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1  Introduction 
 
Deontic logic (DL) is increasingly recognized as an indispensable tool in such application 
areas as formal representation of legal knowledge and reasoning, formal specification of 
computer systems and formal analysis of database integrity constraints. Despite this 
acknowledgement, there have been few attempts to provide computationally tractable 
inference mechanisms for DL (most notably [Bel87], [McC83], [McC86], [Sus87]). In this 
paper we shall be concerned with providing a computationally oriented proof method for 
standard DL (SDL), i.e., normal systems of modal logic with the usual possible-worlds 
semantics ([Aq87], [Ch80], [Han65]). Because of the natural and easily implementable 
style of proof construction it uses, this method seems particularly well-suited for 
applications in the AI and Law field, and though in the present version it works for SDL 
only, it forms an appropriate basis for developing efficient proof methods for more 
expressive and sophisticated extensions of SDL. The content of the paper is as follows. In 
Section 2, we briefly introduce SDL together with the logical notation being used. In 
Section 3, we describe the theorem proving system KED. In Sections 4 and 5, we present 
KED method of proof search. In the last section, we provide a sample of the KED Prolog 
implementation and give an example output of the program.  
 
 
 
2   Preliminaries 
 
A system of SDL is a logic (set of axioms scheme and inference rules) based on a standard 
modal language consisting of a denumerable set of propositional variables and the 
primitive logical connectives ¬, ∧, ∨, →, P, O for negation, conjunction, disjunction, 
conditionality, permission and obligation, respectively. We shall use the letters A, B, C,... 
to denote arbitrary formulas of this language. A system of SDL will be denoted by L. We 
define an L-model to be a triple <W, R, v> where W is a non-empty set (the set of "possible 
worlds"), R is a binary relation on W (the "accessibility relation" between the "actual" 
world and its deontically ideal versions), and v is a mapping from W × S to {T,F} where S 
is the set of all formulas of our present language. As usual, the notion of L-model 
appropriate for the logic L can be obtained by restricting R to satisfy the conditions 
associated with L. The following table gives a complete picture of the systems of SLD we 
shall consider. 
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L Definition Condition on R  

OK PC ∪ {O(A→B) → (OA→OB)} no condition 
D OK ∪ {OA→PA} idealisation 
D4 D ∪ {OA→OOA} idealisation, transitive 
DB D ∪ {A→OPA} idealisation, symmetric 
D5 D ∪ {PA→OPA} idealisation, euclidean 
D45 D4 ∪ {PA→OPA} idealisation, transitive, euclidean 

 
Table 1: Systems of SDL and their associated conditions. 

 
To complete the definition, all these logics include modus ponens and the rule of O-

necessitation (if we have already proved A, then we can infer OA). The "idealisation" 
condition corresponds to the obvious requirement that every world in W has at least an 
ideal version. 

By a signed formula (S-formula) we shall mean an expression of the form SA where A is 
a formula and S ∈ {T,F}. Thus TA if v(x,A) = V and FA if v(x,A) = F for some L-model  
<W,R,v> and x ∈ W. We shall denote by X, Y, Z arbitrary signed formulas. By the 
conjugate XC of a signed formula X we shall mean the result of changing S to its opposite 
(thus TA is the conjugate of FA and FA is the conjugate of TA). Two S-formulas X, Z 
such that Z = XC will be called complementary. For ease of exposition we shall use 
Smullyan-Fitting's "α,β,ν,π" unifying notation that classifies S-formulas as shown in the 
following table. 

 
α α1 α2 β β1 β2 

TA∧B TA TB FA∧B FA FB 
FA∨B FA FB TA∨B TA TB 
FA→B TA FB TA→B FA TB 
T¬A FA FA F¬A TA TA 

 
 

ν ν0 π π0 
TOA TA TPA TA 
FPA FA FOA FA 

 
Table 2: Classification of signed formulas according to Smullyan-Fitting's unifying notation. 

 
 
3  The system KED 
 
In this section we describe the proof system KED. The key features of KED are outlined as 
follows. 
 
 
3.1 Label formalism 

Let ΦC = {w1, w2, w3,...} and ΦV = {W1, W2, W3,...} be two (non empty) sets of "world" 
symbols, respectively constant and variables. We define the set ℑ of "world" labels in the 
following way:  
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ℑ = ℑ ℑ
≤

i
1 n

i where  is:U  

ℑ = ∪1 Φ ΦC V  

ℑ = ℑ ×2 1 ΦC 

ℑ = ℑ × ℑ+n n1 1 . 
 
That is a label i is either a constant "world" symbol, or a "world" variable, or a "path" 

term (k',k) where (a) k' ∈ ΦC ∪ ΦV and (b) k ∈ ΦC or k = (m',m) where (m',m) is a label. 
Intuitively, we may think of a label i ∈ ΦC as denoting a world, and a label i ∈ ΦV as 
denoting a set of worlds in some L-model. A label i = (k',k) may be viewed as representing 
a path from k to a (set of) world(s) k' accessible from k. For example, the label (W1,w1) 
represents a path which takes us to a set W1 (the set of worlds accessible from the initial 
world w1); (w2,(W1,w1))) represents a path which takes us to a world w2 accessible by any 
world accessible from w1, (i.e., accessible by the subpath (W1,w1)) and so on (notice that 
the labels are read from right to left). For any label i = (k',k) we shall call k' the head of i, k 
the body of i, and denote them by h(i) and b(i) respectively. Notice that these notions are 
recursive: if b(i) denotes the body of i, then b(b(i)) will denote the body of b(i), b(b(b(i))) 
will denote the body of b(b(i)), and so on. For example, if i is (w4,(W3,(w3,(W2,w1)))), then 
b(i) = (W3,(w3,(W2,w1))), b(b(i)) = (w3,(W2,w1)), b(b(b(i))) = (W2,w1), b(b(b(b(i)))) = w1. 
We call each of b(i), b(b(i)), etc., a segment of i. Let s(i) denote any segment of i 
(obviously, by definition every segment s(i) of a label i is a label); then h(s(i)) will denote 
the head of s(i). For any label i, we shall denote the length of i by l(i), where l(i) = n ⇔ i ∈
ℑn.We shall call a label i restricted if h(i) ∈ ΦC, otherwise we shall call it unrestricted.  
 
 
3.2 Basic unifications 

We define a substitution in the usual way as a function σ: ΦV → ℑ− where ℑ− = ℑ − ΦV. 
Following convention we denote by iσ, kσ the result of applying σ to labels i and k. If iσ = 
kσ we shall say that σ unifies i and k. Two labels i, k will be said σ-unifiable if there is a 
substitution σ that unifies i and k. In the following we shall use (i,k)σ to denote both that i 
and k are σ-unifiable and the result of their unification. On this basis we define several 
specialised, logic-dependent notions of σ-unification. In particular, we define the notion of 
two labels i, k being σOK-, σD-, σD4- and σD5-unifiable in the following way: 

 
(i,k)σOK = (i,k)σ ⇔ 

(i) at least one of i and k is restricted, and 
(ii) for every s(i), s(k) such that l(s(i)) = l(s(k)), (s(i),s(k))σOK 

 
(i,k)σD = (i,k)σ 

 
 
(i,k)σD4 = h(k) × (h(b(k)) × (...× (t*(k) × (i,s(k))σD)...)) ⇔ 

l(i)≤l(k), h(i) ∈ ΦV and (i,s(k))σD,  

or  

(i,k)σD4 = h(i) × (h(b(i)) × (...× (t*( i) × (s(i),k)σD)...)) ⇔ 
l(k)≤l(i), h(k) ∈ ΦV and (s(i),k)σD 
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where t*(k) (resp. t*( i)) denotes the element of k (resp. i) which immediately follows s(k) 
(resp. s(i)). 
 

(i,k)σD5 = (h(i),h(k))σ × (b(b(i)),b(k))σL)) ⇔ 
(h(i),h(k))σ and (b(b(i)),b(k))σL for l(k)≤l(i) or h(b(k)) ∈ ΦC, 

or 

(i,k)σD5 = (h(i),h(k))σ × (b(i),b(b(k))σL)) ⇔ 
(h(i),h(k))σ and (b(i),b(b(k))σL for l(i)≤l(k)or h(b(i)) ∈ ΦC,  

 

where 
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The above notions are meant to mirror the conditions on R in the various L-models. Thus 

the notions of σOK-and σD-unification are related to the idealisation condition. For 
example, (w2,(W1,w1)), (W3,(W2,w1)) are σD-unifiable but not σOK-unifiable (since the 
segments (W1,w1), (W2,w1) are not σOK-unifiable by condition (i) of the above definition). 
The reason is that in the "non idealisable" logic OK the "denotations" of W1 and W2 may 
be empty (i.e., there can be no worlds accessible from w1), while in the "idealisable" logic 
D they are not empty, which makes them to be unifiable "on" any constant. For the notion 
of σD4-unification take for example i = (W3,(w2,w1)) and k = (w5,(w4,(w3,(W2,w1)))). Here 
s(k) = (w3,(W2,w1)). Then i and k σD4-unify to (w5,(w4,(w3,(w2,w1)))) since 
((W3,(w2,w1)),(w3,(W2,w1)))σD. This intuitively means that all the worlds accessible from 
a subpath s(k) of k are accessible from any path i which turns out to be identical with s(k). 
Similar intuitive motivations hold for the notion of σD5-unification. 
 
 
3.3 Reductions 

For X = 4, B we define the X-reduction, rX(i), of a label i to be a function rX: ℑ → ℑ 
determined as follows: 
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The notion of X-reduction holds for the logics whose associated conditions are 

transitivity and symmetry. As an intuitive explanation, we may think of the X-reduction of 
a label i as the deletion of "irrelevant" steps from the path represented by i. Thus for 
example the 4-reduction (w2,w1) of the label (w2,(W1,w1)) amounts to deleting the step to 
an arbitrary world (in the set) W1 in the path from w1 to a world w2 accessible from all 
worlds accessible from w1 since if R is constrained to satifsy transitivity, then this step 
turns out to be irrelevant (w2 is accessible from w1 for all W1 accessible from w1). 
 
3.4 General unification 

We are now able to define what it means for two labels i, k to be σL-unifiable for L = 
OK, D, D4, DB, D5, D45: 
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(i)  (i,k)σL = (i,k)σ*, where  
 
 for l(i) = l(k) 
 

σ* = σOK, if L = OK  
σ* = σD, if L = D, D4, DB, D5, D45 
σ* = σD5, if L = D5, D45; 

 
for l(i) ≠ l(k) 

 
σ* = σD4, if L = D4  
σ* = σD5, if L = D5, D45. 

 
(ii)  (i,k)σL = (i,rX(k))σ*, or 

 (rX(i),k)σ*, or  
 (rX(i),rX(k))σ*, 

 
where 

X = 4,   if L = D4, D45 
X = B,   if L = DB. 

and 

σ* = σD,  if L = D4, DB, D5, D45 
σ* = σD5, if L = D5, D45. 

 
Notice that in this way all the obvious inclusions among the logics considered are 

preserved. 
 
 
3.5 Rules of inference 

The rules of KED will be defined for pairs X,i where X is a signed formula and i is label. 
We shall call any pair X,i a labelled signed formula (LS-formula). Two LS-formulas X,i, 
Z,k such that Z = XC and (i,k)σL are called σL-complementary. The following inference 
rules hold for all the logics we are considering (i, i' , k stand for arbitrary labels).  

 
α,i 

 
α1,i 

α,i 
 

α2,i 

 β,i 
βC

1,k 
 

β2,(i,k)σL 

 β,i 
 βC

2,k 
 

β1,(i,k)σL 

 
[(i,k)σL] 

 
    ν,i  
      [(i' ,i) unrestricted and i'  new] 
ν0,(i' ,i) 
 

     π,i 
   [(i' ,i) restricted and i'  new] 
  π0,(i' ,i) 
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 PB   [i restricted] 
 X,i               XC,i 
 

 
     X,i  
    XC,k  [(i,k)σL] 
 PNC 
 × (i,k)σL 
 

Here the α-rules are just the usual linear branch-expansion rules of the tableau method, 
while the β-rules correspond to such common natural inference patterns as modus ponens, 
modus tollens, etc. The rules for the modal operators bear a not unexpected resemblance to 
the familiar quantifier rules of the tableau method. "i'  new" in the proviso for the ν- and π-
rule obviously means: i'  must not have occurred in any label yet used. Notice that in all 
inferences via an α-rule the label of the premise carries over unchanged to the conclusion, 
and in all inferences via a β-rule the labels of the premises must be σL-unifiable, so that 
the conclusion inherits their unification. (The underlying intuitive motivation is that LS-
formulas whose labels are σL-unifiable turns out to be true (false) at the same world(s) 
relative to the associated conditions on R). PB (the "Principle of Bivalence") and PNC (the 
"Principle of Non-Contradiction") are "structural" rules. PB represents the (LS-version of 
the) semantic counterpart of the cut rule of the sequent calculus (intuitive meaning: a 
formula A is either true or false in any given world, whence the requirement that i be 
restricted). PNC corresponds to the familiar branch-closure rule of the tableau method, 
saying that from a contradiction of the form (occurrence of a pair of σL-complementary 
LS-formulas) X,i, XC,k on a branch we may infer the closure ("×") of the branch. The (i,k)
σL in the "conclusion" of PNC means that the contradiction holds "in the same world".  

It can be proved ([AG93],[AG94]) that the above rules give a sound and complete system 
for a wide variety of normal modal logics.  
 
 
 
4  Proof search 
 
As usual with refutation methods, a proof of a formula A of L consists of attempting to 
construct a countermodel for A by assuming that A is false in some arbitrary L-model. 
Every successful proof discovers a contradiction in the putative countermodel. In this 
section we describe an algorithm which does this job and that can be easily implemented 
in Prolog (see Section 7 below). The following definitions are extensions to the modal 
case of those given for the classical case in [DM94].  

By a KED-tree we mean a tree generated by the inference rules of KED. A branch τ of a 
KED-tree will be said to be σL-closed if it ends with an application of PNC. A KED-tree 
will be said to be σL-closed if all its branches are σL-closed. A L-proof of a formula A is a 
σL-closed KED-tree starting with FA,i. Given a branch τ of a KED-tree, we shall call a LS-
formula X,i E-analysed in τ if either (i) X is of type α and both α1,i and α2,i occur in τ; or 
(ii) X is of type β and one of the following conditions is satisfied: (a) if βC

1,k occurs in τ 
and (i,k)σL, then also β2,(i,k)σL occurs in τ, (b) if βC

2,k occurs in τ and (i,k)σL, then also 
β1,(i,k)σL occurs in τ; or (iii) X is of type ν and ν0,(i' ,i) occurs in τ for some i' ∈ ΦV not 
previously occurring in τ, or (iv) X is of type π and π0,(i' ,i) occurs in τ for some i' ∈ ΦC not 
previously occurring in τ. We shall call a branch τ of a KED-tree E-completed if every LS-
formula in it is E-analysed and there are no complementary formulas which are not σL-
complementary. Finally, we shall call a LS-formula X,i of type β fulfilled in a branch τ if 
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either β1,i'  or β2,i' occur in τ, where either (i) i'  = i, or (ii) i' is obtained from i by 
instantiating h(i) to a constant not occurring in i, or (iii) i'  = (i,k)σL for some βC

i,k (i = 1,2) 
such that (i,k)σL. We shall say that a branch τ of a KED-tree is completed if it is both E-
completed and all the LS-formulas of type β in it are fulfilled. We shall call a KED-tree 
completed if every branch is completed. Let us denote by Λ (Lambda) the set of LS-

formulas which occur non analysed, by ∆ (Delta) any branch, and by �  the set of labels. 

The KED algorithm runs as follows (the quotations in brackets refer to the Prolog 
implementation in Section 7). To prove a formula A of L  
 

STEP 0. Assign to A an arbitrary constant label i, and put SA,i    in ∆ and i in � .  

 
STEP 1 (cke 1). If a pair of σL-complementary LS-formulas occurs in ∆, then the tree is σL-
closed and A is a theorem of L. 
 
STEP 2 (cke 3). Delete all literals from ∆. If ∆ is empty, then the tree is completed. 
 
STEPS 3, 4 (cke 5,6). For each formula π,i (ν,i) in ∆ (i) generate a new restricted 

(unrestricted) label (i' ,i) and add it to � ; (ii) add π0,(i',i ) (ν0,(i',i)) to Λ; and (iii) delete π,i 

(ν,i) from ∆.  
 

STEP 5 (cke 7). For each formula α,i in ∆, (i) add α1,i, α2,i to ∆; (ii) delete α,i from ∆; and 
(iii) add α,i to Λ. 
 
STEP 6 (cke 8). For each formula β,i in ∆, such that either β1,k or β2,k is in ∆ ∪ Λ and 
(i,k)σL, (i) delete β,i  from ∆, and (ii) add β,i to Λ. 
 
STEP 7 (cke 9,10). For each formula β,i in ∆ such that either βC

1,k or βC
2,k is in ∆ ∪ Λ 

and (i,k)σL for some label k, (i) add β2(i,k)σL or β1(i,k)σL to ∆; (ii) delete β,i from ∆; (iii) 
add the labels resulting from the σL-unification to � ; and (iv) add β,i to Λ. 

 
STEP 8.1 (cke 11). For each formula β,i in ∆, if  ∆∪ Λ does not contain formulas βC

1,k 
such that i, k are not σL-unifiable, then form sets ∆1 = ∆∪β1,m and ∆2 = ∆∪βC

1,m (where 
(i,m)σL, and m is a given restricted label). 

 
STEP 8.2 (cked 12).  For each formula β,i in ∆, if ∆∪ Λ does not contain formulas βC

2,k 
such that i, k are not σL-unifiable, then form sets ∆1 = ∆∪β2,m, and ∆2 = ∆∪βC

2,m (where 
(i,m)σL, and m is a given restricted label). 
 

Remark 1: The steps 8.1 and 8.2 are logic and label dependent. This mean that if the label 
of X is restricted, its immediate signed subformulas have the same label as X, otherwise 

we have to deal with two cases: a) search whether �  contains restricted labels which σL-

unify with the label of X; if so the rule is applied to all such labels; b) if L is an idealisable 
logic then, if the search fails, h(i) is instantiated to a new constant label not previously 
occurring. 
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STEP 9 (cke14). If Λ contains two complementary but not σL-complementary formulas, 

search in �  for restricted labels which σL-unify with both the labels of the complementary 

formulas; if we find such labels then the tree is closed and A is a theorem of L. 
 
STEP 10 (cke15). If Λ contains two complementary but not σL-complementary formulas , 

search in �  for restricted labels which σL-unify with both the labels of the complementary 

formulas; if we do not find such labels then the tree is completed and A is not a theorem of 
L. 
  

This procedure is based on the procedure for canonical KED-trees. A KED-tree is said to 
be canonical iff the applications of 1-premise rule come before the applications of 2-
premise rules, which preceed the applications of the 0-premise rule. The following 
theorems state some interessing properties of canonical KED-trees: 
 
THEOREM 1. A canonical KED-tree always terminates. 
 
THEOREM 2. A KED-tree for a formula A of L is closed iff the canonical KED-tree for A 
is closed. 

 
Theorem 1 follows from the fact that at each step there are at most a finite number of 

new LS-formulas of less complexity, and that the number of labels which can occur in the 
KED-tree for a formula A (of L) is limited by the number of modal operators in A. 
Theorem 2 follows from the fact that a canonical KED-tree is a KED-tree and that a KED-
tree explores all the possibile alternatives that can imply closure (for detail see [ACG94a]).  

 
Remark 2: It should be noticed that in the above procedure PB is applied only to 

immediate signed subformulas of LS-formulas of type β which occur (unfulfilled) in the 
chosen branch, and only when the branch has been E-completed, i.e., when the E-rules are 
no further applicable. Such a restricted use of the cut rule removes from the search space 
the redundancy generated by the standard tableau branching rules. Indeed it is easy to see 
that the given procedure makes all choices in such a way that at each step of proof search 
the search space is as small as possible, while preserving the subformula property of 
proofs (see [DM94]).  
 
5  An example 
 
We illustrate the KED-based search procedure with the help of an example. The following 
is a D-proof of the formula (PA∨OB)→P(A∨B). 

   (1) F(PA∨OB)→P(A∨B), w1 
   (2) TPA∨OB, w1 
   (3) FP(A∨B), w1 
   (4) FA∨B, (W1,w1) 
   (5) FA, (W1,w1) 
   (6) FB, (W1,w1) 
 (7) TPA, w1    (8)   FPA, w1 
 (9) TA, (w2,w1)   (10) TOB, w1 
        ×    (w2,w1)   (11) TB, (W2,w1) 
               ×   (w2,w1) 
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The steps leading to the nodes (1)-(6) are straightforward. At this stage, to complete the 

branch we pick out the only LS-formula of type β which is not yet fulfilled in it, i.e., (2), 
and apply PB so that the resulting LS-formulas are (7) and (8). At this point an application 
of π-rule σD-closes the left branch ((5) and (9) are obviously σD-complementary by 
condition (i) of the above definition). To make the right branch E-completed, we choose 
the only LS-formula of type β which is not yet analysed in it, i.e., (2), and try to σD-unify 
its label with the label of βC

1,k (i.e., (8)). Since this unification succeeds we are allowed to 
derive β2,(i,k)σD at the node (10). Now an application of ν-rule σD-closes the branch. The 
resulting KED-tree is thus σD-closed. Notice that (6) and (11), are σD- but not σOK-
complementary (their labels are obviously not σOK-unifiable, and thus not σOK-unifiable). 
Then this KED-tree constitutes a D- (and, of course, a D4-, DB-) proof, but not a OK-proof 
of the given formula.  
 
 
6  Final remarks 
 
Let us conclude with some comments on KED and related systems. In our opinion KED 
has several advantages over most automated theorem proving systems for non-classical 
logics currently available. Here we mention only a few. In contrast with both clausal and 
non clausal resolution methods ([AEH90], [AM86], [Cia86], [EF89], [Far85], [Far86], 
[Cha87]), and in general "translation-based" methods ([AE92], [Ohl87], [Ohl89], 
[Ohl91]), KED requires no preprocessing of the input formulas and provides a simple and 
uniform treatment of a wide class of normal modal logics ([AG94], [ACG94b]). From this 
perspective it is similar to sequent or tableau proof methods ([Fit88], [GD88], [JR89], 
[Wol85]), which avoid ad hoc manipulation of the modal formulas and can be easily 
extended to a wide variety of non-classical logics. Nevertheless, it is well-known that 
sequent/tableau inference techniques are affected by considerable redundancies which 
prevent the development of computationally efficient proof search methods. KED is based 
on Mondadori's ([Mon88]) classical proof system KE which, though being tableau-like, 
has been proved ([DM94]) to offer many computational advantages over standard tableau 
method, including considerable gain in efficiency and conciseness. The critical feature of 
KED is that it developed as a labelled system, similar in spirit to D'Agostino and Gabbay 
[DG93]) tableau extensionwith labels. The idea of using a label scheme to bookkeep 
"world" paths in modal theorem proving is not new, going back at least to [Fi66]. Similar, 
or related, ideas are found in [Fit72], [Fit83], [Tap87] and [Wri85] and, more recently, in 
[Cat91], [JR89], [Wal90] and also in the "translation" tradition of [Ae92], [Ohl89], 
[Ohl91], [Ohl93]. As in Wallen's ([Wal90], [Gen93]) matrix proof method, KED's label 
scheme allows the modal operators to be dealt with using a specialized, logic-dependent 
unification algorithm to overcome the non-permutability of the usual tableau (and 
resolution) modal rules. However, unlike the Wallen's method (a generalization of Bibel's 
classical connection method) KED implements directly familiar, natural inference patterns, 
and so it appears to provide an adequate basis for combining both efficiency and 
naturalness. In effect, we believe that KED lends itself well to both interactive and AI 
applications. As its Prolog implementation (see Section 7 below) has shown, KED method 
of proof is simple and easy to implement - but simple enough to be used without a 
machine. These are not, however, the only advantages of KED's label unification scheme. 
For example, the index formalism of Jackson and Reichgelt's ([JR89]) sequent-resolution 
based proof system is almost identical, but the unification algorithm used to resolve 



KED: A Deontic Theorem Prover 

complementary formulas in the various modal logics does not work for the non-idealisable 
K logics. Further advantages of KED label formalism are that (i) it avoids loop-checking 
and reduplication (see Section 4 above); (ii) it supports a deduction method closely related 
to the semantics of modal operators; and (iii) it works for modal logics whose 
characteristic semantic properties have no first-order characterization, such as the Gödel-
Löb logic of provability [Boo79].  

In this paper we have been concerned with SDL. This may be seen as a major limitation, 
since it is currently held that SDL fails to provide a framework suited for applications in 
the AI and Law field, its use being limited to very general and unproblematic features of 
normative language and reasoning. Nervertheless, the method for automated deduction in 
SDL we presented in this paper is sufficiently generic and flexible to provide an 
appropriate algorithmic proof framework for deontic logics of greater richness and 
complexity. For example, it can be easily extended to multi modal logics (e.g., to the 
deontic logic of the Jones-Pörn type [JP85]), by simply introducing several sorts of 
"worlds", both constants and variables, or by building indexed labels where an index tells 
us what kind of world is denoted by a label, and the way you get there. Moreover several 
specialised substitutions have to be defined in order to conform to the constraints of the 
logic to be dealt with (of course, these tecniques can be combined). 
 
 
7  A sample of a KED Prolog program 
 
The following Prolog implementation of KED is based on that of the classical proof 
system KE by Pitt and D'Agostino (see [DP94]).  
KED selects a deontic logic L and it runs the KED rules for that logic. If the input formula 
is a theorem of L the program will output the entire reserch path with the final answer 
"closed" "theorem of L", and KED stops to run. If the input formula is not L-satisfiable, 
KED selects another logic and try to find the solution. The complete Prolog version of 
KEM ("M" for "modal") can prove formulas of the following logics K, D, T, K4, D4, S4, 
K5, D5, KB, DB, B, K4B, K45, D45, and S5 (see [ACG94a]). The ":" operator attaches 
labels to formulas and "labeltree()" records the labels. In this way the labels have a 
semantical control concurrent function over the syntactical inference rules. In what 
follows, ->, +, &, ˜, $, @ denotes →, ∨, ∧, ¬, P, O respectively. 
 

Quintus implementations on SparcStation 10. 

/*      KED   - Deontic Theorem Proving   -  by Alberto Artosi, Paola Cattabriga,and Guido Governatori.*/ 

 

:- ensure_loaded(library(basics)). 

:- ensure_loaded(library(occurs)). 

:- ensure_loaded(library(term_depth)). 

 

:- op(800,xfx,:). 

:- op(600,xfy,->). 

:- op(550,xfy,+). 

:- op(450,xfy,&). 

:- op(300,fy, ~). 

:- op(240,fy,$). 

:- op(240,fy,@). 

 

all_log(SetOfFormula):- 

findall(SetOfFormula,pr(SetOfFormula),_). 

 

pr(SetOfFormula):- logic(L), 

               

                pr1(SetOfFormula), 

                retract(log(L)). 

 

pr(L,SetOfFormula):- logic(L), 

                pr1(SetOfFormula), 

                retractall(log(LL)). 

 

pr1(SetOfFormula):-   statistics(runtime,[T1|_]), 

               log(L), 

               assert(labeltree([i(w(1),w(1))])), 

               label(SetOfFormula,SLF), 

               cke(SLF,[],Result), !, 

               statistics(runtime,[T2|_]), 

               T is T2 - T1, 

               write(Result), write('  in  '), write(L), nl, 

               write('   in   '), write(T), write('  msecs.'), nl,nl, 
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              retract(labeltree(_)). 

 

cke(_,Lambda,unsatisfiable):- 

               member(I: ~A,Lambda), 

               member(K: A,Lambda), 

               log(L), 

               unifylow(L,I,K,_), write(I: ~A), write(', '), 

               write(K: A), 

               write(' unify in  '), write(L), nl, 

               write(Lambda), 

               write('***closed'), nl, !. 

 

cke([],Lambda,satisfiable):- 

               write(Lambda), 

               write('***completed'), nl, !. 

 

cke(Delta,Lambda,Result):- 

               append(H,[F|T],Delta), 

               literal(F), 

               append(H,T,Delta1), 

               write(Delta), write( <---> ), write(Lambda), nl, 

               write('literal'), nl, 

               cke(Delta1,[F|Lambda],Result). 

 

cke(Delta,Lambda,Result):- 

                append(H,[I: ~(~A)|T],Delta), 

                append(H,[I:A|T],Delta1), 

                write('double negation elimination'), nl, 

                cke(Delta1,[I: ~(~A)|Lambda],Result). 

 

cke(Delta,Lambda,Result):- 

                append(H,[I: F|T],Delta), 

                type_ni(I: F,K: A),  genv(I,K), 

                labeltree(K,V), 

                append(H,[K: A|T],Delta1), 

                write(Delta), write( <---> ), write(Lambda), nl, 

                write('ni elimination'), nl, 

                cke(Delta1,[I: F|Lambda],Result). 

 

cke(Delta,Lambda,Result):- 

                append(H,[I: F|T],Delta), 

                type_pi(I: F,K : A), genc(I,K), 

                labeltree(K,V), 

                append(H,[K: A|T],Delta1), 

                write(Delta), write( <---> ), write(Lambda), nl, 

                write('pi elimination'), nl, 

                cke(Delta1,[I: F|Lambda],Result). 

 

cke(Delta,Lambda,Result):- 

                append(H,[F|T],Delta), 

                type_alpha(F,A1,A2), 

                append(H,[A1,A2|T],Delta1), 

                write(Delta), write( <---> ), write(Lambda), nl, 

                write('alpha elimination'), nl, 

                cke(Delta1,[F|Lambda],Result). 

 

cke(Delta,Lambda,Result):- 

                append(H,[I: F|T],Delta), 

                type_beta(I: F,K: B1,R:B2), 

                append(Delta,Lambda,DuL), log(L), 

                ((member(K: B1,DuL), unifylow(L,I,K,_), 

                write(I: F), 

                write(', '),write(K: B1), 

                write(' unify in  '), write(L), nl); 

                (member(R: B2,DuL), unifylow(L,I,R,_),  

                write(I: F), 

                write(', '),write(R: B2), 

                write(' unify in  '), write(L), nl)), 

                append(H,T,Delta1), 

                write(Delta), write( <---> ), write(Lambda), nl, 

                write('beta semplification 1'), nl, 

                cke(Delta1,[I: F|Lambda],Result). 

 

cke(Delta,Lambda,Result):- 

                append(H,[X: F|T],Delta), 

                type_beta(X: F,B1,Q: B2), 

                append(Delta,Lambda,DuL), 

                complement(B1,Y: B1c), 

                member(Y: B1c,DuL), log(L), 

                unifylow(L,X,Y,R), labeltree(R,V), 

                append(H,[R: B2|T],Delta1), 

                write(X: F), write(', '),write(Y: B1c), 

                write(' unify in  '), write(L), nl, 

                write(Delta), write(  <---> ), write(Lambda), nl, 

                write('beta elimination 1'), nl, 

                cke(Delta1,[F|Lambda],Result). 

 

cke(Delta,Lambda,Result):- 

                append(H,[X: F|T],Delta), 

                type_beta(X: F,Q: B1,B2), 

                append(Delta,Lambda,DuL), 

                complement(B2,Y: B2c), 

                member(Y: B2c,DuL), log(L), 

                unifylow(L,X,Y,R),labeltree(R,V), 

                append(H,[R:B1|T],Delta1), 

                write(X: F), write(', '),write(Y: B2c), 

                write(' unify in  '), write(L), nl, 

                write(Delta), write( <---> ), write(Lambda), nl, 

                write('beta elimination 2'), nl, 

                cke(Delta1,[F|Lambda],Result). 

 

cke(Delta,Lambda,Result):- 

                append(H,[I: F|T],Delta), 

                type_beta(I: F,K: B1,_), 

                labeltree(V), log(L), 

                ((member(i(w(Y),X),V),  

                unifylow(L,I,i(w(Y),X),_),i(w(Y),X)= K); 

                ((log(d); log(d4); log(d5); log(d45); log(db)), 

                memb(i(vw(Z),X1),V), genc(X1,K),  

                unifylow(L,I,K,_))), 

                write(I: F), write(', '),write(K: B1), 

                write(' unify in  '), write(L), nl, 

                complement(K: B1,K: B1c), 

                append(H,[K: B1,I: F|T],Delta1), 
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                append(H,[K: B1c,I: F|T],Delta2), 

                write('pb1'), nl, 

                write('branch 1'), nl, 

                cke(Delta1,Lambda,R1), 

                write('branch 2'), nl, 

                cke(Delta2,Lambda,R2), 

                eval(R1,R2,Result). 

 

cke(Delta,Lambda,Result):- 

                append(H,[I: F|T],Delta), 

                type_beta(I: F,_,K: B2), 

                labeltree(V), log(L), 

                ((member(i(w(Y),X),V),  

                unifylow(L,I,i(w(Y),X),_),i(w(Y),X)= K);  

                ((log(d); log(d4); log(d5); log(d45); log(db)), 

                memb(i(vw(Z),X1),V), genc(X1,K),  

                unifylow(L,I,K,_))), 

                write(I: F), write(', '),write(K: B2), 

                write(' unify in  '), write(L), nl, 

                complement(K: B2,K: B2c), 

                append(H,[K: B2,I: F|T],Delta1), 

                append(H,[K: B2c,I: F|T],Delta2), 

                write('pb2'), nl, 

                write('branch 1'), nl, 

                cke(Delta1,Lambda,R1), 

                write('branch 2'), nl, 

                cke(Delta2,Lambda,R2), 

                eval(R1,R2,Result). 

 

cke(_,Lambda,unsatifiable):- 

                member(I: ~A,Lambda), 

                member(K: A,Lambda), 

                labeltree(H), 

                member(i(w(Y),X),H), R = i(w(Y),X), log(L), 

                unifylow(L,K,R,R1), unifylow(L,I,R,R1), 

                write(I: ~A), write(', '), write(K: A), 

                write(' unify in  '), write(L), nl, 

                write(Lambda), 

                write('***closed pb mod'), nl, !. 

 

cke([],Lambda,satisfiable):- 

                member(I: ~A,Lambda), 

                member(K: A,Lambda), 

                labeltree(H), 

                member(i(w(Y),X),H), R = i(w(Y),X), log(L), 

                \+ unifylow(L,K,R,R1), \+ unifylow(L,I,R,R1), 

                write(Lambda), 

                write('***completed pb mod'), nl, !. 

 

eval(satisfiable,_,satisfiable). 

eval(_,satisfiable,satisfiable). 

eval(_,_,unsatisfiable). 

 

literal(I:A):- atom(A). 

literal(I: ~A):- atom(A). 

 

complement(I: ~A,K: A). 

complement(I: A,K: ~A). 

 

type_alpha(I: ~(A+B),I: ~A,I: ~B). 

type_alpha(I: A&B,I: A,I: B). 

type_alpha(I: ~(A->B),I: A,I: ~B). 

 

type_beta(I: A+B,J: A,K: B). 

type_beta(I: ~(A&B),J: ~A,K: ~B). 

type_beta(I: A->B,J: ~A,K: B). 

 

type_ni(I : $ A,K : A). 

type_pi(I : @ A,K : A). 

type_ni(I : ~ @ A,K : ~A). 

type_pi(I : ~ $ A,K : ~A). 

 

label([],[]). 

label([T|C],[Y: T|C1]):- labeltree(X), 

member(Y,X),label(C,C1). 

 

labeltree(K,V):- labeltree(V), retract(labeltree(V)), 

                assert(labeltree([K|V])). 

 

costants(w(1)). 

costants(w(N1)):- costants(w(N)), N1 is N+ 1. 

variables(vw(1)). 

variables(vw(N1)):- variables(vw(N)), N1 is N+ 1. 

 

genc(_,i(w(2),i(w(1),w(1)))):- labeltree([i(w(1),w(1))]). 

genc(I,i(w(N),I)):- labeltree(T), costants(w(N)), 

                append([A|_],C,T), \+ (sub_term(w(N),A)), !. 

 

genv(_,i(vw(1),i(w(1),w(1)))):- labeltree([i(w(1),w(1))]). 

genv(I,i(vw(N),I)):- labeltree(T), variables(vw(N)), 

                append([A|_],C,T),  \+ (sub_term(vw(N),A)), !. 

 

logic(L):-  selectlogic(L), assert(log(L)). 

selectlogic(k). 

selectlogic(d). 

selectlogic(d4). 

selectlogic(d5). 

selectlogic(d45). 

selectlogic(db). 

 

/*  unification   theory  over  labels   */ 

 

unifylow(L,X,Y,Z):- log(L), low(L,X,Y,Z). 

low(k,X,Y,Z):- lowunifyk(X,Y,Z). 

low(d,X,Y,Z):- unifyd(X,Y,Z). 

low(d4,X,Y,Z):- lowunifyd4(X,Y,Z). 

low(d5,X,Y,Z):- lowunifyd5(X,Y,Z). 

low(d45,X,Y,Z):- lowunifyd45(X,Y,Z). 

low(db,X,Y,Z):- lowunifydb(X,Y,Z). 

 

unifyd(vw(N),vw(N1),vw(N2)):- (N >= N1, N2 = N);  

               N1 =N2. 

unifyd(w(N),vw(N1),w(N)). 

unifyd(vw(N1),w(N),w(N)). 
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unifyd(w(N),w(N),w(N)). 

unifyd(i(A,B),i(C,D),i(E,G)):-  functor(i(A,B),F,N), 

                functor(i(C,D),F,N), 

                unifyargs(N,i(A,B),i(C,D),i(E,G)). 

 

unifyargs(N,X,Y,T):- N>0, unifyarg(N,X,Y,AT),  

                N1 is N - 1, 

                functor(T,i,2), arg(N,T,AT), 

                unifyargs(N1,X,Y,T). 

unifyargs(0,X,Y,T). 

unifyarg(N,X,Y,AT):- arg(N,X,AX), arg(N,Y,AY), 

                unifyd(AX,AY,AT). 

 

/* reductions and low unifications*/ 

/*low unification for K, D are equal to high unification.*/ 

 

reduct4(i(w(N),w(N1)),i(w(N),w(N1))):- !. 

reduct4(i(vw(N),w(N1)),i(vw(N),w(N1))):- !. 

reduct4(i(vw(N),i(vw(N1),w(N2))),i(vw(N),i(vw(N1),w(N2)))):- !. 

reduct4(i(vw(N),i(w(N1),w(N2))),i(vw(N),i(w(N1),w(N2)))):- !. 

reduct4(T1,T2):- compound(T1), arg(1,T1,H1), 

arg(2,T1,B1), arg(2,B1,BB1), 

                functor(T2,i,2), arg(1,T2,H1), arg(2,T2,BB1). 

 

reductb(i(w(N),w(N1)),i(w(N),w(N1))):- !. 

reductb(i(vw(N),w(N1)),i(vw(N),w(N1))):- !. 

reductb(i(vw(N),i(vw(N1),w(N2))),i(vw(N),i(vw(N1),w(N2)))):- !. 

reductb(i(vw(N),i(w(N1),w(N2))),i(vw(N),i(w(N1),w(N2)))):- !. 

reductb(T1,T2):- compound(T1), H = i(vw(N),S), 

                sub_term(H,T1), arg(2,S,B1),  

                subs(H,T1,B1,T2). 

 

reduct5(i(w(1),w(1)),i(w(1),w(1))):- !. 

reduct5(i(vw(N),w(N1)),i(vw(N),w(N1))):- !. 

reduct5(T1,T2):- compound(T1),  H = i(w(N), S), 

                sub_term(H,T1), arg(2,S,B1), 

                subs(H,T1,B1,T2). 

 

reduct5(T1,T2):- compound(T1),  arg(1,T1,H1), 

                arg(2,T1,B1), arg(2,B1,BB1),  

                functor(T2,i,2), arg(1,T2,H1), arg(2,T2,BB1). 

 

subs(T,T,T1,T1):- !. 

subs(_,T,_,T):- atom(T), !. 

subs(S,T,S1,T1):- T =..[F|Arg], subslist(S,Arg, S1,Arg1), 

                T1 =.. [F|Arg1]. 

 

subslist(_,[],_,[]). 

subslist(S,[T|Ts], S1,[T1|T1s]):-  subs(S,T,S1,T1), 

                subslist(S,Ts,S1,T1s). 

lowunifyk(T1,T2,T3):-  unifyk(T1,T2,T3). 

 

lowunifyd4(T1,T2,T3):- arg(1,T1,w(Y)),  arg(1,T2,w(X)), 

                X \== Y, !, fail. 

lowunifyd4(T1,T2,T3):-  unifyd(T1,T2,T3);  

               unifyd4(T1,T2,T3). 

lowunifyd4(T1,T2,T3):-  reduct4(T1,R1), T1 \== R1,  

               lowunifyd4(R1,T2,T3). 

lowunifyd4(T1,T2,T3):-  reduct4(T2,R2), T2 \== R2, 

                lowunifyd4(T1,R2,T3). 

lowunifyd4(T1,T2,T3):-  reduct4(T1,R1), reduct4(T2,R2),   

               T1 \== R1, T2 \== R2, lowunifyd4(R1,R2,T3). 

 

lowunifydb(T1,T2,T3):- arg(1,T1,w(Y)),  arg(1,T2,w(X)),  

                X \== Y, !, fail. 

lowunifydb(T1,T2,T3):-  unifyd(T1,T2,T3). 

lowunifydb(T1,T2,T3):-  reductb(T1,R1), T1 \== R1,  

               lowunifydb(R1,T2,T3). 

lowunifydb(T1,T2,T3):-  reductb(T2,R2), T2 \== R2,  

                lowunifydb(T1,R2,T3). 

lowunifydb(T1,T2,T3):-  reductb(T1,R1), reductb(T2,R2),  

                T1 \== R1, T2 \== R2, lowunifydb(R1,R2,T3). 

 

lowunifyd5(T1,T2,T3):- unifyd(T1,T2,T3). 

lowunifyd5(T1,T2,T3):- unifyd5(T1,T2,T3). 

lowunifyd5(T1,T2,T3):-  reduct5(T1,R1), T1 \== R1,  

                lowunifyd5(R1,T2,T3). 

lowunifyd5(T1,T2,T3):-  reduct5(T2,R2), T2 \== R2,  

                lowunifyd5(T1,R2,T3). 

lowunifyd5(T1,T2,T3):-  reduct5(T1,R1), reduct5(T2,R2),  

                T1 \== R1, T2 \== R2, 

                lowunifyd5(R1,R2,T3). 

 

lowunifyd45(T1,T2,T3):- arg(1,T1,w(Y)),  arg(1,T2,w(X)),  

                X \== Y, !, fail. 

lowunifyd45(T1,T2,T3):- lowunifyd5(T1,T2,T3). 

lowunifyd45(T1,T2,T3):-  reduct4(T1,R1), T1 \== R1,  

                 lowunifyd45(R1,T2,T3). 

lowunifyd45(T1,T2,T3):-  reduct4(T2,R2), T2 \== R2, 

                 lowunifyd45(T1,R2,T3). 

lowunifyd45(T1,T2,T3):-  reduct4(T1,R1),  

                 reduct4(T2,R2), T1 \== R1, T2 \== R2,  

                 lowunifyd45(R1,R2,T3). 

 

/* high unification */ 

 

unifyk(T1,T2,T3):- arg(1,T1,H1), arg(1,T2,H2),  

                (H1 = w(N); H2 = w(N)), 

                unifyd(T1,T2,T3). 

 

unifyd4(T1,T2,T3):- mycompare(>,T1,T2), 

                arg(1,T2,vw(N)), arg(2,T1,B1), 

                arg(1,T1,H1), unifyd(H1,vw(N),H3), 

                functor(T3,i,2), arg(1,T3,H3), arg(2,T3,B3), 

                (unifyd(B1,T2,B3); unifyd4(B1,T2,B3)). 

 

unifyd4(T1,T2,T3):- mycompare(<,T1,T2), 

                arg(1,T1,vw(N)), arg(2,T2,B2), 

                arg(1,T2,H2), unifyd(H2,vw(N),H3), 

                functor(T3,i,2), arg(1,T3,H3), arg(2,T3,B3), 

                (unifyd(T1,B2,B3); unifyd4(T1,B2,B3)). 

 

unifyd5(T1,T2,T3):- (arg(1,T1,w(N));  

                mycompare(=,T1,T2)), arg(1,T2,H2), 
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                unifyd(w(N),H2,H3), 

                arg(2,T1,B1),  arg(2,B1,BB1), arg(2,T2,B2), 

                (unifyd(BB1,B2,B3); unifyd5(BB1,B2,B3)), 

                functor(T3,i,2), arg(1,T3,H3), arg(2,T3,B3). 

 

unifyd5(T1,T2,T3):- (arg(1,T2,w(N));  

                mycompare(=,T1,T2)) , arg(1,T1,H1), 

                unifyd(H1,w(N),H3), 

                arg(2,T2,B2),  arg(2,B2,BB2), arg(2,T1,B1), 

                (unifyd(B1,BB2,B3); unifyd5(B1,BB2,B3)), 

                functor(T3,i,2), arg(1,T3,H3), arg(2,T3,B3). 

 

unifyd5(T1,T2,T3):- (arg(1,T1,w(N)); 

                mycompare(>,T1,T2)) , arg(1,T2,H2), 

                unifyd(w(N),H2,H3), 

                arg(2,T1,B1),  arg(2,B1,BB1), arg(2,T2,B2), 

                unifyd5(BB1,B2,B3), 

                functor(T3,i,2), arg(1,T3,H3), arg(2,T3,B3). 

 

unifyd5(T1,T2,T3):- (arg(1,T2,w(N));  

                mycompare(<,T1,T2)) , arg(1,T1,H1), 

                unifyd(H1,w(N),H3), 

                arg(2,T2,B2),  arg(2,B2,BB2), arg(2,T1,B1), 

                unifyd5(B1,BB2,B3), 

                functor(T3,i,2), arg(1,T3,H3), arg(2,T3,B3). 

 

mycompare(Rel,T1,T2):- term_depth(T1,N1), 

                term_depth(T2,N2), compare(Rel,N1,N2). 

 

 

Example 

 

| ?- pr(d,[~((@a + $b) -> $(a+b))]). 

[i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))]<--->[] 

alpha elimination 

[i(w(1),w(1)): @a+ $b,i(w(1),w(1)): ~ $ (a+b)]<--->[i(w(1),w(1)): ~ (@a+ $b-> $(a+b))] 

pi elimination 

[i(w(1),w(1)): @a+ $b,i(w(2),i(w(1),w(1))): ~ (a+b)]<--->[i(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] 

alpha elimination 

[i(w(1),w(1)): @a+ $b,i(w(2),i(w(1),w(1))): ~a,i(w(2),i(w(1),w(1))): ~b]<--->[i(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $ (a+b), 

i(w(1),w(1)): ~ (@a+ $b-> $(a+b))] 

literal 

[i(w(1),w(1)): @a+ $b,i(w(2),i(w(1),w(1))): ~b]<--->[i(w(2),i(w(1),w(1))): ~a,i(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $ (a+b), 

i(w(1),w(1)): ~ (@a+ $b-> $(a+b))] 

literal 

i(w(1),w(1)): @a+ $b, i(w(1),w(1)): @a unify in  d 

pb1 

branch 1 

[i(w(1),w(1)): @a,i(w(1),w(1)): @a+ $b]<--->[i(w(2),i(w(1),w(1))): ~b,i(w(2),i(w(1),w(1))): ~a,i(w(2),i(w(1),w(1))): ~ (a+b), 

i(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] 

pi elimination 

[i(w(3),i(w(1),w(1))):a,i(w(1),w(1)): @a+ $b]<--->[i(w(1),w(1)): @a,i(w(2),i(w(1),w(1))): ~b,i(w(2),i(w(1),w(1))): ~a 

,i(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] 

literal 

i(w(1),w(1)): @a+ $b, i(w(1),w(1)): @a unify in  d 

[i(w(1),w(1)): @a+ $b]<--->[i(w(3),i(w(1),w(1))):a,i(w(1),w(1)): @a,i(w(2),i(w(1),w(1))): ~b,i(w(2),i(w(1),w(1))): ~a 

,i(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] 

beta semplification 1 

[i(w(1),w(1)): @a+ $b,i(w(3),i(w(1),w(1))):a,i(w(1),w(1)): @a,i(w(2),i(w(1),w(1))): ~b,i(w(2),i(w(1),w(1))): ~a, 

(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $(a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))]***completed 

branch 2 

[i(w(1),w(1)): ~ @a,i(w(1),w(1)): @a+ $b]<--->[i(w(2),i(w(1),w(1))): ~b,i(w(2),i(w(1),w(1))): ~a,i(w(2),i(w(1),w(1))): ~ (a+b), 

(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] 

ni elimination 

[i(vw(1),i(w(1),w(1))): ~a,i(w(1),w(1)): @a+ $b]<--->[i(w(1),w(1)): ~ @a,i(w(2),i(w(1),w(1))): ~b,i(w(2),i(w(1),w(1))): ~a, 

(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] 

literal 

i(w(1),w(1)): @a+ $b, i(w(1),w(1)): ~ @a unify in  d 

[i(w(1),w(1)): @a+ $b]<--->[i(vw(1),i(w(1),w(1))): ~a,i(w(1),w(1)): ~ @a,i(w(2),i(w(1),w(1))): ~b,i(w(2),i(w(1),w(1))): ~a, 

(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] 

beta elimination 1 
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[i(w(1),w(1)): $b]<--->[@a+ $b,i(vw(1),i(w(1),w(1))): ~a,i(w(1),w(1)): ~ @a,i(w(2),i(w(1),w(1))): ~b,i(w(2),i(w(1),w(1))): ~a, 

(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] 

ni elimination 

[i(vw(1),i(w(1),w(1))):b]<--->[i(w(1),w(1)): $b,@a+ $b,i(vw(1),i(w(1),w(1))): ~a,i(w(1),w(1)): ~ @a,i(w(2),i(w(1),w(1))): ~b, 

(w(2),i(w(1),w(1))): ~a,i(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] 

literal 

i(w(2),i(w(1),w(1))): ~b, i(vw(1),i(w(1),w(1))):b unify in  d 

[i(vw(1),i(w(1),w(1))):b,i(w(1),w(1)): $b,@a+ $b,i(vw(1),i(w(1),w(1))): ~a,i(w(1),w(1)): ~ @a,i(w(2),i(w(1),w(1))): ~b, 

(w(2),i(w(1),w(1))): ~a,i(w(2),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ $ (a+b),i(w(1),w(1)): ~ (@a+ $b-> $ (a+b))] ***closed 

satisfiable  in  d 

   in   267  msecs. 
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