99 research outputs found

    A tableau-like proof procedure for normal modal logics

    Get PDF
    AbstractIn this paper a new proof procedure for some propositional and first-order normal modal logics is given. It combines a tableau-like approach and a resolution-like inference. Completeness and decidability for some propositional logics are proved. An extension for the first-order case is presented

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Automated proof search in non-classical logics : efficient matrix proof methods for modal and intuitionistic logics

    Get PDF
    In this thesis we develop efficient methods for automated proof search within an important class of mathematical logics. The logics considered are the varying, cumulative and constant domain versions of the first-order modal logics K, K4, D, D4, T, S4 and S5, and first-order intuitionistic logic. The use of these non-classical logics is commonplace within Computing Science and Artificial Intelligence in applications in which efficient machine assisted proof search is essential. Traditional techniques for the design of efficient proof methods for classical logic prove to be of limited use in this context due to their dependence on properties of classical logic not shared by most of the logics under consideration. One major contribution of this thesis is to reformulate and abstract some of these classical techniques to facilitate their application to a wider class of mathematical logics. We begin with Bibel's Connection Calculus: a matrix proof method for classical logic comparable in efficiency with most machine orientated proof methods for that logic. We reformulate this method to support its decomposition into a collection of individual techniques for improving the efficiency of proof search within a standard cut-free sequent calculus for classical logic. Each technique is presented as a means of alleviating a particular form of redundancy manifest within sequent-based proof search. One important result that arises from this anaylsis is an appreciation of the role of unification as a tool for removing certain proof-theoretic complexities of specific sequent rules; in the case of classical logic: the interaction of the quantifier rules. All of the non-classical logics under consideration admit complete sequent calculi. We anaylse the search spaces induced by these sequent proof systems and apply the techniques identified previously to remove specific redundancies found therein. Significantly, our proof-theoretic analysis of the role of unification renders it useful even within the propositional fragments of modal and intuitionistic logic

    On Refutation Rules

    Get PDF

    Proceedings of the Joint Automated Reasoning Workshop and Deduktionstreffen: As part of the Vienna Summer of Logic – IJCAR 23-24 July 2014

    Get PDF
    Preface For many years the British and the German automated reasoning communities have successfully run independent series of workshops for anybody working in the area of automated reasoning. Although open to the general public they addressed in the past primarily the British and the German communities, respectively. At the occasion of the Vienna Summer of Logic the two series have a joint event in Vienna as an IJCAR workshop. In the spirit of the two series there will be only informal proceedings with abstracts of the works presented. These are collected in this document. We have tried to maintain the informal open atmosphere of the two series and have welcomed in particular research students to present their work. We have solicited for all work related to automated reasoning and its applications with a particular interest in work-in-progress and the presentation of half-baked ideas. As in the previous years, we have aimed to bring together researchers from all areas of automated reasoning in order to foster links among researchers from various disciplines; among theoreticians, implementers and users alike, and among international communities, this year not just the British and German communities

    KED: a deontic theorem prover

    Get PDF
    Deontic logic (DL) is increasingly recognized as an indispensable tool in such application areas as formal representation of legal knowledge and reasoning, formal specification of computer systems and formal analysis of database integrity constraints. Despite this acknowledgement, there have been few attempts to provide computationally tractable inference mechanisms for DL. In this paper we shall be concerned with providing a computationally oriented proof method for standard DL (SDL), i.e., normal systems of modal logic with the usual possible-worlds semantics. Because of the natural and easily implementable style of proof construction it uses, this method seems particularly well-suited for applications in the AI and Law field, and though in the present version it works for SDL only, it forms an appropriate basis for developing efficient proof methods for more expressive and sophisticated extensions of SDL

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    • …
    corecore