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ABSTRACT

Medicine is undergoing a technological revolution. Understanding human health

from clinical data has major challenges from technical and practical perspectives,

thus prompting methods that understand large, complex, and noisy data. These

methods are particularly necessary for natural language data from clinical narra-

tives/notes, which contain some of the richest information on a patient. Meanwhile,

deep neural networks have achieved superior performance in a wide variety of natu-

ral language processing (NLP) tasks because of their capacity to encode meaningful

but abstract representations and learn the entire task end-to-end. In this thesis, I in-

vestigate representation learning of clinical narratives with deep neural networks

through a number of tasks ranging from clinical concept extraction, clinical note

modeling, and patient-level language representation. I present methods utilizing

representation learning with neural networks to support understanding of clinical

text documents.

I first introduce the notion of representation learning from natural language pro-

cessing and patient data modeling. Then, I investigate word-level representation

learning to improve clinical concept extraction from clinical notes. I present two

works on learning word representations and evaluate them to extract important con-

cepts from clinical notes. The first study focuses on cancer-related information,

and the second study evaluates shared-task data. The aims of these two studies

are to automatically extract important entities from clinical notes. Next, I present

a series of deep neural networks to encode hierarchical, longitudinal, and contex-



tual information for modeling a series of clinical notes. I also evaluate the models

by predicting clinical outcomes of interest, including mortality, length of stay, and

phenotype predictions. Finally, I propose a novel representation learning architec-

ture to develop a generalized and transferable language representation at the patient

level. I also identify pre-training tasks appropriate for constructing a generalizable

language representation. The main focus is to improve predictive performance of

phenotypes with limited data, a challenging task due to a lack of data.

Overall, this dissertation addresses issues in natural language processing for

medicine, including clinical text classification and modeling. These studies show

major barriers to understanding large-scale clinical notes. It is believed that devel-

oping deep representation learning methods for distilling enormous amounts of het-

erogeneous data into patient-level language representations will improve evidence-

based clinical understanding. The approach to solving these issues by learning rep-

resentations could be used across clinical applications despite noisy data. I conclude

that considering different linguistic components in natural language and sequential

information between clinical events is important. Such results have implications

beyond the immediate context of predictions and further suggest future directions

for clinical machine learning research to improve clinical outcomes. This could be a

starting point for future phenotyping methods based on natural language processing

that construct patient-level language representations to improve clinical predictions.

While significant progress has been made, many open questions remain, so I will

highlight a few works to demonstrate promising directions.
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CHAPTER 1

INTRODUCTION

1.1 Background

The field of Natural Language Processing (NLP) is continually growing to encom-

pass new formats of text, new types of information, and new domain applications.

When one develops NLP approaches, it enables a computer to process and ana-

lyze large amounts of natural language data. Teaching computers to comprehend

materials written in human language is one of the most challenging and fundamen-

tal problems for NLP. Also, NLP is constantly applied in the fields of biomedical

and healthcare, with diverse and innovative applications to biomedical research and

clinical practice.

Understanding the characteristics of medical language and incorporating these

patterns into model development is critical for biomedical language processing.

Notably, the enhancement of representation learning is an important method de-

velopment that aids in the achievement of these factors. Essentially, representation

learning is an important approach for encoding “hidden” knowledge–that is, knowl-

edge readily available to human experts but not directly stated in the text. It aims to

learn meaningful information from raw data automatically. It also determines how

much useful information can be extracted from raw data for further classification

or prediction. Furthermore, representation learning makes sense because it is co-

herent with the patterns hidden in the data, where each sample can be represented
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by patterns across many computational elements, where each element is engaged in

representing different samples.

At present, representation learning is primarily performed using advanced deep

learning methods. In order to understand why deep learning is needed in represen-

tation learning, I introduce the basic idea of deep learning: deep learning models

make predictions through an iterative training process, during which the input data

is repeatedly fed into the model, hyper-parameters are gradually changed, and even-

tually they learn to connect the input data into good predictions. Each layer, in ef-

fect, learns to make the next layer’s prediction a little easier, so each layer contains

meaningful information with dense vectors.

Deep learning has gradually emerged as a fundamental method for mining infor-

mation from large amounts of data in the era of artificial intelligence (AI). Specif-

ically, deep learning has facilitated the development of key applications such as

computer vision, language understanding, and speech recognition. In contrast to

typical machine learning methods, deep learning is a paradigm for automatic train-

ing across large datasets. Deep learning also takes full advantage of massively-

growing computational resources and web-scale data collection. State-of-the-art

deep learning models are being increasingly developed for unstructured data such

as text. For instance, convolutional neural networks (CNNs) built for matrix-format

data and recurrent neural networks (RNNs) built for sequential data are both utilized

to model natural language.

In terms of the reason why deep learning is necessary for representation learn-

ing, these models have deep architectures that are able to capture abstract and dense
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features from raw data. Also, deep learning models are built with a large number of

non-linear calculations, which would generate more fine-grained features through

these complex non-linear relations. And eventually, deep learning can build more

effective representations that connect input towards effective predictions.

1.2 Problem Definition

Utilizing electronic health records (EHRs) for clinical outcome tasks has been widely

studied, ranging from predicting patient health conditions, such as disease and mor-

tality risk predictions, to monitoring patient trajectories such as readmission and

length-of-stay forecasting. Even though structured EHRs contain sufficient infor-

mation about patient encounters, free-text clinical notes provide specific details that

are more fine-grained to understand patient trajectories. These notes typically pro-

vide information that is supplementary to other data sources, and the information

has enormous promise if appropriately employed. Existing methods, on the other

hand, either only applied methods for extracting concepts and using these concepts

as features, or solely implemented topic modeling to comprehend the subjects in

clinical notes.

There are still many opportunities for advancement in terms of establishing a

more comprehensive knowledge of medical language and building well-suited mod-

els for a holistic patient-level view of clinical notes.

Furthermore, clinical NLP also attempts to build computational algorithms for

machines to understand clinical documents. Those documents are unstructured

free-text with different granularities and complex vocabularies for multiple tasks.
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Figure 1.1: Natural Language Processing Stacks

With regards to how deep representation learning assists with clinical NLP, essen-

tially, clinical NLP concerns multiple levels of language stacks, including but not

limited to characters, words, phrases, sentences, paragraphs, sections, and docu-

ments. Deep representation learning can help to represent the semantics of these

language stacks in unified semantic spaces and, at the same time, build complex

semantic relations among these language stacks. Also, as discussed earlier, medical

text is characterized by its complexity in vocabulary and richness in morphology.

Different approaches to representing learning would help to facilitate understanding

across this complex and rich contextual information.

Specifically, the processing of clinical documents has special difficulties. For

instance, usage of grammatically incorrect language, abbreviations, and terms that

are domain-specific. Methods for modeling clinical notes should have sufficient

exposure to basic domain knowledge, which can be either direct or indirect as-

sociation with the method development. Besides, another major downside in the

Figure 1.1 retrieved from Liu et al. (2020).
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Figure 1.2: Complex Medical Word Embeddings

development of cutting-edge deep learning models for clinical NLP tasks is that

the method fails to incorporate essential characteristics of clinical notes into the

model capabilities. In the end, before implementing models for decision making in

clinical practice, it is critical to make sure that the models achieve a high level of

performance while also being generalized and transferable across varied clinical

tasks.

1.3 Motivations

In this thesis, I particularly investigate NLP for clinical notes in the EHR. I fo-

cus my efforts on applying state-of-the-art deep representation learning methods

Figure 1.2 retrieved from Amatriain (2020).
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in the NLP domain to clinical NLP tasks in order to improve medical language

understanding beyond its current state. One can build deep representation learn-

ing to model clinical notes for a wide variety of clinical outcome predictions, and

also proceed towards enabling representations to simulate the actual characteristics

of clinical notes. Additionally, I investigate the adoption of external free-text re-

sources that include medical knowledge to enrich medical information hidden in

the models for clinical language understanding.

Lastly, I develop models that learn semantic representations from patient notes

that cover as much information as possible from a holistic aspect. I focus on rep-

resentation learning approaches with transfer learning to make full use of clinical

notes by mapping notes towards clinical outcomes directly. My ultimate goal is

to develop meaningful representations that can be transferred to multiple clinical

tasks. Such representations not only include clinically relevant information about

specific patients, but they also associate similar patients with similar patterns to a

shared latent space.

1.4 Thesis Outline

CHAPTER 2 reviews the background of this thesis. This chapter covers some of the

conceptual knowledge of representation learning and its application in natural lan-

guage processing and EHR data modeling, particularly focusing on methods using

advanced deep learning models. From a methodological standpoint, I systemati-

cally review this topic and include both qualitative and quantitative assessments.

More importantly, I demonstrate the necessity and feasibility of learning represen-



CHAPTER 1. INTRODUCTION 7

tations from natural language and patient data.

CHAPTER 3 discusses the development of clinical word representations for clin-

ical concept extraction. This includes work that proposes a frame-based NLP sys-

tem to identify cancer-related information from clinical notes. I implement a bidi-

rectional long short-term memory with conditional random field (Bi-LSTM-CRF)

and incorporate both character and word representations into the model input. This

study shows the usefulness of different representations combined with deep learn-

ing models for extracting frame semantic information from clinical notes. Another

study in this chapter explores possible improvements in using contextual representa-

tions for clinical concept extraction by comparing these methods to traditional word

representation methods. I investigate best practices for implementing these recent

state-of-the-art contextual representations into clinical tasks. The best-performing

representations outperform existing state-of-the-art methods that achieve clinical

concept extraction tasks.

CHAPTER 4 presents a series of hierarchical neural networks for modeling clin-

ical notes over a long time scale. To explicitly learn representations from long-

sequence clinical notes, I develop models initialized by CNNs, then Hierarchi-

cal Attention Networks (HANs), and finally Hierarchical Transformer Networks.

For CNNs, I also implement target replication that incorporates the final loss with

the loss at intermediate steps, so as to emphasize relations between sentences.

For HANs, I further apply an adaptive segmentation module to differentiate short-

period co-occurrences with long-term dependencies in clinical note sequences. To

this end, I consider three aspects of clinical notes – contextual, hierarchical, and
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longitudinal – and propose Hierarchical Transformer Networks. I evaluate these

models on real clinical outcome predictions containing mortality and phenotype

predictions.

CHAPTER 5 embarks on a novel representation learning architecture, with the

multi-task pre-training and transfer learning, to learn generalized and transferable

patient representations. The model is pre-trained with a range of high-prevalence

phenotypes before being fine-tuned towards downstream tasks. I validate the impact

this representation can have on low-prevalence phenotypes, as it is a challenging

task because of the limited data. The results lead us to conclude that this multi-task

supervised pre-training is a solid and robust method for learning generalized patient

representations for numerous phenotypes.

CHAPTER 6 concludes the thesis. I also discuss the limitations and propose a

few directions for future study.



CHAPTER 2

LITERATURE REVIEW

2.1 Representation Learning

Representation learning is established as learning representations of raw data au-

tomatically to extract meaningful information for building effective classifiers or

predictors (Bengio et al., 2013). Each sample can be represented by a pattern

across numerous computational elements, and each element is engaged in repre-

senting different samples. Discovering spaces where data can be separated linearly,

differentiating invariant attributes of objects from noisy properties, and categoriz-

ing high-dimensional data into interpretable clusters are all representation learning

problems. A typical machine learning algorithm requires three main components:

representation, model, and objective. That means we need to first convert raw data

into meaningful representation, then choose an optimal model, and finally train

the model to meet the requirements of the objective function. The performance of

machine learning algorithms largely depends on the effectiveness of data represen-

tation whether we can disentangle the underlying factors hidden in the data.

Effective representations convey meaningful knowledge, which means that a

trained representation of a compact size is able to capture essential input patterns.

The motivation of representation learning is to make patterns underlain by data

clear. Traditional machine learning requires careful feature engineering in pre-

processing. This makes a certain task need customized and hand-crafted features,
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but the efforts in this step are time-consuming and inflexible. Deep learning, on the

other hand, is constructed with the composition of non-linear transformations and

would yield more abstract but fine-grained, and eventually more effective represen-

tations. While specific domain knowledge can be utilized in developing represen-

tations, learning with generic underlying patterns would be much more generalized

and applicable for numerous tasks, and the application of deep learning is motivat-

ing the development of more effective representation learning methods for a wide

variety of work.

2.2 Representation Learning in Natural Language Processing

Natural language texts are typically unstructured data with varying granularities of

information in multiple domains. The goal of representation learning for natural

language is to automatically represent texts on numerical scales. Modern NLP is

mainly based on representation learning. Natural language representation focuses

on learning generic or static representations with the motivation to improve the end

task, which significantly minimizes the need for humans to curate manual features.

The ability to efficiently consume large amounts of data to learn generic features

is important to better suit the downstream NLP tasks. Another major reason for

representation learning in NLP fields is that textual data is fundamentally differ-

ent from structured data such as images (i.e., the fixed size of two-dimensional

vectors), where text has to be learned sequentially to be captured with variable se-

quence lengths. This has inspired the wide adoption of current trends in the NLP

community to embrace representation learning approaches. The investigation into
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representation learning in NLP has progressed significantly since then (Liu et al.,

2020).

In conventional NLP disciplines, classic ideas and approaches, such as n-gram

and bag-of-word, have been previously applied in numerous applications. However,

these methods always suffer from the notorious curse of dimensionality in large-

scale corpora. They are considered to have relatively limited capabilities when it

comes to analyzing larger text objects (i.e., documents) and extracting semantically-

meaningful information. Such methods are also constrained by the fact that they

can only analyze information that they already perceive. Advanced computational

models seek to minimize this gap by simulating how humans understand language,

for instance, by modeling semantic features that are implicitly expressed in the

language.

An alternative approach to such representation is known as distributed represen-

tation (Hinton et al., 1986), where concepts are represented as low-dimensional and

real-valued vectors. Many early approaches of word representations are built on

the assumption of this distributional representation. Accordingly, two words that

appear frequently in analogous linguistic environments are more semantically re-

lated, so both of them should be closer to each other in the embedding space. The

word representations generate low-dimensional dense vectors that substantially im-

prove the curse of dimension and sparsity of the traditional bag-of-word method.

The distributed word representations are particularly good at capturing subtle se-

mantic similarities, and the downstream tasks relying on those representations have

produced state-of-the-art results.
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While these distributed word representations are important in many clinical

NLP tasks, they are still limited in their capability to represent words with multiple

meanings in varied contexts. They encompass all probable definitions of one word

in a single embedding, and the embedding is not context-aware. They also face a

major out-of-vocabulary issue. One milestone for this issue is the introduction of

pre-trained language models. Recent research in computer vision has established

the use of transfer learning, in which huge CNN models are pre-trained on large-

scale image recognition datasets annotated by humans, the ImageNet. Through

leveraging ImageNet’s extensive visual data, fine-tuning these pre-trained models

with a small amount of task-specific data enables the models to perform effectively

on downstream tasks. This initiates the first stage of investigations into pre-trained

language models in the NLP domain. The Transformers were further proposed

to enable enormously deep neural models for NLP tasks. When the size of the

pre-trained language models is increased, such large-scale models with millions of

hyper-parameters are able to derive information including word disambiguation, se-

mantic and syntactic structures, and underlying information from the context. Ex-

isting large-scale language models have prompted model performance for a wide

range of NLP tasks due to their generalizability and robustness. By extending this

process, we may potentially gain a better insight into how human language process-

ing works.
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2.2.1 Count-based Word Representation

Conventional NLP algorithms rely heavily on count-based word representation learn-

ing. The word frequency and co-occurrence matrix are widely used in count-based

methods, assuming that words in similar contexts have similar count-based statis-

tics. The count-based method projects those statistics into feature vectors of indi-

vidual words.

The simplest way to automatically represent a word using a numerical feature

is the bag-of-words (BoW) (Zhang et al., 2010). Each word is represented by a

1 × N matrix, where N is the vocabulary size. The position corresponding to an

individual word is assigned a value of 1, while all other positions in this vector are

assigned a value of 0, which we also identify as one-hot encoding. This method

is a simplifying method used in NLP and information retrieval (IR). However, it

fails to consider grammar related to word sequence, or any semantic meaning of

words, and just distinguishes words from each other. As there are millions of words

in the corpus, the vectors tend to be extremely sparse, resulting in the curse of

dimension. In addition, the methods are limited in their ability to generalize to

out-of-vocabulary words and easily overfit to the training corpus (Wallach, 2006).

N-gram models are one of the earliest ideas related to count-based word repre-

sentation learning (Cavnar et al., 1994). N-grams are consecutive sequences of one

or more tokens derived from texts. The n-gram models can be used as probabilistic

language models to predict the next tokens in a sentence within a Markov chain.

Intuitively, we normally refer to certain previous words to predict the next word in

a sentence (i.e., previous n-1 tokens in the case of an n-gram model). And if we pro-
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cess a large-scale corpus, we may calculate and obtain a probability estimation for

each token, assuming all possible combinations of the n-1 previous tokens that have

been encountered. These probabilistic language models are important for predict-

ing words in sequences and also for developing vector representations of words, as

they may encode the meanings of words in their respective vector representations.

TF-IDF, short for term frequency–inverse document frequency, is a numerical

measure of a word’s importance in a textual collection (Ramos et al., 2003). It is

widely applied as a weighting method in IR and NLP. In real-world scenarios, some

words are quite frequently used (e.g., ”the”, ”is”, ”and”, etc). However, they contain

very little information about the actual knowledge of the document. Raw frequency

is not the best indicator of word association. The TF-IDF weighting is a numeri-

cal way to evaluate the importance of a word to a document in large-scale textual

collections. The importance of a word increases proportionally to the frequency

of a word in the entire document set, but decreases by the frequency of a word in

a single document. Formally, this is achieved by multiplying term frequency and

inverse document frequency. The former is defined as word frequency in a single

document. The latter is measured by dividing the total number of documents by the

number of documents actually containing that word, and then calculating the loga-

rithm. The TF-IDF weighting is another way to calculate co-occurrence statistics,

and it plays an important role in many aspects of IR and NLP. It is considered as a

baseline and straightforward method to try at the beginning.
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2.2.2 Prediction-based Word Representation

The prior methods learn how to represent words as sparse and long vectors with di-

mensions related to vocabulary size or the number of documents. A more effective

and powerful form of word representation learning, word embeddings, is mostly

derived from prediction models to generate short and dense vectors. These em-

beddings have dimensions ranging from 50 to 1000, as opposed to long and sparse

vectors. Besides, unlike the vectors that are mostly zeros in count-based word rep-

resentations, prediction-based word vectors consist of continuous numerical values.

Over time, word embeddings have performed well in a wide range of NLP tasks.

Because these dense vectors perform better at capturing words with similar mean-

ings, while the count-based representations fail to distinguish between them. There

are two typical algorithms for computing such word embeddings: Skip-gram and

Continuous Bag of Words (CBOW). Both of them implemented self-supervision

to learn from their own data without any need for manual effort in labeling. They

are also known as word2vec (Mikolov et al., 2013b). The intuitions behind the al-

gorithms are shallow neural networks based on distributional hypothesis. CBOW

learns the embeddings in such a way that they can predict the target word from

words in the context (Mikolov et al., 2013b). Skip-gram generates the embeddings

that can be used to predict the context given the target word. There are also ad-

vanced variants of these two algorithms to incorporate more information into the

model. Take the basic Skip-gram as an example to illustrate training steps more

specifically: The training system first considers the target word and its context

words (with a context window) as positive instances, and then randomly selects
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sample words from the lexicon to obtain negative instances. Then the classifier will

be trained iteratively to distinguish between these two cases, and the final trained

weights will be used as the word embeddings.

Another widely known static embedding approach is GloVe, an abbreviation for

Global Vectors for Word Representation (Pennington et al., 2014). GloVe is pro-

posed to capture global corpus statistics. Combining the intuitions of count-based

methods with the word co-occurrence matrix, it also captures the hidden structures

that are implemented by word2vec. The GloVe is built on word-context matri-

ces with matrix factorization. It constructs a large co-occurrence matrix (words ×

contexts). Specifically, for each word (i.e., row), the entry for each word is the

number of times this word occurs in the corresponding context (i.e., column) in

large corpora. The column size is quite large as it is essentially combinatorial. As

a result, we must factorize this large matrix to produce a low-dimensional matrix

with the size of word × features. Each row now represents a dense vector for the

corresponding word. The matrix factorization is achieved by minimizing the recon-

struction loss, similar to a dimension reduction algorithm, where the loss attempts

to find the representations that could encode the most variance in the original data.

Overall, GloVe is a probabilistic model based on ratios of probabilities from the

co-occurrence matrix.

Despite the differences in methodological aspects, all of these approaches are

relatively efficient to train, make extensive use of large-scale corpora, and have

been effectively applied to numerous NLP tasks. As the key component of the

NLP pipeline, word representations transform discrete words into low-dimensional
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dense vectors with encoded information. In general, word representation learning

is considered a fundamental step and enables the computer to better compute and

understand natural language than prior to it.

Nevertheless, compared to the neural network language models that have estab-

lished the state-of-the-art in recent studies, the word embedding methods are much

simpler and shallower in two aspects. It simplifies the task, making the task a binary

classification rather than a sequential word prediction. Such word embeddings are

static embeddings where the vector for each word is fixed. Also, the network archi-

tectures are shallow networks rather than RNNs or even Transformers that require

more complex training mechanisms.

2.2.3 Language model-based Representation

Many recent NLP works have been inspired by the potential of transfer learning, in

which large-scale models are first pre-trained to leverage rich knowledge and then

fine-tuned and adjusted to the downstream target task.This approach has achieved

superior performance on many previous tasks and fueled an innovative paradigm

shift in the NLP field. Language modeling is not a new idea. (Collobert and Weston,

2008) originally proposed to pre-train a model on a variety of NLP tasks to learn

features rather than hand-crafting them, as the latter was the common method at

that time. They employed language modeling as one of many supervised tasks

in a multi-task learning scenario, along with part-of-speech tagging, named entity

recognition, and semantic role labeling.

Language modeling did not gain widespread application in NLP until the advent
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of the transfer learning recipe of pre-training and fine-tuning. In pre-training, the

algorithm is trained to optimize and mimic the nuances of language, so as to build

a general-purpose language model that can describe what natural language looks

like. The training algorithm generally includes objective functions such as masked-

language modeling and next sentence prediction. Such state-of-the-art pre-trained

models in NLP are established through representation transfer and model transfer.

For example, ELMo was a 2-layer Bi-LSTM language model (bi-LM) and the con-

texual embeddings are extracted with trainable combinations of the inner state state

of the bi-LM, which is a type of representation transfer (Peters et al., 2018). In

contrast to ELMo, BERT employs model transfer, which dynamically changes the

parameters of the entire language model on the target task Devlin et al. (2019). As

a result, the pre-trained BERT model can be fine-tuned by adding only one addi-

tional layer to achieve state-of-the-art performances for a variety of tasks. Inspired

by BERT, many more effective pre-trained language models for NLP tasks have

been proposed lately. In addition to BERT, there is a vast family of models that

have evolved from it, including RoBERTa (Liu et al., 2019), XLNet (Yang et al.,

2019), Transfomer-XL (Dai et al., 2019), SpanBERT (Joshi et al., 2020), ELEC-

TRA (Clark et al., 2020), ALBERT (Lan et al., 2019), ERNIE (Zhang et al., 2019),

etc. Researchers now exploit existing language models for numerous NLP tasks,

prompting them to accomplish the desired task or reformulating the task as a text

generation problem and applying language models to solve it (Xu et al., 2021).
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2.3 Representation Learning of EHRs Data

EHRs are obtained routinely across a large number of healthcare facilities. These

records are comprised of heterogeneous structured and unstructured data, including

demographics, diagnoses, lab test results, prescriptions, clinical notes, images, etc.

EHRs give an overview of patient health conditions from different perspectives,

which enables new potential to use data-driven and machine learning methods to

explore clinical events on a long-term scale (Wu et al., 2010). Diversity among

EHR data is especially evident when investigating complex disorders. Nevertheless,

EHR has a variety of challenging issues, including being uncurated, poor-quality,

high-dimensional, sparse, heterogeneous, and incomplete (Si et al., 2021b).

For clinical problems, it is particularly crucial to build predictive models that

both perform well on certain tasks, and also provide reliability and interpretabil-

ity. Predictive modeling of EHR data is a machine learning task using EHR data to

build a machine learning model for the purpose of predicting a certain clinical out-

come of interest. The quality of EHR data representations determine how effective

predictive models are for improving the performances. As a result, representation

learning in EHR is a promising trend that combines large-scale data with represen-

tation learning (Bengio et al., 2013). Understanding how different physiological

objects are related to each other across multiple data modalities and sequential time

would construct a holistic view of patient. Representations derived from different

data modalities should be constructed in a way that enables predictive models to

perform effectively on many tasks.

Typically, the learning begins with extracting raw patient data (i.e., structured
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or unstructured). After initial preprocessing techniques to convert raw data into

numerical input embeddings, neural networks are built to derive patient represen-

tations. The networks employ either supervised or unsupervised mechanisms. The

ultimate step is to evaluate how well the representations perform in predicting re-

lated clinical problems. In addition, visualizations are applied to provide some in-

terpretations of the representations and predictions. We provide a brief overview of

this learning pipeline (Figure 2.1) that is widely used in related studies. In the fol-

lowing subsections, we introduce the common methods of representation learning

(LeCun et al., 2015) and how they are suited to encoding EHR data.

Figure 2.1: Pipeline of Patient Representation Learning

2.3.1 Temporal Matrix-based Patient Representation

The temporal matrix-based patient representation develops a two-dimensional ma-

trix with one factor for time and another for clinical events from the EHR. The algo-

rithm used to construct the matrix is called nonnegative matrix factorization (NMF),

and it is a method for decomposing high-dimensional data into low-dimensional

nonnegative components. NMF has been primarily implemented in bioinformatics

Figure 2.1 retrieved from Si et al. (2021b).
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for omic data such as genetic data (Taslaman and Nilsson, 2012) and molecular pro-

files (Stein-O’Brien et al., 2018). Some early work also proposed performing large-

scale temporal mining of longitudinal EHR data with the advanced NMF methods

(Wang et al., 2012b,a; Zhou et al., 2014; Cheng et al., 2016). These early attempts

have investigated the feasibility of building a mathematical two-dimensional ma-

trix for each patient with encoded information. These works also demonstrate the

challenges of processing heterogeneous EHR data as well as the potential of estab-

lishing a one-to-one defined mapping between patient and target in order to leverage

the underlying knowledge of temporal EHR data.

2.3.2 Vector-based Patient Representation

Vector-based representations are commonly built with neural networks where each

individual patient is represented by a low-dimensional numerical vector. Such deep

neural networks include fully connected deep neural networks (fully connected

DNNs), CNNs, autoencoders, and word2vec. Fully connected DNNs were inspired

by neurological studies and were proposed to construct non-linear relations with

one or more hidden layers (Svozil et al., 1997). In some early works, this archi-

tecture was used as a baseline method to learn patient representations (Che et al.,

2015; Rajkomar et al., 2018).

CNNs were developed with modules consisting of convolutional layers and

pooling layers, originally for image processing (LeCun et al., 1989). More com-

plex variants of CNNs have been integrated to learn data types other than images,

such as texts (Kim, 2014) and waveforms (Xu et al., 2018). CNNs are widely used
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in multi-modal data modeling of EHRs due to their ability to process different data

types (Cheng et al., 2016).

Unlike the former two networks with supervised backpropagation, autoencoders

are unsupervised models that learn abstract representations through a way of recon-

structing input data (Vincent et al., 2008). The success of applying autoencoders in

patient representations was early proposed by Miotto et al. (2016), where a three-

layer stacked denoising autoencoder was used to develop a 500-dimensional patient

representation for general-purposes.

Word2vec is distinct from the above three methods in terms of learning mech-

anisms, where word2vec algorithms are self-supervised (Mikolov et al., 2013b).

Two main algorithms, including continuous bag-of-words and skip-gram, both es-

tablish predictive relationships between target words and their surrounding contexts

(Mikolov et al., 2013a). The advanced methods of word2vec have been extensively

implemented to learn patient representations within clinical code sequences (Choi

et al., 2016b; Xiang et al., 2019).

2.3.3 Tensor-based Patient Representation

Tensor-based patient representation learning focuses on identifying distinct patient

phenotype groups and understanding the temporal variation of patients (Yang et al.,

2017). The tensor decomposition and factorization method constructs a three-

dimensional or more tensor aggregating clinical events for each patient. As a

high-throughput extension to matrix decomposition/factorization, tensor decompo-

sition/factorization also attempts to transform high-dimensional tensors into con-
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cise low-dimensional spaces (Kolda and Bader, 2009). It effectively identifies the

inherent information of high-dimensional tensors and retains the variance while

decomposing them into low-dimensional factors. One of the prominent algorithms,

the CANDECOMP/PARAFAC alternating Poisson regression, is widely applied for

tensor decomposition or factorization by deriving a tensor as a concatenation of a

fixed set of rank-one tensors (Chi and Kolda, 2012). The method is unique among

traditional dimension reduction approaches in that it can leverage multi-aspect el-

ements into different spaces and it is flexible enough to introduce domain-specific

knowledge into the implementation. The superiority of tensor decomposition en-

ables this method to learn underlying patient representations with more granularity

and abstraction. More specifically, the patient tensor constructs three or more dis-

tinct components, including a patient component and other components of clinically

meaningful events from diagnoses, treatments, or procedures. With a weighted

combination of rank-one tensors from the product of components, each patient ten-

sor constitutes a phenotype disease (Ho et al., 2014). Complex correlations and

associations between clinical events that are not clear in flattened EHR data can be

captured by a tensor-based patient representation, which is particularly useful for

EHR-derived phenotype definitions (He et al., 2019).

2.3.4 Graph-based Patient Representation

Graph-based representation learning develops a concise graph to connect clinical

events in EHR data, in which the nodes in the graph represent the events and the

edges in-between define the associations or correlations among the events. One
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of the earliest works that applied graph-based representation learning to patient

EHR data was proposed by Liu et al. (2015) where they developed a temporal

graph-based framework to encode the temporal relations of distinct clinical events.

Graph representation learning based on neural networks known as Graph Neural

Networks (GNNs) further pushed the emerging field forward. Models such as Di-

rected Acyclic Graph (Choi et al., 2017), Graph Convolutional Network (Niepert

et al., 2016), Graph Attention Network (Veličković et al., 2017), and node2vec

(Grover and Leskovec, 2016) have been adapted to leverage the structure and prop-

erties of EHR data. The inherent networks with graphical structures enable a more

interpretable representation. Additionally, graph representations are especially ben-

eficial for incorporating knowledge bases into the framework. Some research has

added multi-level medical code (i.e., ICD-9) knowledge graphs to the network to

improve its interpretability and predictive performance (Choi et al., 2017; Ma et al.,

2018). Additional knowledge base solutions include co-morbidity groups (Zhang

et al., 2017) , drug-drug interactions Wang et al. (2019), omics-disease associations

(Zhang et al., 2021).

2.3.5 Sequence-based Patient Representation

EHR data contains a series of unevenly distributed clinical events, and sequence-

based patient representation learning attempts to learn the temporal information of

these clinical events. Each patient is represented by a collection of timestamped

event features. Given the limitations of conventional machine learning in dealing

with challenges, state-of-the-art deep learning models for temporal EHR data rep-
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resentation have been proposed, including RNNs (Sutskever et al., 2014), LSTMs

(Hochreiter and Schmidhuber, 1997), and Gated Recurrent Units (GRUs) (Cho

et al., 2014). These sequential neural networks are capable of processing temporal

inputs. RNNs process a sequence of inputs one at a time, passing the hidden state of

each unit to the next; thus, in theory, the current state contains the implicit informa-

tion of the previous units (Bahdanau et al., 2014). GRUs and LSTMs are enhanced

variants of RNNs to address the vanishing gradient issue of RNNs. A number of

studies have used these sequential neural networks to represent patients with a se-

quence of clinical codes. The earliest RNN-inspired model is Doctor AI proposed

by Choi et al. (2016a), in which patient trajectories are learned and represented by

a skip-gram distributed vector of clinical codes.

Although RNNs have received considerable attention for sequence modeling,

their limitations still exist. One significant drawback is that RNNs cannot be trained

concurrently, which would increase training time. Besides, RNNs may encounter

issues of vanishing or exploding gradients. More importantly, RNNs only capture

inputs in a single direction, and a bi-directional RNN that learns from back and forth

directions simply combines outputs from two directions, which is not considered

as a true bi-directional representation. Alternatively, there is the architecture to

delve deeper into the past sequences and impact future decisions, which also lets

the model actively learn and determine which elements from the past are more

relevant for future predictions. Thus, the Transformer architecture was proposed

to mitigate the limitations of typical deep learning models and provide a stronger

capability for processing sequential data compared to RNNs. The Transformer is an
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encoder-decoder framework equipped with self-attention mechanisms to simulate

correlations between contexts in parallel (Vaswani et al., 2017).

Thanks to the wide application of Transformer-based pre-trained models in the

NLP domain (Radford et al., 2018; Devlin et al., 2019), Transformers are recently

being applied for clinical sequence modeling. It also learns each clinical event

as a timestamped unit and encodes the patient trajectory as a complete sequence,

which is similar to how RNNs process sequence modeling of patient data. Different

from the RNNs that predict the next unit in a recurrence manner, the Transformers

leverage the entire sequence all together, and utilize self-attention mechanisms to

capture the relevant information from it. Many recent studies have investigated the

effect of pre-trained Transformers on training medical concept representations with

patient EHR data (Choi et al., 2020; Song et al., 2018; Li et al., 2020; Rasmy et al.,

2021).



CHAPTER 3

CLINICAL WORD REPRESENTATION

The majority of word embedding methods consider a word as a basic unit to learn

the embeddings. While words, especially English words are generally made up

of characters. The semantic meanings of internal characters are likewise essential

to construct the semantic meanings of words. Thus, a straightforward idea is to

take internal characters into consideration when generating word embeddings. We

attempt to develop a joint learning model of character and word embeddings, where

we learn and maintain both character and word embeddings together. They are

concatenated together to generate the entire input embeddings.

Another main resource for enriching word embeddings is to make use of domain-

specific corpora. Although there are a large number of general word embeddings

off-the-shelf, they are mostly generated on corpora that are as large as possible so

that they can cover every domain. While in the clinical domain and for clinical

texts, there are generally terminologies in these specific domains. This is the case

when we may have words in the corpus that would be out-of-vocabulary for gen-

eral embeddings, or if the general embeddings perform poorly for the clinical NLP

problem on the spot. We sought to collect a clinical domain-specific corpus and

train word embeddings well-suited to clinical texts. This may also result in a com-

mon trade-off between small-but-representative corpora and large-but-not-related

corpora. It is possible that the small-but-representative corpus is not broad enough
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to capture all of the necessary meaning. On the other hand, the large-but-not-related

corpus may not be relevant enough to adequately capture the meaning of some of

the most essential terms in the corpus.

Finally, this would be a simple and general way to integrate internal character

knowledge and external context knowledge to learn word embeddings that can be

extended in various models and tasks.In the next few sections, we examine word-

level representation learning to enhance concept extraction from clinical notes. We

introduce two projects that build word representations and evaluate them to identify

key terms from clinical notes. One study concentrates on cancer-related information

extraction and another study focuses on public shared-task data. The goals of these

two studies are to automatically identify and extract important entities from clinical

notes.

3.1 Cancer-related Information Extraction

3.1.1 Introduction

Over the last decade, the amount of data kept in EHRs has increased massively. And

patient data can be categorized as structured or unstructured (free-text). During

the course of daily care, unstructured data such as clinical narratives, discharge

summaries, laboratory reports, and pathology reports are routinely documented. As

opposed to structured data, unstructured data in the EHRs typically provides richer

granular and contextual information regarding clinical events while also improving

communication between clinical departments. Thus, extracting information from

these document resources can support a wide range of needs, ranging from clinical
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decision support to secondary use of clinical data for research, as well as public

health and medication management purposes.

In this section, we present an approach to extracting cancer-related information

based on the notion of FrameNet. In FrameNet, frames are descriptions of circum-

stances established on frame semantics theory, which includes a number of partici-

pants, such as events and relations. More particularly, the terms or expressions that

initiate the frame are referred to as lexical units (LU). The words that describe the

properties or features that are associated with the LU are called frame elements.

Considering the frame of cancer diagnosis as an example, the LUs are numerous

types of cancer, such as leukemia, prostate cancer, etc. And the frame elements are

cancer-related attributes that characterize a specific type of cancer, including stage,

location, histology, etc. In this study, we implement a deep learning approach for

identifying and extracting the lexical units and elements of the cancer frame. Deep

learning models have been successfully applied to clinical natural language process-

ing applications such as concept and relation extractions. The advantages of deep

learning over traditional machine learning models (i.e., conditional random fields

(CRF), support vector machines (SVM), and hidden markov models) are owing to

the capability of deep learning models to train underlying features from large-scale

data and consequently outperform those conventional models. Meanwhile, unlike

machine learning methods that more heavily depend on human-curated features,

deep learning methods rely on distributed word representations trained from large

amounts of text, which would mitigate a lot of human effort while also contribut-

ing in terms of performance. Given the complexity of clinical notes, there is huge
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potential for deep learning models to improve. CNN, RNN, and RNN variants such

as Bi-LSTM are the most frequently utilized deep learning models for concept and

relation recognition.

The remainder of this section is structured as follows. We begin by reviewing

previous work, focusing on the use of deep learning methods to extract cancer-

related information.Then we describe the steps in curating and annotating data, and

specifically, how we define the cancer frames and elements. Next, we implement

the deep neural network to extract the frames and elements in two steps. Following

that, we report the experiment results. In the end, we conclude with an in-depth

discussion about the current limitations and future directions.

3.1.2 Related Work

3.1.2.1 Cancer Information Extraction

A number of previous attempts have been made to extract cancer information from

clinical notes. Similar research to ours have applied either rule-based methods or

machine learning models or both to detect wide varieties of cancer-related infor-

mation. With the increasing availability of EHR clinical notes, information extrac-

tion becomes to have an impact on hospital workflows. One of the main focuses

is pathology report parsing. Previous studies have proposed NLP methods in re-

sponse to different cancer types. Xu et al. (2004) investigated the capability of

MedLEE (i.e., an existing NLP system) to identify tabular information relevant to

cancer diagnoses from pathology reports. Weegar and Dalianis (2015) proposed a

rule-based method for capturing important cancer terms from breast cancer pathol-
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ogy reports. D’Avolio et al. (2008) utilized regular expressions to identify Gleason

scores and TNM stages of prostate cancer from post-operative pathology notes. Ou

and Patrick (2014) utilized a CRF model to identify melanoma cancer entities from

pathology reports of cutaneous melanoma patients. Napolitano et al. (2010) de-

signed a pattern-based extraction method to extract information including Gleason

score, Clark level, and Breslow depth from pathology reports. Yala et al. (2017)

trained a machine learning model to parse tumor characteristics from breast cancer

pathology reports. Martinez and Li (2011) employed a machine learning model at

the document level to parse colorectal cancer diagnosis and staging from pathology

reports.

Other than pathology reports, notes such as radiology reports and MRI reports

are also considered an important resource to obtain cancer-related information.

Taira et al. (2001) developed an automatic structuring representation for radiologic

free-text studies. Cheng et al. (2010) developed a hybrid system using an SVM

model and a rule-based method to capture tumor information, including status and

magnitude, from unstructured MRI reports. McCowan et al. (2007) implemented

an SVM model to detect tumor, node, and metastasis (TNM) categories from the

Cancer Stage Interpretation System (CSIS). Coden et al. (2009) developed an inte-

grative cancer disease knowledge representation model (CDKRM) to localize can-

cer staging with the Medical Text Analysis System. Denny et al. (2012) developed

a NLP system to identify colorectal cancer screening from EHR clinical notes and

showed that NLP achieved higher precision while having marginally lower recall

to identify patients than chart reviews.Wilson et al. (2010) detected and classified
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mesothelioma patients with regard to cancer history with two rule-based methods

containing Dynamic-Window and ConText. Harkema et al. (2011) investigated the

positive impact of the NLP system on the quality measurement of colonoscopy.

Overall, as we have noticed, different types of cancer information overlap to a

large extent across different note resources (Imler et al., 2013; Martinez et al., 2013;

Ping et al., 2013; Vanderwende et al., 2013; Ashish et al., 2014; Wang et al., 2014a).

A closer comparison of our study is with the work of the DeepPhe project by Savova

et al. (2017), which is a document-based method to extract cancer-related entities.

In this study, our method is a sentence-level approach, and we assume it would

be more appropriate for clinical concepts. A frame-based approach with sentence-

level information would also yield more potential for generalization across different

types of data. Instead of developing task-specific NLP systems for different aims,

we believe that by focusing on a frame-based approach, consistent knowledge of

cancer-related information can be effectively incorporated together.

3.1.2.2 Deep Learning Models for Biomedical Texts

There has been a great deal of effort dedicated by researchers to the application of

deep learning for understanding and mining biomedical text. This includes not just

clinical notes, but also scientific publications, medication labels, and other types

of biomedical documents. Among different models, RNN and its variants have

shown outstanding results on a wide variety of concept extraction tasks. Chalapathy

et al. (2016) implemented Bi-LSTM-CRF on a public concept extraction task for

the 2010 i2b2 challenge and showed the superb performance of the model with
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GloVe embeddings. Wu et al. (2017) compared a CNN model and an RNN model

on the 2010 i2b2 challenge and demonstrated that the RNN outperformed the CNN.

Liu et al. (2017b) further illustrated that the RNN achieved the best performance on

three public shared tasks, including i2b2 2010 (Uzuner et al., 2011), i2b2 2012 (Sun

et al., 2013), and i2b2 2014 corpora (Stubbs et al., 2015).

There are heated discussions about whether deep learning models can outper-

form statistical machine learning models. Habibi et al. (2017) tested both tradi-

tional CRF and Bi-LSTM-CRF on various biomedical texts and discovered that

Bi-LSTM-CRF with domain-specific word embeddings could significantly improve

recall while still retaining reasonable precision, resulting in an improvement in the

overall F1 score. Gridach (2017) showed the efficacy and feasibility of character-

level embeddings for a Bi-LSTM-CRF model.

In addition, to decide which deep learning model to use, Jagannatha and Yu

(2016a) compared extensively a wide range of RNN variants, including Bi-LSTM,

Bi-LSTM-CRF, Bi-LSTM-CRF with pairwise modeling, and Skip-chain CRF. The

experiments on concept extraction showed that the LSTM-based variants outper-

formed other alternatives, in particular in parsing intricate expressions such as med-

ication duration or occurrences (Jagannatha and Yu, 2016b).

Furthermore, Xu et al. (2017) implemented Bi-LSTM-CRF to extract the ad-

verse drug reactions for the 2017 TAC challenge (Demner-Fushman et al., 2018) ,

and won the competition with the highest total score. Tao et al. (2017) trained word

embeddings with MIMIC-III (Johnson et al., 2016) clinical notes and extracted the

prescription information from the local hospital clinical notes. Gehrmann et al.
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(2018) thoroughly compared the results of CNN and an existing NLP system, cTAKES,

concluding that deep learning models like CNN should be incorporated into the sys-

tem to subsequently improve the task performance. Luo et al. (2018) developed a

segment-level RNN to achieve relation extractions from clinical notes, which is one

of the pioneering studies on the implementation of neural networks for the classifi-

cation of medical relations (Luo, 2017).

Altogether, these findings facilitate the use of deep learning models for catego-

rizing medical concept extractions as they outperform conventional rule-based and

machine learning methods while requiring minimal hand-curated feature engineer-

ing.

3.1.3 Methods

3.1.3.1 Dataset

We look into frames based on common cancer entities, including cancer diagnoses,

therapeutic procedures for cancer, and descriptions of tumors, which correspond to

three frames: CANCER DIAGNOSIS, CANCER THERAPEUTIC PROCEDURE, and

TUMOR DESCRIPTION. A practicing physician specializing in internal medicine

assists in developing a dictionary list of lexical units and correlative elements for

each frame. The elements were chosen iteratively, with the main focus being on ad-

equate frequency and importance. Table 3.1 presents the final list and corresponding

descriptions. We got approval from the UT Health Institutional Review Board (the

IRB protocol number is HSC-SBMI-13-0549), and extracted around 7,000 cancer-

related sentences from the UT Physicians data warehouse.
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Table 3.1: Frame Lexical Units and Elements

Frame Lexical Units Frame Element Description
CANCERMASTERFRAME

CERTAINTY DATETIME POLARITY

Certainty/hedging of frame
(e.g., possible, likely)

Temporal
information
for the frame

Existence/negation of frame

CANCERDIAGNOSIS

adenocarcinoma, cancer,
carcinoma, leukemia,
lymphoma, malignancy,
malignant, melanoma,
myeloma, sarcoma

FAMILYHISTORY Specifies a family member
HISTOLOGY Histological description
LOCATION Part of body
PATIENT Reference to the patient
QUANTITY Quantitative measure
STATUS Status (history, ongoing)

CANCERTHERAPEUTICPROCEDURE

colectomy, hysterectomy,
lymphadenectomy,
mastectomy, palliative,
pancreatectomy,
prostatectomy,
radiation,
whipple

AGENT Agent
COMPLICATION Unexpected outcome
EXTENT Extent of the procedure
LOCATION Part of body procedure targets
PATIENT Reference to the patient
RESULT Result of the procedure
STATUS Procedure status

TUMORDESCRIPTION

lesion, mass, tumor

LOCATION Part of body
MALIGNANCY benign or malignant
MARGINSTATUS Tumor margin
METASTASIS Whether has metastasized
PATIENT Reference to the patient
QUANTITY Quantitative measure
RECURRENCE Recurred
RESECTABILITY Resectable
MORPHOLOGY Morphology of tumor
SIZE Diameter/volume of tumor
SIZETREND The trend in tumor size
STAGE Stage number
STATUS Tumor status



CHAPTER 3. CLINICAL WORD REPRESENTATION 36

We extracted sentences containing at least one potential lexical unit with key-

word searching and sorted them by the TF-IDF cosine distance to improve sentence

diversity and avoid using duplicate sentences. The sentences were de-identified by

an automatic de-identification system and further checked by humans. The annota-

tion was conducted on Brat (Stenetorp et al., 2012) by two student annotators and

reconciled by a clinical NLP expert. For more details on data annotation, we refer

you to the work by Roberts et al. (2018).

3.1.3.2 Model

In this part, we introduce the architecture of the neural network as well as the em-

bedding approach applied to increase the model performance.

Bi-LSTM-CRF Networks: the Bi-LSTM-CRF networks was proposed by Lam-

ple et al. (2016). The LSTM model is one of the RNN variants to process long-term

information and minimize vanishing gradient issues. In addition to the forward

sequence information (first word to final word in the sequence), adding a second

LSTM network that analyzes the identical sequence in the opposite direction (last

word to first) should catch both previous and upcoming inputs, which was intro-

duced as bidirectional LSTM (Bi-LSTM). However, the network still predicts in-

dependently at token-level labels in the decoding classification, which is not best-

tailored for concept or relation extraction. Instead of token-level decoding, a linear-

chain conditional random field (CRF) method was implemented in a Viterbi-style

algorithm at the decoding prediction to capture the correlations and jointly produce

the entire outputs of the phrases, where a state transition matrix score was calcu-
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lated. The transition score and the final outputs of Bi-LSTM networks are combined

to output the final probability for the prediction.

Embeddings: The vocabulary and morphology of medical terms and phrases are

complicated. By incorporating character embeddings to capture morphology from

medical terms, we could fully resolve the out-of-vocabulary issue and mitigate the

deficiency of word-level embeddings. Similarly, we apply a Bi-LSTM model and

concatenate the forward and backward output vectors to obtain the final character

embedding vectors. Apart from the character embeddings, we pre-train word em-

beddings from clinical notes of MIMIC, which have been demonstrated to signifi-

cantly improve performance in a variety of clinical NLP tasks. Because word em-

beddings differ greatly between general and specific domains, to balance the trade-

off between small-but-representative and large-but-not-related, we experimented

with two word embeddings with different settings. In the end, for input embeddings,

we take full advantage of representation information for each word by feeding both

character embeddings and pre-trained word embeddings into the neural network.

NLP Architecture: Our pipeline of concept and relation extraction is a two-step

sequence labeling system. As shown in Figure 3.1, the first step in the pipeline is

a typical named entity recognition module that extracts all the frame-trigger lex-

ical units in sentences. In the exemplar sentence in Figure 3.1, this step extracts

three lexical units as follows: cancer→ B-CANCERDIAGNOSIS,prostatectomy→

B-CANCERTHERAPEUTICPROCEDURE,melanoma→ B-CANCERDIAGNOSIS.
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Figure 3.1: Main Architecture of the System.

Figure 3.1 retrieved from Si and Roberts (2018).
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In the second step, we assign the lexical units of interest for each sentence a

new label as “B-#Target#”to let the training be aware of which term is the lexi-

cal unit that triggers the current sentence. Next, the sentences are split into mul-

tiple instances, and each instance contains only one lexical unit associated with

the elements. In the exemplar sentence in Figure 3.1, cancer, prostatectomy, and

melanoma are assigned with “B-#Target#”. In instance 1, the related elements of

the cancer entity include man, hx, and prostate, and they are labeled as different cat-

egories from the element lists, namely B-PATIENT, B-STATUS, and B-LOCATION,

respectively. In instance 1, any other lexical units and elements are labeled. Con-

sequently, we highlight the importance of position information for the lexical unit

to the element extraction in order to prevent getting confused with multiple lexical

units. The final step is to combine different instances into the final result. Such a

pipeline enables the architecture to incorporate all cancer information into one end-

to-end framework. At execution, when a new sentence is processed, the first step

extracts all the lexical units included in the sentence and, next, forwards the out-

puts of the lexical units to the second step, which would further extract all related

elements.

3.1.3.3 Experiments

We divide the annotated sentences into three subsets, including training, test, and

validation sets, with a ratio of 0.8, 0.1, and 0.1, respectively. The descriptive statis-

tics of sample size is shown in Table 3.2. The input embeddings contain charac-

ter embeddings with 100 dimensions and word embeddings. We employ a variety



CHAPTER 3. CLINICAL WORD REPRESENTATION 40

of word embeddings, including 300-dimension GloVe, 100-dimension embeddings

from the clinical domain, and a concatenation of both. The GloVe embeddings

were released by Pennington et al. (2014) and the team trained on 6-billion words

from Wikipedia. For clinical domain word embeddings, we use the embeddings

trained from MIMIC-III clinical notes (Johnson et al., 2016) in a previous work

(Roberts, 2016). Additionally, we experimented with the concatenation of GloVe

and MIMIC-III embeddings (i.e., 400-dimension).

Table 3.2: Descriptive Statistics of Concepts

Type Train size Dev size Test size
Sentences 6,096 762 763
Frame Lexical Unit 5,696 708 759
Frame Element 9,108 1,092 1,178

Throughout the training process, sentences and labels are segmented into two

input data lists. One input list consists of sentences with solely annotated lexical

units, which are processed in the first step of the NLP system to conduct lexical unit

extraction. Another input list contains multiple separated sentences with labels, and

each sentence has only one lexical unit with its associated elements. This input list

is the input for the second step of the system, where the elements of the target

lexical unit are extracted. In this way, we transform the relation extraction into a

NER problem: the system classifies the relations between the potential elements and

the lexical units by simply extracting the elements from each lexical-unit-targeted

sentence. The gold-standard lexical unit is provided in this step.

The final training system is implemented in TensorFlow, and the model is trained

on an NVidia Tesla GPU. The hyperparameters of the Bi-LSTM model are defined
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as follows: hidden unit as 400 dimensions, dropout at 0.5, learning rate at 1e-4,

learning rate decay at 0.99, and Adam optimization. In the second step, we also

provide a 5-dimension vector embedding for the lexical unit label (“B-#Target# ”).

For evaluation, we compare the prediction with the gold-standard annotations

on the test set. The micro-averaged precision, recall, and F1-score for exact match

are calculated. In particular, for the first step, we introduce a baseline that simply

detects the existing lexical units as the real frame-trigger lexical units. This baseline

has a 100% recall.

3.1.4 Results

Table 3.3 shows the performance comparison of the first step, the lexical unit iden-

tification. We report the evaluation results of four settings: the simple baseline

and three embedding initializations. The embedding concatenation achieves the

best overall performance across all three frames. The GloVe embeddings perform

slightly better than MIMIC embeddings. The best F1-scores for CANCERDIAGNO-

SIS, CANCERTHERAPEUTIC, and TUMORDESCRIPTION reach 93.70%, 96.33%

and 87.18% respectively. In terms of CANCERDIAGNOSIS, the F1-scores of the

three embeddings are slightly the same (93%), while the combined-embedding

method improves 10.72% over the baseline. TUMORDESCRIPTION gets a very

low baseline with an F1-score of 79.14%, and the combined-embedding boosts it

by 8.04% over the baseline.

The second step, the element classification, is calculated using the same evalua-

tion metrics. Table 3.4 shows the overall performance results, and Table 3.5 reports
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Table 3.3: Performance of System for Frame Identification

Metrics Method CANCER
DIAGNOSIS

CANCER
THERAPEUTIC

TUMOR
DESCRIPTION

Precision

Baseline 70.91 91.35 65.48
GloVe 95.35 95.88 86.72
MIMIC-III 93.65 94.40 79.87
GloVe+MIMIC-III 92.70 94.40 78.81

Recall

Baseline 100 100 100
GloVe 91.99 95.88 86.05
MIMIC-III 93.55 97.12 92.25
GloVe+MIMIC-III 93.59 97.12 92.25

F1

Baseline 82.98 95.48 79.14
GloVe 93.64 95.88 86.38
MIMIC-III 93.60 95.74 85.61
GloVe+MIMIC-III 93.70 96.33 87.18

the results per element type. As shown in Table 3.4, the combined-embedding

method outperforms other alternatives with the best F1-score of 75.81%. GloVe

embeddings perform slightly better than MIMIC-III embeddings, with an improve-

ment of 1.64% in F1-score.

Table 3.4: General Performance Evaluation of System for Element Classifier

Embedding type Accuracy Precision Recall F1
GloVe 94.73 77.39 73.83 75.57
MIMIC-III 93.99 70.54 77.66 73.93
GloVe+MIMIC-III 94.52 73.91 77.81 75.81

In addition, we calculate the performance per type shown in Table 3.5. We

notice that the overall result of the second step of element classification is worse

than the first step of lexical unit identification. Combined-embedding outperforms

in most types: MALIGNANCY: 81.82%, FAMILYHISTORY: 81.48%, DATETIME:

68.29%, RESECTABILITY: 54.55%, COMPLICATION: 52.63%, CERTAINTY: 50.87%,
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Table 3.5: Cross-Frame Per Category Performance Evaluation of System for Ele-
ment Classifier

Precision Recall F1
GloVe MIMIC Combined GloVe MIMIC Combined GloVe MIMIC Combined

EXTENT 90.91 88.24 90.91 95.24 95.24 95.24 93.02 91.60 93.02
STAGE 72.34 67.31 64.81 75.56 77.78 77.78 73.91 72.16 70.71
PATIENT 83.75 79.21 81.91 87.78 88.89 85.56 85.71 83.77 83.70
HISTOLOGY 69.39 62.75 68.09 85.00 80.00 80.00 76.40 70.33 73.56
MALIGNANCY 82.35 85.00 81.82 63.64 77.27 81.82 71.79 80.95 81.82
LOCATION 79.69 73.55 79.13 76.40 78.76 80.53 78.01 76.07 79.82
FAMILYHISTORY 75.00 74.12 76.74 78.95 82.89 86.84 76.92 78.26 81.48
STATUS 78.76 71.64 71.60 73.86 79.67 76.35 76.23 75.44 73.90
SIZE 66.67 57.89 61.11 71.43 78.57 78.57 68.97 66.67 68.75
POLARITY 70.73 54.90 65.91 69.05 66.67 69.05 69.88 60.22 67.44
RESECTABILITY 46.15 35.00 45.00 46.15 53.85 69.23 46.15 42.42 54.55
CERTAINTY 59.65 45.56 48.89 40.96 49.40 53.01 48.57 47.4 50.87
DATETIME 23.08 50.00 66.67 15.00 60.00 70.00 18.18 54.55 68.29
COMPLICATION 100.000 55.56 83.33 23.08 38.46 38.46 37.50 45.45 52.63
MORPHOLOGY 30.00 50.00 28.57 33.33 33.33 22.22 31.58 40.00 25.00
SIZETREND 50.00 20.00 37.50 16.67 16.67 50.00 25.00 18.18 42.86
RECURRENCE 0 50.00 100.00 0 25.00 25.00 0 33.33 40.00
AGENT 0 0 0 0 0 0 0 0 0
MARGINSTATUS 0 0 0 0 0 0 0 0 0
QUANTITY 0 0 0 0 0 0 0 0 0
RESULT 0 0 0 0 0 0 0 0 0

SIZETREND: 42.86%, RECURRENCE: 40%. GloVe ranks second, followed by

MIMIC-III in the other element types. This is reasonable because GloVe was

trained from web texts in general topics, and it gets better performance in gen-

eral types such as STAGE (73.91%), PATIENT (85.71%), STATUS (76.23%), SIZE

(68.97%), POLARITY (69.88%). MIMIC-III embeddings only get the best per-

formance in one type: MORPHOLOGY (40.00%), and we assume this is because

MIMIC-III notes are only from Intensive Care Unit patients, which are different

from cancer patient records. However, adding MIMIC-III embeddings to the input

representation brings a positive impact on the representation. We observe that for

some types (COMPLICATION, DATETIME, MALIGNANCY, RESECTABILITY, RE-
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CURRENCE, SIZETREND), there are up to 20% improvements by adding MIMIC-

III embeddings.

3.1.5 Discussion

In this work, we propose a frame-evoked NLP system based on a deep learning

model to identify cancer entities and characteristics from the local hospital clini-

cal notes. The system gets superb performance compared to the simple baseline.

We implement the state-of-the-art deep learning model, Bi-LSTM-CRF, to achieve

concept extraction and initialize the network with both character and word embed-

dings. We compare three different settings for word embeddings in both steps of the

system. As a result, the overall performance of the combined-embedding method is

generally higher than the methods based on individual resources.

We perform error analysis to deeply understand the system, and the result from

error analysis indicates a number of commonalities. Notably, we find that the frame

elements are sometimes identified for the incorrect frame. For example, excise (a

RESECTABILITY element) belongs to TUMOR DESCRIPTION frame, but it is often

identified as belonging to the frame of CANCER DIAGNOSIS. We assume this may

be due to training one model on all frames. Although the information about lexical

units is provided in the second step, the classifier still fails to capture the information

about what the current frame is. As a result, such errors may still exist. However, the

alternative way of training an exclusive model for each frame may still not solve the

issue, as this would reduce the sample size significantly. Therefore, there is a well-

known trade-off between sample size and an exclusive model. Due to the fact that
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the frames overlap some of the frame elements, training them together substantially

increases the sample size, but this also results in the type of errors described above.

One solution would be to introduce the multi-task learning method, in which all

three frames are learned in parallel and share parameters for some layers while also

preserving task-specific portions of the model.

Also, we find out from basic knowledge in machine learning that the perfor-

mance is variable corresponding to the sample size for both lexical units and frame

elements. This is most evident in the false negative cases, as those cases are mainly

because the samples are too limited to be identified by the classifier. For instance,

TUMOR DESCRIPTION has the smallest training size, and it also gets the worst F1-

score performance compared to the other two frames. This is the same with frame

elements. The elements that get only 0% in F1-score are also extremely rare in the

training set (37 RESULT, 18 MARGINSTATUS, 16 QUANTITY, 6 AGENT).

As discussed in the error analysis, the current limitation of this work is that we

only evaluate each step in the system. In the future, we will optimize the system in

a multi-task learning scenario. We will train an end-to-end model to jointly learn

both lexical units and frame elements altogether. This would potentially achieve

both classifications in one step, and hopefully improve the performance with the

knowledge sharing. Such methods have been proposed for building an end-to-end

model to jointly achieve concept and relation extraction (Miwa and Bansal, 2016;

Li et al., 2017). Therefore, this would be a promising future project for further

improving the performance, especially for element extractions.



CHAPTER 3. CLINICAL WORD REPRESENTATION 46

3.2 Concept Extraction with Contextual Embeddings

As introduced in the previous section, word representations built with deep learning

models have significantly improved the performance of many clinical NLP tasks,

such as clinical concept extraction. Meanwhile, more language model-based rep-

resentations have further advanced the state-of-the-art in the general NLP domain.

In spite of this, there are no widely accepted practices for applying these language

model-based representations into clinical NLP tasks. This section attempts to ex-

plore the range of feasible potentials for applying these new representations for

clinical concept extraction by comparing them to typical word embeddings and to

draw conclusions from the experiments.

3.2.1 Introduction

Clinical concept extraction is the most fundamental clinical NLP task and serves

as a prerequisite to other NLP tasks, including relation extraction, co-reference,

parsing, and high-throughput phenotyping. Meanwhile, language model-based rep-

resentations continue to make significant progress in a wide variety of NLP tasks,

ranging from natural language understanding to natural language generation. For

instance, contextual representations from models including ELMo and BERT have

further improved the performance of general NLP tasks. A lot of recent studies

show that such representations outperform typical word embeddings in nearly all

tasks.

In this section, we intend to find out what kind of impact these representations

could have on clinical concept extraction. Our contributions are as follows: First,
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we evaluate numerous existing embedding methods, including word2vec, GloVe,

fastText, ELMo, and BERT, on four publicly-shared concept extraction tasks, which

indicates the generalization of these methods. Additionally, we show the pre-

training effect on pre-trained corpora and introduce the trade-off in pre-training

on clinical corpora and open-domain corpora. To the best of our knowledge, this

work is one of the first attempts to apply language model-based representations to

clinical concept extraction, and it achieves state-of-the-art results across the board.

3.2.2 Background

In this subsection, we describe the concept of the transition from word embeddings

to language model-based embeddings.

3.2.2.1 Word Embeddings

Word embeddings typically learn a dense vector with low dimensions to represent

an individual word. Word2vec is one of the most well-known word embeddings,

and it has been widely developed for achieving superior performance in a variety of

clinical NLP tasks (Mikolov et al., 2013b). GloVe is the second word embedding

approach with self-supervised learning Pennington et al. (2014). The main differ-

ence between word2vec and GloVe is that GloVe is a statistical method, and the

training of GloVe relies on a co-occurrence frequency matrix. fastText is another

established method for word embeddings that uses additional information such as

character n-grams to mitigate out-of-vocabulary issues (Bojanowski et al., 2016).
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3.2.2.2 Language Model-based Embeddings

However, the fact that word-level embeddings conflate all the different semantic

meanings of a word limits their effectiveness, and the embeddings do not adapt to

the context. In order to address these shortcomings, advanced methods have tried

to explicitly encode the surrounding context of words into the word representation,

which has proven successful.

The first contextual word representation we evaluate is ELMo, proposed by Pe-

ters et al. (2018). As opposed to typical word embeddings, which create a single

vector for a word and keep it unchanged in NLP tasks, ELMo captures and dynam-

ically modifies the word embeddings through a multilayer representation. Before

actually working on some NLP tasks, the model first learns the contextualized in-

formation from a large-scale text corpus, which is known as the pre-training step.

Following this, the inner states of the pre-trained language model are fed into the

actual NLP tasks, which are considered the context-sensitive word embeddings. By

adding weights to the inner states and optimizing the weights towards the loss of

the downstream task, the word representations become more well-suited to the sur-

rounding context in the corpus. Thus, the downstream NLP task would obtain a

decent initialization and achieve optimal performance.

Another more advanced language model-based word representation is BERT,

proposed by Devlin et al. (2019), which also starts from pre-training on a large-

scale unlabeled corpus. Unlike ELMo, which applies layers of inner states, BERT

adopts a model-wise manner to encode context information in sentences with a fully

trainable bidirectional transformer. The transformer (Vaswani et al., 2017) is a mul-
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tiheaded self-attention mechanism with position embeddings. More importantly,

regarding the approach of how to utilize those representations in the downstream

NLP tasks, ELMo is a feature-based extraction approach and BERT is a fine-tuning

method. The feature-based extraction is the same with word-level representation

that extracts layers of inner-state vectors of the model and uses the vectors as the

input embeddings. While the fine-tuning method dynamically alters the entire lan-

guage model and tailors the model to the downstream task, which results in a task-

specific fine-tuning model. During the fine-tuning, the BERT model is entirely fed

into the target task, which is assumed to contain more context information and is

more likely to achieve good prediction results.

3.2.2.3 Clinical Concept Extraction

Clinical concept extraction is the process of extracting clinical entities from clin-

ical notes and analyzing them, which is usually considered a sequence labeling

problem to be tackled with machine learning–based models. Deep learning–based

models with word embeddings as the input features have recently been shown to be

effective. The current state-of-the-art model for clinical concept extraction is the

Bi-LSTM-CRF model as introduced in the previous section. The bidirectional re-

current neural network captures both forward and backward input in the sentence,

and the CRF layer before the classification uses the Viterbi algorithm to decode

sequential output patterns. Similar to this work, a few recent studies also investi-

gated contextual representations for extracting entities from biomedical documents.

For example, Zhu et al. (2018) improved clinical concept extraction of the i2b2
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2010 dataset with ELMo. Lee et al. (2020) mainly applied BERT to concept ex-

traction from biomedical literature, and they also pre-trained BERT models from

PubMed literature, named BioBERT. A closer benchmarking to our work is pro-

posed by Alsentzer et al. (2019), where the authors pre-trained MIMIC-III clinical

notes (Johnson et al., 2016), but gets lower prediction performances on two corpus

in common: the i2b2 2010 and 2012 datasets. Their findings show that only pre-

training on discharge summaries, rather than on all notes, would be beneficial, and

they also continued the pre-training with literature corpus. There are also a number

of studies that apply BERT to clinical prediction tasks such as 30-day readmission

prediction (Huang et al., 2019), and other standard clinical outcomes of interest and

NLP tasks (Peng et al., 2019).

3.2.3 Methods

3.2.3.1 Embeddings

We experiment with both released embeddings from the open domain and pre-

training embeddings from MIMIC-III clinical notes (Johnson et al., 2016). For

the traditional word embeddings, we apply the Bi-LSTM CRF to achieve the con-

cept extraction and feed the fixed embeddings into the model. For pre-training, we

set the minimum frequency of words as five, which means that words that appear

at least five times are included, and the rest are denoted as “UNK ”. Character em-

beddings for each word are also being considered to mitigate the out-of-vocabulary

issue.

Regarding ELMo embeddings, to create context-sensitive embeddings, context-
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independent embeddings are assigned with trainable parameters, which are further

input into the target task. The context-sensitive embeddings are achieved by a low-

dimensional deduction with a highway connection followed by a stacked multi-

layer. The stacked layer originally comes from the ELMo architecture and includes

a character-based CNN and a 2-layer Bi-LSTM language model (i.e., Bi-LM). So

the context-sensitive embeddings consist of a trainable combination of highway

connections of the Bi-LM. Because ELMo already incorporates character embed-

dings with char-CNN, the use of character embeddings for the downstream tasks is

not necessary. In the end, the context-sensitive embeddings of ELMo are extracted

and fed into the state-of-the-art concept extraction model (i.e., Bi-LSTM CRF) for

downstream NLP predictions.

In terms of embeddings from BERT models, we first download both BERTbase

and BERTlarge off-the-shelf: BERTbase (General) and BERTlarge (General).

The former has 110 million total parameters and the latter has 340 million. The

detailed architecture of these two models can be referred to in Devlin et al. (2019).

Compared to BERTbase , BERTlarge is deeper in terms of the network with 24 lay-

ers of transformer encoders, each of which has 1024 hidden units and 16 atten-

tion heads. Otherwise, these two models essentially have the same networks. In

fine-tuning, the downstream tasks (i.e., clinical concept extractions) are initialized

with the parameters from BERTbase (General) and BERTlarge (General). Be-

cause BERT already incorporates enough label-correlation information, the CRF

layer is removed and the concept extraction is achieved only with a Bi-LSTM

layer at the final classification. In addition to the two BERT(General) mod-



CHAPTER 3. CLINICAL WORD REPRESENTATION 52

els, we also pre-train clinical BERT models with MIMIC-III clinical notes fol-

lowing the pre-training instructions. The pre-training starts from BERTbase and

BERTlarge checkpoints, and is further tailored to MIMIC-III clinical notes. We re-

fer these two clinical domain specific pre-trained models as BERTbase (MIMIC) and

BERTlarge (MIMIC).

3.2.3.2 Datasets

The concept extraction tasks in this work are four widely-studied clinical NLP

tasks: the i2b2/VA 2010 challenge (Uzuner et al., 2011), the i2b2 2012 challenge

(Sun et al., 2013), the SemEval 2014 Task 7 (Pradhan et al., 2014), and the SemEval

2015 Task 14 (Elhadad et al., 2015). The descriptive statistics of each corpus are

shown in Table 3.6. We notice that the i2b2 2010 is much larger than the other

three, but they are all relatively sizable for clinical concept extraction. For the i2b2

2010, there are three types of clinical concepts to be extracted: PROBLEM, TEST,

TREATMENT. For i2b2 2012, there are 6 types: PROBLEM, TEST, TREATMENT,

CLINICALDEPARTMENT, EVIDENTIAL, OCCURRENCE. There are only one con-

cept type for the SemEval 2014 and 2015 : DISEASEDISORDER, which is similar

to PROBLEM in the two i2b2 tasks that describe the specific disease.

For the pre-training datasets, as described above, we used all MIMIC-III clinical

notes, which include nearly 2 million notes. After some basic cleaning, we get

1,908,359 notes with 786,414,528 tokens and a vocabulary size of 712,286. Words

are lower-cased in pre-training traditional word embeddings but not in pre-training

ELMo and BERT.
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Table 3.6: Descriptive Statistics of Concepts

Dataset Subset Notes Concepts
Train 349 27,837

i2b2 2010
Test 477 45,009
Train 190 16,468

i2b2 2012
Test 120 13,594
Train 199 5,816

SemEval 2014 Task 7
Test 99 5,351
Train 298 11,167

SemEval 2015 Task 14
Test 133 7,998

3.2.3.3 Experiment Details

For concept extraction with regards to Bi-LSTM-CRF settings, we use the follow-

ing: 512 hidden units, a dropout of 0.5, a learning rate of 0.001 with a decay of

0.9, and Adam optimization. All experiments remain the same in terms of the Bi-

LSTM-CRF hyper-parameters.

For pre-training, across all embedding methods, two pre-training scenarios are

experimented with: the first is to use an off-the-shelf released model (General),

and the second is to pre-train further on MIMIC-III clinical notes (MIMIC). For the

first scenario, the details about open source models are shown in Table ??. We also

experiment with BioBERT, which is pre-trained with PubMed biomedical literature

and initiated from the BERTbase .

For the second scenario, the dimension of word embeddings is 300 across all

traditional embedding methods to equalize the off-the-shelf embeddings. We define

the hyper-parameters for training word embeddings as follows: window size: 15,

word count: 5, iterations: 15, embedding dimension: 300.

For ELMo, we follow the instructions from Peters et al. (2018) to set up the
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Table 3.7: Resources of Off-the-shelf Embeddings

Method
Resource

(#.Tokens/ #.Vocabs)
Size Language model

GloVe
Gigaword5 + Wikipedia2014

(6B/ 0.4M)
300 NA

fastText
Wikipedia 2017+ UMBC

webbase corpus and statmt.org news
(16B/ 1M)

300 NA

ELMo
WMT 2008-2012 + Wikipedia

(5.5B / 0.7M)
512

2-layer, 4096-hidden,
93.6M parameters

BERTbase

BooksCorpus+ English Wikipedia
(3.3B/ 0.03M*)

768
12-layer, 768-hidden, 12-heads,

110M parameters

BERTlarge

BooksCorpus + English Wikipedia
(3.3B/ 0.03M*)

1024
24-layer, 1024-hidden, 16-heads,

340M parameters

hyper-parameters. MIMIC-III is divided into a pretraining corpus with a ratio of 0.8

and an evaluating corpus with a ratio of 0.2 for reporting perplexity. The pretraining

step has 15 iterations, resulting in an average perplexity of 9.929.

For BERT, we also follow the default settings to set up the pre-training. The

vocabulary list applies to the released list with 28,996 word-pieced tokens. We save

the intermediate model at each twenty thousand steps and evaluate the performance

of intermediate checkpoints.

In terms of the fine-tuning, we apply an adjustment with Xavier initialization

instead of random initialization on the Bi-LSTM layers. Then an early stop mech-

anism of 800 steps is launched to prevent over-fitting. Lastly, the outputs from

BERT are still wordpieced-level, which requires post-processing to align with the

gold standard concepts.

Overall, 10% of the training set is split into development sets and the official
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test set is kept to report the performance. The performance metrics are precision,

recall, and F1-score for exact matching. The experiments are implemented with

TensorFlow on the NVidia Tesla V100 GPU (32G).

3.2.4 Results

3.2.4.1 Performance Comparison

The performance of different embedding approaches on the four clinical concept ex-

tractions is evaluated, as shown in the Table 3.8. On the first note, embeddings pre-

trained on the clinical corpus outperform those off-the-shelf models. The General

embeddings outperform the MIMIC embeddings with a relatively high increase.

The best result for the i2b2 2010 task gets 90.25 in F1-score with BERTlarge (MIMIC).

Compared to the best F1-score of the traditional embeddings by GloVe (MIMIC),

it improves the F1-score by 5.18. Similarly, the best performances for the i2b2

2012 task, SemEval 2014 and 2015 task are achieved by BERTlarge (MIMIC), with

F1-scores of 80.91, 80.74 and 81.65, respectively. The current state-of-the-art per-

formance for these four tasks is reported with an F1-score of 88.60 (Zhu et al.,

2018), 92.29 (Liu et al., 2017b), 80.3 (Tang et al., 2015), and 81.3 (Zhang et al.,

2014), respectively. Notably, with the clinical domain pre-trained language model,

we achieve new state-of-the-art results across the entire four tasks.

3.2.4.2 Pretraining Evaluation

We investigate the effectiveness of pre-training by calculating the loss and the pre-

diction performances on intermediate models. As shown in Figure 3.2, we notice
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Table 3.8: Test Set F1 Comparisons in Exact Matching

Method
i2b2 2010 i2b2 2012 Semeval 2014 Semeval 2015

General MIMIC General MIMIC General MIMIC General MIMIC

word2vec 80.38 84.32 71.07 75.09 72.2 77.48 73.09 76.42
GloVe 84.08 85.07 74.95 75.27 70.22 77.73 72.13 76.68

fastText 83.46 84.19 73.24 74.83 69.87 76.47 72.67 77.85
ELMo 83.83 87.8 76.61 80.5 72.27 78.58 75.15 80.46

BERTbase 84.33 89.55 76.62 80.34 76.76 80.07 77.57 80.67
BERTlarge 85.48 90.25 78.14 80.91 78.75 80.74 77.97 81.65
BioBERT 84.76 - 77.77 - 77.91 - 79.97 -

that for ELMo and BERT, the training loss always drops with the steps progressing,

which means that the language model is gradually adjusting to the clinical language.

If there is no action to interrupt the pre-training process, the final loss value will be

extremely small. But this will eventually induce overfitting on pre-training data.

We experiment with the i2b2 2010 task to report the performance at each in-

termediate checkpoint throughout the process. It is interesting to observe that the

performance of ELMo stays stable after a specific number of rounds, reaching the

best F1-score of 87.80 at step 280K. The performance of BERTbase on the down-

stream task is less consistent and tends to drop after obtaining the best result (i.e.,

the maximum F1 is 89.55 at the 340K step). We hypothesize this is because the

clinical domain pre-trained model is initialized with the off-the-shelf BERT model;

after several runs on the MIMIC data, the knowledge gained from the large open-

domain corpus is forgotten, and the training finally converges on a model which

is nearly closer to one built from scratch. Therefore, constraining pre-training on

a clinical corpus to a finite number of steps is a beneficial trade-off that leverages

the capabilities of a large open-domain corpus with the effect of learning from a
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Figure 3.2: Performances on the i2b2 2010 Task by Pre-training Steps

clinical corpus. We anticipate that this will be a useful reference for clinical NLP

fields when developing customized pre-trained models from the clinical corpus.

3.2.5 Discussion

In this section, we examine the impact of a variety of embedding approaches on

four public clinical concept extractions. As expected, domain-specific models ex-

ceed off-the-shelf models. When pre-trained on a clinical corpus, all sorts of em-

beddings achieve consistent improvements in the majority of tasks. Additionally,

contextual embeddings outperform traditional embeddings in predictions. Thus, we

conclude that significant improvements can be obtained by pre-training a deep lan-

guage model on a large corpus and then specifically adapting it for the downstream

tasks.

Figure 3.2 retrieved from Si et al. (2019).
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One significant distinction between BERT and other embeddings is that BERT

dissects words into subwords known as word-pieced tokens.Instead of relying on

a morphology lexicon, this is performed by statistical inference of a large corpus.

Thus, the question for clinical NLP is whether a different way of tokenizing is

applicable for clinical language as compared to general text (such as Wikipedia and

web pages). We look into the word-pieced tokens for clinical terms from the well-

known lexical similarity corpus proposed by Pakhomov et al. (2016). As predicted,

the findings do not exactly match the morphology of standard medical terms. For

instance, appendicitis in word-pieced tokens, is app, -end, -icit, -is, in contrast to the

medical suffix of -itis. This does not necessarily imply poor segmentation, and it is

feasible that this might perform better than a word-piece based on the SPECIALIST

lexicon (Browne et al., 2000).

One idea for further exploration is to develop word pieces from MIMIC-III.

This is not as straightforward as it appears at first glance. We have a major issue

because the BERT models we are using in this study were first pre-trained on a 3.3

billion open-domain corpus before being pre-trained even further on MIMIC-III. In

order to get similar language models while conducting word-pieced tokenization on

MIMIC-III, it would be necessary to replicate the pre-training on the open-domain

corpus at least. We leave this exploration to future work due to the large number of

experiments to be evaluated so as to establish the optimal word-pieced strategy.
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CLINICAL NOTE REPRESENTATION

In this chapter, we will investigate the document representation for clinical notes.

More specifically, we attempt to implement state-of-the-art deep learning models

for processing long and multiple clinical documents altogether. We consider the

complexities of processing clinical notes and develop models to encode the charac-

teristics of clinical notes, including their hierarchical, longitudinal, and contextual

characteristics. In the next section, we first introduce the motivation for these com-

plexities, and for each complexity, we propose neural networks that are appropriate

for encoding sufficient information in the model for processing large-scale clinical

notes.

4.1 Hierarchical Convolutional Neural Network

4.1.1 Motivation

Words, sentences, and documents are all essential linguistic stacks of natural lan-

guage. The majority of models for learning clinical texts are only devoted to train-

ing words directly towards labels, which fails to incorporate the hierarchical struc-

ture hidden in the clinical texts from words, sentences, documents, and eventually to

labels. Similarly, like from characters to words, it is also important to consider the

hierarchical structure between different language hierarchies and encode them into

the model. This is essentially achieved by pooling the outputs from the previous

level and using this pooling as the input for the next level.
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Figure 4.1: Hierarchical Convolutional Neural Network Model Architecture

4.1.2 Model Architecture

Considering that, we develop a two-level CNN, including a word-level CNN and a

sentence-level CNN. The network architecture is shown in Figure 4.1. Specifically,

the word embeddings are assembled to obtain a single sentence embedding (i.e.,

word-level CNN). The sentence embeddings are aggregated to form the patient rep-

resentation (i.e., sentence-level CNN). At this time, because we simply combine

many notes of a single patient into one document, the model does not take temporal

information into account. But we still want to emphasize the relations between sen-

tences, so we implement the target replication. That means, for each sentence from

the word-level CNN, we also calculate the loss of each sentence towards the label,

and then add the sum of these losses from individual sentences to the final loss at

the final prediction. For the prediction, we utilize the softmax function before the

final classification, and the prediction is optimized with a cross-entropy loss.
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4.2 Hierarchical Attention Network

4.2.1 Motivation

Due to the variable distribution of EHR records, addressing temporal sequences of

patient data is complicated yet desirable to enhance predictive performance. Re-

cent progress in sequential deep neural networks, such as the variants of RNNs,

has demonstrated superior results for representing sequential EHR data. However,

limited work on clinical note modeling has taken into account temporal relations

between notes. In particular, we assume that the sequence orders associated with

clinical notes may not always correspond to the temporal reality in clinical settings.

Clinical notes collected over a long period of time contain significant temporal de-

pendencies, such as progress notes for a single patient on different dates. Clinical

notes in small periods are either generated in bursts or from different units, solely

presenting patients from different aspects, resulting in less temporal information.

To overcome these challenges, we develop a three-level HAN for the purpose

of learning clinical texts. The HAN network adopts RNNs at three hierarchical

levels, each of which comprises encoders and attention mechanisms. The model is

mainly composed of words in a sentence, sentences in a document, and documents

(or sets of documents) in a patient. At each layer, attention mechanisms are used

to determine which information is the most useful in prediction. Additionally, we

greedily separate documents at the patient level into sets of documents dependent

on time frames. In the next subsection, we introduce the details of the proposed

model.

Yang et al. (2016) first proposed the HAN as a hierarchical model for document
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classification. Because of its capacity to deal with large amounts of text, HAN

has been extensively used in clinical NLP tasks such as classifying patient safety

(Cohan et al., 2017a,b), assigning diagnostic codes (Samonte et al., 2018, 2017;

Mullenbach et al., 2018; Baumel et al., 2018; Du et al., 2019), analyzing radiologi-

cal reports (Banerjee et al., 2019), capturing cancer entities (Gao et al., 2017), and

forecasting mental illnesses (Tran and Kavuluru, 2017; Ive et al., 2018). Recent de-

velopments have also developed advanced hierarchical networks that use structured

EHR data to make clinical predictions.

Although more advanced pre-trained language models such as BERT and XL-

Net now achieve state-of-the-art results in many NLP tasks, it remains unclear how

these models can be used to deal with long-distance relations in clinical notes.

When constructing patient representations from clinical notes, few studies have

taken into account information like the time sequence of patient data and the hi-

erarchical structure of natural language. To our knowledge, this is one of the earli-

est works to use a hierarchical RNN and attention mechanism for specifically pro-

cessing longitudinal clinical notes while simultaneously incorporating hierarchical

information from free text.

4.2.2 Model Architecture

Figure 4.2 shows the network architecture. The network constructs the final patient

representation gradually from word embeddings. Initially, to create sentence repre-

sentations at the sentence level, the model recognizes significant words with higher

attention weights automatically and concatenates into sentence representations.
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Figure 4.2: Hierarchical Attention Network Model Architecture

Figure 4.2 retrieved from Si and Roberts (2020).
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To generate document representations at the document level, the model continues to

apply attention mechanisms to capture the important sentences and assemble them

to build meaningful document representations. Finally, the model combines docu-

ment representations into a final patient representation at the patient level. Follow-

ing that, the patient representations are applied directly to the outputs for prediction

or pre-training purposes.

The model consists of two components at each hierarchy level: an RNN encoder

and an attention mechanism. The encoder is a bidirectional RNN, which keeps the

sequences in both backward and forward directions during the long sequence. The

outputs of hidden units are fed into a fully-connected network with the softmax

function to generate normalized attention weights; hence, the attention at each level

(i.e., word, sentence, and document) symbolizes the significance of different por-

tions.

After multiplying normalized attention weights by hidden-unit values, the weighted

sum of hidden layers is computed as the final attention-weighted output. Finally,

we get the patient representation, which consists of the weighted sum of document

embeddings. Using this patient vector, one may obtain a hierarchical representation

of the patient that can be further used for a variety of classification tasks.

4.2.3 Implementation Details

Previously, we introduced two-level CNN to integrate hierarchical information, and

in this section we propose a three-level HAN to incorporate both hierarchical and

longitudinal representations. We compare these two neural networks with different



CHAPTER 4. CLINICAL NOTE REPRESENTATION 65

levels on the patient mortality prediction tasks. Totally, we have four models: a

two-level CNN, a three-level CNN, a two-level HAN, and a three-level HAN. The

hyperparameters of HAN are defined as follows: RNN with a hidden unit of 200

dimensions, the attention output sizes are 300, 150, and 100 for the word, sentence,

and document attentions, respectively. For CNN, the numbers of filters for words,

sentences, and document levels are 100, 50, and 50, respectively. Each filter con-

sists of a vector of [3, 4, 5]. Because the class distribution for patient mortality

is not balanced, we use the area under the receiver operating characteristic curve

(AUC) and the area under the precision-recall curve (AUPRC) as the performance

metrics.

4.2.4 Performance Comparison

Table 4.1 shows the performance results of three mortality prediction tasks using

five different methods in AUC and AUPRC.The 3-level HAN model with the best

time split outperforms the alternatives in AUPRC of 78.74, 74.63, and 71.28 for the

predictions of in-hospital, 30-day, and 1-year mortalities, respectively. In general,

sequential networks perform better than convolutional networks on the majority

of tasks when both of them are trained at the same hierarchical level, meaning

that the sequence between clinical notes is essential to contributing to the mortality

prediction. Also, 3-level models outperform 2-level models of the same network for

nearly all predictions, demonstrating the importance of the hierarchical structure in

modeling clinical notes.
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Table 4.1: Performance of Different Models on Mortality Prediction Tasks

Tasks In-hospital 30-day One-year
MODELS AUC PRC AUC PRC AUC PRC

CNN
2-level 92.47 70.21 82.11 65.79 81.55 65.34

3-level 94.04 72.78 85.76 70.27 84.31 69.35

HAN

2-level 93.96 75.13 85.30 71.28 84.62 69.14

3-level w/o segmentation 94.06 74.24 86.15 72.35 86.88 70.96

3-level with
the best segmentation
(max time span: 1-hour)

94.92 78.74 87.59 74.63 87.41 71.28

4.3 Hierarchical Transformer Network

4.3.1 Motivation

We have introduced three characteristics that are important to clinical note under-

standing: contextual, hierarchical and longitudinal, and we intend to consider these

three altogether in one architecture. Before we describe the architecture details, we

first emphasize the motivation for developing this network.

Recently, transformers are becoming more popular and perform well on nu-

merous NLP tasks (Vaswani et al., 2017). The Transformers network completely

eliminates convolution and recurrence and only depends on attention mechanisms

and position embeddings. BERT, based on the Transformer, has been established

as the current state-of-the-art model for many clinical NLP studies (Devlin et al.,

2019). The BERT model has a limit on the length of the input texts, which restricts

the applicability of parsing across a series of long documents. To address this issue,

prior work has considered segmenting long texts into smaller components and then

averaging their corresponding representations through BERT (Adhikari et al., 2019;
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Pappagari et al., 2019). These methods, however, overlook the temporal relations

between documents as well as the hierarchical structure between contexts (Yang

et al., 2020). When reading a long series of documents like full-length novels, legal

terms, and clinical notes, it is important for humans to understand the hierarchical

and longitudinal information between contexts. This is also true for deep learning

models, as the model should also integrate such information.

We propose Hierarchical Transformer Networks to capture the contextual, hier-

archical, and longitudinal information from long-sequence documents, leveraging

all three interrelations. BERT models are used explicitly at the word level. Different

sizes of BERT models and input sequence lengths are investigated to evaluate the

trade-off between model size and sequence length. At both sentence and document

levels, we use transformer-based encoders. The challenge of effectively training

Transformers (Popel and Bojar, 2018) necessitates extensive experiments with a

wide range of hyper-parameter settings. We also enable the server with distributed

training to overcome memory issues and accommodate longer input sequences.

We note that while the notion of a hierarchical network for Transformers might

not be conceptually novel, the fact that it has not yet been proposed for processing

long-sequence clinical notes demonstrates that there are serious challenges to such

a method. The difficulties largely exist; for example, optimization failure without

appropriate learning rates, convergence difficulty without valid initializations, over-

fitting easily on training sets without proper dropout. Our main contribution is to

make the model applicable and feasible to train for long and multiple text classi-

fication, as we are not simply classifying an individual document, but rather large
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collections of documents longitudinally over time (i.e., one classification for all of

a patient’s notes). To the best of our knowledge, this is the earliest attempt to build

the Hierarchical Transformer Network for modeling long and multiple clinical text

classifications. We assume this architecture essentially learns the contextual infor-

mation of sentences while also leveraging longitudinal and structural information

at each hierarchical level.

4.3.2 Model Architecture

The architecture of Hierarchical Transformer Networks is shown in Figure 4.3. At

each level, the model automatically aggregates the full sequence with pooling into

the following level, and the input length is cut or padded to a fixed value. In the

following subsections, we specifically describe each model component.

4.3.2.1 Word-level BERT

At the word-level, we apply a BERT model with word-pieced tokens as the input.

All parameters in the model are trainable. We retain both of the special tokens

[CLS] and [SEP] at the start and the end of the sentence. [CLS] is the first

unit of each sentence, and its hidden state is generally the representation of the

entire sentence. [SEP] is located at the end of the sentence to distinguish between

different sentences. We discard the segment embeddings but preserve the position

encoding. Thus, the input embeddings of a certain token are the concatenation of

word-pieced embeddings Toki, and position encodings Pi.
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Figure 4.3: Hierarchical Transformer Network Model Architecture

Figure 4.3 retrieved from Si and Roberts (2021).
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4.3.2.2 Sentence- and Document-level Transformers

Transformer-based encoders are stacked to represent sentences and documents. We

recommend the work by Vaswani et al. (2017) for more details about Transformers.

Briefly, a Transformer-based encoder is N layers of multi-headed self-attention and

fully-connected feed forward networks. The self-attention head has three inputs

– Q(query), K(key), V (value) – to pass by the scaled dot-product attention. The

hidden outputs from the attention are added with a linear dense layer. Q, K, and V

are partitioned into several heads to allow the model to attend to information from

different representation subviews. Position encodings are also considered, as the

same strategy at the word level. The input of the sentence is determined by the

first [CLS] token, denoted as the CLS-pooling. We also explore different pooling

methods, including mean, max, and mean max poolings, for deriving the outputs

from the prior levels. This allows higher-level of the model to have additional

access to lower-level rather than relying just on what is encoded in the [CLS].

The final prediction is achieved by implementing a dense layer on the classification

and using a Sigmoid function to output the probabilities. Also, the model could

be widely applied to various machine learning tasks like pre-training and clustering

with appropriate loss functions.

4.3.2.3 Adaptive Segmentation and Filling

As discussed in Section 4.2.1, we assume that the sequence orders associated with

clinical notes may not always correspond to the temporal reality in clinical settings.

Clinical notes collected over a long period of time contain significant temporal de-



CHAPTER 4. CLINICAL NOTE REPRESENTATION 71

pendencies, such as progress notes for a single patient on different dates. Clinical

notes in small periods are either generated in bursts or from different units, solely

presenting patients from different aspects, resulting in less temporal information.

To distinguish short-period coincidences from long-scale dependencies, we proac-

tively split or combine clinical notes to reflect the realistic sequence between notes.

Furthermore, such a method reduces the number of documents fed into the model,

allowing the model to learn long-term relationships more accurately.

Formally, for each individual, we begin by sorting the notes chronologically, and

then use a greedy approach to determine the split points. The algorithm attempts

to reduce the maximal time range of two adjacent groups. Given T documents in

a sequence {dt}T
t=1, we have k-1 segmentation points {si}k−1

i=1 to split the sequence

into k groups
{

G j
}k

j=1, where

G j =


{dt | dt . time < s1} , if j = 1

{dt | dt . time≥ sk−1} , if j = k{
dt | dt . time ∈

[
s j−1,s j

)}
,otherwise.

(4.1)

where dt . time is the charttime of document dt . The span of a group is defined as

the time difference of the earliest and the latest document in the group:

span
{

G j
}
= max

dk∈G j
{dk. time}− min

dk′∈G j
{dk′. time} (4.2)

The optimal choice of the segmentation points can be found by minimizing the



CHAPTER 4. CLINICAL NOTE REPRESENTATION 72

following:

ŝ1, . . . ŝk−1 = argmin
s1,...sk−1

{k} (4.3)

subject to max
1≤ j≤k

{
span

(
G j
)}
≤ D (4.4)

where D constrains the upper bounding of the span. Intuitively speaking, the notes

inside a defined maximum time range are regarded as a single “note”. The notes

outside of the span are split into different units. By doing so, we aim to maintain the

temporal relation of notes over long periods whilst also grouping notes that emerge

in bursts.

4.3.3 Experiment Details

4.3.3.1 Dataset and Prediction Tasks

The experiments are conducted with patient notes from MIMIC-III (Johnson et al.,

2016). The proposed model is evaluated for its ability to predict in-hospital mor-

tality and phenotypes. Both tasks are common clinical outcomes that are important

for guiding clinical decisions. Descriptive statistics of patient data are shown in

Table 4.2.

In-hospital Mortality Prediction: MIMIC-III indicates the time of death for pa-

tients who die in hospital, which allows us to establish precise cohorts for in-

hospital mortality. To avoid confusion with different admissions of one patient, we

only consider patients with a single encounter. We exclude discharge summaries

in the mortality prediction task because discharge summaries literally describe the

mortality outcome in text. For the same reason, we also remove notes with a chart
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Table 4.2: Descriptive Statistics of Datasets

In-hospital
Mortality

Phenotype
Prediction

# Total Patients
(% Positives)

30,881
(13.80%)

30,990
(Table 4.3)

# Notes
Per Patient

Mean 18.1 16.9
Median 12 11
80 %tile 24 22

# Sentences
Per Note

Mean 29.8 37.4
Median 18 21
80 %tile 42 50

# Wordpieces
Per Sentence

Mean 19.2 18.9
Median 12 12
80 %tile 22 22

# Total Sentences 16,662,894 19,656,126

# Total Notes
Raw 906,717 866,735
Adaptive 559,942 525,222

time later than the time of death and discharge time.

Phenotype Prediction: The goal of phenotype prediction is to categorize patients

into a number of phenotypes. We chose the top ten most common phenotypes, each

of which is worth more than 2000 in patients. We apply the ICD-9 codes to be

the prediction label (a widely-used, though incomplete, surrogate for the pheno-

type). The phenotype disease name, ICD-9 code, disease type, and the number and

percentage of patients for each phenotype in MIMIC-III are reported in Table 4.3.
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Table 4.3: Descriptive Statistics of Phenotypes

Phenotype ICD-9 Type # Patients (%)

Essential hypertension 4019 chronic 13399 (43.2)
Coronary atherosclerosis
of native coronary artery 41401 chronic 8208 (26.5)

Atrial fibrillation 42731 mixed 7525 (24.3)

Congestive heart failure 4280 mixed 6473 (20.9)

hyperlipidemia 2724 chronic 5387 (17.4)

Acute respiratory failure 51881 acute 4329 (14.0)

Pure hypercholesterolemia 2720 chronic 3874 (12.5)

Esophageal reflux 53081 chronic 3629 (11.7)

Pneumonia 486 mixed 2577 (8.3)

Chronic airway obstruction 496 chronic 2360 (7.6)

4.3.3.2 Implementation details

We describe the compromises made in order to feasibly train such a large model on

GPUs, as well as the necessary trade-off in the experiments. Notably, the Hierar-

chical Transformer Networks require smaller BERT models than what are normally

used, even when utilizing multiple GPU architectures. To achieve a fast and ef-

fective optimization, we implement an exponential decay with linear warmup for

learning rate decay.

Distributed Training: As the models become larger and more complex, the com-

putational resources and input texts are always limited to training those models on a

single GPU or even TPU. Also, our method includes substantially longer sequence

lengths (numerous thousands of words) than traditional GPU training can afford.
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For example, the BERT model has a limited input of 512 word-pieced tokens. To

overcome resource constraints and increase the input length, we apply mirrored dis-

tribution to distribute training over several GPUs. We train our proposed model on

four NVIDIA Tesla V100 GPUs (32G), and the batch size is increased four times.

On the other hand, each training takes about the same amount of time with either 1

GPU or N+ GPUs, resulting in an overall time reduction of four-fold assuming the

training steps are the same.

4.3.4 Performance Comparison

4.3.4.1 Compared Baselines

The proposed Hierarchical Transformer Networks are compared with the following

baselines:

BIGBIRD: Zaheer et al. (2020) extended the BERT model to longer sequences

with sparse attention mechanisms, which is assumed to be the current state-of-the-

art method for long-sequence text classification. BIGBIRD achieves good perfor-

mances with more efficient architectures than traditional BERT, and it uses efficient

attention to reduce the complexity while still preserving the model capacity. It can

handle sequence lengths up to eight times longer than what was previously possible

using similar hardware. In our case, we implement BIGBIRD for each document

at the word-level and apply a fully-connected layer for the output probability. The

BIGBIRD utilizes a flattened representation of texts directly from word to label,

not considering hierarchical structure. Although it is not a hierarchical model, it

can feed the same input length as the hierarchical models, so we consider this also
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valuable to be implemented as one baseline.

HAN: The Hierarchical Attention Network (HAN) model is described in Sec-

tion 4.2.2. The model at each level utilizes Bi-LSTMs and context-based attention

mechanisms.

BERTLSTM: We additionally build a variant of the proposed model, denoted as

BERTLSTM, in which the Transformer-based encoders are changed to Bi-LSTMs.

We think this architecture also captures longitudinal and hierarchical information

by using multi-level Bi-LSTMs. This enables us to evaluate the exact improvement

in performance gained by the top-to-bottom Transformer architecture. This model

is initially FTL-Trans (Zhang et al., 2020) updated to the patient level.

To ensure a fair comparison, we enable the hierarchical models to contain the

same number of parameters (i.e., 5.6 million parameters in HAN, BERTLSTM, and

the proposed model), while the BIGBIRD remains the same as in the released ver-

sion (because the model is fixed). We carefully select the hyper-parameters to meet

this comparison requirement.

4.3.4.2 Evaluation Metrics

We report predictive performances using the AUC, PRC, precision, recall, and F1-

score. The use of PRC in addition to AUC tries to decrease variation caused by

imbalanced class distributions since the Precision-Recall curve is well-suited for

detecting infrequent situations. Patient cohorts are divided into training, develop-

ment, and test sets in an 8:1:1 ratio. More precisely, at the completion of each

epoch (a full run through the training set), we compute the loss on the development
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Table 4.4: Overall Performance Comparisons

Macro-AVG of 10-phenotype prediction

AUC PRC Precision Recall F1

BIGBIRD 0.7497 0.4647 0.6513 0.3515 0.4421

HAN 0.8845 0.6608 0.7037 0.5546 0.6033

BERTLSTM 0.8838 0.6483 0.6712 0.5733 0.5919

Our Model 0.9096 0.7024 0.7003 0.6342 0.6462

In-hospital mortality prediction

AUC PRC Precision Recall F1

BIGBIRD 0.8769 0.8139 0.6924 0.7049 0.6986

HAN 0.9610 0.8992 0.7837 0.8356 0.8088

BERTLSTM 0.9608 0.8946 0.8740 0.7283 0.7945

Our Model 0.9677 0.9032 0.8810 0.7603 0.8162

set, and early stopping is activated when the loss continually increases for three

consecutive epochs.

4.3.4.3 Results

Table 4.4 reports the predictive performance of in-hospital mortality and ten phe-

notypes (macro-averaged scores). For each phenotype, we also report the perfor-

mance per-phenotype in PRCs as shown in Table 4.5. Notably, the Hierarchical

Transformer Networks perform better than other alternatives for both in-hospital

mortality and phenotypes in AUC, PRC, and F1-score.

We notice the performances of this flattened model, BIGBIRD, performs con-

siderably worse than the other three hierarchical models in all tasks. So we think a

more appropriate use case of BIGBIRD would be using it for efficient and effective



CHAPTER 4. CLINICAL NOTE REPRESENTATION 78

training in long-text document classification. In our case, we have a strong hierar-

chical structure due to the large number of notes in MIMIC, so the contributions

from the hierarchical levels are important.

The performances of HAN and BERTLSTM are approximately the same. The

advantages of Hierarchical Transformer Networks over BERTLSTM are significant

in phenotype predictions, with improvements of 0.0258 in AUC, 0.0541 in PRC,

and 0.0542 in F1-score. And Hierarchical Transformer Networks have relatively

small improvements of 0.0251 in AUC, 0.0416 in PRC, and 0.0429 in F1-score,

compared to HAN. This indicates the Transformers at all levels make a consistent

contribution to the performance improvement. The application of BERT models at

the word level has such a significant effect on prediction. Note that we only apply

one layer of encoder in our proposed model, which already yields the best per-

formance across alternatives. According to findings from the Ablation Study Sec-

tion 4.3.5, the model still has a room to improve by increasing the model size and

incorporating more data. Thus, we believe that the great potential of the Hierarchi-

cal Transformer Networks would outperform the existing advanced state-of-the-art

methods in clinical outcome predictions.

Additionally, we find that Hierarchical Transformer Networks generate the best

PRCs for both in-hospital mortality and almost all phenotypes. Considering that

PRC is an important metric in machine learning prediction, accurately identify-

ing the positive samples is necessary. This is also important for predicting clinical

outcomes. A better PRC suggests that the Hierarchical Transformer Network is

more accurate in detecting positive examples without mistakenly classifying nega-
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Table 4.5: PRC scores of Different Models for All Phenotypes

ICD-9 BIGBIRD HAN BERTLSTM Our Model

4019 0.7590 0.7817 0.8148 0.8166

41401 0.6967 0.9131 0.8938 0.9163

42731 0.6589 0.8771 0.8963 0.8995

4280 0.5734 0.7592 0.7675 0.7665

2724 0.4985 0.6940 0.7309 0.7384

51881 0.4068 0.6277 0.6051 0.6396

2720 0.4064 0.4522 0.2650 0.5594

53081 0.4073 0.6259 0.6532 0.6754

486 0.1228 0.4131 0.3587 0.4084

496 0.1167 0.4640 0.4976 0.6037

Macro AVG 0.4647 0.6608 0.6483 0.7024

tive examples as positive, which is a more desirable method, particularly for clinical

phenotype prediction.

4.3.5 Ablation Study

A significant portion of the performance of the transformers is dependent on the

proper configuration of hyper-parameters. We explore numerous important factors

that impact predictive accuracy, robustness, and efficiency in order to determine the

best trade-off. This is fundamental for the proposed model because it necessitates

the proper selection of hyper-parameters to make the model manageable in size.

4.3.5.1 Input Text Lengths

The released BERT models have a fixed sequence length of 128, which is signif-

icantly longer than the sentences of clinical notes. As presented in Table 4.3, the
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Table 4.6: Performance of Hypertension with Different Input Lengths

Sequence length at each level
[Percentile]

Hypertension

Patient Document Sentence AUC PRC

22 [80th] 50 [80th] 64 [96.7th] 0.8722 0.8327

34 [90th] 0.8720 0.8337

16 [70th] ↓ 0.8623 ↓ 0.8183

85 [90th] 0.8733 0.8299

37 [70th] ↓ 0.8655 ↓ 0.8209

128 [98.6th] 0.8744 0.8309

32 [90th] ↓ 0.8546 ↓ 0.8147

22 [80th] ↓↓ 0.8347 ↓↓ 0.7997

average number of word-pieced tokens per sentence is approximately 19. So it may

be unnecessary to pad towards 128 tokens at the word level. However, removing

an excessive number of tokens might have a negative impact on the capability of

the pre-trained model. Hence, evaluating such a trade-off would be useful. We test

the effectiveness of hypertension phenotype prediction at all three hierarchies using

input sequences of varying lengths. The performances of different settings are re-

ported in Table 4.6. We denote the first non-header row as the base input, where the

models contain 80th percentile data length at the patient and document level, and 64

word pieces at the sentence level.

We first examine the results of different sequence lengths at the sentence level,

or the number of tokens in a sentence, shown in the last row in Table 4.6. Even

though the sequence length with 128 tokens has reached the 98.6th percentile, the
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performance does not sizably improve (i.e., from 64 to 128, the AUC slightly in-

creases by 0.0022). However, performance begins to decline gradually from an

input size of 32. For lengths of 32 and 22, they do not perform well (with AUCs

of 0.85 and 0.83) even though the input size is already up to the 90th and 80th

percentiles, respectively. Thus, we believe that removing a substantial number of

tokens from the initial input size of 128 does actually decrease the competence of

the pre-trained model.

The results with sequence lengths at the patient and document levels (i.e., the

number of notes and sentences) are shown in the Patient and Document columns.

We experiment with 90th, 80th, and 70th percentile data. All three settings yield an

approximately comparable performance, with AUC scores of around 0.86 to 0.87.

It is reasonable to have poor performance with 70th percentile data (0.86+), but it

makes a rather minor difference between 80th and 90th percentiles (0.87+).

4.3.5.2 BERT Variations

We ebvalute distilled BERT models with smaller sizes at the word level, includ-

ing BERTtiny , BERTmini , BERTsmall , BERTmedium , BERTbase (Turc et al., 2019).

Given the same memory limits, we feed into the maximum sequence length for

each distilled model, and we investigate if larger models would generate higher

performances even with smaller sequence lengths.

Each BERT model is evaluated with three different settings: 1. The maximum

length that the memory can afford (Max Sequence Length); 2. As BERTbase incor-

porates only 6 documents, all the other models are fed with the same 6 documents
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Table 4.7: Performance of Hypertension with Distilled BERT Models

MODELS Settings Hypertension
Max Sequence Length AUC PRC

BERTtiny D50 S75 W128 0.8750 0.8181
BERTmini D40 S60 W64 0.8706 0.8066
BERTsmall D25 S50 W64 0.8863 0.8333
BERTmedium D12 S50 W64 0.8869 0.8365
BERTbase D6 S50 W64 0.8788 0.8178

Last Six Notes
BERTtiny

D6 S50 W64

0.8660 0.8115
BERTmini 0.8776 0.8213
BERTsmall 0.8645 0.8040
BERTmedium 0.8763 0.8231
BERTbase 0.8788 0.8178

Discharge Summary
BERTtiny

D1 S50 W64

0.8497 0.8030
BERTmini 0.8496 0.7978
BERTsmall 0.8627 0.8094
BERTmedium 0.8503 0.8036
BERTbase 0.8649 0.8161

(Last Six Notes); 3. Only discharge summary is fed into the model (Discharge Sum-

mary). All other hyper-parameters are the same across all BERT models. Only the

BERT models applied at the word level and the input sequence lengths are different.

As shown in the column Max Sequence Length of Table 4.7, different models

have different max input lengths (max seq len:D S W ) that can be incorporated into

4 the GPU memories (128G) at their maximum capacity.

Notably, the max document length for BERTmedium is only 12, but the perfor-
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mance of BERTmedium achieves the best AUC (0.8869) and PRC (0.8365) among

all other combinations. For BERTtiny , BERTmini , and BERTsmall , even though

these three models incorporate many more documents than BERTmedium , the per-

formances of them are still slightly worse than BERTmedium . Interestingly, BERTbase

performs worse than BERTsmall and BERTmedium .

Meanwhile, we investigate the impact of keeping the document length fixed

at the BERTbase max capacity of 6 documents. We run all other distilled models

on the same 6 documents to understand if larger models would perform better than

smaller models with the same input data. As presented in the column Last Six Notes

of Table 4.7, we notice that BERTbase achieves the best AUC and BERTmedium

achieves the best PRC.

Furthermore, we evaluate our model capacity by using only one document to

predict the phenotype. We only process the discharge summary to predict whether

the patient has hypertension. This would be more challenging than using all the

notes because we only have a small portion of the data. We want to see if the

proposed hierarchical architecture can still be used with the same architecture and

achieve good performance. As reported in the Discharge Summary column of Ta-

ble 4.7, the models continue to perform reasonably well, with an AUC of around

0.85. The best AUC (0.8649) and PRC (0.8161) were achieved by BERTbase .

However, compared to the performances that extensively use the majority of

notes to make predictions, the results using only one note are worse. For all BERT

models, the performances with the max sequence length and the last six notes out-

perform those only using the discharge summary. Thus, we show the necessity of
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incorporating as many documents as possible. This is more important when the

phenotype is such that it is hard to get a satisfactory performance. Adopting all

possible notes into the model would yield sufficient room for improvement. Given

the results of the above experiments, along with the general mantra “more data and

larger models”, we conclude that sufficient data is more crucial and would further

improve the performance even if the model size may not be the largest. We there-

fore provide an applicable recommendation for those cases with less GPU memory:

we should first ensure that we contain sufficient data, then select the larger model.

4.3.5.3 Transformer Encoder Variations

We evaluate different settings in the sentence- and document-level transformers,

and the results are shown in Table 4.8. Unless specified, other hyper-parameters

identical to best-performing model.

Numbers of Encoder Layers: We experiment with various encoder layers (L =

1,2,4,6,8). Table 4.8(A) shows that the model with 2 encoder layers achieves the

best AUC (0.8722) and PRC (0.8327).

Notably, models with fewer layers (L = 1,2) generally perform better than those

with more layers (L = 4,6).

Although this is opposed to the general mantra that larger models yield better

performance, we assume it is because extreme model sizes might lead to an im-

provement bottleneck if the model is only used for fine-tuning classification.

Pooling Strategy: We also compare different pooling strategies on how to aggre-
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Table 4.8: Performance of Hypertension with Transformer Variations

Variations Hypertension

Number of Layers AUC PRC

1 0.8674 0.8218

(A) 2 0.8722 0.8327

4 0.8645 0.8199

6 0.8672 0.8213

8 0.8684 0.8285

Pooling Methods

first 0.8683 0.8214

(B) mean 0.8702 0.8295

max 0.8675 0.8222

mean max 0.8722 0.8327

(C)
w/o 0.8700 0.8294

Positional Encoding 0.8722 0.8327

(D)
w/o 0.8558 0.7887

Adaptive Segment 0.8722 0.8327

gate the representations from the previous level to the next. Table 4.8(B) finds that

mean max pooling is generally the best-performing pooling method.

Positional Encoding: Excluding positional encodings has a slight negative impact

on performance, as shown in Table 4.8 (C). Thus, position-sensitive information is

necessary for each representation unit to incorporate the orders of words, sentences,

and documents.

Adaptive Segmentation: The results in Table 4.8 (D) show that there are significant

decreases in AUC and PRC if we remove the adaptive segmentation. If clinical

notes for the same patient are all independent without proper segmentation, the
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effect is clearly reflected in the performance (i.e., only 0.8558 in AUC and 0.7887

in PRC).



CHAPTER 5

PATIENT-ORIENTED REPRESENTATION

In this chapter, we will introduce how we apply the methods developed in the previ-

ous chapters to generate patient-oriented language representation. We all know

that the capabilities of clinical NLP methods have improved significantly in re-

cent years, but clinical texts are still largely underused in patient-oriented clinical

research and patient care. A key reason behind this is that NLP methods for clin-

ical problems are mostly proposed and varied with certain tasks, for instance, the

detection of specific diseases in free texts. But they generally can not satisfy the

requirements of patient-oriented clinical research. Such a gap between the com-

petence of clinical NLP methods and the requirements of patient-oriented clinical

problems largely hinders the potential of NLP methods to tackle patient-oriented

problems.

One way to mitigate this gap is to combine deep representation learning with

large-scale textual data to generate patient representations. More specifically, we

will build mathematical representations from EHR patient clinical notes covering

different aspects of patients’ health conditions. With the power of deep represen-

tation learning, we hope to make extensive use of clinical notes to learn semantic

representations of patients and consider the complexities of patients from a com-

prehensive and holistic view.

We broaden this patient-oriented notion with clinical outcome-targeted super-
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Figure 5.1: Clinical Outcome-targeted Supervised Learning

vised learning (Figure 5.1). Some clinical outcomes are important for patient-

oriented clinical research, and they can be easily extracted from structured tables.

For example, mortality, readmission, length-of-stay, and diagnostic ICD-9 codes

are standard clinical outcomes of interest that are important to support clinical de-

cisions. If we can make effective use of this data, we will be able to cover a wide

range of resources for patient-oriented clinical outcomes while reducing the need

for human annotation. One viable approach is to use structured EHR data as a

source of supervision and develop supervised models that map clinical notes to

clinical outcomes.The way it works is that the supervised models can connect clin-

ical notes to clinical outcomes end-to-end directly. Because clinical outcomes are

essential clinical knowledge about the patient, the model can therefore deeply en-

code notes with clinically-meaningful information about the patient.

In the following two sections, we introduce two advanced learning techniques,

including multi-task learning and transfer learning, to assist in the development of

patient-oriented language representation.
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Figure 5.2: Multi-task Learning Joint Optimization

5.1 Multi-task Learning

5.1.1 Backgrounds

Multi-task learning, or MTL, is a type of machine learning where related tasks

are selected to be trained concurrently and the parameters are shared in part (Fig-

ure 5.2). When compared to training a single task, MTL increases the model’s ca-

pacity for generalization and performance by leveraging information across tasks.

MTL is effective because of its ability to help the task engage, and it functions as

a regularization technique in machine learning by adding an inductive bias that is

beneficial to the training.

Numerous attempts have been made to process patient data from clinical notes

to develop meaningful representations. However, these attempts are generally fo-

Figure 5.2 retrieved from Si and Roberts (2019).



CHAPTER 5. PATIENT-ORIENTED REPRESENTATION 90

cused on a single prediction task and overlook the possibility of shared knowledge

across related tasks. However, superior performance on one task does not always

imply superior performance on other tasks; information sharing among tasks may

result in higher performance than the individual task. Despite this advantage, there

has been very little research evaluating the feasibility and contribution of training

multiple tasks to clinical outcome predictions. We hypothesize that MTL models

have the capacity to establish more generic representations, which would be effec-

tive for tasks other than those for which they are trained.

5.1.2 Related Work

With the development of deep learning, studies examining the application of MTL

to enhance training efficiency and predictive accuracy have continually been pro-

posed. Based on the survey by Zhang and Yang (2021), we understand the theoret-

ical basis of MTL and its potential directions. Ruder (2017) provided an in-depth

study of MTL using deep learning models and found that deep learning significantly

accelerates computation and increases the possibility of achieving MTL. Many ma-

chine learning studies have successfully implemented MTL on open-domain tasks

such as image recognition (Li et al., 2014; Elhoseiny et al., 2016; Chowdhuri et al.,

2019; Cao et al., 2018; Pasunuru and Bansal, 2017), NLP (Collobert and Weston,

2008; Dong et al., 2015; Rei, 2017; Liu et al., 2017a; Crichton et al., 2017; Mc-

Cann et al., 2018), and speech recognition (Toshniwal et al., 2017). It is already

well known that MTL can improve training efficiency when the model is capable

of sharing knowledge between related tasks (Kumar and Daumé III, 2012). Even
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when encountered with issues of negative effects, MTL attempts to deliver insights

about the tasks, and it has been primarily applied in biomedical discoveries, in-

cluding biological function (Yang et al., 2009; Fa et al., 2018) and drug discovery

(Ramsundar et al., 2015).

For now, clinical events are being used as an instance of multi-task EHR learn-

ing where certain parameters of the model are shared while others are specialized, as

it is a difficult problem in medicine because of the intricacy of the surrounding situ-

ations and the inconsistent data from a wide variety of diverse perspectives(Caruana

et al., 1995). Futoma et al. (2017) developed a Multi-task Gaussian Process (MGP)

RNN model to predict sepsis at an early stage using physiological data (i.e., vital

signs and lab variables). Harutyunyan et al. (2019) integrated time-series variables

into MTL networks to predict four clinical benchmarks, which perform better com-

pared to solely feature engineering. Ngufor et al. (2015) investigated ways of clus-

tering related tasks in MTL to facilitate knowledge transfer and predict blood trans-

fusion (RBC) procedure outcomes. Razavian et al. (2016) evaluated three MTL

neural networks with two CNN variations and a LSTM variant, against single task

learning (STL) baselines for forecasting the disease onset entirely with longitudinal

lab variables. Wiens et al. (2016) adjusted MTL to build risk stratification models

with time-series features, and different groups of patient cohorts are considered as

related tasks. Wang et al. (2014b) introduced a MTL approach for disease onset

predictions with ICD-9 codes. Nori et al. (2017) showed that MTL models outper-

formed STL models in forecasting the mortality of ICU patients using demographic

data and diagnostic codes. Lopez-Martinez and Picard (2017) used physiological
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variables including skin conductance and ECG readings with MTL to predict pain

recognition. In general, these studies demonstrate the increasing significance of

implementing MTL in clinical settings with clinical EHR data such as laboratory

testing or physiological values. However, despite the fact that a few studies have

utilized MTL for modeling clinical events, earlier research has shown conflicting

findings (Ding et al., 2018). Also, there has been insufficient work about the im-

plementation of MTL to learn from clinical notes. To our knowledge, we are one

of the earliest teams that first integrated MTL to learn patient representation from

unstructured clinical notes (Si and Roberts, 2019).

5.2 Transfer Learning

5.2.1 Backgrounds

Another powerful idea in deep learning that can be used to generate transferable

patient-level representation is known as transfer learning. With this, we can take the

knowledge the neural networks have learned from one task and apply that knowl-

edge to a separate task. For typical machine learning or deep learning models, we

usually collect datasets, randomize a model from scratch, and train the model on

this dataset. If we have another task, we will do this whole process again. The same

with a third task, a fourth task, and so on. For humans, we do not learn like that.

Instead, we use all the knowledge we have already had to solve the new problem.

So transfer learning is one way to try to do that in machine learning.

The main method of transfer learning for NLP has two step (Figure 5.3). The

first step is called the pre-training step, which is actually computationally inten-
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Figure 5.3: Transfer Learning in NLP

sive, and during this step, we collect as much data as we can and train a model on

all of the data, which ends up with a general-purpose representation or a general-

purpose model. The model is a set of pre-trained weights, so in the second step,

which we call fine-tuning, we start from this pre-trained model and now we adapt

it to the exact task. The new task normally has a small sample size. The reason

transfer learning can be helpful is that a lot of the low-level patterns, such as the

structure and nature of what language looks like, are already known, and some of

that knowledge will be useful. So, having learned to understand language from the

source task, it may have learned enough to help your new task learn a bit faster or

learn with less data.

5.2.2 Related Work

Studies with transfer learning to facilitate EHR patient modeling are relatively in-

novative at this moment. DoctorAI was the first and most notable effort to use deep

learning models to learn patient representations from large datasets in EHRs, where
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Choi et al. (2016a) used recurrent neural networks to learn dense patient vectors

from sequential clinical events. This research also established the benefit of trans-

fer learning from large-scale clinical problems to downstream tasks with limited

data. Besides the supervised learning approach, DeepPatient (Miotto et al., 2016)

developed an unsupervised model based on a stacked denoising autoencoder (SDA)

for learning patient representations from a longitudinal EHR data warehouse. Fol-

lowing the same idea as DeepPatient, Sushil et al. (2018) investigated unsuper-

vised approaches for learning patient representations from unstructured notes and

fed them as input embeddings into clinical predictions. Dligach et al. (2019) evalu-

ated transfer learning by pre-training a CUI-driven CNN model with clinical notes

from MIMIC-III and then applying the CUI-driven model by extracting vectors to

predict phenotypes on the i2b2 2008 challenge (Uzuner, 2009). Kemp et al. (2019)

conducted a more current study in which they established hierarchical modeling

of clinical notes to develop patient representations and also illustrated the impact

of pre-training. In the end, Steinberg et al. (2021) suggested that language mod-

els are effective for developing competent patient representations. Their research

has shown that leveraging the word2vec model to patient representation can im-

prove clinical prediction performances as well as knowledge transfer from the full

cohort to certain tasks. In sum, these investigations validate the premise that de-

veloping a solid patient representation is conceivable using resources directly from

unstructured notes and also demonstrate the potential for medical language transfer

learning.

However, in previous work on EHR transfer learning, a feature-based method



CHAPTER 5. PATIENT-ORIENTED REPRESENTATION 95

was extensively used, that is, to extract patient vectors from the intermediate or the

last layers of neural networks and to consider them as the input to the fine-tuning

task. Because this extraction approach is task-specific, performance gains on other

tasks may be marginal. Motivated by the notion of pre-training and fine-tuning

from NLP, we propose a model-wise transfer learning approach to train patient

representations from free-text medical language. More importantly, we are one of

the first efforts to use state-of-the-art transfer learning to develop transferable and

generic patient representations from clinical notes. In the next section, we will

introduce the study that builds such patient representations and evaluates them on

low-prevalence phenotypes.

5.3 Generalized and Transferable Patient Language Representation for Phe-

notyping with Limited Data

5.3.1 Introduction

The purpose of representation learning is to effectively develop a semantically

meaningful representation from original data. This problem has received consid-

erable attention in the field of natural language processing. Solid representations

that convert raw data into meaningful information are important for machine learn-

ing models to perform effectively. With the concept of representation learning in

mind, we propose to learn meaningful representations of EHR data, a process we

refer to as patient representation learning. The motivation behind patient repre-

sentation learning is to construct a mathematical model of a patient from original

EHR data, which in turn is sparse and high-dimensional in itself. The majority of
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techniques for patient representation learning are task-customized, which generate

the representation only for certain predictions at each time. An ideal patient rep-

resentation, on the other hand, would be robust and widely applicable to a wide

spectrum of prediction tasks. A good representation should be especially benefi-

cial for ”small data” problems when there are insufficient instances to develop good

representations using task-specific models.

As discussed in the previous subsection, extensive studies in computer vision

and natural language processing have shown the effectiveness of transfer learning,

in which a practical technique is to fine-tune a downstream task using large-scale

pre-trained models, such as ImageNet in the computer vision domain Deng et al.

(2009) and BERT in the NLP domain (Devlin et al., 2019). This formula would

also be well suited for developing a transferable patient representation, given that

pre-training with a large dataset would transfer knowledge of medicine to addi-

tional clinical tasks, hence improving prediction results. Pre-training begins with

the development of a source task, and we hope that the framework (i.e., model and

objectives) will incorporate a broader picture of the patient’s information, much like

how clinicians diagnose patients based on thorough knowledge of patients. Accord-

ingly, generalized patient presentations can be achieved with pre-training. In order

to accomplish this aim in the most robust way possible, multi-task joint learning

among multiple and yet associated clinical predictions is intended for the task of

composing the pre-training source tasks.

Our proposed representation framework integrates multi-task learning of phe-

notype predictions in source tasks and fine-tuning of target tasks. In more detail,
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the model is pre-trained using a large corpus of clinical notes with supervised learn-

ing targets of numerous clinical outcomes, namely distinct but related phenotypes

with high frequencies. We anticipate that this framework is capable of compre-

hending generalized and uniform representations because multiple related common

phenotypes would cover the vast proportion of patients. We then apply the rep-

resentations to be further fine-tuned on low-prevalence phenotype predictions, to

verify the robustness of the pre-trained model, which is also our main motivation

for classifying low-prevalence phenotypes with unstructured clinical notes. This

task is often complicated to perform well due to the scarcity of positive samples.

We expect that if the pre-trained model is further fine-tuned, the model will trans-

fer knowledge about patients and hence assist with the low-prevalence phenotyping

predictions. A generically-idealized patient representation should promote ”limited

data” problems, in which only a small amount of data is available to get superior

performance solely with its data. As such, we define the low-prevalence pheno-

type classifications as downstream tasks to be fine-tuned further starting from the

pre-trained multi-task model and also test the generalizability of the results.

As hypothesized, our experiment findings indicate that when compared to single-

task pre-training and no transfer learning, multi-task pre-training always increases

performance of low-prevalence phenotyping predictions. Notably, we only get to

conduct the pre-training once and then utilize this generic model for a variety of

phenotypes. In terms of phenotyping algorithms, it is difficult for NLP-based phe-

notyping methods to execute the wide variety of phenotypes shown in this work.

This is why we highlight the stability and robustness of the proposed method: it
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Figure 5.4: Overall Pre-training and Fine-tuning Architecture

consistently outperforms the baselines, but when it does not, the score differences

are reasonably small.

5.3.2 Methods

5.3.2.1 Overall Framework

This section describes the overall implementation of the representation framework,

shown in Figure 5.4. Essentially, the overall process is divided into two stages, in-

cluding pre-training and fine-tuning. During pre-training, we use supervised multi-

task learning, leveraging latent information across various tasks. The supervised

classifier is optimized towards a variety of high-prevalence diseases in parallel.

During fine-tuning, the downstream task is low-prevalence phenotyping, which is

Figure 5.4 retrieved from Si et al. (2021a).
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one of the most challenging problems due to the dearth of data. We apply low-

prevalence phenotyping to be continually fine-tuned. More particularly, we focus

on phenotypes that are particularly unusual in MIMIC-III data, specifically those

characterized by ICD-9 having fewer than 550 patients, which ends up with 78

low-prevalence phenotypes that match this criterion. Fine-tuning at this stage en-

tails retrieving from source tasks and adapting the pre-trained models to the target

tasks, as well as starting training with the pre-trained parameters.The model param-

eters are updated constantly depending on the target phenotype’s labels. Each target

also has its own distinct, fully-connected layer before the actual prediction.

The model in pre-training and fine-tuning for learning patient representations is

a HAN model, described in Section 4.2. We chose this model because it would be

capable of dealing with the hierarchical structures and temporal relations of clinical

notes. Also, it is not that large as hierarchical transformer networks, which would

lead to overfitting on low-prevalence phenotypes. Considering that we are assessing

different transfer learning approaches instead of getting the state-of-the-art scores,

we determine this model with a balance between efficiency and effectiveness. We

refer to Section 4.2 for more details about this neural network. In terms of the

model hyper-parameters, we report as follows: word embeddings of 50 dimensions,

the hidden unit of LSTM: 100, the output size of attention mechanisms: 200. This

yields a HAN model with a total trainable parameter of 653,101.
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5.3.2.2 High-prevalence Phenotyping-guided Pre-training

To achieve a generic patient representation, we develop source tasks for pre-training

that aim to be comprehensive by covering a wide range of patient data aspects.We

develop a multi-task learning model on associated high-prevalence phenotypes with

the goal of ensuring that patient information is captured and integrated into the pre-

trained source tasks. We focus on high-prevalence phenotypes from three organ sys-

tems in particular, including circulatory, respiratory, and genitourinary. These three

organ systems are the three most frequent systems by ICD-9 counts. We choose the

five most common phenotypes in each organ system based on patient frequency and

pre-train the model to jointly learn these five phenotypes. The information about

phenotypes per organ system is shown in Table 5.1.

Table 5.1: Top Five High-prevalence Phenotypes in Three Organ Systems

Circulatory Respiratory Genitourinary

Disease Name

(ICD-9)
# patients

Disease Name

(ICD-9)
# patients

Disease Name

(ICD-9)
# patients

Essential hypertension

(401.9)
20,703

Acute respiratory failure

(518.81)
7,497

Acute kidney failure

(584.9)
9,119

Congestive heart failure

(428.0)
13,111

Pneumonia

(486)
4,839

Urinary tract infection

(599.0)
6,555

Atrial fibrillation

(427.31)
12,891

Chronic airway obstruction

(496)
4,431

Chronic kidney disease

(585.9)
3,435

Coronary atherosclerosis of

native coronary artery

(414.01)

12,429
pleural effusion

(511.9)
2,734

Acute kidney failure

with lesion of

tubular necrosis

(584.5)

2,287

Hypertensive chronic

kidney disease

(403.90)

3,421
Asthma

(493.90)
2,195

End stage renal disease

(585.6)
1,926
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More specifically, in pre-training, we train a HAN model with MIMIC-III clin-

ical notes. The word embeddings of 50 dimensions are fed into the input layer,

and the model is a three-level HAN architecture that proceeds from words towards

sentences, documents, and eventually to the patient. Pre-training objectives are to

classify patients if they have at least one of the five high-prevalence phenotypes. To

be more precise, we pre-train the model for each organ system with joint training

of the top five phenotypes. The overall loss from all five tasks is minimized. For

prediction labels, we utilize the ICD-9 code from structured EHR data as a surro-

gate for the phenotype. The labels for pre-training in multi-task learning consist of

all five phenotypes. Namely, if the patient has ICD-9 codes for phenotypes A and B

but without ICD-9 codes for phenotypes C, D, and E, then the label would be as fol-

lows: phenotype A as positive, phenotype B as positive, phenotype C as negative,

phenotype D as negative, and phenotype E as negative. Because the pre-training

is conducted within each organ system, we may refer to the five-phenotype pre-

trained models as organ system-customized models. In the end, we achieve three

pre-trained models, including the circulatory model, the respiratory model, and the

genitourinary model.

5.3.2.3 Fine-tuning on Low-prevalence Conditions

In fine-tuning, we directly apply the pre-trained model to the target task and train the

model from start to finish.The pre-trained model is provided with task-specific in-

puts, including word embeddings from the target corpus and labels of low-prevalence

phenotypes extracted from structured data. The target task is initiated using param-
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eters of the pre-trained model. At the output layer, a task-specific fully-connected

network is added for final prediction, which is identical to the fine-tuning in BERT

that converts the output state to a logit function for prediction probability.

As mentioned before, the primary goal of this research is to apply this pre-

training and fine-tuning strategy to enhance prediction for relatively uncommon

phenotypes, which would benefit a lot from the effective transfer learning tech-

nique. We identify phenotypes in three organ systems that are relatively infrequent

with only 50 to 550 individual patients. 78 phenotypes (i.e., 38 circulatory pheno-

types, 23 respiratory phenotypes, and 17 genitourinary phenotypes) are included.

To eliminate cherry-picking, we conduct experiments on all 78 phenotypes. The in-

formation about these 78 phenotypes is shown in Table 5.2, Table 5.3, and Table 5.4.

Because of the significantly imbalanced positive samples for low-prevalence phe-

notypes, we scale the loss functions with assigned coefficients in order to favor

positive samples over negatives. The following formula is used to determine the

weight assigned to each phenotype:

weight-positive =
1

positive
× total

2
(5.1)

where positive represents the patient counts in positive samples, and total represents

the entire patient cohorts (in this experiment we have 31,360 patients from MIMIC-

III data).
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Table 5.2: Low-prevalence Phenotypes in the Circulatory System

Disease name ICD-9
# cases
(Weight)

STL-
related

Disease name ICD-9
# cases
(Weight)

STL-
related

Acute systolic heart failure 428.21 492 (32) 428.0 Iatrogenic hypotension 458.2 233 (72) 428.0
Coronary atherosclerosis
of autologous
vein bypass graft

414.02 474 (33) 414.01 Cerebral atherosclerosis 437.0 196 (80) 401.9

Other late effects of
cerebrovascular disease

438.89 465 (34) 401.9 Hypertrophic cardiomyopathy 425.1 183 (86) 401.9

Benign essential hypertension 401.1 454 (35) 401.9
Chronic combined systolic
and diastolic heart failure

428.42 179 (88) 428.0

Late effects of
cerebrovascular disease
, hemiplegia affecting
unspecified side

438.20 437 (36) 403.90 Malignant essential hypertension 401.0 172 (91) 401.9

Acute diastolic heart failure 428.31 432 (36) 401.9
Paroxysmal supraventricular
tachycardia

427.0 161 (97) 427.31

Systolic heart failure, unspecified 428.20 416 (38) 428.0
Acute myocardial infarction
of anterolateral wall,
initial episode of care

410.01 142 (110) 414.01

Subdural hemorrhage 432.1 392 (40) 401.9

Hypertensive chronic kidney
disease, benign, with chronic
kidney disease
stage I through stage IV,
or unspecified

403.10 122 (129) 403.90

Sinoatrial node dysfunction 427.81 389 (40) 427.31
Combined systolic and
diastolic heart
failure, unspecified

428.40 110 (143) 428.0

Acute myocardial infarction
of unspecified site,
initial episode of care

410.91 354 (44) 414.01
Unspecified transient
cerebral ischemia

435.9 96 (163) 401.9

Atherosclerosis of native arteries
of the extremities with gangrene

440.24 327 (48) 427.31
Atherosclerosis of native
arteries of the extremities
with rest pain

440.22 88 (178) 414.01

Acute on chronic combined
systolic and diastolic
heart failure

428.43 327 (48) 428.0 Abdominal aneurysm, ruptured 441.3 76 (206) 401.9

Chronic total occlusion
of coronary artery

414.2 292 (54) 414.01
Acute combined systolic
and diastolic heart failure

428.41 73 (215) 428.0

Atherosclerosis of aorta 440.0 283 (55) 414.01
Unspecified late effects
of cerebrovascular disease

438.9 69 (227) 401.9

Sub-endocardial infarction,
subsequent episode of care

410.72 279 (56) 414.01 Unspecified cerebrovascular disease 437.9 64 (245) 401.9

Atherosclerosis of native arteries
of the extremities with ulceration

440.23 264 (59) 414.01
Atherosclerosis of other
specified arteries

440.8 63 (249) 414.01

Atherosclerosis of native
arteries of the extremities
with intermittent claudication

440.21 257 (61) 414.01
Cerebral thrombosis
with cerebral infarction

434.01 60 (261) 401.9

Late effects of cerebrovascular
disease, aphasia

438.11 240 (65) 427.31
Secondary cardiomyopathy,
unspecified

425.9 53 (296) 428.0

Atherosclerosis of renal artery 440.1 233 (67) 414.01
Acute myocardial infarction of
unspecified site,
subsequent episode of care

410.92 53 (296) 414.01
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Table 5.3: Low-prevalence Phenotypes in the Respiratory System

Disease name ICD-9
# cases
(Weight)

STL-
related

Disease name ICD-9
# cases
(Weight)

STL-
related

Post-inflammatory pulmonary

fibrosis
515 544 (29) 486

Pulmonary congestion

and hypostasis
514 155 (101) 511.9

Pneumonia due to Pseudomonas 482.1 430 (36) 486 Sinusitis (chronic) 473.9 149 (105) 493.90

Chronic respiratory failure 518.83 331 (47) 518.81 Edema of larynx 478.6 145 (108) 518.81

Acute edema of lung,

unspecified
518.4 305 (51) 511.9

Malignant pleural

effusion
511.81 132 (119) 511.9

Chronic obstructive asthma

with (acute) exacerbation
493.22 299 (52) 496 Acute bronchitis 466.0 126 (124) 518.81

Pneumonia due to other

gram-negative bacteria
482.83 264 (59) 486 Asbestosis 501 116 (135) 496

Bacterial pneumonia,

unspecified
482.9 227 (69) 486

Acute upper respiratory

infections
465.9 96 (163) 493.90

Pneumonia due to Klebsiella

pneumoniae
482.0 226 (69) 486 Abscess of lung 513.0 86 (182) 486

Pneumococcal pneumonia

[Streptococcus pneumoniae

pneumonia]

481 194 (81) 486

Unilateral paralysis of

vocal cords or larynx,

partial

478.31 74 (212) 518.81

Bronchiectasis without

acute exacerbation
494.0 191 (82) 486 Empyema with fistula 510.0 72 (218) 511.9

Empyema without

mention of fistula
510.9 190 (83) 511.9 Stenosis of larynx 478.74 61 (257) 518.81

Methicillin resistant pneumonia

due to Staphylococcus aureus
482.42 162 (97) 518.81
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Table 5.4: Low-prevalence Phenotypes in the Genitourinary System

Disease name ICD-9 # cases Weight STL-related
Hematuria 599.7 509 31 599.0

Hydronephrosis 591 413 38 584.9

Chronic kidney disease, Stage IV (severe) 585.4 334 47 585.6

Hypertrophy (benign) of prostate with urinary obstruction

and other lower urinary tract symptoms (LUTS)
600.01 314 50 599.0

Neurogenic bladder NOS 596.54 225 70 599.0

Hematuria, unspecified 599.70 216 73 599.0

Calculus of kidney 592.0 206 76 599.0

Gross hematuria 599.71 181 87 599.0

Secondary hyperparathyroidism (of renal origin) 588.81 169 93 585.9

Acute pyelonephritis without lesion of renal medullary necrosis 590.10 132 119 599.0

Calculus of ureter 592.1 111 141 599.0

Cyst of kidney, acquired 593.2 107 147 585.9

Hypertrophy (benign) of prostate 600.0 92 170 599.0

Pyelonephritis, unspecified 590.80 84 187 599.0

Nephritis and nephropathy, not specified as acute or chronic,

with unspecified pathological lesion in kidney
583.9 84 187 584.9

Vascular disorders of kidney 593.81 83 189 584.5

Chronic glomerulonephritis in diseases classified elsewhere 582.81 67 234 585.9
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5.3.3 Experiments

5.3.3.1 Baseline Methods

Our proposed method, multi-task transfer learning (MTL) is compared with three

baseline methods of two types: single-task transfer learning (STL), and no transfer

learning (No-transfer). The details of baselines are described in the following:

STL-highest: Single-task transfer learning of the high-prevalence phenotype with

the highest patient count. Only one among five high-prevalence phenotypes with

the largest number of patients is considered in the source task of pre-training. In

other words, the pre-training task for this baseline in the circulatory, respiratory, and

genitourinary organ systems is Unspecified essential hypertension (ICD-9: 401.9),

Acute respiratory failure (ICD-9: 518.81), and Acute kidney failure (ICD-9: 584.9),

respectively.

STL-related: Single-task transfer learning of the phenotype that is medically rel-

evant to the target phenotype. The pre-training task includes only one of the five

most medically relevant high-prevalence phenotypes for the downstream task. A

practicing physician in internal medicine chose the source phenotype for each tar-

get task based on clinical knowledge, and the selection process was finished before

training. The columns of STL-related in Table 5.2, Table 5.3, and Table 5.4 present

the target task’s most related high-prevalence phenotype.

No-transfer: This is a typical technique in machine learning, and the model is

trained only with information from the target task per low-prevalence phenotype.

In the following result sections, we refer to MTL, STL-highest, STL-related,

and No-transfer.
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5.3.3.2 Data and Implementation Details

This work uses large-scale MIMIC-III clinical notes (i.e., nearly 2 million unstruc-

tured notes). Each note is tokenized using regular expressions and sentences are

split with spaCy. We use ICD-9 codes to predict phenotypes. If a patient has an

ICD-9 code, they are considered a positive example of that given phenotype. Other

patients without the ICD-9 code are negative. The word embeddings are used as

input features for both pre-training and fine-tuning.

In terms of prediction labels, the predictions are entirely patient-level. The MTL

labels are the five most prevalent phenotypes in each organ system. The STL-highest

labels are the phenotype with the largest patient count for each organ system. The

STL-related labels are extracted from Table 5.2, Table 5.3, and Table 5.4. The No-

transfer does not require pre-training. It only has the label if the patient is diagnosed

with each low-prevalence phenotype, which is also the label in fine-tuning across

all methods.

5.3.3.3 Evaluation Metrics

To prevent any data leakage, we reserve the test set and only utilize it to report

the performance. That is to say, the pre-training and fine-tuning have no chance of

learning from test data. We use a sigmoid loss function with the positive weights

shown in Table 5.2, Table 5.3, and Table 5.4 to predict low-prevalence phenotypes.

We report the AUC score for the performance metric. All four methods and all 78

phenotypes are experimented with, resulting in 312 AUC scores. We notice that

limited test sets for particular phenotypes result in greater variance in the values.
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We hope using AUC instead of F1 and accuracy sort of minimizes the variance

since AUC is a reliable measurement.

To compare four different methods, we calculate and report the experiment find-

ings as follows:

1. AUC values for all 78 phenotypes (Table 5.6, Table 5.7, Table 5.8)

2. Performance distributions of four methods in three organ systems with box-

plots (Figure 5.5)

3. The number of phenotypes for which MTL perform better than three baselines

(Table 5.9)

4. The number of phenotypes for which each method performs the best (Ta-

ble 5.10)

5. If the method performs poorly, the number of phenotypes that are still within

90% of the highest AUC score (Table 5.10)

6. The average mean squared error (Avg-MSE) for four methods across three

organ systems (Table 5.11)

5.3.4 Results

5.3.4.1 Pre-training Results

In pre-training, we obtain three five-task pre-trained models containing five-task

circulatory model, five-task respiratory model, and five-task genitourinary model.

We also pre-train 15 STL models for each of the five phenotypes across three organ
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Table 5.5: Performances of High-prevalence Phenotypes

Circulatory MTL STL Respiratory MTL STL Genitourinary MTL STL

Essential hypertension 0.8041 0.8041
Acute respiratory
failure

0.9107 0.9112 Acute kidney failure 0.8469 0.8519

Congestive heart failure 0.9183 0.9145 Pneumonia 0.8542 0.8603 Urinary tract infection 0.7423 0.7468

Atrial fibrillation 0.9408 0.9336
Chronic airway
obstruction

0.8378 0.8048 Chronic kidney disease 0.8664 0.8550

Coronary atherosclerosis
of native coronary artery

0.9517 0.9503 Pleural effusion 0.8539 0.8560
Acute kidney failure
with lesion of
tubular necrosis

0.9105 0.8882

Hypertensive chronic
kidney disease

0.8768 0.8731 Asthma 0.8449 0.5734 End stage renal 0.9752 0.9412

systems. MTL and STL performances (AUCs) for each phenotype are shown in

Table 5.5.

The MTL column means that each high-prevalence phenotype was evaluated us-

ing the pre-trained 5-task model on the test set, while the STL column means that

each high-prevalence phenotype was evaluated on its corresponding STL model. In

other words, the scores in the STL column of each row are derived from a single STL

model, while the five scores in the MTL column are jointly derived from only one

MTL model. Even though only one model is pre-trained in the MTL scenario, be-

cause there are five phenotypes being optimized during training, there would be five

scores that correspond to these five phenotypes. Also, while our primary focus is on

fine-tuning low-prevalence phenotypes, we believe that pre-training performance is

also worth investigating.We observe that MTL has very little negative impact on

the performances of high-prevalence phenotypes and yields performances that are

well-matched in almost all tasks. Surprisingly, there are major improvements in

most phenotypes from STL to MTL, and the highest improvement can reach up to

0.2715 in AUC from STL to MTL (i.e., asthma).
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5.3.4.2 The Effectiveness of Pre-training

We continue to assess the effectiveness of transfer learning on the target task of low-

prevalence phenotypes. First, to get an overall understanding of performances, we

plot the distribution of AUCs across four methods in three organ systems, as shown

in Figure 5.5. The exact AUC scores are reported in Table 5.6, Table 5.7, and

Table 5.8. The performance of each organ system and each method is distributed

and shown in a box plot, which depicts the median, the lowest and highest values,

as well as the first and third quantiles or quartiles. We see that among four methods

in all organ systems, the MTL has the most compact range, while the No-transfer

has the most unstable distribution. Also, the median of MTL is always higher when

compared to the other three methods.

Figure 5.5: Box-plots of AUC Distributions

Figure 5.5 retrieved from Si et al. (2021a).
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Table 5.6: Predictive Performances of the Circulatory System

Disease name MTL STL-highest STL-related No-Transfer
Acute systolic heart failure 0.9256 0.9238 0.9124 0.9279
Coronary atherosclerosis of autologous
vein bypass graft 0.9627 0.9662 0.9403 0.9295

Other late effects of cerebrovascular disease 0.8595 0.8301 0.5741
Benign essential hypertension 0.8542 0.8850 0.6578
Late effects of cerebrovascular disease,
hemiplegia affecting unspecified side 0.9533 0.9297 0.9057 0.4138

Acute diastolic heart failure 0.8801 0.8793 0.9086
Systolic heart failure, unspecified 0.8248 0.8668 0.5946 0.7846
Subdural hemorrhage 0.9036 0.9640 0.9063
Sinoatrial node dysfunction 0.931 0.9251 0.9359 0.9209
Acute myocardial infarction of
unspecified site, initial episode of care 0.8400 0.8151 0.7982 0.7581

Atherosclerosis of native arteries
of the extremities with gangrene 0.9448 0.9305 0.9557 0.9241

Acute on chronic combined
systolic and diastolic heart failure 0.8448 0.8173 0.833 0.8594
Chronic total occlusion of coronary artery 0.9509 0.9405 0.9532 0.9444
Atherosclerosis of aorta 0.8158 0.8345 0.844 0.8709
Sub-endocardial infarction,
subsequent episode of care 0.9396 0.8986 0.9043 0.4282

Atherosclerosis of native arteries
of the extremities with ulceration 0.8312 0.8341 0.9213 0.6387

Atherosclerosis of native arteries
of the extremities with intermittent claudication 0.8295 0.9059 0.8659 0.8893

Late effects of cerebrovascular disease, aphasia 0.9590 0.7527 0.6746 0.5184
Atherosclerosis of renal artery 0.9014 0.8544 0.7915 0.4861
Iatrogenic hypotension 0.9223 0.8896 0.8526 0.6864
Cerebral atherosclerosis 0.7836 0.7524 0.5232
Hypertrophic cardiomyopathy 0.9951 0.9378 0.6124
Chronic combined systolic and
diastolic heart failure 0.9043 0.5110 0.8916 0.8922

Malignant essential hypertension 0.8528 0.8480 0.6048
Paroxysmal supraventricular tachycardia 0.7152 0.6640 0.5093 0.7146
Acute myocardial infarction of
anterolateral wall, initial episode of care 0.9124 0.5029 0.9240 0.9172

Hypertensive chronic kidney disease, benign,
with chronic kidney disease
stage I through stage IV, or unspecified

0.8408 0.7920 0.4643 0.3244

Combined systolic and diastolic
heart failure, unspecified 0.8715 0.6269 0.8559 0.8998
Unspecified transient cerebral ischemia 0.6328 0.5479 0.6945
Atherosclerosis of native arteries
of the extremities with rest pain 0.9041 0.7885 0.5801 0.5415

Abdominal aneurysm, ruptured 0.9974 0.9972 0.5881
Acute combined systolic
and diastolic heart failure 0.9204 0.8526 0.9426 0.7184

Unspecified late effects of
cerebrovascular disease 0.6250 0.8097 0.7283

Unspecified cerebrovascular disease 0.8909 0.5888 0.8324
Atherosclerosis of other specified arteries 0.9216 0.9519 0.7880 0.3573
Cerebral thrombosis with cerebral infarction 0.9381 0.9351 0.7420
Secondary cardiomyopathy, unspecified 0.6790 0.4789 0.6423 0.5308
Acute myocardial infarction
of unspecified site,
subsequent episode of care

0.8799 0.6348 0.8387 0.4825
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Table 5.7: Predictive Performances of the Respiratory System

Disease name MTL STL-highest STL-related No-Transfer
Post-inflammatory pulmonary fibrosis 0.9194 0.8437 0.8694 0.8487

Pneumonia due to Pseudomonas 0.9381 0.9307 0.9267 0.9186

Chronic respiratory failure 0.8879 0.7741 0.7496

Acute edema of lung, unspecified 0.8358 0.8393 0.8332 0.8662
Chronic obstructive asthma with

(acute) exacerbation
0.9866 0.988 0.9743 0.5019

Pneumonia due to other

gram-negative bacteria
0.9306 0.9074 0.9271 0.9198

Bacterial pneumonia, unspecified 0.8862 0.8831 0.8773 0.8629

Pneumonia due to Klebsiella pneumoniae 0.8858 0.8685 0.8855 0.8179

Pneumococcal pneumonia

[Streptococcus pneumoniae pneumonia]
0.8029 0.8097 0.7887 0.7833

Bronchiectasis without acute exacerbation 0.6873 0.7980 0.6988 0.7016

Empyema without mention of fistula 0.9858 0.9959 0.9888 0.9873

Methicillin resistant pneumonia

due to Staphylococcus aureus
0.9291 0.9600 0.6498

Pulmonary congestion and hypostasis 0.6007 0.7987 0.5504 0.6108

Unspecified sinusitis (chronic) 0.586 0.6584 0.6340 0.6365

Edema of larynx 0.8221 0.8302 0.5535

Malignant pleural effusion 0.9767 0.9266 0.9842 0.8537

Acute bronchitis 0.7482 0.8139 0.4523

Asbestosis 0.7506 0.7375 0.4252 0.4262

Acute upper respiratory

infections of unspecified site
0.9289 0.9380 0.8356 0.5727

Abscess of lung 0.8882 0.9557 0.9505 0.7781

Unilateral paralysis of vocal

cords or larynx, partial
0.809 0.6864 0.4811

Empyema with fistula 0.9981 0.9984 0.9879 0.9875

Stenosis of larynx 0.9979 0.9976 0.9943
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Table 5.8: Predictive Performances of the Genitourinary System

Disease name MTL STL-highest STL-related No-Transfer
Hematuria 0.8609 0.8168 0.7640 0.8124

Hydronephrosis 0.9513 0.9690 0.9690

Chronic kidney disease, Stage IV (severe) 0.8124 0.8687 0.5444 0.3528

Hypertrophy (benign) of prostate with urinary

obstruction and other lower

urinary tract symptoms (LUTS)

0.7134 0.7252 0.7542 0.6236

Neurogenic bladder NOS 0.6845 0.5690 0.6133 0.4658

Hematuria, unspecified 0.7362 0.6404 0.7012 0.6723

Calculus of kidney 0.8299 0.6291 0.6624 0.7257

Gross hematuria 0.859 0.8347 0.8857 0.8100

Secondary hyperparathyroidism

(of renal origin)
0.7201 0.7595 0.5630 0.5462

Acute pyelonephritis without

lesion of renal medullary necrosis
0.9534 0.9710 0.9528 0.9218

Calculus of ureter 0.9925 0.9984 0.5979 0.4971

Cyst of kidney, acquired 0.4814 0.7061 0.4498 0.5582

Hypertrophy (benign) of prostate 0.8882 0.4491 0.9069 0.9320
Pyelonephritis, unspecified 0.9189 0.8562 0.7573 0.5235

Nephritis and nephropathy,

not specified as acute or chronic,

with unspecified pathological

lesion in kidney

0.7017 0.7093 0.7848

Vascular disorders of kidney 0.718 0.7303 0.7963 0.9842
Chronic glomerulonephritis in

diseases classified elsewhere
0.2514 0.0676 0.1894 0.5203



CHAPTER 5. PATIENT-ORIENTED REPRESENTATION 114

When it comes to the comparison between either one of the three pre-trainings

with No-transfer, we find that nearly 86% phenotypes perform better with the pre-

training. The MTL outperforms No-transfer in 28 circulatory diseases, 18 respira-

tory diseases, and 11 genitourinary diseases. Among 78 diseases, the biggest AUC

improvement from the pre-training to No-transfer is 0.5946 in the circulatory organ

system with atherosclerosis of other specified arteries.

5.3.4.3 The Effectiveness of MTL

We show the phenotype counts where the MTL performs better than one of the

baselines in Table 5.9.

Table 5.9: Comparisons of MTL with Baselines

# phenotypes MTL & STL-highest MTL & STL-related MTL & Target
MTL >

STL-highest
MTL <

STL-highest
MTL >

STL-related
MTL <

STL-related
MTL >

Target
MTL <

Target
Circulatory 29 9 27 11 28 10
Respiratory 10 13 15 8 18 5

Genitourinary 8 9 11 6 11 6
Total 47 31 53 25 57 21

We find that the number of phenotypes for which MTL performs better than the

other baseline is generally higher than the number of phenotypes for which MTL

performs worse. Namely, among 78 phenotypes, 47 (60 %) have higher AUCs

when using MTL over STL-highest, 53 (68 %) have higher AUCs when using MTL

over STL-related, and 57 phenotypes (73 %) have higher AUCs when using MTL

over No-transfer. The exact highest improvement with MTL over the best of the

other three baselines is 0.2063 in the circulatory organ system, shown in Table 5.6.
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Pre-training with MTL consistently and often enhanced performance to a large

extent compared to pre-training with STL. Table 5.10 calculates the number of phe-

notypes where each of the methods achieves the best performance. We notice that

MTL has the highest number of phenotypes that achieve the best. Specifically, 33

phenotypes (42 %) has the best AUCs with MTL.

Table 5.10: Number of Phenotypes for Best Performances and Tolerable Cases

Methods # Best (%)
# Within 90% of the best
if not the best

# Total tolerable cases.

Including the best and within 90%.

Sum of the two left columns.

MTL 33 (42%) 37 70 (90%)

STL-highest 25 (32%) 36 61 (78%)

STL-related 9 (11%) 44 53 (68%)

No-transfer 11 (14%) 27 38 (48%)

Best performance % =
# Best performance
# total phenotypes

(5.2)

Tolerable performance % =
# Within 90% of the best

# total phenotypes
(5.3)

While the method may not perform optimally, we consider it acceptable if it

performs within 90% of optimal level because performance gaps have no real im-

pact on clinical practice, which we refer to as tolerable cases. We calculate such

cases for four methods (in Table 5.10), meaning that when the method does not

achieve the best result, the number of phenotypes is still within 90% of the best.

The second column is the number of phenotypes that are still within 90% of the
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best performance when the method does not perform the best. The last column is

the total tolerable case, including the best performance and within 90% of the best

performance. It is calculated using the total of the two left columns. We see that

MTL achieves the highest majority percentage of tolerable cases with nearly 90%,

which represents very few phenotypes (less than 10%) where MTL does not have a

fair performance.

Finally, we calculate the average mean squared error (Avg-MSE) on the test

set for each method across three organ systems, and the values are shown in the

Table 5.11. The average mean squared error is defined as the difference between

the estimates and the actual values, so the Avg-MSEs and predictive performances

are inversely proportional. As a result, we see that across all systems, the Avg-MSE

of MTL is the smallest of the other three baselines.

Table 5.11: Average Mean Squared Error across Organ Systems

MTL STL-high STL-related No-transfer
Circulatory 0.0368 0.0488 0.0477 0.0490
Respiratory 0.0388 0.0461 0.0397 0.0422
Genitourinary 0.0384 0.0431 0.0447 0.0500

In general, MTL has the highest proportion of the best performance, the highest

proportion of tolerable cases, and also the smallest Avg-MSE. As expressly stated,

when MTL performs worse than the baseline, it is still quite close, but when it

outperforms the baseline, it is often substantially better. These experiment results

support our assumption that MTL pre-training of high-prevalence phenotypes im-

proves prediction performance on low-prevalence phenotypes in a robust and stable

manner.
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5.3.5 Discussion

In this section, with multi-task pre-training and fine-tuning, we show the feasibil-

ity of learning generic and portable patient language representations from medical

notes. The pre-trained models learn the five most common phenotypes with multi-

task learning for three organ systems. We further fine-tuned the organ-specific pre-

trained models by applying them to a variety of low-prevalence phenotypes with

sparse data. The findings are promising in that MTL pre-trained models consis-

tently outperform baselines of both STL pre-trained models and No-transfer to pre-

dict low-prevalence phenotypes. Also, the MTL pre-training improves learning effi-

ciency, because it only has to be pre-trained once. MTL methods are more efficient

than either of the two STL methods, even though the STL-related phenotype is the

most clinically relevant phenotype that is correlated to the target phenotype. This

validates our prediction that the MTL model facilitates generalization by leveraging

hidden information between tasks.

The predictive results of low-prevalence phenotypes have been consistently im-

proved with MTL pre-training. We assume the reason is that source tasks in pre-

training are based on the most common phenotypes in each organ system, enabling

the model to learn jointly within the organ system. These pre-trained models for

given organ systems are capable of learning intricate semantics through the integra-

tion of several phenotypes representing distinct causal factors and diverse surround-

ings. As a result, they are equipped to deal with complex and unexpected scenarios.

For the sake of simplicity, five phenotypes per organ system are selected. In the

future, we will increase the number of high-prevalence phenotypes (i.e., more than
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five) in the source task to cover the majority of patients.

When considering the optimal way to adjust the pre-trained model for cer-

tain fine-tuning tasks, the feature extraction method is another alternative for this

paradigm. However, instead of adapting the whole parameters like in pre-training

and fine-tuning, the feature extraction method only extracts a static vector repre-

sentation from intermediate layers of the pre-trained model. The vector can be

extracted from any layer, such as the last multiple hidden layer or weighted combi-

nations of layers. The vectors would then be fed as input layers to the downstream

target task.Ever since the development of pre-trained language models, a few open-

domain studies have evaluated these two approaches. Devlin et al. (2019) compared

a few types of feature extraction and found that all of them performed worse than

direct fine-tuning of BERT models. We agree that feature extraction offers a few

advantages over the fine-tuning approach, most notably with regards to computing

resources. With simple models, it takes far less time to extract a vector and use it

in multiple downstream tasks than it does to rebuild a large model and fine-tune its

parameters on another task.

Nevertheless, we believe that fine-tuning is required to enhance performance

for our specialized downstream tasks. Because the vectors retrieved using low-

dimensional (often hundreds or thousands) embeddings are not discriminative for

the new task, which may be improved by fine-tuning with hyper-parameters that

are specific to the new task. While choosing the feature extraction approach, if the

model of the downstream task is still a large model (i.e., a deep neural network),

the training may still be computationally intensive. The efficiency gains come from
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only extracting the features once, rather than training the new task. Fine-tuning al-

ters the parameters dynamically to make them more customized for the downstream

task and also enables the model to target a general-purpose model for diverse tasks.

Therefore, even considering the trade-off between time and performance, we still

conclude that fine-tuning is the best way to build a representation for our situation.
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CONCLUSION

6.1 Thesis Overview

In this thesis, I discussed building machine learning models from words, docu-

ments, and finally patients, notably in terms of how to build representation learn-

ing to improve patient-level prediction. I believe that developing deep representa-

tion learning methods for distilling enormous amounts of heterogeneous data into

patient-level representations is important and will in turn improve evidence-based

clinical understanding. It is critical to consider various linguistic components in

natural language. Such results have implications beyond the immediate context

of predictions. I anticipate that this will be a starting point for future NLP-based

phenotyping methods that develop neural network-enhanced patient-level represen-

tations to strengthen clinical predictions.

In CHAPTER 2, I reviewed and discussed the current state and challenges per-

tinent to representation learning in NLP and also patient representation learning. I

concluded that deep representation learning has evolved into a great number of new

approaches to modeling patient data. Deep patient representation learning is a feasi-

ble and promising route to develop effective, reliable, and specific representations.

By incorporating cutting-edge learning methods into the neural network, patient

representation learning aims to alleviate many of the challenges of EHR data and

facilitate patient-oriented care. I expect that sophisticated techniques for learning
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effective patient representations will continue to evolve, and these representations

will potentially receive more attention in clinical predictions.

In CHAPTER 3, I developed a frame-based NLP system to extract cancer-relation

terms with a Bi-LSTM-CRF model. The model was also initialized with different

word embeddings along with the character embeddings as the input representations.

The prediction obtains promising performance results, and the best F1-score of the

lexical unit identification reaches 96.33% and that of the element classification gets

93.02%. Primarily, this proves the feasibility of developing a frame-based NLP

system to extract cancer information from clinical notes. Ultimately, I hope to in-

tegrate all important cancer-related information and extract the information from

one superior system. In the second section, I assessed the performance of differ-

ent word embedding approaches on four clinical concept extraction shared-tasks.

I compared conventional word embeddings with advanced language model-based

embeddings. Additionally, I evaluated the results of pre-trained clinical domain

embeddings against the off-the-shelf released embeddings. The effectiveness of

contextual embeddings over conventional word representations is shown in the ma-

jority of tasks. Contextual embeddings also convey semantic meaning that conven-

tional word representations fail to take into consideration. In the end, these findings

further show the value of pre-training on clinical texts, which outperform the re-

leased models, and more importantly, I achieved the new state-of-the-art results

across all tasks.

In CHAPTER 4, I presented a series of deep neural networks to encode different

aspects of clinical notes, starting from hierarchical, contextual, and lastly, longitu-
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dinal data. In the end, I combined these three characteristics together, and proposed

the Hierarchical Transformer Network, which is developed to efficiently process

large-scale clinical notes with sequential and hierarchical structures. The network

considers the temporal relations between notes as well as the hierarchical structure.

I evaluated the network to predict standard clinical outcomes, including in-hospital

mortality and ten common phenotypes. My experimental results showed that the

Hierarchical Transformer Network outperforms strong baselines in AUC, PRC, and

F1-score for both predictions. I also experimented with extensive ablation studies

on the proposed model to achieve robust and effective training with limited com-

puter resources.

In CHAPTER 5, to obtain generic and transferable patient language represen-

tations from clinical notes, I developed a multi-task pre-training and fine-tuning

(MTL) framework. This MTL framework provides a pipeline to train a model with

multi-task learning of phenotypes and to continually fine-tune on low-prevalence

phenotypes. I evaluated and fine-tuned MTL models for 38 circulatory phenotypes,

23 respiratory phenotypes, and 17 genitourinary phenotypes. As a result, MTL con-

sistently improves the performance and learning efficiency compared to the other

three baselines, including two single-task pre-trainings. All the experiment findings

concluded that this MTL framework is a robust and efficient method for developing

generalized and transferable patient language representations. Eventually, I hope

that this pre-training and fine-tuning framework will be utilized to develop compre-

hensive medical language representations from diverse free-text sources.



CHAPTER 6. CONCLUSION 123

6.2 Significance and Contribution

This dissertation provides significant and valuable contributions to the clinical NLP

community. The main contributions of this thesis are as follows:

• Firstly, I addressed issues and complexities in NLP for medicine, including

clinical text classification and modeling. I identified and categorized the core

limitations of processing large-scale clinical notes into three types of repre-

sentations: contextual information, hierarchical structure, and longitudinal

sequence data.

• Following the first step, I developed state-of-the-art deep learning models to

process a series of clinical notes on long-term dependency. I demonstrated the

importance of neural networks developed for clinical notes on the predictions

of standard clinical outcomes.

• I pioneered a new transfer learning framework with pre-training and fine-

tuning to achieve supervised knowledge transfer in a model-wise manner, in-

stead of simple feature extraction. These patient language representations can

be applied to a wide variety of low-prevalence phenotypes that are typically

challenging to achieve optimal results for.

• By building end-to-end projections between unstructured clinical notes and

structured EHR data, I made extensive use of data and mitigated human anno-

tation efforts. More importantly, this kind of mapping is capable of encoding

medical knowledge into neural networks through neural representations.
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• Last but not least, I initiated a new paradigm for NLP with a patient-level rep-

resentation focus in order to meet the requirements of patient-level research

problems, which compensates for task-specific or problem-specific represen-

tations. As significant volumes of knowledge regarding patients and research

evidence are encapsulated in the form of free text, and with the constant de-

velopment of deep language modeling, I believe clinical NLP holds particular

promise for improving evidence-based and patient-oriented clinical research.

6.3 Limitations and Future Directions

This dissertation is subject to several limitations, and there is abundant room for

further progress.

First, these findings are limited to phenotypes in the multi-task setting, and the

findings may not generalize to all clinical outcomes. I hypothesize that incorporat-

ing different clinical outcomes appropriately into multi-task settings may improve

the generalizability of transfer learning. In spite of my investigation into the advan-

tages of transferable patient representations, I expect future study on the design of

multiple tasks in pre-training. For example, it would be illuminating to establish

the interaction between the number of tasks in a source task and the target task per-

formance. I hypothesize that as the number of tasks grows, the pre-trained model

becomes progressively enriched with comprehensive knowledge regarding the pa-

tient, which potentially enhances the prediction of target tasks. This knowledge

transfer results in an effective model that not only is suitable to predicting across

multiple tasks but also predicts with higher accuracy than training separate mod-
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els for each of the individual tasks. However, on the other hand, training a model

on too many tasks may downgrade model capacity because this might be the case

when the tasks are not related. This would be an interesting trade-off between the

complexity and efficacy of source tasks. I will extend the current experiments to

construct more powerful source tasks with different numbers and diverse types of

tasks. For example, I intend to implement a more recent and efficient method called

Task Affinity Groupings (Fifty et al., 2021) to identify the types and numbers of

tasks that should be jointly trained in multi-task scenarios.

We will also integrate the existing knowledge of rare diseases with this current

experimental design to investigate actual rare disease phenotyping. When it comes

to identifying uncommon diseases, prior studies have typically encountered difficul-

ties due to inadequate diagnosis rates and a limited population sample. The advent

of secondary EHR data has enlarged the possibilities for expanding understanding

of these diseases. Many rare diseases may potentially benefit from advanced data-

driven methods to exploit and synthesize multi-source data, so data-driven methods

have been developed to overcome the challenges of classifying rare diseases. For

instance, a few preliminary studies sought to leverage EHR data with data-driven

methods to learn more about rare diseases (Jia et al., 2018; Schaefer et al., 2020).

Garcelon et al. (2018) used the TF-IDF from NLP methods to extract clinical con-

cepts from patient clinical notes for RETT syndrome to enrich the knowledge of

the current phenotyping description. Shen et al. (2019) developed a series of data-

driven methods based on graph convolutional networks (Shen et al., 2020a) and

ontology embeddings (Shen et al., 2020b) to augment rare disease knowledge. In
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this thesis, I concentrated on low-prevalence phenotypes (namely, the number of

patients matching the phenotype is small) in a particular cohort of patients, instead

of on rare diseases as defined by the NIH definition. These results though, I be-

lieve, demonstrated the tremendous potential for integrating disparate sources of

information and for establishing meaningful conceptions of rare diseases. As a re-

sult, incorporating the knowledge base of rare diseases will be one of my upcoming

focuses.

In the end, through my investigation, I realized that transfer learning in biomed-

ical documents is still at its very early stage. Unlike in clinical image recognition

(e.g., detection of diabetic retinopathy from fundus images) where transfer learning

has already been widely and successfully applied, transfer learning for biomedical

documents is currently at its starting point and many interesting open questions still

exist. I assume the relatively slow adoption of transfer learning in clinical NLP is

because clinical or biomedical documents are still under-utilized, which may be due

to the lack of labeled data or the incapability of dealing with large amounts of texts.

Another reason would be the gap between the capabilities of neural networks

to distill knowledge and how useful that knowledge would be, whether it actually

meets the research needs. One may have very effective NLP models for one type

of text, such as literature, but this type of model may not work well on another type

of text, for example, clinical trials. Even if within the same type of context, how to

identify an appropriate source task in the pre-training so that it would be beneficial

to the target task, is still quite challenging. The optimal architecture should be able

to capture a broad and comprehensive spectrum of information that is hidden in
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unstructured resources.

Overall, the advancements made in this area over the past four years are very

encouraging, and it has been fortunate for me to have the opportunity to make a

contribution to this area. Meanwhile, I feel certain that there is still much to learn

about clinical notes and that many open questions remain unanswered. We need to

look at the science behind what has been addressed, rather than simply text model-

ing, to move forward to the next level of actual comprehension. Additionally, I have

strove to inspire other professionals to continually adapt neural networks to clinical

domains or tasks. I hope to further improve the model capability of understanding

clinical notes and that the above directions will be investigated and expanded in

potential approaches.
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Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., and Tsujii, J. (2012).

Brat: a web-based tool for nlp-assisted text annotation. In Proceedings of the

Demonstrations at the 13th Conference of the European Chapter of the Associa-

tion for Computational Linguistics, pages 102–107.
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