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Abstract 

Ognjanovic, Z., A tableau-like proof procedure for normal modal logics, Theoretical Computer 

Science 129 (1994) 167-186. 

In this paper a new proof procedure for some propositional and first-order normal modal logics is 

given. It combines a tableau-like approach and a resolution-like inference. Completeness and 

decidabihty for some propositional logics are proved. An extension for the first-order case is 

presented. 

1. Introduction 

The tableau approach was emphasized as a useful basis for theorem proving 

[lS, 341, especially in the field of nonclassical logics [3,10,12,15]. Some automated 

theorem provers for modal logics based on the tableau approach have already been 

implemented [6,12,37] and some distinct extensions of resolution [32] for modal 

logics proposed [l, 2,5,779,13,14,19,24,29]. To complete the survey, we mention 

that there are still several different approaches in modal theorem proving: natural 

deduction [33,36], the translation of modal formulas into classical logic [4,30], the 

connection method [35], etc. 

In this article we consider a new proof procedure for propositional and first-order 

S4, some other normal modal logics and intuitionistic logic. The procedure is based 

on the dual tableau for classical logic [lS] (including a procedure dual to the 

propositional resolution) and on Kripke models [21,22]. The standard propositional 
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168 2. Ognjanovit 

modal language and closed first-order language without functional symbols are 

discussed. 

Our proof procedure could be understood as follows. Supposing that a formula is 

valid, we analyze its behavior in an arbitrary world of some arbitrary model. We 

generate a tree called dual tableau and some sets of subformulas of the studied 

formula. The subformulas are associated with some worlds of the model. By properly 

chosen reduction rules (reflecting semantic laws of valuation) we always need at least 

one of those sets to be satisfied to acknowledge that the examined formula is really 

valid. In an attempt to establish that at least one of the sets of subformulas is satisfied, 

a procedure dual to the classical propositional resolution is used. If we do not succeed 

in proving the formula we are in a position to construct its counter model. 

This paper is organized as follows. We begin with propositional modal logics and 

emphasize the case of S4. In Section 2 the basic definitions are given. Section 3 

contains the rules of our system and the completeness theorem for S4. In Section 4 

some other logics and appropriate changes in the rules are considered. In Section 5 we 

show that the procedure described here is a decision procedure. Extensions to the 

first-order case are considered in Section 6. Conclusions are summarized in Section 7. 

2. Preliminaries 

Suppose that the propositional modal language for S4 consists of logical operators 

(1, A, V , -t, 0 and q ), propositional variables and auxiliary symbols (“(“ and “)“). 

The atomic formulas and formulas are defined as usual. We assume that T and F are 

new formal symbols [lo, 12,341, and if X is a formula of propositional modal 

language then TX and F X are signed formulas. 

Signed nonatomic formulas are grouped in a,b,v,n and negative and positive 

formulas. Figure 1 defines the formulas and their respective components. Intuitively, 

an cc-formula is true iff its components are also true. The same holds for negative and 

corresponding positive formulas. A /3-formula is true iff either the corresponding pi- 

or flz-formula is true. To understand v- and rc-formulas we require the notion of 

Kripke models [21]. 

Definition 2.1. Let W be a nonempty set of elements called worlds and let P be a set of 

signed propositional modal formulas. The triple ( W, R, II ) is called a Kripke proposi- 

tional model if 

(1) R is a relation over W x W called the visibility (or accessibility) relation and 

(2) It is a relation over W x P called valuation, and the following conditions are met 

for every WE W: 

(a) for every unsigned modal formula X, either w lb TX or w II- F X, 

(b) for every cr-formula, w IF c( iff w IF a1 and w IF CI~, 

(c) for every fi-formula, w It p iff w IF fll or w It pZ, 

(d) for every v-formula, w IF v iff (VUE W)(w R u=w II vo), 
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3. Dual tableau for S4 (propositional case) 

A dual tableau is a tree whose nodes are labeled by prefixed signed subformulas of 

the examined formula. The tableau construction is followed by the construction of 

a frame which will present a paradigm of the class of frames and corresponding modal 

models in which the validity of the formula is investigated. Prefixes are the worlds of 

that frame. 

The construction rules are: 

(1) A formula 0 T A is placed in the tableau’s root, where 0 is the prefix. The relation 

p marks the visibility between prefixes, and at the beginning contains only element 

(0,O). After introducing a new prefix relation p will be updated. 

(2) Depending on the type of formula in the node, one of the following rules should 

be applied. 

(a) If the node contains an a-formula with prefix k, the branch where the node is 

located is extended with nodes containing subformulas @I and t12, with the same 

prefix. 

(b) If the node contains a fl-formula with prefix k, the branch where the node is 

located branches with nodes containing subformulas p1 and p2, with the same prefix. 

(c) If the node contains a negative formula with prefix k, the branch where the node 

is located is extended with the node containing the corresponding positive formula, 

with the same prefix. 

(d) If the node contains a v-formula with prefix k, and if the same rule has not been 

applied to the same formula and prefix k, the branch where the node is located is 

extended with the node containing formula v 0, with the new prefix k’; the pair (k, k’) is 

added to the relation p, and its reflexive and transitive closure is made. If the same pair 

(formula v and prefix k) has already introduced a node containing prefix k” and 

formula v0 at some other place, the branch containing the considered node is extended 

with the node containing the prefixed formula k”vO. 

(e) If the node contains a 7c-formula with prefix k, let a prefix k’ be visible from k, 
and suppose that this rule has not been used at that node and prefix k’. If this rule has 

not been used at all at the examined n-node, the branch where the node is located is 

extended with a node containing the z,-formula and prefix k’. Let this new node be the 

first x,-descendant of the examined node. If this rule has been used at the examined 

z-node, the branch containing the node branches, and the new extension is a node 

with the corresponding sc,-formula and prefix k’. The branching is done in the 

predecessor of the first no-descendant of the examined n-node, so that every no-node 

(corresponding to the examined n-node) belongs to a different branch. 

Figure 2 illustrates visually the idea behind the mentioned rules. Rules 2(a)-2(c) 

are, in fact, classical [lo, 18,341. 

Starting with the root containing a formula with prefix 0 and sign T, and using the 

above rules, a sequence of trees is constructed. Each tree in the sequence extends the 

previous one. A node is reduced by the rules at most once on a particular branch. After 
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that the node is finished. z-nodes are an exception. A n-node with prefix k is finished if 

there cannot be any new prefix k” visible from k and the n-rule has been applied to 

every prefix k’ visible from k. Nodes containing signed atomic formulas are also 

finished, for no rules can reduce them. A branch is finished if it cannot be extended by 

the reduction rules. 

The dual tableau is the first tree from the sequence containing only finished nodes. 

Definition 3.1. An S4-interpretation I is a mapping from a set P of prefixes (from 

a tableau F) into a set W of worlds of some SCmodel M = ( W, R, II), i.e. I : P+ W, 

when the following is satisfied: 

Definition 3.2. The signed formula X with prefix k is satisfied under an S4-interpreta- 

tion Z which maps a set of prefixes into a set of worlds of some model ( W, R, It ) if 

Z(k) I!- X. A set of signed formulas is satisfied under an SCinterpretation Z if each 

formula from this set is satisfied under the interpretation I. 

Lemma 3.3. Let T be a tableau whose root contains formula OT X. Formula X is 

S4-valid ifs for each SCmodel ( W, R, It ) and for each S4-interpretation Z which maps 

the tableau’s pre$xes into the worlds from W there exists at least one branch of the 

tableau whose set of all prejixed atomic signed formulas is satisfied under the interpreta- 

tion 1. 
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Proof. (+=) Suppose that formula X is not SCvalid. Then, there is a model (IV, R, It ) 

and a world WE W such that w 11 TX does not hold. Consider the interpretation 

Z which satisfies the following statements: 

(a) Z(O)=w and 

(b) if prefix k’ is introduced using the v-rule from prefix k and Z(k) = w1 then 

Z(k)= 
i 

any 
some 

w2: w1 Rw2, if Z(k)=w, IFv, 

w2: w1 Rw2, such that not w2 II- vo, otherwise. 

There is at least one branch whose set of all prefixed atomic signed formulas is 

satisfied under interpretation I. Using induction we shall show that the set B of all 

prefixed signed formulas from the branch is satisfied. If kaeB (k is a prefix), then by the 

construction rules both kcr, and ka2 belong to B, and by the induction hypothesis they 

are satisfied under interpretation I, i.e. Z(k) It cxl and Z(k) II- CQ. By the definition of 

Kripke models, Z(k) It a, and the cc-formula is also satisfied under interpretation I; 

similarly for p- and negative formulas. If kveB, then for some prefix k’ the formula k’vo 

is also in B, and by the induction hypothesis Z(k’)lF vo. Using the definition of 

interpretation I, Z(k) It v, and the kv formula is satisfied under interpretation I. If 

knc:B, then for some prefix k’ the formula k’no belongs to B, and Z(k’) II-no. By the 

definition of Kripke models, Z(k) II- T-C, and the kn formula is satisfied under interpreta- 

tion I. However, the formula OTX also belongs to B and is satisfied under the 

interpretation, i.e. Z(0) = w It X, which is a contradiction; hence X is SCvalid. 

( a) Suppose that X is an SCvalid formula and that F is a tableau containing 

0 T X in its root. Let M = ( W, R, IF ) be a Kripke model. Let Z be an SCinterpretation 

mapping prefixes from tableau F into worlds from W, such that there is no branch 

from y whose set of all prefixed atomic signed formulas is satisfied under interpreta- 

tion I. Let us consider the Kripke model MO = (Pref (F), p, V), where Pref (F) is the 

set of all prefixes from tableau F, p the visibility relation between them and V a valu- 

ation defined as V( j, Z) = It (Z(j), 2) for the signed atomic formula Z. Then, 

(a) since p is a reflexive and transitive relation, MO is an S4-model, 

(b) V(0, T X) = T, since X is SCvalid and 

(c) prefixed signed atomic formulas are satisfied under interpretation Z iff they are 

satisfied under the S4-interpretation I, mapping Pref (F) into itself, such that IO(j) = j 

for every jEPref(F)). 

Now, we shall inductively choose a branch B whose set of all prefixed signed atomic 

formulas is satisfied under interpretation IO. In the first step B contains only 0 TX, 

because MO is an S4-model, X an SCvalid formula and, for any kEPref(F)), k II TX. 

After i steps we have chosen an initial segment of the branch. Consider the formula 

Y from that segment. If it is atomic, it is also satisfied by hypothesis. If Y is an 

a-formula satisfied under interpretation IO, its czi- and cc*-components are also 

satisfied, and they are added to the branch; similarly for v- and negative formulas. If 

Y is a /&formula satisfied under interpretation IO, at least one of its components is also 

satisfied. We choose that one and add it to the branch. If Y is a rc-formula with prefix 

k, then by the construction rules, for every prefix k’ visible from k, there is a branch 
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containing the formula klrcO. However, only these prefixes (worlds from model M,) are 

visible from k, and by the definition of Kripke models there is at least one k’ such that 

k p k’ and k’ It- 7c,, . We add the node containing the formula k’n, to our branch. In this 

way we choose the tableau’s branch whose set of all prefixed signed formulas is 

satisfied under interpretation I,. The same holds for the set of all atomic formulas 

from that branch. However, atomic prefixed signed formulas are satisfied under 

interpretation I iff they are satisfied under interpretation I,, and the branch B satisfies 

the lemma’s requirement. q 

Example 3.4. Figure 3 shows the tableau for the formula q P-0 q P. By applying the 

p-rule on node (1) we get nodes (2) and (3). By applying the v-rule on node (3) we get 

a prefix 1 and a node (4). A new application of the v-rule on node (4) introduces prefix 

2 and a node (5). Prefixes 1 and 2 are visible from 0, and by applying the n-rule the 

branch containing node (2) branches into three new branches. Hence, for every 

S4-interpretation either 2 F P or 2 T P are satisfied, according to the previous lemma, 

and the formula is S4-valid. 

After Lemma 3.3, the issue is how one should examine whether or not the tableau’s 

branches are satisfied for every interpretation. We will connect satisfaction under 

interpretation with validity in the classical propositional logic using independence of 

values of atomic formulas in different worlds of Kripke models. 

First, consider an arbitrary interpretation I which maps the tableau’s prefixes into 

worlds of model ( W,R, It ). Next, consider an atomic formula with interpreted 

prefixes as propositional variables where the world, the picture of the prefix, becomes 

index. Then sets from branches become conjunctions of propositional variables. We 

call these conjunctions dual clauses induced by the tableau and the interpretation. In 

Example 3.4 dual clauses are: {F P,,,,}, {F P,,,,}, {F PIc2)} and {T PIc,,). The induced 

set of dual clauses is the set of all dual clauses corresponding to the sets of prefixed 

atomic formulas from the tableau’s branches. Define an induced propositional valu- 

ation It, such that Il(Z(k),X)= Ib,XIck,, where X is a signed atomic formula. For 
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every model and every interpretation there is an induced valuation, and vice versa, for 

every propositional valuation and the frame ( W, R) there is a model (W, R, IF ), 
where IF,, is induced by 11. Obviously, the set of all prefixed signed atomic formulas 

from the tableau’s branch is satisfied under interpretation Z iff the corresponding dual 

clause is satisfied under valuation IF,. If an induced set of dual clauses is valid then, for 

every interpretation I which induces that set, at least one branch from the correspond- 

ing tableau satisfies the requirement of Lemma 3.3. 

Now, the question is how one should establish the validity of all sets of dual clauses 

induced by the tableau .Y and all interpretations of the tableau’s prefixes? The 

solution will be given in a few steps. 

Let I, be an SCinterpretation from Pref (Y) into worlds of model ( Pref (Y), p, It ), 

where Pref(Y) is the set of all prefixes of tableau F-, p is the visibility relation between 

them, IF is an arbitrary valuation and, for any jEPref(Y), I,( j)=j. In order to 

establish the satisfaction of at least one dual clause from the induced set the dual 

resolution rule [ 1 S] is used: 

if S1 and S2 are dual clauses, T AES, and F AES, for an atomic formula A, 

(DR) then by resolving these clauses we get their resolvent R(S1, Sz, A)= 

(S,\{TAl)~(S~\FAl). 
In derivations called the dual resolution procedure, we allow only dual clauses 

corresponding to the finished branches and their resolvents. If S is the induced set of 

dual clauses from a tableau r-, 0 the empty clause, and R(S) = Su {C: C is the 

resolvent of two clauses from S}, R,(S)=& R,(S)= R(Rf_,(S)) and R*(S)= u {R,(S): 
i 2 0}, the following lemma holds. 

Lemma 3.5. A set of dual clauses is valid iff @ER*(S). 

The proof of the lemma is given in [18]. 

What can we say about the other interpretations? Suppose that we can infer the 

empty clause from the set of dual clauses induced by I,. Obviously, the same holds for 

any 1- 1 interpretation. We just follow the same order of inference as for IO. In fact, the 

only difference is in a change of the names of propositional variables from dual 

clauses. At last, there are non-l -1 interpretations. The problems arise in two 

situations: 

(a) We use in inference (for lo) the dual clause {X A,(,,, X Al(j), Y), where X is 

a sign and I( j)=Z(Z); however, this clause is a subset of {X AIcI,,X Al(j), Y}, where 

I( Z)#Z( j), and we do not lose anything. It comes from + {(A A B), C}= t= (A, C}. 
(b) We resolve dual clauses C1 = {@,T A,(l), F A,(j)} and C2 = {Y, F AI(l)} and get 

their resolvent C3 = (@, y/, F A,,j,}, where Z(j) = I( 1); however, C2 c C3, and so, again, 

we do not lose anything. It follows that we can also infer the empty clause. 

Now, if it is possible to infer the empty clause from the set of dual clauses induced by 

IO, then for every valuation at least one set of atomic formulas is satisfied, and the 

formula whose tableau is examined is valid according to Lemma 3.3. If the formula is 

valid, then for any valuation a set of atomic formulas from at least one branch of its 
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tableau is satisfied and it is possible to infer the empty clause by applying the dual 

resolution procedure. Using the introduced notation we can formulate the following 

lemma. 

Lemma 3.6. A formula X is %-valid ifs the empty clause can be inferred from the set of 
all dual clauses induced by the interpretation IO and the formula’s tableau F. 

Example 3.7. In Example 3.4 the dual clauses are {FP,(O,), (FP,(,,}, {FP1(z,} and 

(TP,,,,). An application of the (DR)-rule on the third and fourth clauses infers the 

empty clause. According to Lemma 3.6, formula q P-+0 q P is S4-valid. 

An appropriate choice of the order in which the construction rules should be 

applied will guarantee that every node will be processed, and consequently that for 

every formula there is its dual tableau. 

Since all the rules introduce only a finite number of nodes and prefixes, after a finite 

number of reduction rules are applied, there would be only finite numbers of nodes 

and prefixes suitable for reduction. Consider a situation in an arbitrary stage of 

a tableau construction. Let there be N reducible nodes and M z-nodes between them, 

and let there be K prefixes which are applicable on the studied n-nodes. We will not 

reduce anything else until we finish with these nodes and prefixes. We can reduce 

N-M non-n-nodes in N-M steps and M rc-nodes in less than M * K + 1 steps. As 

K is finite, all the N nonreduced nodes can be processed in a finite number of steps. So, 

for every stage of the reduction we can guarantee that all immediately reducible nodes 

will be processed. 

Let t be a tree from a sequence T of trees constructed by the application of rules 

1 and 2 on formula X. Let S be the set of dual clauses induced by interpretation I, and 

finished branches from t, and let R*(S) be the closure of set S under (DR). 

Definition 3.8. The tree t is the proof for formula X in the system of dual tableaux if 

the empty clause belongs to R*(S). 

Completeness theorem for S4 (propositional case). A modal formula X is SCvalid ifl it 
has a jinite proof in the system of dual tableaux. 

Proof. (t-) If formula X has a finite proof, then according to ( -+ ) of Lemma 3.3 it is 

SCvalid. 

(=z-) Suppose that formula X is SCvalid. By (=z-) of Lemma 3.3, under arbitrary 

SCinterpretation there is a branch in the tableau whose set of all prefixed signed 

atomic formulas is satisfied under that interpretation. According to Lemmas 3.5 and 

3.6, the set of all dual clauses induced by the tableau and interpretation lo is valid. 

Because of the compactness of the propositional calculus, in the valid set of dual 

clauses there is a finite subset S with the same property. Let n be the largest among 

prefixes from the tableau’s branches corresponding to the dual clauses from S. 
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Let T be the sequence of trees defining the formula’s tableau. Let ~,ET be the last 

tree containing no prefix greater than n. This tree is finite, because the studied formula 

X has only a finite number of subformulas. There are only a finite number of prefixes 

in t,. If all the mentioned branches are in t,, it is a finite proof for X. Otherwise, we 

construct a new sequence T’ which begins with the first m elements from sequence 

T and continues with the elements made by reduction of branches with no prefixes 

greater than n. There is no problem in doing this, because all these prefixes have 

already been introduced. Since the number k of reduction steps in finite, so is the 

number k of new trees from T’. It follows that t k+m is a finite proof of the examined 

formula X. 

Example 3.9. Figure 4 shows the tableau for formula 0 P+o 0 P. By applying the 

p-rule on node (1) we get nodes (2) and (3). By applying the v-rule on nodes (2) and (3) 

we get prefixes 1 and 2 and nodes (4) and (5). Then the n-rule is applied to node (2) to 

obtain node (6). The tableau does not contain any more unfinished nodes, and a set of 

dual clauses {(F Pi}, {T P2}} is obtained which, obviously, cannot produce the 

empty clause; so the formula is not S4-valid. 

We do not infer the empty clause in Example 3.9, and 0 P+o 0 P is not a 

theorem of our system. Now we are in a position to construct the formula’s counter 

model. We consider a model M and an interpretation I so that no tableau branch 

is satisfied under the interpretation. We choose the model A4 = (Pref(r), p, k ), 

where Pref(Y) is the set of prefixes from the tableau, i.e. Pref (Y) = (0, 1,2), p 

is its visibility relation, i.e. p = { (0, 0), (0, l), (0,2), (1, I), (1,2), (2,2)}, and It is a 

valuation so that under the identity interpretation I,, there is no satisfied branch 

from the tableau. For instance, we can use an arbitrary valuation 11, so that 

1 IkTP, and 2 IF FP. Obviously, then Ok T 0 P, and it is not 0 11 T q 0 P. It 

follows that it is not 0 IF 0 P+o 0 P, and model M is a counter model of the 

formula. 

Such an examination can be applied whenever we have not proved a formula. 
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4. Other modal logics 

By similar considerations it is possible to formulate formal systems of dual tableaux 

for some other normal modal logics (T, B, S5, D, D4, DB) and also for the intuitionistic 

logic. Only the visibility between prefixes in the tableaux should be changed. For 

example, for S5 it is the relation of equivalence, and for D-logic it is an ideal relation, 

i.e. (V w)( 3~) w p u. For the intuitionistic logic, it is well known that it is interpretable 

into S4, so we convert an intuitionistic formula to its S4-equivalent and then use the 

dual tableau method for S4. 

Example 4.1. Figure 5 shows the SS-tableau for the formula 0 P+o 0 P. Different 

from Example 3.7, application of the n-rule on node (5) introduces three new nodes 

due to the symmetry of the visibility relation. A set of dual clauses is obtained, 

{{FP,},{TP,},(TP,},{TP,}j,f rom which an empty clause is inferred by a single 

application of the (DR)-rule on the first and third clauses. 

So far, our approach requires at least idealization to justify the introduction of new 

worlds by the v-rule, and it is not directly suitable for the family of K-logics 

(K, KB, K4). Models of these logics might contain so-called dead ends [16]. They are 

worlds which are not related to any worlds at all, even to themselves. For an 

interpretation I the question arises when we have prefixes k and k’, such that k’ is 

visible from k, and I(k) is a dead end. Since I(k’) should not be defined, the claims 

about our system would not hold. Following the definition of valuation we conclude 

that for every v-formula and prefix k, such that I(k) is a dead end, I(k) IF v, but Z(k) 

does not satisfy any n-formula. Using these facts the dual tableau system can be 

adapted to the mentioned K-logics. We will discuss only K-logic, and the rest follows 

easily. First, we extend some definitions. 

Definition 4.2. K-interpretation is a partial mapping from a set P of prefixes into a set 

W of worlds of some K-model M = ( W, R, II ), i.e. I : P+ W, when for every kGP the 

following is satisfied: 

(a) if I(k) is a dead end, then, for every prefix k’ visible from k, Z(k’) is not 

defined; 

OTOl’ 

/ 

+ 0 0 P (1) 

\ 
0 F 0 P (2) OTo OP (3) 

I 
1 F P (4) 

/ 

I 
2TOP (5) 

I \ 
OTP- 1TP 2TP (6) 

Fig. 5 
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(b) if Z(k) is not defined, then, for every prefix k’ visible from k, Z(k’) is not defined; 

(c) if Z(k) is defined and it is not a dead end, then, for every prefix k’ visible from k, 
Z(k)RZ(k’). 

Definition 4.3. For a prefix k, general atomic formulas (GAF) under a K-interpreta- 

tion I are: 

(a) if Z(k) is defined, then a prefixed atomic formula kA is a GAF, and 

(b) if Z(k) is a dead end, the formulas kv and kz are GAFs. 

Definition 4.4. A dual clause is acceptable under a K-interpretation I if it contains all 

atomic GAFs from a finished tableau branch and the branch does not contain any 

GAF x-formula (under interpretation I). 

Hence, no conditions are placed on the visibility relation between worlds in 

K-models, the relation p (visibility between prefixes) contains (k, k’) iff prefix k’ is 

introduced by an application of the v-rule to a formula kv. For the K4-logic we 

additionally require transitivity, and for the KB-logic symmetry. Now, we can refor- 

mulate the key Lemma 3.3. The proof of the new lemma is very much like the previous 

one, so we do not repeat it. However, we emphasize that satisfaction under K- 

interpretation has some extended meaning, as has been mentioned. The (DR)-rule, 

Lemmas 3.5 and 3.6 and the completeness theorem are applicable directly. 

Lemma 4.5. Let .T be a tableau whose root contains the formula 0 T X. A formula X is 
K-valid zr, for each K-model ( W, R, It ) and for each K-interpretation Z which maps the 
tableau’s prefixes into the worlds from W, there exists at least one branch of the tableau 
whose set of all GAFs is satisfied under interpretation I. 

If a dual clause acceptable under a K-interpretation contains no formulas (the 

corresponding branch contains only GAF v-formulas, and no atomic or rc-GAFs), we 

treat it as an empty clause. We divide the set of all K-interpretations into groups, such 

that every K-interpretation from a group maps the same prefixes into dead ends. In 

any group of interpretation we consider only one l-l interpretation, and try to infer 

an empty clause from the set of acceptable clauses. If we succeed, the formula is 

a theorem of our system, in the other case it is not. 

Example 4.6. Figure 6 represents the K-tableau of the K-axiom q (P+Q)+(o P-t 

q Q). The only application of the v-rule is in node (1). So, we have two groups of 

K-interpretations: the first contains all interpretations that map the prefix 0 into 

a dead end and the second contains interpretations that do not. The set of acceptable 

dual clauses corresponding to the first group contains only one element - the empty 

clause, which is induced by the branch that contains node (l), because there are 

n-GAFs in nodes (2) and (3). The set {(F Pi}, (T Q,}, {TP1, F Q1 >} corresponds to 

the second group of interpretations. Obviously, by two applications of the (DR)-rule 
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OTo(P-+Q) +(o P-+oQ) 

/ \ 
OFo(P+Q) (3) OToP +oQ 

I / \ 
1TP 0 F q ‘P (2) OTo Q (1) 

I I I 

1FQ 1FP 1TQ 

Fig. 6. 

we can infer the empty clause. It follows that the formula is a theorem of our system, 

and consequently K-valid. 

5. Decidability 

A proof procedure could be described in the following way: 

put the formula in the tableau root; 

S:= empty set; 

while not(end of reduction) and not(empty clauseER*(S)) do 

begin 

apply one of the reduction rules; 

if (a branch is finished) then 

begin 

add the dual clause (corresponding to the finished branch and 

induced by interpretation I,) to the set S; 

S:=R*(S); 

end; 

end: 

Set S is a set of dual clauses induced by interpretation I0 and the finished tableau 

branches. R*(S) is the closure of set S under the (DR)-rules. The order of the 

application of the construction rules must guarantee that every node will be 

processed. 

The formula in question is a theorem iff the empty clause is inferred. 

If every dual tableau is finite, so is our proof procedure, because dual resolution 

over a finite set of clauses should be finished in finite time. Every tableau’s branch is 

finite because the reduction rules decrease the number of logical operators of for- 

mulas. A dual tableau is finite if every n-node has only a finite number of descendants, 

or if every prefix can access only a finite number of prefixes. 
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. . . 
OTo P 1T UP 2To P 

/ I I 

1TP 2TP 3TP 

Fig. I. 

If the visibility relation is not transitive, any prefix can access only prefixes which it 

has introduced by the v-rule, itself (if visibility is reflexive) and the prefix which has 

introduced it (if visibility is symmetric). Since a formula has only a finite number of 

subformulas, any prefix can introduce only a finite number of new prefixes, so any 

prefix sees only a finite number of prefixes. It follows that the dual tableau is a decision 

procedure for nontransitive logics. 

If the visibility relation is transitive the procedure may not terminate, as is shown in 

Example 5.1. What has happened? The prefix 0 sees not only prefix 1, which it 

introduced, but also prefixes 2,3, etc., because of transitivity. It is possible to modify 

the dual tableau system to go around the problem, keeping the completeness. We just 

follow the idea of [lo]. 

Example 5.1. For the formula 0 q P the S4-tableau is an infinite one (see Fig. 7, 

where ( *) denotes that the construction will never terminate). 

A chain is a sentence of prefixes where every prefix sees its successors and is seen by 

its predecessors. A chain can be infinite if the visibility relation is transitive, as in 

Example 5.1, where the chain is composed of prefixes 0, 1,2, etc. Since any formula has 

only a finite number of subformulas, in any infinite chain there must be at least two 

prefixes corresponding to the same set of signed subformulas of the studied formula 

(correspondence means that the prefix stands beside the subformula in the formula’s 

tableau). Let them be prefixes pi and Pj, where i-c j. After pj the chain becomes 

periodic and we do not get more information than from the initial segment concluded 

with pi. The initial segments begin with prefix 0 and are finite. Also, for any tableau 

there are only finite numbers of chains, because prefix 0 can introduce only a finite 

number of prefixes. In every n-node we discard prefixes whose corresponding prede- 

cessors have already been used. We cannot lose anything because dual clauses which 

are not generated have the same shape as the used ones. The only difference is in 

indexes, but they are also periodical like the prefixes. So, we can infer the empty clause 

from a reduced set of dual clauses iff we can do it with the whole induced set. Hence, in 

every n-node we keep only a finite number of descendants, the tableau is finite and the 

modified procedure is actually a decision procedure. 
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OTOoP 

/ I (*I 
OTo P 1To P 

/ I 
1TP 2TP 

Fig. 8. 

Example 5.2. For the formula 0 q P the modified SCtableau is a finite one (see 

Fig. 8, where (*) denotes where the construction is changed). 

6. First-order modal logics 

In the first-order case the language is extended with the new symbols: quantifiers 

(V,3), constants and relation symbols. We have got two new groups of signed 

formulas. They are shown in Fig. 9, where c is a constant and A(c) is an instance of the 

formula A(x). Constant symbols are rigid, meaning the same thing in each world. We 

assume that we have first-order Kripke models defined as usual, with nonempty 

quantifier domains associated with the model worlds. The domains can meet the 

following conditions: 

(a) every world has the same domain, and 

(b) if world w is visible from world U, then the domain of w is a superset of the 

domain of U. 

In the former case the models are constant domain models, and in the latter models 

have monotonic domains. Assuming that all formulas appearing in a tableau have no 

free variables, as well as in [lo, 341, we start with a discussion of constant domain 

models. 

The dual tableaux for first-order modal logics are simply extensions of the proposi- 

tional modal dual tableaux. The additional y- and &rules are shown in Fig. 10. By the 

y-rule a new constant is introduced. By the d-rule, a branch containing a &node 

branches for every constant occurring in the tree. These rules are, in fact, independent 

of the other rules and the types of modal logic. 

We eventually allow that the first constant in a tableau could be introduced by the 

S-rule. This happens when we have no constant in the tableau and we cannot apply 

any other rule. The rules for quantifiers are the same as those for classical quantifiers 

[lS] and similar to the modal v- and z-rules. It is worth noting that the subformulas of 

the examined formula are reduced to the atomic level. An atomic sentence could be 

treated as a propositional variable, and dual resolution is done over dual clauses that 

contain only atomic sentences. So, completeness proofs for first-order modal logics 

are combinations of the proofs given in [IS] and in this paper, and we omit them. 
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Fig. 9. 

I I 
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Fig. 10. 
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Fig. 11. 

Example 6.1. Figure 11 represents the first-order S4 (or T, or %)-tableau of the 

so-called Barcan formula. By applying the propositional rules we get nodes (2), (3) and 

(4). Then, by the y-rule we introduce node (5) and the constant c. Hence, the model is 

with constant domain, the constant c exists in the domain of world 0 and we apply the 

&rule on node (4). By the n-rule nodes (7) and (8) are created. The set of dual clauses 

((FA(c),),(FA(c),},CTA(c),))’ bt IS o ained. By a single application of the (DR)-rule 

we could infer the empty clause, and the examined formula is a theorem of our system. 

When Kripke models with monotonic domain are considered, the Barcan formula 

is no longer valid. To suit such models, we have to change our n-rule. As in [lo], we 

associate prefixes and constants. A prefix k is associated with a constant c if the 

constant is introduced with a ky-formula, or if there is a prefix k’, such that k’ p k and k 
is associated with c. The n-rule should be applied to a kn-formula only for constants 
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that are associated with prefix k. In Example 6.1, we cannot use the constant c with the 

prefix 0, and we cannot infer the empty clause. It follows that the Barcan formula is 

not a theorem of the system of dual tableaux for models with monotonic domains. 

7. Conclusion 

Our modal dual tableau method is an extension of the dual tableau proof procedure 

for classical logic. We have an integrated notion of Kripke models in the rules from 

[18] and have a combination of a tableau-like approach and a resolution-like 

inference over classical propositional clauses. Since we do not use it, we do not worry 

that the normal modal form does not exist for most modal logics. During the tableau 

reduction of a formula we eliminate modal operators supposing that we jump to new 

worlds of a model. These worlds are explicitly denoted by their names, i.e. prefixes. 

Such an approach ensures that the system is suitable for many kinds of modal logic, 

including logics whose models require symmetry. Step-by-step reduction of a formula 

enables staightforward extension to the first-order modal logic. 

There are some other proof procedures for modal logics, more or less similar to the 

dual tableau method. Among them the best known are: modal tableau and the 

so-called destructive resolution given by Fitting [lo, 12,131, modal resolution in 

clausal form, from Farinas, Auffray, Enjalbert and Hebrard [5,9], its first-order 

extension from Cialdea [7, S] and nonclausal resolution from Abadi and Manna Cl]. 

Different from the dual tableaux all these methods are refutation procedures. 

The resolution of Farinas and others differs from that of Abadi and Manna in many 

ways; for instance, the first one contains formula translation to some sort of normal 

form, while the second does not need it, etc. However, both of them include many 

inference rules that are, let us say, complicated (at least, they are so judged in [25]) 

and are hard to implement [4]. It seems that the nonexistence of a reasonable normal 

form for most modal logics is the main source of problems for modal resolution in 

clausal form. We reduce the resolution at the classical propositional level, where all 

the problems are solved and intuition is clear. So, we believe that our system 

overcomes such problems and has an advantage as far as simplicity is concerned. 

The most attractive methods for modal theorem proving have been given by 

Fitting. His destructive and prefixed tableaux became almost “classical” modal 

tableaux. A generalization of them, the prefixed tableau, is an extension of Smullyan’s 

tableau [34] and has had great influence on our system, which extends the dual 

tableau in the same way. Prefixed and dual tableaux are really dual to each other. 

When one requires atomic closure of branches in the former, both of them have the 

same number of nodes. It is because starting formulas are mutually conjugate, the 

classical reduction rules are the same, and the v- and n-rules are symmetrical. Both 

systems are particularly appropriate for symmetric modal logics and first-order logics 

with constant domains, but they are also suitable for other kinds of modal logics. The 

destructive tableau covers logics that do not involve symmetry and first-order logics 
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with monotonic domains. For such logics, when one switches the context, i.e. when 

one leaves one world and jumps to another, the old context could be destroyed. In 

destructive tableaux, these jumps are done when rr-formulas are reduced to their 

rr,-components, and some other formulas are forgotten. The jumps correspond to 

a pruning of parts of the (prefixed) tableau tree. However, the choice of a rc-formula 

for the n-rule is ambiguous. These choice points must be remembered, and if a proof is 

not obtained one has to backtrack to the last one and try again. An alternative way is 

to create parallel processes whenever the x-rule is applied. So, there is some doubt 

about the benefit of destructive context switching. It seems to us that an extension of 

the classical dual tableau in such a “destructive” way is straightforward, but so far we 

have not tried that. 

Fitting’s destructive resolution was designed with a strong bias toward the destruc- 

tive tableau. This is obvious when one analyzes the rules. In destructive resolution the 

reduction and resolution rules can be intermingled, and in this sense the system is 

nonclausal. At the classical propositional level the set of clauses generated by destruc- 

tive resolution corresponds to the conjunctive normal form of a negated formula. 

Hence, we start with a formula itself (not a negated one), and in the dual tableau [18] 

we generate in fact the same set of clauses, although the corresponding literals are 

mutually conjugate. Then one may proceed with resolution inferences in the same 

manner. The differences appear when modal operators are included. Thanks to the 

destructive nature of its modal reduction rules, Fitting’s method works with a smaller 

number of clauses than the dual tableau. Also, the clauses themselves may be smaller 

than the dual clauses. However, the benefit of context switching is under suspicion, as 

in the destructive tableau method. There is an additional rule in destructive resolution 

that also involves branching points in proofs. It is the Special Case Rule and it could 

not be eliminated. By this rule many branches of proofs may be created and every one 

must produce the empty clause. The problem arises with the first-order case when 

additional communication between parts of clause sets is also required. There are no 

such issues in the dual tableau. Destructive resolution includes skolemizing during 

resolution inference, which rapidly decreases the number of clauses. In the dual 

tableau we use only ground clauses and there is a real danger of combinatorial 

explosion. On the other hand, the substitution rule which corresponds to skolem- 

ization is problematic when it comes to implementation. 

Finally, the great advantage of Fitting’s systems (compared with ours) is the elegant 

way in which some weak logics, like K-logic, are solved. It is a consequence of the 

definition of valuation in modal models, where v- and n-formulas are not completely 

symmetrical. 

We believe that one can understand our system of dual tableaux easily, even more 

easily than most present systems. The clarity of the system has made it possible that 

a modal theorem prover based on the procedure described in Section 5 has been 

realized very simply. However, this does not guarantee efficient implementation. The 

biggest problem corresponds to the possibility of combinatorial explosion of ground 

dual clauses and we try to reduce their number by discarding superset clauses. Any 
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other improvement would be recommended, but the most promising solution is 

skolemization. We shall first incorporate such an approach in the classical dual 

tableau. The next step may be the application of that procedure to the tableau 

prefixes. It would be straightforward because v- and rc-formulas behave almost like 

classical y- and b-formulas. Other approaches may be the world-unification method 

introduced in [3,17,36], or the dummy variables method [31]. 

An important advantage of the dual tableau proof procedure is its suitability for 

parallel execution. We have found two main possibilities for parallelization: tableau 

construction is independent of the dual resolution procedure up to the generation of 

dual clauses, and dual clauses are ground clauses and can be resolved in a fully 

distributed manner, without any additional communication overhead. A parallel 

theorem prover based on dual tableaux and the ideas mentioned was presented in 

[28]. It is an extension of the classical version described in [20]. 

In addition to the discussed improvements of the existing system we hope to extend 

the dual tableau method to some other modal logics acknowledging its generality. 
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