In a botnet-based DDoS attack, an attacker orders large numbers of bots to send seemingly regular HTTP and HTTPS requests to a web server, so as to deplete the server's CPU, disk, or memory capacity. Researchers have proposed client authentication mechanisms, such as CAPTCHA puzzles, to distinguish bot traffic from legitimate client activity and discard bot-originated packets. However, CAPTCHA authentication is vulnerable to denial-of-service and artificial intelligence attacks. This dissertation proposes that clients instead use hardware tokens to authenticate in a federated authentication environment. The federated authentication solution must resist both man-in-the-middle and denial-of-service attacks. The proposed system architecture uses the Kerberos protocol to satisfy both requirements. This work proposes novel extensions to Kerberos to make it more suitable for generic web authentication. A server could verify client credentials and blacklist repeated offenders. Traffic from blacklisted clients, however, still traverses the server's network stack and consumes server resources. This work proposes Sentinel, a dedicated front-end network device that intercepts server-bound traffic, verifies authentication credentials and filters blacklisted traffic before it reaches the server. Using a front-end device also allows transparently deploying hardware acceleration using network co-processors. Network co-processors can discard blacklisted traffic at the hardware level before it wastes front-end host resources. We implement the proposed system architecture by integrating existing software applications and libraries. We validate the system implementation by evaluating its performance under DDoS attacks consisting of floods of HTTP and HTTPS requests

    The Use of Firewalls in an Academic Environment

    No full text

    A Virtual PEP for Web Optimization over a Satellite-Terrestrial Backhaul

    Get PDF
    The availability of network softwarization and virtualization technology in the field of telecommunications has opened the door to a radical review of the applications, protocols, and deployment models. In this evolving framework, old assumptions and constraints specific to satellite communications must be carefully re-assessed. To this aim, we revisit the role of the performance enhancing proxy (PEP), replaced by a chain of custom virtual network functions properly enabled to optimize common web traffic performance over a backhaul dynamically enabled with a supplementary satellite link. The resulting virtual PEP (vPEP) is compliant with the breakthrough virtualization and slicing paradigms and can fruitfully exploit the advanced features of the most recent IETF technologies such as QUIC and MPTCP

    NETWORK SERVICE DELIVERY AND THROUGHPUT OPTIMIZATION VIA SOFTWARE DEFINED NETWORKING

    Get PDF
    In today\u27s world, transmitting data across large bandwidth-delay product (BDP) networks requires special configuration on end users\u27 machines in order to be done efficiently. This added level of complexity creates extra cost and is usually overlooked by users unknowledgeable to the issues. This is one example problem which can be ameliorated with the emerging software defined networking (SDN) paradigm. In an SDN, packet forwarding is controlled via software controllers. In an OpenFlow SDN, a controller can control the forwarding, rewriting, and dropping of packets based on their header attributes. The ability to handle packets in customizable ways in software has significant implications for both users and operators of the network. Via SDN, network providers can easily provide services to enhance users\u27 experience of the network. Steroid OpenFlow Service (SOS) is presented as a solution to seamless enhancement of TCP data transfer throughput over large BDP networks without any modification to the software and configurations on users\u27 machines. SOS utilizes OpenFlow to redirect application specific traffic to application specific service agents. SOS uses service agents on both ends of the connection to seamlessly terminate a user\u27s TCP connection, launch a set of parallel TCP connections, and leverage multiple paths when available to maximize throughput
    • 

    corecore