6,466 research outputs found

    Student Family Support Services Initiative: Final Evaluation Report

    Get PDF
    The Student Family Support Services Initiative (SFSI) provided intensive case management and housing assistance to families with children who were identified as residing in "doubled-up" living situations (e.g. living with relatives or friends because they had lost stable housing but were not yet in homeless shelters or cycled out of shelters) and considered at risk of becoming homeless by the Chicago Public Schools (CPS) in 2009 and 2010. The program offered case management, housing assistance, and a menu of services that families might need to stabilize in housing including therapeutic services, employment services, and asset building. The theory of change was that addressing a family's primary housing and employment needs would positively impact the educational stability and achievement of students, while at the same time benefiting the family overall. This report, prepared by the Social IMPACT Research Center, presents a final evaluation of the initiative

    New Secure IoT Architectures, Communication Protocols and User Interaction Technologies for Home Automation, Industrial and Smart Environments

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e das Comunicacións en Redes Móbiles. 5029V01Tese por compendio de publicacións[Abstract] The Internet of Things (IoT) presents a communication network where heterogeneous physical devices such as vehicles, homes, urban infrastructures or industrial machinery are interconnected and share data. For these communications to be successful, it is necessary to integrate and embed electronic devices that allow for obtaining environmental information (sensors), for performing physical actuations (actuators) as well as for sending and receiving data (network interfaces). This integration of embedded systems poses several challenges. It is needed for these devices to present very low power consumption. In many cases IoT nodes are powered by batteries or constrained power supplies. Moreover, the great amount of devices needed in an IoT network makes power e ciency one of the major concerns of these deployments, due to the cost and environmental impact of the energy consumption. This need for low energy consumption is demanded by resource constrained devices, con icting with the second major concern of IoT: security and data privacy. There are critical urban and industrial systems, such as tra c management, water supply, maritime control, railway control or high risk industrial manufacturing systems such as oil re neries that will obtain great bene ts from IoT deployments, for which non-authorized access can posse severe risks for public safety. On the other hand, both these public systems and the ones deployed on private environments (homes, working places, malls) present a risk for the privacy and security of their users. These IoT deployments need advanced security mechanisms, both to prevent access to the devices and to protect the data exchanged by them. As a consequence, it is needed to improve two main aspects: energy e ciency of IoT devices and the use of lightweight security mechanisms that can be implemented by these resource constrained devices but at the same time guarantee a fair degree of security. The huge amount of data transmitted by this type of networks also presents another challenge. There are big data systems capable of processing large amounts of data, but with IoT the granularity and dispersion of the generated information presents a new scenario very di erent from the one existing nowadays. Forecasts anticipate that there will be a growth from the 15 billion installed devices in 2015 to more than 75 billion devices in 2025. Moreover, there will be much more services exploiting the data produced by these networks, meaning the resulting tra c will be even higher. The information must not only be processed in real time, but data mining processes will have to be performed to historical data. The main goal of this Ph.D. thesis is to analyze each one of the previously described challenges and to provide solutions that allow for an adequate adoption of IoT in Industrial, domestic and, in general, any scenario that can obtain any bene t from the interconnection and exibility that IoT brings.[Resumen] La internet de las cosas (IoT o Internet of Things) representa una red de intercomunicaciones en la que participan dispositivos físicos de toda índole, como vehículos, viviendas, electrodomésticos, infraestructuras urbanas o maquinaria y dispositivos industriales. Para que esta comunicación se pueda llevar a cabo es necesario integrar elementos electr onicos que permitan obtener informaci on del entorno (sensores), realizar acciones f sicas (actuadores) y enviar y recibir la informaci on necesaria (interfaces de comunicaciones de red). La integración y uso de estos sistemas electrónicos embebidos supone varios retos. Es necesario que dichos dispositivos presenten un consumo reducido. En muchos casos deberían ser alimentados por baterías o fuentes de alimentación limitadas. Además, la gran cantidad de dispositivos que involucra la IoT hace necesario que la e ciencia energética de los mismos sea una de las principales preocupaciones, por el coste e implicaciones medioambientales que supone el consumo de electricidad de los mismos. Esta necesidad de limitar el consumo provoca que dichos dispositivos tengan unas prestaciones muy limitadas, lo que entra en conflicto con la segunda mayor preocupación de la IoT: la seguridad y privacidad de los datos. Por un lado existen sistemas críticos urbanos e industriales, como puede ser la regulación del tráfi co, el control del suministro de agua, el control marítimo, el control ferroviario o los sistemas de producción industrial de alto riesgo, como refi nerías, que son claros candidatos a benefi ciarse de la IoT, pero cuyo acceso no autorizado supone graves problemas de seguridad ciudadana. Por otro lado, tanto estos sistemas de naturaleza publica, como los que se desplieguen en entornos privados (viviendas, entornos de trabajo o centros comerciales, entre otros) suponen un riesgo para la privacidad y también para la seguridad de los usuarios. Todo esto hace que sean necesarios mecanismos de seguridad avanzados, tanto de acceso a los dispositivos como de protección de los datos que estos intercambian. En consecuencia, es necesario avanzar en dos aspectos principales: la e ciencia energética de los dispositivos y el uso de mecanismos de seguridad e ficientes, tanto computacional como energéticamente, que permitan la implantación de la IoT sin comprometer la seguridad y la privacidad de los usuarios. Por otro lado, la ingente cantidad de información que estos sistemas puede llegar a producir presenta otros dos retos que deben ser afrontados. En primer lugar, el tratamiento y análisis de datos toma una nueva dimensión. Existen sistemas de big data capaces de procesar cantidades enormes de información, pero con la internet de las cosas la granularidad y dispersión de los datos plantean un escenario muy distinto al actual. La previsión es pasar de 15.000.000.000 de dispositivos instalados en 2015 a más de 75.000.000.000 en 2025. Además existirán multitud de servicios que harán un uso intensivo de estos dispositivos y de los datos que estos intercambian, por lo que el volumen de tráfico será todavía mayor. Asimismo, la información debe ser procesada tanto en tiempo real como a posteriori sobre históricos, lo que permite obtener información estadística muy relevante en diferentes entornos. El principal objetivo de la presente tesis doctoral es analizar cada uno de estos retos (e ciencia energética, seguridad, procesamiento de datos e interacción con el usuario) y plantear soluciones que permitan una correcta adopción de la internet de las cosas en ámbitos industriales, domésticos y en general en cualquier escenario que se pueda bene ciar de la interconexión y flexibilidad de acceso que proporciona el IoT.[Resumo] O internet das cousas (IoT ou Internet of Things) representa unha rede de intercomunicaci óns na que participan dispositivos físicos moi diversos, coma vehículos, vivendas, electrodomésticos, infraestruturas urbanas ou maquinaria e dispositivos industriais. Para que estas comunicacións se poidan levar a cabo é necesario integrar elementos electrónicos que permitan obter información da contorna (sensores), realizar accións físicas (actuadores) e enviar e recibir a información necesaria (interfaces de comunicacións de rede). A integración e uso destes sistemas electrónicos integrados supón varios retos. En primeiro lugar, é necesario que estes dispositivos teñan un consumo reducido. En moitos casos deberían ser alimentados por baterías ou fontes de alimentación limitadas. Ademais, a gran cantidade de dispositivos que se empregan na IoT fai necesario que a e ciencia enerxética dos mesmos sexa unha das principais preocupacións, polo custo e implicacións medioambientais que supón o consumo de electricidade dos mesmos. Esta necesidade de limitar o consumo provoca que estes dispositivos teñan unhas prestacións moi limitadas, o que entra en con ito coa segunda maior preocupación da IoT: a seguridade e privacidade dos datos. Por un lado existen sistemas críticos urbanos e industriais, como pode ser a regulación do tráfi co, o control de augas, o control marítimo, o control ferroviario ou os sistemas de produción industrial de alto risco, como refinerías, que son claros candidatos a obter benefi cios da IoT, pero cuxo acceso non autorizado supón graves problemas de seguridade cidadá. Por outra parte tanto estes sistemas de natureza pública como os que se despreguen en contornas privadas (vivendas, contornas de traballo ou centros comerciais entre outros) supoñen un risco para a privacidade e tamén para a seguridade dos usuarios. Todo isto fai que sexan necesarios mecanismos de seguridade avanzados, tanto de acceso aos dispositivos como de protección dos datos que estes intercambian. En consecuencia, é necesario avanzar en dous aspectos principais: a e ciencia enerxética dos dispositivos e o uso de mecanismos de seguridade re cientes, tanto computacional como enerxéticamente, que permitan o despregue da IoT sen comprometer a seguridade e a privacidade dos usuarios. Por outro lado, a inxente cantidade de información que estes sistemas poden chegar a xerar presenta outros retos que deben ser tratados. O tratamento e a análise de datos toma unha nova dimensión. Existen sistemas de big data capaces de procesar cantidades enormes de información, pero coa internet das cousas a granularidade e dispersión dos datos supón un escenario moi distinto ao actual. A previsión e pasar de 15.000.000.000 de dispositivos instalados no ano 2015 a m ais de 75.000.000.000 de dispositivos no ano 2025. Ademais existirían multitude de servizos que farían un uso intensivo destes dispositivos e dos datos que intercambian, polo que o volume de tráfico sería aínda maior. Do mesmo xeito a información debe ser procesada tanto en tempo real como posteriormente sobre históricos, o que permite obter información estatística moi relevante en diferentes contornas. O principal obxectivo da presente tese doutoral é analizar cada un destes retos (e ciencia enerxética, seguridade, procesamento de datos e interacción co usuario) e propor solucións que permitan unha correcta adopción da internet das cousas en ámbitos industriais, domésticos e en xeral en todo aquel escenario que se poda bene ciar da interconexión e flexibilidade de acceso que proporciona a IoT

    An energy efficient http adaptive streaming protocol design for mobile hand-held devices

    Get PDF
    Internet traffic generated from mobile devices has experienced a huge growth in the last few years. With the increasing popularity of streaming applications in mobile devices, video traffic generated from mobile devices is also increasing. One of the big challenges of streaming applications on mobile devices is the energy intensive behaviour of such applications. Energy management has always been a critical issue for mobile devices. A wireless network interface consumes a significant portion of the total system energy while active. During video streaming, the network interface is kept awake for a long period of time. This causes a large energy drain. There are several research works focused on reducing energy consumption during video streaming on mobile devices. HTTP adaptive streaming is gaining popularity as a method of video delivery because of its significant advantages in terms of both user-perceived quality and resource utilization. By using rate adaptation via changes in the requested video version, it adapts to varying network available capacity. There are several research work that aim to increase the performance of rate adaptation. None of the previous works have focused on reducing energy consumption during HTTP adaptive streaming. In this thesis, an energy efficient HTTP adaptive streaming protocol is designed. The new protocol uses an efficient buffer management approach and a three step bitrate selection mechanism. The proposed protocol is implemented by modifying the Adobe OSMF player version 1.6. Performance evaluation of the new protocol is carried out by running a number of experiments in both a lab environment and three real world environments. The experimental results show that the proposed protocol is able to achieve high amounts of sleep time (by more than an estimated 70% for WiFi and more than 35% for 3G/EDGE) and reduce energy consumption during data transfer. It can also reduce data wastage by 80% in case of playback interruption in the video playback

    Adaptive Mechanisms for Mobile Spatio-Temporal Applications

    Get PDF
    Mobile spatio-temporal applications play a key role in many mission critical fields, including Business Intelligence, Traffic Management and Disaster Management. They are characterized by high data volume, velocity and large and variable number of mobile users. The design and implementation of these applications should not only consider this variablility, but also support other quality requirements such as performance and cost. In this thesis we propose an architecture for mobile spatio-temporal applications, which enables multiple angles of adaptivity. We also introduce a two-level adaptation mechanism that ensures system performance while facilitating scalability and context-aware adaptivity. We validate the architecture and adaptation mechanisms by implementing a road quality assessment mobile application as a use case and by performing a series of experiments on cloud environment. We show that our proposed architecture can adapt at runtime and maintain service level objectives while offering cost-efficiency and robustness

    Power-management policies for mobile computing

    Get PDF
    Abbiamo studiato architetture di rete per il power-saving in ambito di wireless LAN infrastrutturate. Abbiamo proposto protocolli power-saving di livello middleware, indipendenti dalla tecnologia wireless impiegata. Tali protocolli sono stati valutati approfonditamente, risultando molto efficienti. Abbiamo poi valutato in maniera estensiva il meccanismo di power-saving dello standard 802.11. Ne abbiamo evidenziato i limiti, ed abbiamo definito un framework cross-layer di power-management. Tale framewok integra i protocolli middleware studiati inizialmente e lo standard 802.11. L'incremento delle prestazioni ottenute rispetto allo standard 802.11 arriva al 90% in termini di power saving

    Towards next generation WLANs: exploiting coordination and cooperation

    Get PDF
    Wireless Local Area Networks (WLANs) operating in the industrial, scientific and medical (ISM) radio bands have gained great popularity and increasing usage over the past few years. The corresponding MAC/PHY specification, the IEEE 802.11 standard, has also evolved to adapt to such development. However, as the number of WLAN mobile users increases, and as their needs evolve in the face of new applications, there is an ongoing need for the further evolution of the IEEE 802.11 standard. In this thesis we propose several MAC/PHY layer protocols and schemes that will provide more system throughput, lower packet delivery delay and lessen the power consumption of mobile devices. Our work investigates three approaches that lead to improved WLAN performance: 1) cross-layer design of the PHY and MAC layers for larger system throughput, 2) exploring the use of implicit coordination among clients to increase the efficiency of random media access, and 3) improved packets dispatching by the access points (APs) to preserve the battery of mobile devices. Each proposed solution is supported by theoretical proofs and extensively studied by simulations or experiments on testbeds
    corecore