1,829 research outputs found

    Classroom Examples of Robustness Problems in Geometric Computations

    Get PDF
    International audienceThe algorithms of computational geometry are designed for a machine model with exact real arithmetic. Substituting floating point arithmetic for the assumed real arithmetic may cause implementations to fail. Although this is well known, there is no comprehensive documentation of what can go wrong and why. In this extended abstract, we study a simple incremental algorithm for planar convex hulls and give examples which make the algorithm fail in all possible ways. We also show how to construct failure-examples semi-systematically and discuss the geometry of the floating point implementation of the orientation predicate. We hope that our work will be useful for teaching computational geometry. The full paper is available at http://hal.inria.fr/inria-00344310/. It contains further examples, more theory, and color pictures. We strongly recommend to read the full paper instead of this extended abstract

    A programme to determine the exact interior of any connected digital picture

    Full text link
    Region filling is one of the most important and fundamental operations in computer graphics and image processing. Many filling algorithms and their implementations are based on the Euclidean geometry, which are then translated into computational models moving carelessly from the continuous to the finite discrete space of the computer. The consequences of this approach is that most implementations fail when tested for challenging degenerate and nearly degenerate regions. We present a correct integer-only procedure that works for all connected digital pictures. It finds all possible interior points, which are then displayed and stored in a locating matrix. Namely, we present a filling and locating procedure that can be used in computer graphics and image processing applications

    Intersection of paraboloids and application to Minkowski-type problems

    Full text link
    In this article, we study the intersection (or union) of the convex hull of N confocal paraboloids (or ellipsoids) of revolution. This study is motivated by a Minkowski-type problem arising in geometric optics. We show that in each of the four cases, the combinatorics is given by the intersection of a power diagram with the unit sphere. We prove the complexity is O(N) for the intersection of paraboloids and Omega(N^2) for the intersection and the union of ellipsoids. We provide an algorithm to compute these intersections using the exact geometric computation paradigm. This algorithm is optimal in the case of the intersection of ellipsoids and is used to solve numerically the far-field reflector problem

    Faster Geometric Algorithms via Dynamic Determinant Computation

    Full text link
    The computation of determinants or their signs is the core procedure in many important geometric algorithms, such as convex hull, volume and point location. As the dimension of the computation space grows, a higher percentage of the total computation time is consumed by these computations. In this paper we study the sequences of determinants that appear in geometric algorithms. The computation of a single determinant is accelerated by using the information from the previous computations in that sequence. We propose two dynamic determinant algorithms with quadratic arithmetic complexity when employed in convex hull and volume computations, and with linear arithmetic complexity when used in point location problems. We implement the proposed algorithms and perform an extensive experimental analysis. On one hand, our analysis serves as a performance study of state-of-the-art determinant algorithms and implementations. On the other hand, we demonstrate the supremacy of our methods over state-of-the-art implementations of determinant and geometric algorithms. Our experimental results include a 20 and 78 times speed-up in volume and point location computations in dimension 6 and 11 respectively.Comment: 29 pages, 8 figures, 3 table

    Geodesics in Heat

    Full text link
    We introduce the heat method for computing the shortest geodesic distance to a specified subset (e.g., point or curve) of a given domain. The heat method is robust, efficient, and simple to implement since it is based on solving a pair of standard linear elliptic problems. The method represents a significant breakthrough in the practical computation of distance on a wide variety of geometric domains, since the resulting linear systems can be prefactored once and subsequently solved in near-linear time. In practice, distance can be updated via the heat method an order of magnitude faster than with state-of-the-art methods while maintaining a comparable level of accuracy. We provide numerical evidence that the method converges to the exact geodesic distance in the limit of refinement; we also explore smoothed approximations of distance suitable for applications where more regularity is required

    Robustness Analysis of Floating-Point Programs by Self-Composition

    Get PDF
    corecore