
HAL Id: inria-00344515
https://hal.inria.fr/inria-00344515

Submitted on 30 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classroom Examples of Robustness Problems in
Geometric Computations

Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, Chee Yap

To cite this version:
Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, Chee Yap. Classroom Examples of
Robustness Problems in Geometric Computations. European Symposium on Algorithms (ESA), Sep
2004, Bergen, Norway. pp.702-713. �inria-00344515�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50206576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00344515
https://hal.archives-ouvertes.fr

Classroom Examples of

Robustness Problems in Geometric Computations
�

(Extended Abstract)

Lutz Kettner1, Kurt Mehlhorn1, Sylvain Pion2, Stefan Schirra3, and Chee Yap4

1 MPI für Informatik, Saarbrücken,
�
ketter,mehlhorn � @mpi-sb.mpg.de

2 INRIA Sophia Antipolis, Sylvain.Pion@sophia.inria.fr
3 Otto-von-Guericke-Universität, Magdeburg, stschirr@isg.cs.uni-magdeburg.de

4 New York University, New York, USA, yap@cs.nyu.edu

Abstract. The algorithms of computational geometry are designed for a ma-
chine model with exact real arithmetic. Substituting floating point arithmetic for
the assumed real arithmetic may cause implementations to fail. Although this
is well known, there is no comprehensive documentation of what can go wrong
and why. In this extended abstract, we study a simple incremental algorithm for
planar convex hulls and give examples which make the algorithm fail in all pos-
sible ways. We also show how to construct failure-examples semi-systematically
and discuss the geometry of the floating point implementation of the orientation
predicate. We hope that our work will be useful for teaching computational ge-
ometry. The full paper is available at www.mpi-sb.mpg.de/˜mehlhorn/
ftp/ClassRoomExamples.ps. It contains further examples, more theory,
and color pictures. We strongly recommend to read the full paper instead of this
extended abstract.

1 Introduction

The algorithms of computational geometry are designed for a machine model with ex-
act real arithmetic. Substituting floating point arithmetic for the assumed real arithmetic
may cause implementations to fail. Although this is well known, it is not common
knowledge. There is no paper which systematically discusses what can go wrong and
provides simple examples for the different ways in which floating point implementa-
tions can fail. Due to this lack of examples, instructors of computational geometry have
little material for demonstrating the inadequacy of floating point arithmetic for geomet-
ric computations, students of computational geometry and implementers of geometric
algorithms still underestimate the seriousness of the problem, and researchers in our and
neighboring disciplines, e.g., numerical analysis, still believe, that simple approaches
are able to overcome the problem.

In this extended abstract, we study a simple incremental algorithm for planar con-
vex hulls and show how it can fail and why it fails when executed with floating point
arithmetic. The convex hull CH � S � of a set S of points in the plane is the smallest con-
vex polygon containing S. A point p � S is called extreme in S if CH � S ���� CH � S 	 p � .

Partially supported by the IST Programme of the EU under Contract No IST-2000-26473 (Ef-
fective Computational Geometry for Curves and Surfaces (ECG).

The extreme points of S form the vertices of the convex hull polygon. Convex hulls can
be constructed incrementally. One starts with three non-collinear points in S and then
considers the remaining points in arbitrary order. When a point is considered and lies
inside the current hull, the point is simply discarded. When the point lies outside, the
tangents to the current hull are constructed and the hull is updated appropriately. We
give a more detailed description of the algorithm in Section 4 and the complete C++
program in the full paper.

Figures 2 and 5 show point sets (we give the numerical coordinates of the points in
Section 4) and the respective convex hulls computed by the floating point implementa-
tion of our algorithm. In each case the input points are indicated by small circles, the
computed convex hull polygon is shown in light grey, and the alleged extreme points
are shown as filled circles. The examples show that the implementation may make gross
mistakes. It may leave out points which are clearly extreme, it may compute polygons
which are clearly non-convex, and it may even run forever (example not shown here).

The first contribution of this paper is to provide a set of instances that make the float-
ing point implementation fail in disastrous ways. The computed results do not resemble
the correct results in any reasonable sense.

Our second contribution is to explain why these disasters happen. The correctness
of geometric algorithms depends on geometric properties, e.g., a point lies outside a
convex polygon if and only if it can see one of the edges. We give examples, for which
a floating point implementation violates these properties: a point outside a convex poly-
gon which sees no edge (in a floating point implementation of “sees”) and a point not
outside which sees some edges (in a floating point implementation of “sees”). We give
examples for all possible violations of the correctness properties of our algorithm.

Our third contribution is to show how difficult examples can be constructed system-
atically or at least semi-systematically. This should allow others to do similar studies.

We believe that the paper and its companion web page will be useful in teaching
computational geometry, and that even experts will find it surprising and instructing in
how many ways and how badly even simple algorithms can be made to fail. The com-
panion web page (http://www.mpi-sb.mpg.de/˜kettner/proj/NonRobust/)
contains the source code of all programs, the input files for all examples, and instal-
lation procedures. It allows the reader to perform our and further experiments.

This paper is structured as follows. In Section 2 we discuss the ground rules for
our experiments, in Section 3 we study the effect of floating point arithmetic on one
of the most basic predicates of planar geometry, the orientation predicate, in Section 4
we discuss an incremental algorithm for planar convex hulls. Finally, Section 5 offers
a short conclusion. In the full paper, we also discuss the gift wrapping algorithm for
planar convex hulls and an incremental algorithm for 3d Delaunay triangulations, and
also give additional theory.

Related Work: The literature contains a small number of documented failures due
to numerical imprecision, e.g., Forrest’s seminal paper on implementing the point-in-
polygon test [For85], Shewchuk’s example for divide-and-conquer Delaunay triangu-
lation [She97], Ramshaw’s braided lines [MN99, Section 9.6.2], Schirra’s example for
convex hulls [MN99, Section 9.6.1], and the sweep line algorithm for line segment
intersection and boolean operations on polygons [MN99, Sections 10.7.4 and 10.8.3].

2 Ground Rules for our Experiments

Our codes are written in C++ and the results are reproducible on any platform com-
pliant with IEEE floating-point standard 784 for double precision (see [Gol90]), and
also with other programming languages. All programs and input data can be found on
the companion web page. Numerical computations are based on IEEE arithmetic. In
particular, numbers are machine floating point numbers (called doubles for short). Such
numbers have the form � m2e where m � 1 �m1m2 ����� m52 (mi

��� 0 � 1 �) is the mantissa
in binary and e is the exponent satisfying � 1024 	 e 	 1024. The results of arithmetic
operations are rounded to the nearest double (with ties broken using some fixed rule).

Our numerical example data will be written in decimals (for human consumption).
Such decimal values, when read into the machine, are internally represented by the
nearest double. We have made sure that our data can be represented exactly by doubles
and their conversion to binary and back to decimal is the identity operation.

3 The Orientation Predicate

Three points p, q, and r in the plane either lie on a common line or form a left or right
turn. The triple � p � q � r � forms a left (right) turn, if r lies left (right) of the line through
p and q and oriented in the direction from p to q. Analytically, the orientation of the
triple � p � q � r � is tantamount to the sign of a determinant:

orientation � p � q � r � � sign � det

�
px py 1
qx qy 1
rx ry 1

�
��� (1)

where p � � px � py � , etc. We have orientation � p � q � r � ��� 1 (resp., � 1, 0) iff the polyline
� p � q � r � represents a left turn (resp., right turn, collinearity). Interchanging two points
in the triple changes the sign of the orientation. We denote the x-coordinate of a point p
also by x � p � . We implement the orientation predicate in the straightforward way:

orientation � p � q � r � � sign � � qx � px � � ry � py ��� � qy � py � � rx � px � ��� (2)

When the orientation predicate is implemented in this obvious way and evaluated with
floating point arithmetic, we call it float orient � p � q � r � to distinguish it from the ideal
predicate. Since floating point arithmetic incurs round-off error, there are potentially
three ways in which the result of float orient could differ from the correct orientation:

– rounding to zero: we mis-classify a � or � as a 0;
– perturbed zero: we mis-classify 0 as � or � ;
– sign inversion: we mis-classify a � as � or vice-versa.

3.1 The Geometry of Float-Orientation

What is the geometry of float orient, i.e., which triples of points are classified as left-
turns, right-turns, or straight? The following type of experiment answers the question:
We choose three points p1, p2, and p3 and then compute

float orient � � x � p1 � � x � u � y � p1 � � y � u ��� p2 � p3 �

p1 : � 0 � 5
0 � 5 �

p2 : � 12
12 �

p3 : � 24
24 �

� 0 � 50000000000002531
0 � 5000000000000171 �� 17 � 300000000000001
17 � 300000000000001 �� 24 � 00000000000005

24 � 0000000000000517765 �
� 0 � 5

0 � 5 �� 8 � 8000000000000007
8 � 8000000000000007 �� 12 � 1

12 � 1 �
(a) (b) (c)

Fig. 1. The weird geometry of the float-orientation predicate: The figure shows the results of
float orient ��� x � p 1 ��� x � u 	 y � p1 ��� y � u 	 p2 	 p3 � for 0
 x 	 y
 255, where u is the increment be-
tween adjacent floating point numbers in the considered range. The result is color coded: White
(light grey, dark grey, resp.) pixels represent collinear (negative, positive, resp.) orientation. The
line through p2 and p3 is also shown.

for 0 � x � y � 255, where u is the increment between adjacent floating point numbers in
the considered range; for example, u � 2 � 53 if x � p1 � � 1 2 and u � 4 � 2 � 53 if x � p1 � �
2 � 4 � 1 2. We visualize the resulting 256 � 256 array of signs as a 256 � 256 grid
of pixels: A white (light grey, dark grey) pixel represents collinear (negative, positive,
respectively) orientation. In the figures in this section we also indicate an approximation
of the line through p2 and p3.

Figure 1(a) shows the result of our first experiment: We use the line defined by the
points p2

� � 12 � 12 � and p3
� � 24 � 24 � and query it near p1

� � 0 � 5 � 0 � 5 � . We urge the
reader to pause for a moment and to sketch what he/she expects to see. The authors
expected to see a white band around the diagonal with nearly straight boundaries. Even
for points with such simple coordinates the geometry of float orient is quite weird: the
set of white points (= the points classified as on the line) does not resemble a straight
line and the sets of light grey or dark grey points do not resemble half-spaces. We even
have points that change the side of the line, i.e., are lying left (right) of the line and
being classified as right (left) of the line.

In Figures 1(b) and (c) we have given our base points pi more complex coordinates
by adding some digits behind the binary point. This enhances the cancellation effects
in the evaluation of float orient and leads to even more striking pictures. In (b), the
light grey region looks like a step function at first sight. Note however, it is not mono-
tone, has white rays extending into it, and light grey lines extruding from it. The white
region (= on-region) forms blocks along the line. Strangely enough, these blocks are
separated by dark and light grey lines. Finally, many points change sides. In Figure (c),
we have white blocks of varying sizes along the diagonal, thin white and partly light

grey lines extending into the dark grey region (similarly for the light grey region), light
grey points (the left upper corners of the white structures extending into the dark grey
region) deep inside the blue region, and isolated white points almost 100 units away
from the diagonal.

All diagrams in Figure 1 exhibit block structure. We now explain why. Assume
we keep y fixed and vary only x. We evaluate float orient � � x � p1 � � x � u � y � p1 � � y �
u ��� p2 � p3 � for 0 � x � 255, where u is the increment between adjacent floating point
numbers in the considered range. Also orientation � p � q � r � � sign � � qx � px � � ry � py ���
� qy � py � � rx � px � � . We incur round-off error in the additions/subtractions and also in
the multiplications. Consider first one of the differences, say qx � px. In (a), we have
qx � 12 and px � 0 � 5. Since 12 has four binary digits, we loose the last four bits of x
in the subtraction, in other words, the result of the subtraction qx � px is constant for
24 consecutive values of x. Because of rounding to nearest, the intervals of constant
value are

�
8 � 23 � , �

24 � 39 � , �
40 � 55 � Similarly, the floating point result of r x � px is

constant for 25 consecutive values of x. Because of rounding to nearest, the intervals of
constant value are

�
16 � 47 � , �

48 � 69 � , Overlaying the two progressions gives intervals�
16 � 23 � , �

24 � 39 � , �
40 � 47 � , �

48 � 55 � , . . . and this explains the structure we see in the rows
of (a). We see short blocks of length 8, 16, 24, . . . in (a). In (b) and (c), the situation
is somewhat more complicated. It is again true that we have intervals for x, where the
results of the subtractions are constant. However, since q and r have more complex
coordinates, the relative shifts of these intervals are different and hence we see narrow
and broad features.

4 The Convex Hull Problem

We discuss a simple incremental convex hull algorithm. We describe the algorithm, state
the underlying geometric assumptions, give instances which violate the assumptions
when used with floating point arithmetic, and finally show which disastrous effects
these violations may have on the result of the computation.

The incremental algorithm maintains the current convex hull CH of the points seen
so far. Initially, CH is formed by choosing three non-collinear points in S. It then con-
siders the remaining points one by one. When considering a point r, it first determines
whether r is outside the current convex hull polygon. If not, r is discarded. Otherwise,
the hull is updated by forming the tangents from r to CH and updating CH appro-
priately. The incremental paradigm is used in Andrew’s variant [And79] of Graham’s
scan [Gra72] and also in the randomized incremental algorithm [CS89].

The algorithm maintains the current hull as a circular list L � � v0 � v1 ��������� vk � 1 � of its
extreme points in counter-clockwise order. The line segments � vi � vi � 1 � , 0 � i � k � 1
(indices are modulo k) are the edges of the current hull. If orientation � vi � vi � 1 � r � 	
0, we say r sees the edge � vi � vi � 1 � , and say the edge � vi � vi � 1 � is visible from r. If
orientation � vi � vi � 1 � r � � 0, we say that the edge � vi � vi � 1 � is weakly visible from r. After
initialization, k � 3. The following properties are key to the operation of the algorithm.

Property A: A point r is outside CH iff r can see an edge of CH.
Property B: If r is outside CH, the edges weakly visible from r form a non-empty

consecutive subchain; so do the edges that are not weakly visible from r.

If � vi � vi � 1 � , . . . , � v j � 1 � v j � is the subsequence of weakly visible edges, the up-
dated hull is obtained by replacing the subsequence � vi � 1 ��������� v j � 1 � by r. The subse-
quence � vi ��������� v j � is taken in the circular sense. E.g., if i � j then the subsequence is
� vi ��������� vk � 1 � v0 ��������� v j � . From these properties, we derive the following algorithm:

Initialize L to the counter-clockwise triangle � a � b � c � . Remove a � b � c from S.
for all r � S do

if there is an edge e visible from r then
Compute the sequence � vi ��������� v j � of edges that are weakly visible from r;
Replace the subsequence � vi � 1 ��������� v j � 1 � by r;

end if
end for

To turn the sketch into an algorithm, we provide more information about the substeps.
1. How does one determine whether there is an edge visible from r? We iterate over

the edges in L, checking each edge using the orientation predicate. If no visible
edge is found, we discard r. Otherwise, we take any one of the visible edges as the
starting edge for the next item.

2. How does one identify the subsequence � vi ��������� v j � ? Starting from a visible edge e,
we move counter-clockwise along the boundary until a non-weakly-visible edge is
encountered. Similarly, move clockwise from e until a non-weakly-visible edge is
encountered.

3. How to update the list L? We can delete the vertices in � vi � 1 ��������� v j � 1 � after all
visible edges are found, as suggested in the above sketch (“the off-line strategy”)
or we can delete them concurrently with the search for weakly visible edges (“the
on-line strategy”).

There are four logical ways to negate Properties A and B:
� Failure (A1): A point outside the current hull sees no edge of the current hull.
� Failure (A2): A point inside the current hull sees an edge of the current hull.
� Failure (B1): A point outside the current hull sees all edges of the convex hull.
� Failure (B2): A point outside the current hull sees a non-contiguous set of edges.

Failures (A1) and (A2) are equivalent to the negation of Property A. Similarly, Failures
(B1) and (B2) are complete for Property B if we take (A1) into account. Are all these
failures realizable? We now affirm this.

4.1 Single Step Failures

We give instances violating the correctness properties of the algorithm. More precisely,
we give sequences p1, p2, p3, . . . of points such that the first three points form a counter-
clockwise triangle (and float orient correctly discovers this) and such that the insertion
of some later point leads to a violation of a correctness property (in the computa-
tions with doubles). We also discuss how we arrived at the examples. All our exam-
ples involve nearly or truly collinear points; instances without nearly collinear or truly
collinear points cause no problems in view of the error analysis of the preceding section

p1

p2 	 p3

p4

p5

p6

p7
p8

p9PSfrag replacements
p
q
r
x

� �� �

� �� �

� �� �
� �� �

PSfrag replacements

p

q
r

x

(a) (b)

Fig. 2. (a) The convex hull illustrating Failure (A1). The point in the lower left corner is left out
of the hull. (b) schematically indicates the ridiculous situation of a point outside the current hull
and seeing no edge of the hull: x lies to the left of all sides of the triangle � p 	 q 	 r � .
(omitted in this extended abstract). Does this make our examples unrealistic? We be-
lieve not. Many point sets contain nearly collinear points or truly collinear points which
become nearly collinear by conversion to floating point representation.

(A1) A point outside the current hull sees no edge of the current hull: Consider the set
of points below. Figure 2(a) shows the computed convex hull, where a point which is
clearly extreme was left out of the hull.

p1
� � 7 	 3000000000000194 	 7 	 3000000000000167 �

p2
� � 24 	 000000000000068 	 24 	 000000000000071 �

p3
� � 24 	 00000000000005 	 24 	 000000000000053 �

p4
� � 0 	 50000000000001621 	 0 	 50000000000001243 �

p5
� � 8 	 4 � p6

� � 4 	 9 � p7
� � 15 	 27 �

p8
� � 26 	 25 � p9

� � 19 	 11 �

float orient � p 1 	 p2 	 p3 �
 0 	
float orient � p 1 	 p2 	 p4 �
 0 	
float orient � p 2 	 p3 	 p4 �
 0 	
float orient � p 3 	 p1 	 p4 �
 0 � !! � 	

What went wrong? The culprits are the first four points. They lie almost on the line
y � x, and float orient gives the results shown above. Only the last evaluation is wrong,
indicated by “(!!)”. Geometrically, these four evaluations say that p4 sees no edge of
the triangle � p1 � p2 � p3 � . Figure 2(b) gives a schematic view of this ridiculous situation.
The points p5, . . . p9 are then correctly identified as extreme points and are added to the
hull. However, the algorithm never recovers from the error made when considering p4

and the result of the computation differs drastically from the correct hull.
We next explain how we arrived at the instance above. Intuition told us that an

example (if it exists at all) would be a triangle with two almost parallel sides and with a
query point near the wedge defined by the two nearly parallel edges. In view of Figure 1
such a point might be mis-classified with respect to one of the edges and hence would be
unable to see any edge of the triangle. So we started with the points used in Figure 1(b),
i.e., p1 � � 17 � 17 � , p2 � � 24 � 24 � � p3, where we moved p2 slightly to the right so as
to guarantee that we obtain a counter-clockwise triangle. We then probed the edges
incident to p1 with points p4 in and near the wedge formed by these edges. Figure 3(a)
visualizes the outcomes of the two relevant orientation tests. Each black pixel (not lying
on the line indicating the nearly parallel edges of the triangle) is a candidate for Failure

p1 : � 17 � 300000000000001 � 17 � 300000000000001 �
p2 : � 24 � 000000000000068 � 24 � 000000000000071 �
p3 : � 24 � 00000000000005 � 24 � 000000000000053 �
p4 : � 0 � 5 � 0 � 5 �

� 7 � 3000000000000194 � 7 � 3000000000000167 �
� 24 � 000000000000068 � 24 � 000000000000071 �
� 24 � 00000000000005 � 24 � 000000000000053 �

� 0 � 5 � 0 � 5 �
(a) (b)

Fig. 3. The points � p1 	 p2 	 p3 � form a counter-clockwise triangle and we are interested in the
classification of points � x � p4 ��� xu 	 y � p4 ��� yu � with respect to the edges � p1 	 p2 � and � p3 	 p1 �
incident to p1. The extensions of these edges are indistinguishable in the pictures and are drawn as
a single black line. The black points not lying on the black diagonal do not “float-see” either one
of the edges (Failure A1). Points collinear with one of the edges are middle grey, those collinear
with both edges are light grey, those classified as seeing one but not the other edge are white, and
those seeing both edges are dark grey. (a) Example starting from points in Figure 1. (b) Example
that achieves “robustness” with respect to the first three points.

(A1). The example obtained in this way was not completely satisfactory, since some
orientation tests on the initial triangle � p1 � p2 � p3 � were evaluating to zero.

We perturbed the example further, aided by visualizing float orient � p1 � p2 � p3 � , until
we found the example shown in (b); by our error analysis, this test incurs the largest
error among the six possible ways of performing the orientation test for three points
and is hence most likely to return the incorrect result. The final example has the nice
property that all possible float orient tests on the first three points are correct. So this
example is pretty much independent from any conceivable initialization an algorithm
could use to create the first valid triangle. Figure 3(b) shows the outcomes of the two
orientations tests for our final example.

(A2) A point inside the current hull sees an edge of the current hull: Such examples
are plenty. We take any counter-clockwise triangle and chose a fourth point inside the
triangle but close to one of the edges. By Figure 1 there is the chance of sign reversal.
A concrete example follows:

p1
� � 27 	 643564356435643 	�� 21 	 881188118811881 �

p2
� � 83 	 366336633663366 	 15 	 544554455445542 �

p3
� � 4 	 4 �

p4
� � 73 	 415841584158414 	 8 	 8613861386138595 �

float orient � p 1 	 p2 	 p3 �
 0

float orient � p 1 	 p2 	 p4 ��� 0 � !! �
float orient � p 2 	 p3 	 p4 �
 0

float orient � p 3 	 p1 	 p4 �
 0

p2

p4

p1p3

`(p3, p1)

`(p2, p1)

`(p3, p2)

p1

p2 p3

p4

`(p1, p3)

`(p3, p4)

`(p1, p4)

(a)

PSfrag replacements
p1

Fig. 4. Schematics: The point p4 sees all edges of the triangle � p1 	 p2 	 p3 � .
The convex hull is correctly initialized to � p1 � p2 � p3 � . The point p4 is inside the

current convex hull, but the algorithm incorrectly believes that p4 can see the edge
� p1 � p2 � and hence changes the hull to � p1 � p4 � p2 � p3 � , a slightly non-convex polygon.

(B1) A point outside the current hull sees all edges of the convex hull: Intuition told
us that an example (if it exists) would consist of a triangle with one angle close to π
and hence three almost parallel sides. Where should one place the query point? We first
placed it in the extension of the three parallel sides and quite a distance away from the
triangle. This did not work. The choice which worked is to place the point near one of
the sides so that it could see two of the sides and “float-see” the third. Figure 4 illustrates
this choice. A concrete example follows:

p1
� � 200 	 49 	 200000000000003 �

p2
� � 100 	 49 	 600000000000001 �

p3
� ��� 233 	 33333333333334 	 50 	 93333333333333 �

p4
� � 166 	 66666666666669 	 49 	 333333333333336 �

float orient � p 1 	 p2 	 p3 �
 0

float orient � p 1 	 p2 	 p4 ��� 0

float orient � p 2 	 p3 	 p4 ��� 0

float orient � p 3 	 p1 	 p4 ��� 0 � !! �
The first three points form a counter-clockwise oriented triangle and according

to float orient, the algorithm believes that p4 can see all edges of the triangle. What
will our algorithm do? It depends on the implementation details. If the algorithm first
searches for an invisible edge, it will search forever and never terminate. If it deletes
points on-line from L it will crash or compute nonsense depending on the details of the
implementation.

(B2) A point outside the current hull sees a non-contiguous set of edges: Consider the
following points:

p1
� � 0 	 50000000000001243 	 0 	 50000000000000189 �

p2
� � 0 	 50000000000001243 	 0 	 50000000000000333 �

p3
� � 24 	 00000000000005 	 24 	 000000000000053 �

p4
� � 24 	 000000000000068 	 24 	 000000000000071 �

p5
� � 17 	 300000000000001 	 17 	 300000000000001 �

float orient � p 1 	 p4 	 p5 ��� 0 � !! �
float orient � p 4 	 p3 	 p5 �
 0

float orient � p 3 	 p2 	 p5 ��� 0

float orient � p 2 	 p1 	 p5 �
 0

Inserting the first four points results in the convex quadrilateral � p1 � p4 � p3 � p2 � ; this
is correct. The last point p5 sees only the edge � p3 � p2 � and none of the other three.
However, float orient makes p5 see also the edge � p1 � p4 � . The subsequences of vis-
ible and invisible edges are not contiguous. Since the falsely classified edge � p1 � p4 �

p1 	 p5

p2 p3

p4

p1 	 p5

p2 p3

p4

p6

p1 	 p5

p �2
p3

p4

p6

p1 p5

p4

p2
p6 p1 p5

p4

p2
p6 p1 p5

p4

p2
p6

(a) (b) (c)

Fig. 5. (a) The hull constructed after processing points p1 to p5. Points p1 and p5 lie close to
each other and are indistinguishable in the upper figure. The schematic sketch below shows that
we have a concave corner at p5. The point p6 sees the edges � p1 	 p2 � and � p4 	 p5 � , but does not
see the edge � p5 	 p1 � . One of the former edges will be chosen by the algorithm as the chain of
edges visible from p6. Depending on the choice, we obtain the hulls shown in (b) or (c). In (b),� p4 	 p5 � is found as the visible edge, and in (c), � p1 	 p2 � is found. We refer the reader to the text
for further explanations. The figures show the coordinate axes for orientation.

comes first, our algorithm inserts p5 at this edge, removes no other vertex, and returns
a polygon that has self-intersections and is not simple.

4.2 Global Effects

By now, we have seen examples which cover the negation space of the correctness
properties on the incremental algorithm and we have seen the effect of an incorrect
orientation test for a single update step. We next study global effects. The goal is to
refute the myth that the algorithm will always compute an approximation of the true
convex hull.

The algorithm computes a convex polygon, but misses some of the extreme points: We
have already seen such an example in Failure (A1). We can modify this example so that
the ratio of the areas of the true hull and the computed hull becomes arbitrarily large.
We do as in Failure (A1), but move the fourth point to infinity. The true convex hull has
four extreme points. The algorithm misses q4.

q1
� � 0 	 10000000000000001 	 0 	 10000000000000001 �

q2
� � 0 	 20000000000000001 	 0 	 20000000000000004 �

q3
� � 0 	 79999999999999993 	 0 	 80000000000000004 �

q4
� � 1 	 267650600228229 � 1030 	 1 	 2676506002282291 � 1030 �

float orient � q 1 	 q2 	 q3 ��� 0

float orient � q 1 	 q2 	 q4 � � 0 � !! �
float orient � q 2 	 q3 	 q4 � � 0 � !! �
float orient � q 3 	 q1 	 q4 �
 0

The algorithm crashes or does not terminate: See Failure (B1).

The algorithm computes a non-convex polygon: We have already given such an exam-
ple in Failure (A2). However, this failure is not visible to the naked eye. We next give
examples where non-convexity is visible to the naked eye. We consider the points:

p1
� � 24 	 00000000000005 	 24 	 000000000000053 � p2

� � 24 	 0 	 6 	 0 �
p3

� � 54 	 85 	 6 	 0 � p4
� � 54 	 850000000000357 	 61 	 000000000000121 �

p5
� � 24 	 000000000000068 	 24 	 000000000000071 � p6

� � 6 	 6 � 	

After the insertion of p1 to p4, we have the convex hull � p1 � p2 � p3 � p4 � . This is correct.
Point p5 lies inside the convex hull of the first four points; but float orient � p4 � p1 � p5 � 	
0. Thus p5 is inserted between p4 and p1. and we obtain � p1 � p2 � p3 � p4 � p5 � . However,
this error is not visible yet to the eye, see Figure 5(a).

The point p6 sees the edges � p4 � p5 � and � p1 � p2 � , but does not see the edge � p5 � p1 � .
All of this is correctly determined by float orient. Consider now the insertion process
for point p6. Depending on where we start the search for a visible edge, we will either
find the edge � p4 � p5 � or the edge � p1 � p2 � . In the former case, we insert p6 between p4

and p5 and obtain the polygon shown in (b). It is visibly non-convex and has a self-
intersection.In the latter case, we insert p6 between p1 and p2 and obtain the polygon
shown in (c). It is visibly non-convex.

Of course, in a deterministic implementation, we will see only one of the errors,
namely (b). This is because in our example, the search for a visible edge starts at edge
� p2 � p3 � . In order to produce (c) with the implementation we replace the point p2 by the
point p

�

2
� � 24 � 0 � 10 � 0 � . Then p6 sees � p �

2 � p3 � and identifies � p1 � p �

2 � p3 � as the chain of
visible edges and hence constructs (c).

5 Conclusion

We provided instances which cause the floating point implementation of a simple con-
vex hull algorithm to fail in many different ways. We showed how to construct such
instances semi-systematically. We hope that our paper and its companion web page
will be useful for classroom use and that it will alert students and researchers to the
intricacies of implementing geometric algorithms.

What can be done to overcome the robust problem of floating point arithmetic?
There are essentially three approaches: (1) make sure that the implementation of the
orientation predicate always returns the correct result or (2) change the algorithm so
that it can cope with the floating point implementation of the orientation predicate and
still computes something meaningful or (3) perturb the input so that the floating point
implementation is guaranteed to produce the correct result on the perturbed input. The
first approach is the most general and is known under the the exact geometric com-
putation (EGC) paradigm and was first used by J ünger, Reinelt and Zepf [JRZ91] and
Karasick, Lieber and Nackmann [KLN91]. For detailed discussions, we refer the reader
to [Yap04] and Chapter 9 of [MN99]. The EGC approach has been adopted for the
software libraries LEDA and CGAL and other successful implementations. The sec-
ond and third approaches have been successfully applied to a number of geometric

problems, see for example [Mil89,FM91,LM90,DSB92,SIII00,HS98]. But in the sec-
ond approach the interpretation of “meaningful” is a crucial and difficult problem. The
third approach should in principle be applicable to all problems with purely numerical
input. There are also suggested approaches, e.g., epsilon-tweaking, which do not work.
Epsilon-tweaking simply activates rounding to zero, both for correct and mis-classified
orientations. E.g., it is now more likely for points outside the current hull not to see any
edges because of enforced collinearity.

References

And79. A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Infor-
mation Processing Letters, 9:216–219, 1979.

CS89. K.L. Clarkson and P.W. Shor. Applications of random sampling in computational ge-
ometry, II. Journal of Discrete and Computational Geometry, 4:387–421, 1989.

DSB92. T. K. Dey, K. Sugihara, and C. L. Bajaj. Delaunay triangulations in three dimensions
with finite precision arithmetic. Comput. Aided Geom. Design, 9:457–470, 1992.

FM91. S. Fortune and V.J. Milenkovic. Numerical stability of algorithms for line arrangements.
In SoCG’91, pages 334–341. ACM Press, 1991.

For85. A. R. Forrest. Computational geometry in practice. In R. A. Earnshaw, editor, Funda-
mental Algorithms for Computer Graphics, volume F17 of NATO ASI, pages 707–724.
Springer-Verlag, 1985.

Gol90. D. Goldberg. What every computer scientist should know about floating-point arith-
metic. ACM Computing Surveys, 23(1):5–48, 1990.

Gra72. R.L. Graham. An efficient algorithm for determining the convex hulls of a finite point
set. Information Processing Letters, 1:132–133, 1972.

HS98. D. Halperin and C. R. Shelton. A perturbation scheme for spherical arrangements with
application to molecular modeling. Comp. Geom.: Theory and Applications, 10, 1998.

JRZ91. M. Jünger, G. Reinelt, and D. Zepf. Computing correct Delaunay triangulations. Com-
puting, 47:43–49, 1991.

KLN91. M. Karasick, D. Lieber, and L.R. Nackman. Efficient Delaunay triangulation using
rational arithmetic. ACM Transactions on Graphics, 10(1):71–91, January 1991.

LM90. Z. Li and V.J. Milenkovic. Constructing strongly convex hulls using exact or rounded
arithmetic. In SoCG’90, pages 235–243. ACM Press, 1990.

Mil89. V.J. Milenkovic. Calculating approximate curve arrangements using rounded arith-
metic. In SoCG’89, pages 197–207. ACM Press, 1989.

MN99. K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999. 1018 pages.

She97. J.R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric
predicates. Discrete & Computational Geometry, 18:305–363, 1997.

SIII00. K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-oriented implementation - an
approach to robust geometric algorithms. Algorithmica, 27(1):5–20, 2000.

Yap04. C. K. Yap. Robust geometric computation. In J.E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 41. CRC Press LLC, Boca
Raton, FL, 2nd edition, 2004.

