4,850 research outputs found

    Using Case-Level Context to Classify Cancer Pathology Reports

    Get PDF
    Individual electronic health records (EHRs) and clinical reports are often part of a larger sequence-for example, a single patient may generate multiple reports over the trajectory of a disease. In applications such as cancer pathology reports, it is necessary not only to extract information from individual reports, but also to capture aggregate information regarding the entire cancer case based off case-level context from all reports in the sequence. In this paper, we introduce a simple modular add-on for capturing case-level context that is designed to be compatible with most existing deep learning architectures for text classification on individual reports. We test our approach on a corpus of 431,433 cancer pathology reports, and we show that incorporating case-level context significantly boosts classification accuracy across six classification tasks-site, subsite, laterality, histology, behavior, and grade. We expect that with minimal modifications, our add-on can be applied towards a wide range of other clinical text-based tasks

    Limitations of Transformers on Clinical Text Classification

    Get PDF
    Bidirectional Encoder Representations from Transformers (BERT) and BERT-based approaches are the current state-of-the-art in many natural language processing (NLP) tasks; however, their application to document classification on long clinical texts is limited. In this work, we introduce four methods to scale BERT, which by default can only handle input sequences up to approximately 400 words long, to perform document classification on clinical texts several thousand words long. We compare these methods against two much simpler architectures -- a word-level convolutional neural network and a hierarchical self-attention network -- and show that BERT often cannot beat these simpler baselines when classifying MIMIC-III discharge summaries and SEER cancer pathology reports. In our analysis, we show that two key components of BERT -- pretraining and WordPiece tokenization -- may actually be inhibiting BERT\u27s performance on clinical text classification tasks where the input document is several thousand words long and where correctly identifying labels may depend more on identifying a few key words or phrases rather than understanding the contextual meaning of sequences of text

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Enhance Representation Learning of Clinical Narrative with Neural Networks for Clinical Predictive Modeling

    Get PDF
    Medicine is undergoing a technological revolution. Understanding human health from clinical data has major challenges from technical and practical perspectives, thus prompting methods that understand large, complex, and noisy data. These methods are particularly necessary for natural language data from clinical narratives/notes, which contain some of the richest information on a patient. Meanwhile, deep neural networks have achieved superior performance in a wide variety of natural language processing (NLP) tasks because of their capacity to encode meaningful but abstract representations and learn the entire task end-to-end. In this thesis, I investigate representation learning of clinical narratives with deep neural networks through a number of tasks ranging from clinical concept extraction, clinical note modeling, and patient-level language representation. I present methods utilizing representation learning with neural networks to support understanding of clinical text documents. I first introduce the notion of representation learning from natural language processing and patient data modeling. Then, I investigate word-level representation learning to improve clinical concept extraction from clinical notes. I present two works on learning word representations and evaluate them to extract important concepts from clinical notes. The first study focuses on cancer-related information, and the second study evaluates shared-task data. The aims of these two studies are to automatically extract important entities from clinical notes. Next, I present a series of deep neural networks to encode hierarchical, longitudinal, and contextual information for modeling a series of clinical notes. I also evaluate the models by predicting clinical outcomes of interest, including mortality, length of stay, and phenotype predictions. Finally, I propose a novel representation learning architecture to develop a generalized and transferable language representation at the patient level. I also identify pre-training tasks appropriate for constructing a generalizable language representation. The main focus is to improve predictive performance of phenotypes with limited data, a challenging task due to a lack of data. Overall, this dissertation addresses issues in natural language processing for medicine, including clinical text classification and modeling. These studies show major barriers to understanding large-scale clinical notes. It is believed that developing deep representation learning methods for distilling enormous amounts of heterogeneous data into patient-level language representations will improve evidence-based clinical understanding. The approach to solving these issues by learning representations could be used across clinical applications despite noisy data. I conclude that considering different linguistic components in natural language and sequential information between clinical events is important. Such results have implications beyond the immediate context of predictions and further suggest future directions for clinical machine learning research to improve clinical outcomes. This could be a starting point for future phenotyping methods based on natural language processing that construct patient-level language representations to improve clinical predictions. While significant progress has been made, many open questions remain, so I will highlight a few works to demonstrate promising directions

    Enhancing the Performance of the MtCNN for the Classification of Cancer Pathology Reports: From Data Annotation to Model Deployment

    Get PDF
    Information contained in electronic health records (EHR) combined with the latest advances in machine learning (ML) have the potential to revolutionize the medical sciences. In particular, information contained in cancer pathology reports is essential to investigate cancer trends across the country. Unfortunately, large parts of information in EHRs are stored in the form of unstructured, free-text which limit their usability and research potential. To overcome this accessibility barrier, cancer registries depend on expert personnel who read, interpret, and extract relevant information. Naturally, as the number of stored pathology reports increases every day, depending on human experts presents scalability challenges. Recently, researchers have attempted to automate the information extraction process from cancer pathology reports using ML techniques commonly found in natural language processing (NLP). However, clinical text is inherently different than other common forms of text, and state-of-the-art NLP approaches often exhibit mediocre performance. In this study, we narrow the literature gap by investigating methods to tackle overfitting and improve the performance of ML models for the classification of cancer pathology reports so that we can reduce the dependency on human expert annotators. We (1) show that using active learning can mitigate extreme class imbalance by increasing the representation of documents belonging to rare cancer types, (2) investigated the feasibility of ensemble learning and a mixture-of-expert variant to boost minority class performance, and (3) demonstrated that ensemble model distillation provides a strategy for quantifying the uncertainty inherent in labeled data, offering an effective low-resource solution that can be easily deployed by cancer registries

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    J Biomed Inform

    Get PDF
    In the last decade, the widespread adoption of electronic health record documentation has created huge opportunities for information mining. Natural language processing (NLP) techniques using machine and deep learning are becoming increasingly widespread for information extraction tasks from unstructured clinical notes. Disparities in performance when deploying machine learning models in the real world have recently received considerable attention. In the clinical NLP domain, the robustness of convolutional neural networks (CNNs) for classifying cancer pathology reports under natural distribution shifts remains understudied. In this research, we aim to quantify and improve the performance of the CNN for text classification on out-of-distribution (OOD) datasets resulting from the natural evolution of clinical text in pathology reports. We identified class imbalance due to different prevalence of cancer types as one of the sources of performance drop and analyzed the impact of previous methods for addressing class imbalance when deploying models in real-world domains. Our results show that our novel class-specialized ensemble technique outperforms other methods for the classification of rare cancer types in terms of macro F1 scores. We also found that traditional ensemble methods perform better in top classes, leading to higher micro F1 scores. Based on our findings, we formulate a series of recommendations for other ML practitioners on how to build robust models with extremely imbalanced datasets in biomedical NLP applications.HHSN261201800032C/CA/NCI NIH HHSUnited States/HHSN261201800009C/CA/NCI NIH HHSUnited States/NU58DP006344/DP/NCCDPHP CDC HHSUnited States/HHSN261201800015I/CA/NCI NIH HHSUnited States/HHSN261201800013C/CA/NCI NIH HHSUnited States/HHSN261201800016I/CA/NCI NIH HHSUnited States/HHSN261201800014I/CA/NCI NIH HHSUnited States/HHSN261201800032I/CA/NCI NIH HHSUnited States/HHSN261201800013I/HL/NHLBI NIH HHSUnited States/U58 DP003907/DP/NCCDPHP CDC HHSUnited States/HHSN261201800015C/CA/NCI NIH HHSUnited States/HHSN261201800013I/CA/NCI NIH HHSUnited States/HHSN261201800014C/CA/NCI NIH HHSUnited States/HHSN261201800016C/CA/NCI NIH HHSUnited States/P30 CA177558/CA/NCI NIH HHSUnited States/HHSN261201300021C/CA/NCI NIH HHSUnited States/HHSN261201800009I/CA/NCI NIH HHSUnited States/HHSN261201800007C/CA/NCI NIH HHSUnited States

    Precise Proximal Femur Fracture Classification for Interactive Training and Surgical Planning

    Full text link
    We demonstrate the feasibility of a fully automatic computer-aided diagnosis (CAD) tool, based on deep learning, that localizes and classifies proximal femur fractures on X-ray images according to the AO classification. The proposed framework aims to improve patient treatment planning and provide support for the training of trauma surgeon residents. A database of 1347 clinical radiographic studies was collected. Radiologists and trauma surgeons annotated all fractures with bounding boxes, and provided a classification according to the AO standard. The proposed CAD tool for the classification of radiographs into types "A", "B" and "not-fractured", reaches a F1-score of 87% and AUC of 0.95, when classifying fractures versus not-fractured cases it improves up to 94% and 0.98. Prior localization of the fracture results in an improvement with respect to full image classification. 100% of the predicted centers of the region of interest are contained in the manually provided bounding boxes. The system retrieves on average 9 relevant images (from the same class) out of 10 cases. Our CAD scheme localizes, detects and further classifies proximal femur fractures achieving results comparable to expert-level and state-of-the-art performance. Our auxiliary localization model was highly accurate predicting the region of interest in the radiograph. We further investigated several strategies of verification for its adoption into the daily clinical routine. A sensitivity analysis of the size of the ROI and image retrieval as a clinical use case were presented.Comment: Accepted at IPCAI 2020 and IJCAR
    • …
    corecore