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Abstract

Information contained in electronic health records (EHR) combined with the latest

advances in machine learning (ML) have the potential to revolutionize the medical

sciences. In particular, information contained in cancer pathology reports is essential

to investigate cancer trends across the country. Unfortunately, large parts of

information in EHRs are stored in the form of unstructured, free-text which limit

their usability and research potential. To overcome this accessibility barrier, cancer

registries depend on expert personnel who read, interpret, and extract relevant

information. Naturally, as the number of stored pathology reports increases every day,

depending on human experts presents scalability challenges. Recently, researchers

have attempted to automate the information extraction process from cancer pathology

reports using ML techniques commonly found in natural language processing (NLP).

However, clinical text is inherently different than other common forms of text, and

state-of-the-art NLP approaches often exhibit mediocre performance. In this study,

we narrow the literature gap by investigating methods to tackle overfitting and

improve the performance of ML models for the classification of cancer pathology

reports so that we can reduce the dependency on human expert annotators. We (1)

show that using active learning can mitigate extreme class imbalance by increasing

the representation of documents belonging to rare cancer types, (2) investigated the

feasibility of ensemble learning and a mixture-of-expert variant to boost minority

class performance, and (3) demonstrated that ensemble model distillation provides a
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strategy for quantifying the uncertainty inherent in labeled data, offering an effective

low-resource solution that can be easily deployed by cancer registries.
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Introduction
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1.1 Background

Electronic health records (EHR) were originally implemented as a solution to facilitate

health care delivery [61]. The early forms of EHRs were developed between 1971-

1992 [27], and by 2019, 95% of hospitals were already using EHRs [52]. According to

HealthIT gov (healthit.gov), EHRs include medical history, diagnoses, medications,

treatment plans, immunization dates, allergies, radiology images, and laboratory and

test results. It is also noted by HealthIT gov that EHRs have numerous benefits

including 1) improved patient care, 2) increase patient participation, 3) improved

care coordination, 4) improved diagnostics and patient outcomes, and 5) practice

efficiencies and cost savings. Today, EHRs constitute immerse databases with rich

clinical information.

Information contained in EHRs is useful in numerous areas of medical research.

For example, EHRs can be used with evidence based tools that assist with decision

making and for clinical trial patient identification [27]. EHRs also facilitates the study

of specific diseases and can be used in epidemiological research to estimate incidence,

prevalence, and mortality rates [22].

One of the priorities of the Surveillance, Epidemiology, and End Results (SEER)

program of the National Cancer Institute (NCI) is to analyze cancer trends and

provide information on cancer statistics to reduce the cancer burden in the U.S.

population. To accomplish its goals, the SEER program relies in the acquisition

and analysis of diagnostic, treatment, and outcomes information through manual

information processing by expert staff from vast amounts of unstructured sources

(e.g. clinical visit notes, pathology reports, treatment summaries, etc.). This manual

processing of information imposes natural limitations on the volume and types of

data that can be collected. Furthermore, the reports can vary considerable because

they are sourced from different health care providers and laboratories. Additionally,

Human error and complex coding rules introduce additional variability within the data

[39]. As a result, the current practice to manually extract information from cancer

2



pathology reports is an expensive, time-consuming task that becomes unscalable as

the number of the stored reports continues to increase every day.

In 2016, NCI and several cancer registries of the Surveillance, Epidemiology, and

End Results Program (SEER) partnered with the Department of Energy (DOE)

to develop AI approaches for information extraction and classification of cancer

pathology reports. In the last years, researchers have reported promising results when

training deep learning (DL) models to automate the information extraction process

[36, 38, 2, 35]. Although these approaches constitute a step forward automating

the classification of reports, there exists performance requirements which limit the

practicality of some of these solutions.

The Oak Ridge National Lab (ORNL) has been actively developing an API that

encapsulates these to assist cancer registries. Research teams at ORNL continue

to maintain, expand, and improve the API so that an increasing number of cancer

registries can use it. A central part of this research is to contribute to those efforts

and provide recommendations to improve the API and the general pipeline.

1.2 Automating the classification of cancer pathol-

ogy reports

The fist researchers working on the classification of cancer pathology reports compared

the performance of both traditional machine learning techniques and neural network

methods. One notorious paper is [77] where the authors compared naive bayes, logistic

regression, and support vector machine using TF-IDF against three variations of

CNN: the first one pre-trained using google news, the second one pre-trained using

PubMed, and the third one without pre-training. In that study, it was found that

the CNN without pre-training outperformed the other methods.

Today, neural networks represent the state-of-the-art methods for most of the

NLP problems. Previous research in deep learning models for pathology report
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classification have investigated the use of multitask text convolutional neural networks

(MtCNN) [2], hierarchical self-attention networks (HiSAN) [36, 38], and graph

convolutional neural networks (GraphCNN) [117]. Out of these networks, the MtCNN

and the HiSAN exhibited the best performance and are currently the two models

integrated in the API that ORNL develops for NCI.

Most recent research developments in NLP have demonstrated that transformer-

based architectures outperforms other neural network architectures [110, 55]. Re-

searchers have investigated the potential of Transformers for classifying cancer

pathology reports. One particularly relevant article is [35] where the authors

compared the performance of BERT against the MtCNN and HiSAN. In this study,

the authors emphasized the limitations of transformers for the classification of clinical

text and hypothesized that two specific aspects that may be inhibiting BERT’s

effectiveness: pretraining and WordPiece tokenization. Their results showed that

BERT does not perform significantly better than the other two architectures, and

computationally cheaper architectures such as the MtCNN obtains competitive scores.

This dissertation focuses on the MtCNN, with some architectural and training

variations that are described in each chapter. The reasons for this model selection

are the following: 1) the performance differences between the MtCNN and other

neural network models are small, 2) during the initial research stages, the HiSAN

was a significantly slower model with little performance improvement, and 3) the

CNN and its variant are ubiquitous in the deep learning literature, allowing us to

explore a rich number of previous studies and developing work that could benefit

thousands of practitioners. In figure 1.1 we present a general overview of the MtCNN

model.

1.3 Dataset

For this study, we used six datasets from the Louisiana Tumor Registry (LTR),

Kentucky Cancer Registry (KCR), Utah Cancer Registry (UCR), New Jersey State

4



Figure 1.1: High level description of the MtCNN.
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Cancer Registry (NJSCR), Seattle Cancer Registry (SCR), and New Mexico Cancer

Registry (NMCR). The size of the individual datasets is listed in Table 4.2. In order

to satisfy deidentification requirements, we used integers to represent each of the

datasets instead of the actual names.

The problem of classifying cancer pathology report consists of five individual tasks.

That is, each pathology reports has been labeled with a specific site, subsite, laterality,

histology, and behavior. The number of classes in each task is shown in Table 4.1.

1.4 Current Challenges

The dataset exhibits extreme levels of class imbalance. For example, the top two

histology classes (adenocarcinoma, NOS and ductal carcinoma) constitute 41.0% of

the dataset. In the subsite task, the top two classes (upper-outer quadrant of breast

and prostate gland) correspond to 17.3% of the data. It is also common to see less

than ten instances of the most rare cancer types. Models trained with such datasets

will exhibit bias towards the most prevalent majority classes because of their higher

prior probabilities, while often ignoring the minority classes. Although the effects of

class imbalance in machine learning have been well documented [43, 79, 4], previous

researchers have concurred that class imbalance in the context of deep learning is

understudied [54].

The data pipeline lacks an efficient label-annotation system. The amounts of

unlabeled data are enormous, and labeling every single document is non-feasible.

Thus, annotators select documents at random, take around 2 minutes to read

them, and assign a label. However, this is not necessarily an efficient way to label

documents. That is because some documents are naturally more informative or a

better representation of their classes. Thus, one of the current challenges is how to

design a system that will select the most informative subset of documents from a set

of unlabeled documents.
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Figure 1.2: An example of a de-identified pathology report taken from our dataset.

Table 1.1: Number of classes in each task.

Task Site Subsite Laterality Histology Behavior
Classes 70 326 7 639 4

Table 1.2: Size of individual registries.

Registry R1 R2 R3 R4 R5 R6
e-Path

Reports
85,789 577,094 137,135 441,732 360,375 365,152
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Data noise is a serious issue when training DL models for classifying cancer

pathology reports. Documents often describe multiple specimens and biopsies

involving different organs that are analyzed for diagnosis. Manual annotators read

the results of each biopsy and assign a specific cancer site label for the entire report.

Although this is a standard way to annotate data, this process leads to a large volume

of data noise. That is because large portions of pathology reports focus on the analysis

of specimens that are associated with a different site and which are not relevant to the

context of their ground truth label. Pathology reports also include information such

as names and addresses that contributes to additional noise. Training neural networks

with noisy data can yield models that learn spurious correlations and shortcuts.

Label noise presents additional challenges. Annotators are charged with the task

of selecting a class between a group with hundreds of options. Tasks such as cancer

subsite and histology determination involve the identification of specific classes that

often share similarities (e.g. “overlapping lesion of other and unspecified parts of

mouth” and “mouth not-specified”). Human annotation errors will naturally occur

when working with a large number of similar classes and documents where multiple

specimens associated with different classes are reviewed. In addition, errors can

derive from data processing. Particularly, labels are defined at the cancer/tumor/case

(CTC) level. CTC is a data entity which encapsulates all diagnostic, staging, and

treatment for a reportable neoplasm. Consequently, pathology reports created during

diagnosis are assigned labels based on the CTC even if these documents analyze

specimens associated with different labels.

Additional challenges includes performance decay at deployment time. Registries

across the country have noted that the performance they observe when using the

API is lower than what we observed when training the models in the lab. Current

API development lacks experimental testing to quantify the generalization of the

model and account for natural variations that may be encountered when deploying

the models.
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1.5 Performance Requirements

In terms of requirements, cancer registries must have solutions that involve low

computational resources. While during lab training we have access to Summit and

computers with high computational power, the models that we encapsulate in the

API must be computationally efficient so that they can be run in standard, every day

computers. This is an additional requirement that needs to be present when making

modeling decisions.

Finally, in order to utilize deep learning models to replace humans in the

annotation process, cancer registries across the country have specific requirements

which impose additional challenges. In particular, cancer registries only tolerate a

3% error based on an estimate of the rate of human error. Thus, high model accuracy

and uncertainty quantification (e.g. knowing what it doesn’t know) are desired model

requirements.

1.6 Research Objectives

The proposed dissertation will focus in the application and development of methods

to tackle the challenges and requirements described in section 1.4 and 1.5. Our goal

is to provide recommendations to improve the API and data pipeline so that we can

ship a more efficient product to NCI and ultimately have a deeper understanding of

cancer trends across the country. The study will be centered around the following

research questions:

1. How can we intelligently select a distinct subset of a larger pool of unlabeled

data so that manual annotator efforts are maximized? In other words, can we

focus annotation efforts on pathology reports that will maximize the information

gain and reduce overfitting? And what are the implications of selecting a

particular subset of data in terms of class imbalance and rare classes? Chapter

2 will explore techniques found in the active learning literature. We review a
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set of methods that could potentially be used by annotators to maximize the

information gain from labeling data.

2. Can we quantify the performance drop that is reported by registries? And how

can we design experiments so that they are more reflective of the real-world

performance of our models? In chapter 3 we analyze how the distribution of

rare cancer classes varies between in-lab training and real world deployment.

We consider the use of ensemble learning to tackle overfitting and mixture-of-

experts methods to boost rare classes performance.

3. Can we distill the knowledge of an ensemble into a low-resource model that can

be used by cancer registries? In addition to the overfitting reduction benefits

associated with ensembles, we want to use ensemble learning to derive soft

labels that quantify the uncertainty inherent in labeled data. We hope that the

derived soft labels will help us boost abstention rates so that the model can be

used in a larger subset of data. In chapter 4, we tackle the problem of data and

label noise with soft labels.

1.7 Dissertation Outline

The dissertation follows a three journal publication structure. That is, the three core

chapters (2, 3, 4) are peer-reviewed journal publications that have been published in

three distinct journals.

Chapter 2 contains our paper titled “Deep active learning for classifying cancer

pathology reports” which was published in BMC Bioinformatics. In this paper, we

compared the performance of each active learning strategy using two differently sized

datasets and two different classification tasks. Our results showed that active learning

techniques have implications in terms of class imbalance because it helps sample more

documents from minority classes.
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Chapter 3 is a version of our publication “Class imbalance in out-of-distribution

datasets: Improving the robustness of the TextCNN for the classification of rare

cancer types” published in the Journal of Biomedical Informatics (JBI). In this study,

we adopted a new experimental setup that replicates more closely what registries

observe when deploying the API in the real world. Here, we investigate different

techniques to deal with class imbalance and proposed a variation of mixture-of-expert

to improve performance in rare cancer types.

Chapter 4 presents our paper “Using Ensembles and Distillation to Optimize

the Deployment of Deep Learning Models for the Classification of Electronic Cancer

Pathology Reports” recently published by the Journal of the American Medical

Informatics Association (JAMIA Open). In this paper, we aim to reduce overfitting

and model overconfidence by distilling the knowledge of an ensemble of deep learning

models into a single model. We argue that ensemble predictions provide a useful

strategy for quantifying the uncertainty inherent in labeled data and thereby enable

the construction of soft labels with estimated probabilities for multiple classes for a

given document.

Finally, Chapter 5 presents a summary of the main contributions and findings of

this work. Here, we also discuss recommendations for future areas of research.
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Chapter 2

Deep Active Learning for

Classifying Cancer Pathology

Reports
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2.1 Abstract

Background

Automated text classification has many important applications in the clinical setting;

however, obtaining labelled data for training machine learning and deep learning

models is often difficult and expensive. Active learning techniques may mitigate

this challenge by reducing the amount of labelled data required to effectively train a

model. In this study, we analyze the effectiveness of 11 active learning algorithms on

classifying subsite and histology from cancer pathology reports using a Convolutional

Neural Network (CNN) as the text classification model.

Results

We compare the performance of each active learning strategy using two differently

sized datasets and two different classification tasks. Our results show that on all tasks

and dataset sizes, all active learning strategies except diversity-sampling strategies
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outperformed random sampling, i.e., no active learning. On our large dataset (15K

initial labelled samples, adding 15K additional labelled samples each iteration of

active learning), there was no clear winner between the different active learning

strategies. On our small dataset (1K initial labelled samples, adding 1K additional

labelled samples each iteration of active learning), marginal and ratio uncertainty

sampling performed better than all other active learning techniques. We found that

compared to random sampling, active learning strongly helps performance on rare

classes by focusing on underrepresented classes.

Conclusions

Active learning can save annotation cost by helping human annotators efficiently

and intelligently select which samples to label. Our results show that a dataset

constructed using effective active learning techniques requires less than half the

amount of labelled data to achieve the same performance as a dataset constructed

using random sampling.

2.2 Background

The latest developments in natural language processing (NLP) have made notable

progress in automating classification and information extraction from clinical texts.

The current state-of-the-art techniques are generally deep learning (DL) architectures

such as Convolutional Neural Networks (CNNs), which have been shown to outper-

form traditional machine learning techniques and rule-based approaches in clinical

text applications [3, 37, 118]. However, a common drawback of DL models is that

they tend to require a large amount of training data to achieve high performance.

This is a significant problem particularly in clinical applications where obtaining

gold-standard labels is difficult and subject to constraints.
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A key goal of active learning is to maximize the effectiveness of obtaining

additional labelled training data for a given machine learning model. This is achieved

by using the model itself to actively select the set of unlabeled data that will be

most informative to the model if it were labelled. For example, data associated with

common classes that the model is already familiar with may be less informative than

data from unseen classes or data on which the model has low confidence. Compared to

randomly labelling additional data, active learning enables the model to reach higher

performance using fewer additional labelled samples, thereby increasing the efficiency

and effectiveness of human annotators [88]. This approach is especially useful for

applications such as clinical text classification where annotated data is expensive and

time-consuming to obtain.

Cancer pathology reports are an important application where active learning can

have real-world impact. Cancer is the second leading cause of death in the United

States∗. As part of its mission, the National Cancer Institute’s (NCI) Surveillance,

Epidemiology, and End Results (SEER) program works with population-based cancer

registries around the country to collect and publish cancer data including patient

demographics, primary tumor site, tumor morphology and stage at diagnosis, first

course of treatment, and follow-up for vital status [70]. This information is critical

for cancer research and surveillance. While some of this information is stored

in structured databases and can be easily extracted, key data elements such as

primary tumor site and tumor morphology are generally recorded within unstructured

cancer pathology reports that are written during the time of diagnosis. Each year,

skilled human Certified Tumor Registrars (CTRs) must manually annotate hundreds

of thousands of cancer pathology reports to extract these data elements. Recent

research has made major strides toward automating portions of this process [3, 37];

unfortunately, these approaches still do not have the same level of accuracy as

human annotators and often have low performance on rare cancer types with few

training examples [37, 34]. Active learning can help address these weaknesses by

∗https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
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prioritizing expert annotation of pathology reports that maximize the effectiveness of

these automated approaches, thus helping close the gap in performance.

While active learning has been effectively applied to a wide variety of applications,

including image classification, speech recognition, and natural language parsing, [44,

33, 80, 101], its application to text classification on cancer pathology reports and other

clinical text is relatively limited. Unlike other text classification tasks, classifying

cancer pathology reports presents a distinctive set of challenges. These reports are

characterized by the lack of a universal structure, variation in linguistic patterns, and

the use of specific jargon. Furthermore, documents can be several pages long, only a

few keywords or keyphrases in the document may be relevant to a specific classification

task, and there may be long-distance linguistic dependencies across different sections

of a document [37]. In addition, certain tasks may contain a large number of classes

(i.e. 525 histology types), and the number of documents per class tends to be highly

unbalanced.

In this paper, we evaluate the effectiveness of different active learning techniques

on the task of classifying cancer pathology reports. We test a wide selection

of different active learning strategies that have been successfully applied in other

applications. Using a CNN-based approach as our learning model, we focus on two

classification tasks – identifying cancer subsite and histology. Our contributions are

as follows:

• We perform a detailed comparative evaluation of different active learning

techniques on two different text classification tasks using cancer pathology

reports.

• We examine and compare the performance of active learning when being applied

on two scenarios. In the first set of experiments, we use a large dataset with 15K

initial labelled samples, adding 15K additional labelled samples each iteration

of active learning. For the second set of experiments, we use a small dataset
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with 1K initial labelled samples, adding 1K additional labelled samples each

iteration.

• Given that clinical text classification tasks generally have high class imbalance,

we perform a detailed analysis of how different active learning techniques affect

low prevalence classes.

• To our knowledge, this is the first work to perform a critical comparison of

different active learning techniques for clinical text classification that utilizes a

deep learning model as the classifier.

2.2.1 Related Work

The benefits of classic active learning techniques that incorporate machine learning

models have been widely studied for a variety of tasks [88, 71, 89, 109, 105]. In the

context of NLP, notable work includes Settles et al. [87] who evaluated 15 query

strategies for the task of sequence labeling using conditional random fields on eight

different corpora. Even though performance of individual active learning strategies

varied across different corpus, the best results were obtained with information density,

sequence vote entropy, sequence entropy, and least confidence.

Although active learning and deep learning have each been researched extensively,

the current literature at the intersection of both focuses mostly on image classification

[94]. Wang et al. [108] proposed a framework that combines uncertainty sampling

techniques with pseudo-labeling to reduce human annotation in the context of image

classification using CNNs; their technique uses softmax confidence thresholds in the

decision process. Zhang et al. [120] explored deep active learning with CNNs for

text classification by applying an algorithm called Expected Gradient Length. This

work is related to our study; however, it has a specific focus on word embeddings and

representation learning.

Few studies have explored AL in the specific context of clinical NLP. These existing

works are older studies that focus on using traditional machine learning approaches
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rather than state-of-the-art deep learning models. Chen et al. [14] applied seven

active learning algorithms using logistic regression for the task of binary clinical text

classification. In a similar work, Kholghi et al. [56] applied least confidence and

information density to the task of medical concept extraction, and showed that active

learning can help classifiers to reach a target performance score using as little as 23%

of the total data available. Figueroa et al. [30] applied three active learning algorithms

– distance-based, diversity-based, and a combination of both – on five datasets. They

used support vector machines as the base classifier for clinical text classification and

concluded that diversity algorithms respond better on datasets with high diversity,

and distance algorithms perform better on datasets with low uncertainty.

We extend these previous studies by performing a thorough evaluation of 11

different active learning techniques using a modern CNN model as our classifier. We

compare performance on two different clinical text classification tasks – extracting

subsite and histology from cancer pathology reports. We show that under certain

conditions, some active learning strategies clearly beat out others; we expect that

these results may provide a useful starting point for other applications of active

learning in the context of clinical text classification.

2.3 Methods

2.3.1 Active Learning

In the active learning scenario, we begin with an initial training set L0 of labeled

samples and use it to train a classification model with parameter estimates θ0. Then,

we apply this model on a set of unlabeled data U0 and use a query strategy φ(xi|θ0)

to assign an informativeness measure to each sample xi in U0; this informativeness

measure indicates how helpful that sample would be to the classification model if it

were to be trained on that sample. We then obtain ground truth labels for a subset of

n samples in U0 with the highest informativeness value φ(xi|θ0). This subset is moved
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from U0 to L0 to form the new larger training set L1 and new smaller unlabeled set

U1.

A new classification model with parameter estimates θ1 is then trained on L1 and

applied to U1. Once again, the query strategy φ(xi|θ1) is used to select the most

informative n samples from U1 to label and add to L1 to form U2 and L2. This

process is repeated until the classification model attains the desired performance or

until no samples remain in U .

In the following subsections, we describe the various active learning query

strategies that we evaluate in this work.

Uncertainty Sampling

One of the most common active learning query strategies is uncertainty sampling

[62], where φ is calculated based on the prediction confidence of the classifier – the

assumption is that the lower the confidence of a given sample, the more informative

it will be for the model. Within the uncertainty sampling domain, least confidence

(LC) is a simple algorithm which calculates φ based on Equation 2.1:

φLC(x) = 1− P (y∗|x; θ) (2.1)

where y∗ is the predicted class for a given sample, i.e., the class with the highest

softmax value, and P (y∗|x; θ) represents the softmax value associated with that class.

Another uncertainty based query strategy introduced by Schein et al. [85] is

marginal sampling (MC). Whereas least confidence only considers the highest

softmax value from each predicted sample, marginal sampling utilizes the difference

in confidence between the two most likely classes for each predicted sample (Equation

2.2):

φMS(x) = 1− (P (y∗1|x; θ)− P (y∗2|x; θ)) (2.2)

where, y∗1 and y∗2 represents the two classes associated with the highest and second

highest softmax values, respectively.
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A third uncertainty sampling query strategy, named ratio of confidence (RC)

in this paper, considers the ratio between the top two classes with the highest softmax

values (Equation 2.3):

φRC(x) =
P (y∗1|x; θ)

P (y∗2|x; θ)
(2.3)

Finally, Shannon Entropy [91], or entropy sampling (ES), has also been widely

used as an uncertainty-based query strategy. Under this approach, φ is an entropy-

based metric described in Equation 2.4:

φES(x) =
C∑
c=1

P (yi|x; θ) ∗ logP (yi|x; θ) (2.4)

where
∑C

c=1 represents the summation over all possible classes, and P (yi|x; θ) is the

softmax value associated with class yi. Thus, unlike previous uncertainty sampling

techniques, ES takes into consideration the softmax distribution across all possible

classes.

Diversity Sampling

Diversity sampling (DS) algorithms aim to maximize the diversity of the training

dataset and calculate φ based on a similarity measure between the samples in the

training set. Traditionally, diversity sampling algorithms were applied to machine

learning approaches that utilized fixed-length input vectors such as TF-IDF, and the

similarity measures for φ could be applied directly on these input vectors. However,

in the context of deep learning models, the inputs are typically matrices of word

embeddings that may or may not be zero-padded.

Therefore, to effectively utilize diversity sampling, we first generate a fixed-length

document vector representation for each document on which we can then apply

the similarity metric. In our study, these document vectors are the outputs from

the penultimate layer of our text CNN model (described in detail in the TextCNN

subsection). This vector represents the most important features of each document
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captured by the convolution filters that are used to make the classification decision

for the given task.

We implement two DS algorithms which are named Euclidean Cluster-Based

Sampling (EC) and Cosine Cluster-Based Sampling (CC). We begin by

separating documents in our training set by class and representing the document

embeddings for each class as a unique cluster; within a given cluster, we assume

that documents closer to the cluster centroid are less informative than documents

that are further away from the cluster centroid. Given a sample in the unlabeled

set, we calculate φ based on how far the document embedding is to the nearest

cluster centroid. The difference between the algorithms is the metric used: Euclidean

distance or cosine similarity. Algorithm 1 describes the implementation details.

Query-by-committee

The core idea behind Query-by-committee (QBC) based active learning [90, 88] is

to train multiple predictive models (the committee) and calculate φ based on the

disagreement between the models. The committee makes predictions on the holdout

set, and samples are ranked based on how much disagreement there exists within the

committee. Samples associated with the highest disagreement are selected and added

to the training dataset.

In this work, we utilize a committee of 24 CNNs (described in greater detail in

the TextCNN subsection) for all QBC-based methods. Each CNN is independently

trained on the training data available during each iteration of active learning. Then,

we test three different methods to measure the disagreement between the committee

members. In our first method, which is named Softmax Sum (SS), we average

the softmax score vectors from all CNNs in the committee for each document in

the holdout set. Then, we apply a method similar to Least Confidence and rank

the documents based on the maximum softmax score across all possible classes.
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Algorithm 1: Diversity Sampling

Input:
Set of holdout document embeddings, U∗
Set of document embeddings for the current training dataset, X∗

The training dataset labels, Y
Output: A subset of U

1 Ycenters = []
2 for y in unique(Y) do
3 Find mean of documents in X∗ that belong to class y, and store it in

Ycenters;
4 end
5 min dist lst = []
6 for u in U∗ do
7 min d = infinity
8 for ym in Ycenters do
9 dist = compute distance from u to ym

10 if min d ≤ dist then
11 min d=dist
12 end

13 end
14 Store min d in min dist lst

15 end
16 Sort documents based on minimum distance, min dist lst
17 Select documents with greatest distance
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Documents with the lowest max-softmax values are labelled and moved to the training

set. Our implementation is described in Equation 2.5:

φSS(x) = 1− (
H∑
h

P (y∗∗|x; θh)/H) (2.5)

where H is the number of members in the committee and y∗∗ represents the softmax

value associated with the class that has the maximum average softmax score across

the committee.

For our second method, we apply Vote Entropy (VE), originally implemented

by [5] for the task of part-of-speech tagging. For each document in the holdout set,

this method first aggregates the class predictions among the committee members and

then utilizes entropy as a measure of disagreement. Our implementation is described

in Equation 2.6:

φV E(x) = −
∑
c

V (c, x)

H
log

V (c, x)

H
(2.6)

where V (c, x) represents the number of committee members that predict class c for

document x.

Lastly, we utilize a modified version of Kullback-Leibler (KL) Divergence originally

proposed by Pereira et. al. [73], called Kullback-Leibler Divergence to the

Mean (KL-D). KL Divergence is a common method to measure the difference

between two probability distributions. In KL-D, we quantify the disagreement within

the committee by calculating the mean KL Divergence between each committee

member’s softmax vector and the average softmax vector of the whole committee.

Our implementation is described in Equation 2.7:

φKL−D(x) =
1

H

H∑
h

C∑
c

P (y = c|x; θh) log(
P (y = c|x; θh)

1
H

∑H
h P (y = c|x; θh)

) (2.7)
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Density-Weighted Method

Previous work has suggested that methods such as uncertainty sampling and QBC

are predisposed to select outliers [82]. To solve this issue, Settles and Craven [87]

proposed the method of Information Density (ID). This method accounts for

both uncertainty and diversity by weighting the informativeness scores assigned by

any uncertainty sampling technique with a similarity term subject to parameter β. In

practice, this method attempts to select samples that the model is uncertain about

but that are also similar to other samples in the dataset. Our implementation is

shown in Equation 2.8:

φID(x) = φuncertainty(x) ∗ (
1

N

N∑
n=1

sim(x, xn))β (2.8)

where N represents the total number of samples in the holdout set.

In terms of similarity metrics, the authors of the original paper applied exponential

Euclidean distance, KL-divergence, and cosine similarity. They reported the last one

to be the most effective. For our implementation, we utilize marginal sampling for

φuncertainty, cosine similarity for sim(x, xu), and β = 1. We utilize the softmax vectors

from the CNN to calculate φuncertainty and the document embeddings generated by

the penultimate layer of the CNN to calculate sim(x, xu).

Meta Learning

We propose a novel active learning strategy which consists of training a separate

machine learning algorithm to predict which samples will be most informative to the

base CNN classifier. The intuition is that if we are able to predict what documents

will be misclassified by our model based on the confidence scores generated by the

CNN, then we could query those samples and add them to our training dataset.

To achieve this, we first create a new training meta-dataset which consists of the

logit vectors (~xmeta) obtained by running the trained CNN model on the validation
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and test datasets used for active learning. This new dataset also contains a binary

label (ymeta) that represents whether the CNN correctly classified the corresponding

ground truth labels. Then, we use this meta-dataset to train a separate random forest

classifier with 100 trees; this random forest learns how likely the CNN will misclassify

a given document based on the CNN’s relative confidence across the possible classes.

For each document in the holdout set, we obtain the CNN’s logit vectors and then

calculate φ based on the random forest’s confidence that the CNN will misclassify that

document (number of individuals trees out of 100). We refer to this method as Meta

Learning (ML). To the best of our knowledge, we have not seen an implementation

of this technique in the current literature.

2.3.2 Application to Cancer Pathology Reports

Cancer pathology reports are a critical resource for cancer surveillance and research.

A cancer pathology report is a medical document written by a pathologist that

records the cancer diagnosis of cells and tissues examined under a microscope. Cancer

pathology reports are generally multi-page documents with highly technical language

and contain a variety of detailed information, including but not limited to patient

information, specimen details, descriptions of the sample as seen by the naked eye

and under a microscope, cancer diagnosis, pathologist and laboratory information,

and additional comments. While we are unable to share specific examples of pathology

reports from our experimental dataset due to privacy restrictions, example pathology

reports can easily be found online.

As part of its mission, the NCI SEER program collects hundreds of thousands of

cancer pathology reports each year in partnership with cancer registries around the

United States. Human experts must then manually annotate these reports for key

data elements related to cancer primary site and morphology. To help ease the burden

on human annotators, previous work has applied deep learning techniques such as

CNNs to automatically extract these key data elements. In these studies, a dataset
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of cancer pathology reports is matched with gold standard human-annotations for

key data elements, such as site, subsite, histology, and behavior. A machine learning

model is then trained to predict these key data elements – this is generally treated

as a single-task or multi-task document classification problem where the input is a

cancer pathology report and the output is one or more data elements [3, 37]. However,

existing methods still do not achieve high enough accuracy to fully replace human

annotators, especially on cancer types with low prevalence and few training examples

[37, 34].

Active learning can help address this gap in performance by identifying pathology

reports that are especially difficult for automated methods so that human annotators

can prioritize annotation of these reports. This has the potential to improve the

performance of these automated methods more than if humans experts annotated a

random selection of additional cancer pathology reports. To better understand the

potential benefits of active learning, we simulate a low data scenario and a high data

scenario. Our dataset, tasks, models, evaluation metrics, and experimental setup are

described in greater detail in the following sections.

Dataset, Tasks, and Pre-processing

Our dataset consists of cancer pathology reports obtained from the Louisiana Tumor

Registry (LTR), Kentucky Cancer Registry (KCR), Utah Cancer Registry (UCR),

and New Jersey State Cancer Registry (NJSCR) of the SEER Program†. The study

was executed in accordance to the institutional review board protocol DOE000152.

Each pathology report in our dataset is associated with a unique tumor ID; the same

tumor ID may be associated with one or more pathology reports. For each tumor

ID, one or more human CTRs manually assigned ground truth labels for key data

elements such as cancer site and histology based on all data available for that tumor

ID. We note that these ground truth labels are at the tumor level rather than at

the report level; as a consequence of this labelling scheme, tumor IDs associated

†NJSCR is no longer in the SEER Program, but is included in the current data release.
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with multiple pathology reports may have a tumor-level label that does not reflect

the content within individual pathology reports. Thus, for this study, we only utilize

tumor IDs associated with a single pathology report. The resulting LTR, KCR, UCR,

and NJSCR datasets consist of 61123, 46859, 21705, and 70665 pathology reports

respectively, yielding a total of 200,352 documents for our experiment.

For this study, we focus on identifying two key data elements that are of

importance to NCI – subsite, which is used to identify cancer topology and is indicated

by a 3-digit code, and histology, which is used to identify cancer morphology and

is indicated by a 4-digit code. Furthermore, these two tasks were chosen because

they have a very large number of possible classes and thus are especially challenging

for automated machine learning methods. In our dataset, each pathology report is

labelled with one of 317 possible subsites and one of 525 possible histologies. For a

full list of possible subsite and histology labels and their details, we refer readers to

the official SEER program coding and staging manual‡. The two figures in Additional

File A.1 show the number of occurrences per label of the 50 most frequent classes

for histology and subsite. We can see from the figures that there is extreme class

imbalance – some classes are represented by less than a few hundred pathology reports,

while others are represented by tens of thousands of reports.

Similar to our previous studies, we applied standard text pre-processing techniques

such as lowercasing and tokenization to clean our corpus [3, 37]; these steps are

described in detail in Additional File A.2. After pre-processing, the average pathology

report is 610 word tokens. To reduce the vocabulary size, all words with document

frequency less than five were replaced with an “unknown word” token, all decimals

were converted to a “decimal” word token, and all integers larger than 100 were

converted to a “large integer” word token. We limit the maximum length for each

cancer pathology report to 1500 word tokens; reports longer than 1500 tokens are

truncated and reports shorter than 1500 tokens are zero-padded.

‡https://seer.cancer.gov/tools/codingmanuals/index.html
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For our active learning setup, we require four data splits: (1) an initial annotated

train set to train the starting model used for active learning, (2) an annotated

validation set to use for early stopping to prevent overfitting, (3) an annotated test

set for performance evaluation, and (4) an unannotated holdout set on which active

learning is applied to select new entries to annotate with ground truth labels and add

to the train set. Using our cleaned corpus, we create two datasets to simulate active

learning situations with different amounts of labelled data. For our first dataset,

we begin with a labelled training set of 15K samples; this dataset represents an

active learning scenario with a fairly large amount of labelled data. For our second

dataset, we begin with only 1K labelled reports for the initial training set; this dataset

represents an active learning scenario with a small amount of labelled data. We use

the exact same validation and test sets for both scenarios, and the holdout set is

comprised of all remaining samples. Table 2.1 shows the size of each dataset partition

that was used to simulate each active learning scenario.

TextCNN

For our classification model, we use a word-level text CNN because it is widely used

for clinical NLP and text classification tasks [119, 112]. The CNN architecture is

implemented based on the same architecture we have used in previous studies [3,

37]. The model hyperparameters are listed in Table 2.2. Our CNN uses randomly

initialized word embeddings, which perform as well as or better than other pre-trained

word embeddings when applied to our particular dataset, model, and experimental

setup [76]. When training our CNN, we checkpoint after each epoch and stop training

if validation accuracy does not improve for five consecutive epochs; we test using the

checkpoint from the epoch with the best validation accuracy.
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Evaluation Metrics: F1 Score

To evaluate the performance of each active learning method, we calculate the micro

F1 score (Equation 3.5) of the CNN after each iteration of active learning. We note

that micro F1 score is equivalent to classification accuracy in classification tasks such

as ours in which each sample is assigned to exactly one class. Micro F1 score is

an important metric because it reflects the overall percentage of reports classified

correctly.

Because micro F1 score measures overall accuracy regardless of class, in clas-

sification tasks with extreme class imbalance, the micro F1 score mostly reflects

the performance on majority classes. Therefore, we also report the macro F1 score

(Equation 3.6) of the CNN after each iteration. Macro F1 score equally weighs the

F1 score on each unique class regardless of class size. As a result, macro F1 score is

more heavily influenced by performance on minority classes. In our application, it is

important that automated classifiers correctly identify cancer subsites and histologies

even if they are rare; as such, macro F1 score is an useful indicator of the effectiveness

of each active learning method on the rare classes.

Precision =
True Positive

True Positives + False Positives
(2.9)

Recall =
True Positives

True Positives + False Negatives
(2.10)

Micro F1 = 2 ∗ Precision * Recall

Precision + Recall
(2.11)

Macro F1 =
1

|C|

C∑
Ci

F1(Ci) (2.12)

In Equation 3.6, Ci represents the subset of training samples belonging to class i, and

|C| is the total number of possible classes.
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Evaluation Metrics: Class Imbalance

Extreme class imbalance is a common and problematic issue in clinical classification

tasks, and it is often difficult to effectively train a classifier on a class with very few

labelled samples. To better understand how active learning can reduce extreme class

imbalance, we analyze the class imbalance of the training dataset after each iteration

of active learning. We use a modified version of Shannon Entropy as a balance metric,

described in Equation 2.13:

Balance =
−
∑C

i=1
ci
n
∗ log( ci

n
)

logC
(2.13)

where n represents the number of documents in the training set, C is the total number

of possible classes (525 for histology and 317 for subsite), and ci is the number of

training samples that belong to class i. This equation outputs a value of 0 when

the training dataset is perfectly imbalanced (i.e., contains only samples from a single

class) and a value of 1 when the training dataset is perfectly balanced (i.e., all classes

have the same number of training samples).

Evaluation Metrics: Proportion of Unique Classes

We also track how active learning affects the number of unique classes seen by the

model after each iteration. Intuitively, a model that has never seen samples from a

rare class will never accurately predict that class; therefore we want to expose the

model to as many unique classes as possible. To measure this, after each iteration of

active learning, we simply calculate the ratio between the number of classes present

in the training dataset and the total number of classes within the entire dataset.

Experimental Setup

To compare the performance of the different active learning strategies, we benchmark

using two different datasets simulating low and high resource settings (see Table 2.1).

For each of these two datasets, we test the effectiveness of the CNN models on two
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different tasks – subsite and histology. These are treated as two independent single-

task classification problems – we train one CNN to predict subsite and a separate

CNN to predict histology. This results in a total of four different active learning

experiments.

For any given active learning strategy, we first train a CNN on the initial training

set. Then, we use that active learning strategy with the trained CNN to select a

subset of reports from the holdout set with the highest φ; we select 1K samples per

active learning iteration for the small dataset and 15K samples per active learning

iteration for the large dataset. These selected reports are removed from the holdout

set and added to the training set along with their ground truth labels, and a new CNN

is trained from scratch on the new training set. For the large dataset, this process is

repeated until there are no remaining documents in the holdout set. For the small

dataset, we repeat this process nine times total until the training set consists of 10K

samples. Figure 2.1 shows a general flowchart of the computational pipeline followed

during each experiment.

At each iteration of active learning, we report the micro and macro F1 scores on the

test set, the class imbalance of the training set, and the proportion of unique classes

seen by the model. For micro F1 score, we calculate 95% confidence intervals using a

bootstrapping procedure [23] described in detail in Additional File A.3. We note that

we do not use bootstrapping on the macro F1 score because it tends to undersample

the minority classes, which are critical for accurately representing macro F1 score.

Also, we note that for all active learning strategies and at every iteration of active

learning, the test and validation sets are fixed to maintain consistency.

After each iteration of active learning, we train a new CNN from scratch (i.e., cold

start) rather than continue training the weights from the previous CNN (i.e. warm

start); this is because we found that warm start results in lower accuracy, especially

in the later iterations of active learning. We provide a comparison plot between active

learning with cold start, active learning with warm start, and no active learning from

one of our experiments in Additional File A.4
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Table 2.1: Data split and number of classes for the two tasks analyzed.

Dataset Initial Training Validation Testing Holdout Classes

Large 15,000 18,032 20,036 147,284 525 (Histology) 317 (Subsite)
Small 1,000 18,032 20,036 161,284 525 (Histology) 317 (Subsite)

Table 2.2: CNN Hyperparameters.

Input
Length

Word Embed
Dim

Num
Filters

Conv Window
Sizes

Dropout Optimizer
Learning

Rate
Batch
Size

1500 300 100 3,4, and 5 0.5 Adam 0.0001 128

Figure 2.1: Flowchart of the computational pipeline used during the active learning
experiments.
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All experiments are run using Tensorflow 1.15 and a single NVIDIA V100 GPU

(we note that the QBC models are trained in parallel, with each committee member

trained on a single NVIDIA V100 GPU). For reference, we report the training and

inference time for one of our experiments using the large dataset in Additional File

A.5. We note that the text CNN model that we use is a relatively simple DL model

with approximately 22M learnable parameters, 20M of which are associated with the

learnable word embeddings. Using our experimental settings (see Table 2.2), the

model will train even on lower-end GPUs with less than 4GB memory.

2.4 Results

2.4.1 Histology - Large Dataset

The table in Additional File A.6 shows the micro and macro F1 scores for the histology

task using our large dataset with 15K initial training samples; we also plot the results

with shaded 95% confidence intervals (Figures 2.2 and 2.3). After accounting for the

confidence intervals, all active learning strategies implemented in this paper except

for the diversity-based methods performed significantly better than the baseline of no

active learning, i.e., random sampling. We note that this difference in performance

between active learning and random sampling decreases in the later iterations; this

is expected because by the last iteration of active learning, all methods (including

random sampling) are training on the exact same data, i.e., all data available in the

holdout set.

Diversity sampling, which makes decisions based on the similarity between docu-

ment embeddings created by the CNN, did not produce significant improvements over

random sampling. These results suggest that the document embeddings generated

by the CNN, which are optimized for classification, may not adequately capture the

information necessary to distinguish informative documents. Furthermore, euclidean
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(a) (b)

(c) (d)

Figure 2.2: Micro score results for the 11 active learning algorithms applied during
the large dataset experiment on histology. Blue line represents random sampling.
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(a) (b)

(c) (d)

Figure 2.3: Macro score results for the 11 active learning algorithms applied during
the large dataset experiment on histology. Blue line represents random sampling.
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and cosine distance from the nearest class centroid may not be the best indicator of

how informative a document is.

After excluding the diversity sampling strategies, no single active learning strategy

stands out as a clear winner in terms of micro F1 scores after accounting for confidence

intervals. In terms of macro F1 scores, QBC with KL divergence obtained the

strongest macro scores in early iterations, but most of the active learning methods

managed to reach the maximum macro F1 score of ∼0.40.

One interesting observation is that the highest macro scores tend to appear

towards the middle iterations of the experiment and then tend to go down during the

last few iterations. This is a pattern that is not observed for micro scores, where the

maximum score is attained near the middle iterations and remains high throughout

the rest of the iterations. We expect that this is because in the later iterations, most

of the data remaining in the holdout set are less informative samples from majority

classes; adding these samples does not negatively affect overall accuracy but may

increase class imbalance and thus reduce performance on minority classes.

2.4.2 Subsite - Large Dataset

The table in Additional File A.7 shows the micro and macro F1 scores for the subsite

task using our large dataset with 15K initial training samples; Figures 2.4 and 2.5

provide plots of our results with 95% confidence intervals. The results on our subsite

task were very similar to our results from our histology task. After accounting for

confidence intervals, the diversty-based methods failed to perform significantly better

than random sampling, and Euclidian distance actually performed worse than random

sampling. All other methods attained maximum micro and macro F1 scores much

earlier than random sampling.

Once again, after excluding the diversity-based strategies, it is difficult to

distinguish a clear winner in terms of micro F1 score after accounting for confidence

intervals. The weakest method appears to be Meta Learning, which performed
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similarly to random sampling in the first three iterations of the experiment. In terms

of macro F1 score, the QBC methods once again attained strong macro scores at early

iterations of the experiment; however, most of the other methods manage to reach

the maximum macro F1 score of ∼0.35 by the middle iterations of the experiment.

We note that in the subsite experiment, we do not observe the same drop in

macro F1 scores toward the later iterations of active learning that we observed in the

histology experiment. We expect that this is because there are fewer unique classes in

the subsite task compared to the histology task, and thus the effect of class imbalance

is less severe.

2.4.3 Histology - Small Dataset

The table in Additional File A.8 shows the micro and macro F1 scores for the

histology task using our small dataset with 1K initial training samples; we also plot

the results with shaded 95% confidence intervals in Figures 2.6 and 2.7. Compared

to the experiments on the large dataset, we notice several important similarities and

differences. First, the diversity sampling strategies not only failed to outperform

random sampling, but performed significantly worse in these experiments. Secondly,

most active learning strategies that had solid performance in the large dataset no

longer show strong performance in this small dataset – the QBC strategies, least

confidence, entropy sampling, information density, and meta learning all failed to

perform better than random sampling in most of the early and middle iterations.

After taking into account confidence intervals, the marginal sampling and ratio

sampling techniques were the only two active learning techniques that significantly

outperformed the random sampling baseline in terms of micro F1 score. Interestingly,

these two methods do not attain the best performance in macro F1 score, class

balance, and proportion of unique classes seen by the model.

When examining macro F1 score, all active learning strategies except for the

diversity sampling strategies and information density perform much stronger than the
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(a) (b)

(c) (d)

Figure 2.4: Micro score results for the 11 active learning algorithms applied during
the large dataset experiment on subsite. Blue line represents random sampling.
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(a) (b)

(c) (d)

Figure 2.5: Macro score results for the 11 active learning algorithms applied during
the large dataset experiment on subsite. Blue line represents random sampling.
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random sampling baseline. These results suggest that in general, the active learning

strategies in this paper focus on minority classes at the expense of the majority classes;

in some cases this may increase macro F1 score but reduce the potential gains in micro

F1 score. We explore this phenomena in greater detail in our Discussion.

2.4.4 Subsite - Small Dataset

The table in Additional File A.9 shows the micro and macro F1 scores for the subsite

task using our small dataset with 10K samples; we also plot the results with shaded

95% confidence intervals in Figures 2.8 and 2.9. The findings in this experiment are

similar to our findings in the histology experiment with the small dataset.

In terms of micro F1 score, marginal sampling and ratio sampling are the only

two active learning strategies that significantly outperform the baseline of random

sampling, and meta learning and the diversity sampling strategies significantly

underperformed random sampling. However, in terms of macro F1 score, all methods

except for the diversity sampling strategies outperform the random sampling baseline.

Combined with the histology results on our small dataset, these results suggest that

the best active learning strategy depends on the size of the initial training set and

the amount of labelled data added per iteration of active learning.

2.5 Discussion

Our experiments show that the best choice of active learning strategy is dependent

on the size of the initial labelled training set and the amount of labelled data added

per iteration. In our large dataset experiments, there was no clear winner in terms

of micro F1 score (overall accuracy) – least confidence, ratio sampling, entropy

sampling, marginal sampling, QBC softmax, QBC VE, QBC KL-D, and information

density all had similar performance. If macro F1 score and performance on minority

classes is of high importance, QBC KL-D had the strongest performance on early
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(a) (b)

(c) (d)

Figure 2.6: Micro score results for the 11 active learning algorithms applied during
the small dataset experiment on histology. Blue line represents random sampling.
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(a) (b)

(c) (d)

Figure 2.7: Macro score results for the 11 active learning algorithms applied during
the small dataset experiment on histology. Blue line represents random sampling.
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(a) (b)

(c) (d)

Figure 2.8: Micro score results for the 11 active learning algorithms applied during
the small dataset experiment on subsite. Blue line represents random sampling.
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(a) (b)

(c) (d)

Figure 2.9: Macro score results for the 11 active learning algorithms applied during
the small dataset experiment on subsite. Blue line represents random sampling.
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iterations; however this difference is not huge and the other high-performing active

learning strategies achieve similar macro F1 score in later iterations. Therefore, the

choice of best active learning strategy may simply come down to choosing the most

computationally efficient method that is fastest to run.

From the algorithms implemented in this paper, the QBC techniques are the

most computationally expensive because each iteration of active learning requires

training a full committee of models. Other techniques involving document embeddings

and clustering techniques (information density and diversity sampling) are also

compuationally expensive because they involve repetitive computation of distance

between large vectors. The most computationally inexpensive active learning

approaches are the uncertainty sampling strategies because they require the least

additional computation beyond what is already provided by the base classification

model. Consequently, these strategies are favored in settings with a high amount of

initial labelled data and a large amount of labelled data added per iteration of active

learning.

In our small dataset experiments, the marginal sampling and ratio sampling

techniques obtained significantly better micro F1 scores than all other active learning

techniques. However, these two methods did not maintain the best overall macro F1

scores; the best macro F1 scores were obtained by least confidence, entropy sampling,

and the QBC approaches.

One possible explanation for this phenomenon is the impact of the majority

classes on overall micro and macro F1 score. Both our histology and subsite tasks

are characterized by extreme class imbalance. In the histology task, the 10 most

common classes make up ∼60% of the dataset, and in the subsite task, the 10 most

common classes make up ∼50% of the dataset; the class distributions are available in

Additional File A.1. Thus, performing well on the majority classes greatly impacts

micro F1 score while having a slight effect on macro F1 score.

On the large dataset with 15k initial labelled samples, the base model observes

hundreds or thousands of samples from the majority classes. After a few additional
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iterations of active learning, it is likely that the classifier achieves strong performance

on the majority classes, and thus additional gains in overall micro F1 score must

account for the minority classes. We see this trend across all the successful active

learning strategies – the best performing strategies have strong performance in both

micro and macro F1 score.

However, on the small dataset with 1K initial labelled samples, the classifier is

unlikely to have strong performance on the majority classes (or any other classes)

mainly because it has not seen a sufficient number of samples. Thus, active learning

methods that focus on maximizing performance on the majority classes achieve better

overall micro F1 score than strategies that focus on minority classes because the

majority classes make up a larger portion of the test set; however, this may come at

the expense of performance on the minority classes and therefore reduce macro F1

score. We observe this trend in our small dataset results – the two best performing

strategies, marginal sampling and ratio sampling, do not have the best macro F1

scores after the initial two iterations of active learning.

A large number of unique labels with extreme class imbalance is a common

property of many clinical text applications such as ours. To better understand how

active learning affects performance on minority classes, we plot the class imbalance

within the training dataset (Figure 2.10, Additional Files A.10, A.11, A.12, and

A.13) and the number of unique classes seen in the training dataset (Figure 2.11,

Additional Files A.14, A.15, A.16, and A.17) after each iteration of active learning.

Not surprisingly, for any given active learning strategy, there is a direct correlation

between the macro F1 scores, the class balance, and the number of unique classes

seen by the model.

Furthermore, we also examine how active learning affects the distribution of the

training data compared to random sampling by visualizing the document embeddings

in the final training set for the small histology experiment after 10 iterations of ratio

sampling and 10 iterations of random sampling (Additional File A.18). Documents

embeddings are extracted from the penultimate layer of the CNN and reduced to 2D
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via t-distributed stochastic neighbor embedding (TSNE), and we color each document

embedding based off whether it belongs to a majority class (number of total samples

in dataset above average) or minority class (number of total samples in dataset below

average). After 10 iterations of random sampling, 89.4% of documents in the training

set belonged to majority classes and 10.6% belonged to the minority classes, while

after 10 iterations of ratio sampling 72.1% of documents in the training set belonged

to majority classes and 27.9% belonged to minority classes. Compared to random

sampling, ratio sampling increases the overall percentage of minority classes in the

training set; our visualization shows that many of these minority class documents form

new small, well-defined clusters or expand the size of other small, existing clusters.

We hypothesize that these documents play a large role in improving macro F1 score.

We also note that some of the documents from the minority classes end up in the

center without any clear clustering. This is likely because active learning may choose

samples from extremely rare classes that do not yet cluster due to lack of training data

or ambiguous edge cases that are difficult to classify; these samples may negatively

affect overall micro F1 score in our small dataset experiments.

Our analysis of class balance and unique labels supports our hypothesis that

in high data availability environments with a large amount of initial labelled data,

boosting performance on minority classes is important for micro F1 score. On the

other hand, in low data availability environments with a small amount of initial

labelled data, it is more important to focus on majority classes to improve micro F1

score. In the early iterations of our large dataset experiments, we see that the most

effective active learning strategies (uncertainty sampling and QBC) also generate the

highest class balance and unique classes in the training set. On the other hand, the

two best active learning strategies in our small data experiments – marginal and ratio

sampling – have lower class balance and unique classes compared to least confidence,

entropy sampling, and the QBC strategies. Overall, this analysis suggests that in

applications with a high number of unique labels and extreme class imbalance, active
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learning can play an important role in mitigating class imbalance such that rare

classes have better representation in a given labelled dataset.

As mentioned in our results, Figure 2.3 and Additional File A.6 show that macro

F1 scores dropped in the later iterations of the large dataset histology experiments.

The balance and unique class proportion plots explain this unintuitive phenomenon.

The overall class balance of the training dataset is much higher in the early iterations

than in the later iterations. This is because by the later iterations, there are few or no

samples from the minority classes left in the holdout set; consequently, the dominant

classes and the least informative documents start to fill out the training dataset.

As we have seen, lower class balance also correlates with lower macro F1 scores.

Thus, in the later iterations, while active learning achieves high micro F1 scores, the

performance on uncommon classes decreases because they make up a much smaller

portion of the training set.

In Table 2.3, we summarize our findings regarding the effectiveness of each active

learning strategy across three key characteristics – (1) overall performance in terms

of micro and macro F1 scores, (2) effectiveness after only a single iteration of

active learning with 1K additional labelled samples, which may be important in low

resource settings where additional labels are difficult or expensive to obtain, and (3)

computational cost to implement the strategy. Based on this table, we conclude that

the ratio sampling and marginal sampling strategies are strong contenders for best

overall active learning strategy because they have overall strong performance in both

the high data availability and low data availability settings, have the best performance

when additional labelled data is extremely limited, and are computationally very

simple.

2.6 Conclusions

In this work, we evaluated the effectiveness of 11 different active learning strategies in

the context of classifying cancer subsite and histology from cancer pathology reports.
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Table 2.3: Summary of effectiveness of each active learning strategy in across
different key characteristics.

Overall
Micro
(Large)

Overall
Macro
(Large)

Overall
Micro
(Small)

Overall
Macro
(Small)

Single
Iteration
Micro
(Small)

Single
Iteration
Macro
(Small)

Compute
Cost

Least Con. High High Med High Low Med Low
Entropy Sam. High High Med High Low Med Low
Ratio Sam. High High High Med High High Low
Marginal Sam. High High High Med High High Low
Euclidian C. (D.S.) V. Low V. Low V. Low V. Low V. Low V. Low Med
Cosine C. (D.S.) V. Low V. Low V. Low V. Low V. Low V. Low Med
Information Den. High High Low Low Low Low Med
Meta Learning Med Med Low Low Low Low Med
QBC - S.S. High High Med High Low High High
QBC - VE High High Med High Low High High
QBC - KL-D High High Med High Low High High

(a) (b)

Figure 2.10: Class imbalance Plots. Black line represents the upper limit (most
balance dataset possible). Y-values are computed with Eq. 2.13: y = 0 represents no
balance, and y = 1 represents full balance.
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Our dataset is characterized by a large number of unique labels with extreme class

imbalance, and we use a text CNN as the base classification model. For each of our

two classification tasks, we tested under two different active learning scenarios – (1)

a high data availability setting where we start with 15K labelled samples and added

an additional 15K labelled samples after each iteration of active learning, and (2)

a low data availability setting where we start with 1K labelled samples and added

an additional 1K labelled samples after each iteration of active learning. After each

iteration of active learning, we reported the micro and macro F1 scores of the classifier

as well as the class balance and unique labels in the training dataset.

We showed that in the high data availability setting, the uncertainty sampling and

QBC strategies obtained the best overall micro F1 scores, and the QBC KL-D strategy

obtained the best overall macro F1 score. In terms of micro F1 score, there was no

single clear winner. In the low data availability setting, ratio and marginal sampling

achieved the strongest overall micro F1 scores but underperformed slightly in macro

F1 scores; least confidence, entropy sampling, and the QBC strategies obtained the

best macro F1 scores. Ratio and marginal sampling are strong contenders for the

overall best active learning strategy based on overall performance in the high and low

data availability settings, performance when additional labelled data is extremely

limited, and low computation cost. Compared to a model trained on all available

data, active learning can obtain similar performance using less than half the data.

Furthermore, on tasks with a large number of unique labels with extreme class

imbalance, active learning can significantly mitigate the effects of class imbalance

and improve performance on the rare classes.
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(a) (b)

Figure 2.11: Proportion of classes seen by the models at each iteration. The y
values consists of the number of unique classes present in the training dataset divided
by the total number of classes in each task (525 for histology and 317 for subsite)

.
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Improving the robustness of the

TextCNN for the classification of
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3.1 Abstract

In the last decade, the widespread adoption of electronic health record documentation

has created huge opportunities for information mining. Natural language processing

(NLP) techniques using machine and deep learning are becoming increasingly

widespread for information extraction tasks from unstructured clinical notes. Dispar-

ities in performance when deploying machine learning models in the real world have

recently received considerable attention. In the clinical NLP domain, the robustness

of convolutional neural networks (CNNs) for classifying cancer pathology reports

under natural distribution shifts remains understudied. In this research, we aim to

quantify and improve the performance of the CNN for text classification on out-

of-distribution (OOD) datasets resulting from the natural evolution of clinical text
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in pathology reports. We identified class imbalance due to different prevalence of

cancer types as one of the sources of performance drop and analyzed the impact

of previous methods for addressing class imbalance when deploying models in real-

world domains. Our results show that our novel class-specialized ensemble technique

outperforms other methods for the classification of rare cancer types in terms of macro

F1 scores. We also found that traditional ensemble methods perform better in top

classes, leading to higher micro F1 scores. Based on our findings, we formulate a

series of recommendations for other ML practitioners on how to build robust models

with extremely imbalanced datasets in biomedical NLP applications.

3.2 Introduction

One of the tasks of the Surveillance, Epidemiology, and End Results (SEER) program

of the National Cancer Institute (NCI) is to provide statistics and analyze cancer

trends in the US. Every year, cancer registries receive thousands of electronically

transmitted pathology reports from pathology laboratories. These pathology reports

consist of unstructured clinical text. Specialized human annotators are required to

extract valuable information. This process is costly and time consuming. Therefore,

developing reliable models to classify cancer pathology reports automatically remains

one of the priorities of SEER.

Recently, numerous machine learning researchers have shown that models which

are trained in labs often exhibit a significant performance drop when they are deployed

in the real world. Some researchers have identified certain aspects of the modeling

process and model training as the source of performance disparity [18]. Others have

perceived the issue as a robustness problem and focused on building models that learn

generalizable features so that they can maintain their performance under natural

distribution shifts. Performance drop at deployment time is a serious issue that could

affect every machine learning practitioner and the reliability of AI systems [18].

Significant research progress has been made in developing deep learning models

for information extraction from cancer pathology reports [36, 39, 38, 20]. Difficulties
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in sharing data between healthcare systems has made analyses of the performance of

models on out-of-distribution (OOD) datasets very challenging. As registries around

the country are legally required to collect cancer pathology reports for all residents of

their state, natural statistical variations arise in the datasets. These variations may

occur due to different data acquisition pipelines as the pathology reports can come

from different laboratories, disparate disease prevalence patterns, or the evolution of

language and reporting protocols over time [96].

Class imbalance occurs when the proportion of samples belonging to one or more

classes in a dataset varies drastically. Class imbalance is of extreme importance for

the clinical NLP domain because many clinical conditions such as certain cancer

histologies are very rare. For example, extracting the histology code from pathology

reports is a task that involves text classification with over 600 classes. Some types

of cancers are extremely common (e.g. adenocarcinoma, ductal carcinoma), while

others occur less frequently (e.g. squamous cell carcinoma). These phenomena lead

to datasets with extreme levels of class imbalance, which impacts the performance

of the classifiers. Models trained with such datasets will exhibit bias towards the

most prevalent majority classes because of their higher prior probabilities, while often

ignoring the minority classes. Although the effects of class imbalance in machine

learning have been well documented [43, 79, 4], previous researchers have concurred

that class imbalance in the context of deep learning is understudied [54]. Additionally,

most of the existing work on class imbalance has been done in the computer vision

field [6].

The class imbalance problem can become crucial when deploying models to classify

pathology reports on unseen registries from states and geographical regions outside

the training data (OOD datasets). The distribution between the minority groups

may differ widely across registries, and classifiers’ bias towards the top classes leads

to deteriorated deployment performance. Few researchers in the clinical NLP domain

have focused on characterizing and improving the performance of deep learning models

under natural distribution shifts. Our aim is to narrow this literature gap with
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a specific focus on minority classes (rare cancer types). Our contributions are as

follows:

• We show that natural distribution shifts have a considerable impact in

performance when classifying cancer pathology reports.

• We identify class imbalance and class distribution as one of the sources of

performance drop at deployment time, and analyze some of the existing methods

to solve the problems associated with these issues.

• To strengthen the consistency of our results, we compare the methods under

two different classification tasks commonly found in cancer pathology reports:

histology and subsite.

• We demonstrate that an ensemble of 12 CNNs can improve the generalization

power at deployment time. However, we show that most of the performance

gain comes from the majority classes.

• We propose a novel implementation of ensemble learning where each model

specializes in a different group of classes. Our class-specialized ensemble

outperforms other class imbalance techniques in terms of macro F1 scores when

testing on unseen registries while maintaining competitive micro F1 scores.

Our research is at the intersection of robustness and class imbalance for clinical

NLP. Our novel ensemble model, which improves performance in rare cancers, is

generalizable and can also benefit other practitioners working on problems related to

bias and fairness in machine learning.
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3.3 Previous Work

3.3.1 Class Imbalance

In this section, we present existing work in the class imbalance literature that is

relevant to our research. Generally, class imbalance techniques in the context of

machine learning are grouped into data-level techniques and algorithm-level methods.

We note that our specific problem involves extreme levels of imbalance (described in

detail in our methods 3.4.7), which are uncommonly observed in previous works.

Nevertheless, some of their methods, results, and findings are still applicable.

Data-level techniques focus on manipulating the distribution of the training

dataset in order to reduce the imbalance present in the original data. The two most

basic paradigms in this group are: 1) random oversampling (ROS), where samples

from minority classes are duplicated, and 2) random undersampling (RUS), where

samples from majority classes are discarded.

Masko et al. [67] presented a comprehensive study of the effects ROS using CNNs

for image classification. They used the MNIST, ImageNet, CIFAR-10, and CIFAR-

100 datasets. They performed experiments with relatively small levels of imbalance

and showed that ROS improved the baseline scores.

The effects of RUS have also been studied extensively. For example, Kubat et

al. [57] presented an algorithm that selectively removed samples from the majority

classes. The downside of their study is that they only focus on 2-class datasets.

Hulse et al. [106] developed an extensive analysis of seven sampling techniques using

35 benchmark datasets and 11 classifiers. They found that the performance of the

sampling techniques is dependent upon the machine learning model and showed that,

in some circumstances, RUS can outperform other classical techniques.

Dynamic sampling is a technique which combines both RUS and ROS. Pouyanfar

et al. [75] developed this sampling strategy based on the way humans often operate:

repeating a certain task until the error is reduced. Thus, the researchers created an
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algorithm which adjusts the distribution of classes in the training dataset based on a

performance metric (e.g. F1 score). As a result, majority classes are expected to be

undersampled while minority classes will be oversampled. Chawla et al. [13] proposed

a novel technique called SMOTE which also uses a combination of RUS and ROS.

It had previously been noticed that simply oversampling minority documents with

replacement does not improve minority performance significantly [66]. For this reason,

the authors developed a special case of oversampling which selects synthetically

created samples from the minority classes.

Although the simplicity and efficiency of methods that combine ROS and RUS

may seem appealing, in applications with extreme levels of class imbalance such as

ours (where the top classes appears 17k times and the bottom class appear only once),

oversampling repeatedly from the same documents within minority classes will only

force the model to memorize features that may not even be useful for the respective

classes. In addition, event though SMOTE is a standard class imbalance tool for

traditional machine learning [45, 29, 104], it still has important limitations when it

comes to deep learning models. Some of the challenges come from the implementation

of the algorithm itself. For example, in problems such as ours when the input to a

model is a matrix composed of word vectors, sampling the K nearest neighbors is not

adequate. Moreover, previous researchers have demonstrated that in situations where

high-dimensional data are common, SMOTE does not improve model performance

[7]

Algorithm-level methods for class imbalance focus on modifying the learning

process without altering the distribution of the dataset [54]. The most popular

paradigm in this group is cost-sensitive learning, where models are penalized

for the classification of certain (minority) classes. The cost associated with the

misclassification of each class is assigned using a cost matrix, where an entry Ci,j

in this matrix represents the cost of predicting class i for the true class j. In the

context of text classification, Padurariu et al. showed that cost-sensitive methods

can outperform data-sampling methods [72]. Previous researchers have noted that
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the biggest challenge of cost-sensitive methods is building an effective cost matrix

[54]. Depending on the specific problem, experts could use previous knowledge to

define costs. However, in complex problems with a lot of classes and extreme level of

class imbalance, coming up with an optimal cost matrix is a serious challenge.

Some authors have built novel approaches for class imbalance that borrow ideas

from both data and algorithm-level methods. This is the case of Lee et al. [59]

who showed that a particular implementation of transfer learning, also known as

two-phase learning, can outperform other classical class-imbalance techniques. Their

application involves the classification of plankton images using CNNs. During the first

phase, they trained a model with a subset of the data using some threshold N . In this

subset of data, samples are rejected so that the frequency of each class present in the

dataset does not exceed N = 5000 (found experimentally). The authors’ reasoning

is that the model trained with the thresholding data is less biased, and it can learn

features that are relevant for the minority classes, but it loses population information.

Therefore, to recover the lost information, they fine-tune the model with the entire

dataset. The authors compared two-phase learning with other models trained with

noise addition, data augmentation, and a combination of both. Our class-specialized

ensemble method presented in this paper was partially inspired by their two-phase

learning implementation.

For a detailed analysis of previous results in the imbalance literature, we refer to

[54], a survey paper where the authors review 15 deep learning methods for class

imbalance. Their extensive review discusses all three types of techniques: data-

level methods, algorithmic-level methods, and hybrid-methods. For an overview of

imbalance methods focusing specifically in text classification, we recommend [72].

Additionally, [79] provides a comparative study of different data-level methods.
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3.3.2 Robustness

Numerous authors have recently identified and evaluated the disparities in a model’s

performance during deployment [18, 100, 96, 68, 97, 48, 24, 111, 42]. From the

pool of existing research, notable work includes [18], where the authors identified

underspecification as a key factor diminishing the reliability of machine learning

systems. In their paper, they performed a series of stress tests and showed how

different modeling aspects, even as simple as a random seed, can lead to almost

unpredictable performance when deploying a model in the real world. Although the

authors provided substantial examples of the performance discrepancy when testing

in OOD datasets, a distinct solution was not provided.

In computer vision, prior work has often focused on the ImageNet dataset using

CNNs. For example, in [100], the authors analyzed the reliability of robustness

techniques which were developed using datasets with synthetic distribution shifts.

They showed that most of the existing techniques are not effective under natural

distribution shifts, and they found that most improvement comes from data size

and diversity. Conversely, Hendrycks et al. [48] argued that using synthetic data

can improve the performance of a model on OOD data. In addition, they built

three robustness benchmarks for image classification and introduced a new data

augmentation technique. Djolonga et al. [24] also used the ImageNet dataset, but

their analysis focused on the effects that data/model scale and transfer learning have

in OOD performance. Their conclusion is that given the limitations associated with

data and model scaling, transfer learning is the most promising approach in the short

term. In this study, we analyzed the effects of transfer learning through our two-phase

learning implementation.

In the clinical field, Stacke et al. [96] presented a technique to quantify how

robust a model is to domain shifts and how to identify new data for which the model

would struggle to generalize. They achieve this by measuring the differences in feature

representation by an arbitrary model. Their specific application is tumor classification
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from images. Although the authors provide a useful metric to quantify the robustness

of a model, they do not focus on the aspects of the learning process which enhance

the models’ performance.

In the context of NLP, Wu et al. [111] approached the OOD robustness problem

by modifying existing models to produce multiple disentangled representations. They

argue that it is important for a model to separate between general, target-specific,

and source-specific features. Intuitively, their approach is an ensemble of models

combined together into a single architecture. The down-side of their study is that

they used datasets with very few classes, making it hard to predict the efficiency of

their methods in more challenging problems.

3.3.3 Ensemble Methods

Ensemble learning [74] is a machine learning technique that solves a given task with

multiple models. The purpose of applying multiple models is to obtain collective

decisions from them, thus reducing the likelihood of incorrect selections. Aggregating

decisions from multiple models adds generalizability to the outcomes, improving

overall task performance and avoiding overfitting the training dataset. This is a

desirable feature for the classification of under-represented class labels.

Since ensembles of classifiers combine decisions from multiple models, the

individual models should exhibit some level of diversity. Bootstrap aggregation

[9], also known as bagging, is a popular technique that infuses variability via the

bootstrapping of the training samples. However, a recent study [69] demonstrated

that the intrinsic variability from the randomized initial values of trainable parameters

in artificial neural network-based models adds enough variability.

Ensemble learning does not necessarily require the models to be trained in the

same feature space. Combining models of multiple local experts trained by different

portions of the feature space is an alternative ensembling technique. In this approach,

inferring the final decision can be done with an additive classifier by concatenating
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the outputs of local experts (stacked generalization) [121]. Another way to infer the

final decision is by the use of a gating network to determine a generalized linear rule,

a method known as mixture-of-experts (MoE) [93]. Our class specialized ensemble

technique borrows some ideas from the MoE method.

In the ensemble learning literature, one particular work that is relevant to our

research is [49]. Here, the authors train an ensemble of models where there is

a generalist (trained in the entire dataset) and multiple specialists (trained on a

confusable set of classes in the dataset). Using the MNIST dataset, the authors

shows that the specialist ensemble outperforms their baseline ensemble by∼3%. Their

research shares some conceptual similarities with MoE, and therefore it is applicable to

our research. However, their implementation of “ensemble of specialists” is completely

different: we do not separate the models between generalists and specialists, and we

focus specifically on class imbalance and rare classes.

3.4 Methods

3.4.1 CNN Architecture

The baseline for our experiments is a standard TextCNN used extensively in previous

work involving cancer pathology reports classification [20, 2, 1, 83] and clinical text

classification in general [115, 51, 81, 46, 113]. In addition to being an universally

used architecture, previous work showed that, for the task of pathology report

classification, the TextCNN has competitive performance with other machine learning

models [2], including BERT-based approaches [35]. We used this base TextCNN for

every model in this study with some training variations described in greater detail in

the following subsections. The network consists of an embedding layer followed by

three parallel convolution layers with filter sizes of 3,4, and 5 consecutive words and

300 filters each, a global max pooling layer, and a dense layer. The network has ∼91
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million trainable parameters, where ∼90 million of them belong to the embedding

layer.

3.4.2 CNN with Class Weights

When training DL models, one can simply implement cost-sensitive learning by using

custom class weights. These weights dictate how the model will be punished by

the misclassification of certain classes. Thus, assigning higher weights to minority

classes would force the model to pay special attention to these classes. There is a lot

flexibility on how to assign weights to each class. After experimenting with an inverse

frequency function, we found that giving minority classes too much weight brings the

micro score down to non-permissible levels. That is because the proportion of the

most rare cancer types in the dataset is extremely low, which leads to excessively high

weights for the rarest classes. As a result, the model focuses on learning features for

these rare classes and ignores the majority classes, which highly impacts the micro

F1 score.

For our class weight implementation, we used a variation of the inverse class

frequency where minority classes are assigned non-excessive, larger weights. we set

the class weights WCc following Equations 3.1 and 3.2.

weightc = log(
|Y |
|yc|

) (3.1)

WCc = weightc weightc > 1

WCc = 1 otherwise

(3.2)

In the equations above, |Y | is the total number of samples in the dataset, and

|yc| is the number of samples belonging to class c. Using this rule gives a weight

of 1 to the majority classes and a class weight close to 14 for the most rare cases.
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This approach gives higher importance to the rarest cancer types without ignoring

the majority classes.

3.4.3 Two-phase Learning

We implemented a version of two-phase learning originally introduced by Lee et al.

[59]. In their paper, the authors first train the model with a class-normalized dataset

which has a thresholded class distribution. Due to extreme imbalance and the large

frequency of the top classes, we implemented a variation of this method in which the

top 50 classes are completely left out during the first phase of training. The model is

then fine-tuned with the entire dataset during the second phase. We tried a standard

version of two-phase learning without class weights, and we also tried another version

in which class weights are introduced (as described in 3.4.2) during both learning

phases.

3.4.4 Undersampling

In the simplest form, undersampling methods discard a portion of the majority class

to balance the dataset. In problems with moderate levels of class imbalance, one can

simply discard majority class samples until reaching equal number of samples with

the minority classes. For our specific problem, discarding the top classes based on the

frequency of the rarest cancer types is not possible because these rare classes appear

at extremely low proportions (see Section 3.4.7 and B.1). Alternatively, we discarded

a number of documents from the top classes using a threshold based on certain

percentiles (50th, 90th, and 95th) of class frequency. The specific implementation

procedure is described as follows:

• Find number of documents belonging to the class in the respective percentile

(50th, 90th, and 95th). We call this value the undersampling threshold α.
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• Discard documents from the dataset so that there are at most α documents in

each class. No documents are discarded for classes with fewer than α samples.

• Train model with this smaller, more balanced dataset.

3.4.5 Class-Specialized Ensemble

Our novel method was inspired by MoE and two-phase learning with class weights.

We wanted to create an ensemble of models were each TextCNN would specialize in

different group of classes. Thus, we first ordered the classes by frequency based on

the training and validation datasets. Then we created groups of 50 (histology) and

28 (subsite) classes based on their frequency order. The reasoning behind forming

frequency-based groups is that the imbalance between the individual groups will be

reduced, as opposed to creating groups of classes selected randomly. We decided to

use group sizes of 50 and 28 because that will keep the ensemble relatively small (12

models). However, one could easily experiment with having larger ensembles which

specialize in smaller groups of classes.

During the first learning phase, we let individual members of the ensemble learn

features that are key for their assigned class group. Then, each member was fine-

tuned with the entire dataset. For example, during the first training phase of the

histology task, we trained one TextCNN with the top 50 classes (classes 0-49) and

another TextCNN with the second group of 50 classes (classes 50-99), and so on.

During the second learning phase (fine-tuning), we trained each of the models with

the entire dataset. Figure 3.1 shows a general overview of the steps we took to train

the class-specialized ensemble.

To aggregate the individual predictions of the ensemble and generate the final

prediction, we use a simple multilayer perceptron (MLP) model. This MLP model

is trained with input vectors that are created by concatenating the softmax vectors

from each of the 12 models in the ensemble and the respective y label associated

with the documents. Thus, for the case of histology where there are 645 classes,
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the input to the MLP is a vector of size 7740 (number of classes multiplied by the

number of models). The architecture consists of two dense layers with 4000 and 3000

neurons, respectively. We also included a dropout layer between each of the dense

layers (dropout rate = 0.5). The number of layers, neurons, and hyperparameters

were found experimentally. The MLP network has ∼47 million trainable parameters.

3.4.6 Ensemble

Since our proposed model involves an ensemble of models which naturally presents

an advantage against individual models, we implemented two traditional ensemble

learning techniques. We used an ensemble of 12 models to be consistent with our

class-specialized method and perform a fair comparison.

The first ensemble technique implemented is majority voting. Here, the final

prediction is the class that is predicted the most often across the 12-model ensemble

(ties are resolved by randomly selecting one of the classes with the most votes). The

other technique is softmax averaging. This method consists of taking the average of

the softmax vectors across the ensemble. For example, for the ensemble trained in

the histology task, we simply take the average of 12 vectors (ensemble size) of size

645 (number of classes) and then predict the class with the highest softmax value in

this average vector.

We note that our selection of ensemble methods can easily be applied by other

machine learning practitioners, it is highly parallelizable, and it is computationally

cheap compared to other ensemble methods.

3.4.7 Dataset

The dataset consists of cancer pathology reports from the Louisiana Tumor Registry

(LTR), Kentucky Cancer Registry (KCR), Utah Cancer Registry (UCR), New Jersey

State Cancer Registry (NJSCR), Seattle Cancer Registry (SCR), New Mexico Cancer

Registry (NMCR), and California Cancer Registry (CCR). The total number of
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pathology reports from these seven registries is 2,059,758 documents. Table 4.2 shows

the size of each of the individual datasets associated with the seven registries. We

use numerical values instead of the actual registry names to preserve anonymity.

Even though there are other tasks associated with our dataset (site, laterality, and

behavior), in this study we focus on the histology and subsite tasks because these are

the top priority for NCI; our labels are based on the ICD-O-3 system from the World

Health Organization Classification of Tumors [86]. Additionally, histology and subsite

have the largest numbers of classes and highest level of class imbalance, making them

good targets for our robustness study.

There are 645 histology classes, and the dataset presents extreme cases of class

imbalance. For example, 22.0% of the reports belong to the top class (adenocarcinoma

in situ/NOS) and 19.0% belong to the second most popular class (duct carcinoma).

The top 10 classes constitute 62.8% of the dataset. The least prevalent 635 classes

constitute only 37.2% of the data. Some of the cancer types (31 classes) are

exceptionally rare and only appear once in the entire dataset. Although removing

these classes could make sense from a modeling perspective, these cancer types may

still be encountered at deployment time, and they are still part of the classification

problem. Therefore, all the classes were considered during training.

Identifying the subsite of a cancer pathology reports is a task with 327 classes.

The level of imbalance found in this task is still high but slightly lower than what

we observed in the histology task. Here, only 8.9% of the reports belong to the top

class (compared to 22.0%), and the top 10 classes constitute 49.5% of the documents

(compared to 62.8%). Just as in the histology task, there are cancer subsites in the

dataset which are extremely rare. For example, 16 cancer subsites appear less than

ten times in the dataset.

Researchers in the class imbalance field often use metrics to quantify the levels of

imbalance in the datasaet. For example, one common metric is ρ = maxi(|Ci|)
mini(|Ci|) . Where

maxi(|Ci|) and mini(|Ci|) represents the number of samples in the top class and the

bottom class, respectively. Computing this value for histology leads to ρ = 452, 363.

67



Figure 3.1: Training pipeline of the proposed model. The MLP network takes as
input a vector of concatenated softmax vectors and their respective Y label.

Table 3.1: Number of pathology reports in each individual dataset.

Registry R1 R2 R3 R4 R5 R6 R7
Dataset Size 85,789 577,094 137,135 92,481 441,732 360,375 365,152
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We note that this value is substantially larger than what one usually finds in previous

work, which further demonstrates the extreme levels of imbalance in our problem.

3.4.8 Experimental Setup

For our experiments, we took a leave-one-out approach. In each run, we first define

which of the seven registries will be the OOD dataset. This dataset is left-out of the

training process. The other remaining six registries are then combined and shuffled.

The combined dataset represents what a machine learning practitioner may be given

to train a model in a lab setting and the left-out registry represents what one may

find when deploying the model in the real world. After training the model with the

combined dataset, we recorded performance metrics for both the test set from the

combined dataset and the left-out (OOD) registry. In order to consider every possible

combination case, we repeat this process seven times for each of the two tasks. Thus,

every registry is used as the OOD dataset once. This experimental setup leads to a

total of 14 individual results (7 possible dataset combinations and two tasks).

We used standard training practices to prevent serious overfitting issues. We

performed a 80/10/10 train-validation-test split on the combined dataset. At the end

of each epoch, we monitored the validation loss. We let the models train until the

validation loss stopped decreasing for five consecutive epochs. Once training stops,

we recovered the best set of weights based on the validation loss. To further prevent

overfitting, our CNN model uses 50% dropout on the dense layer (Section 3.4.1).

The parameters and software used in this study are similar to previous work

involving pathology report classification [20, 2, 1]. We used Keras 2.3 with the Adam

optimizer, a batch size of 128, and a learning rate of 1e-4.

We set the document length size to 1500 words, meaning that longer documents

are truncated and shorter documents are zero-padded. The word embeddings consist

of vectors of size 300 which were randomly initialized; previous studied showed that
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random embeddings are as effective as other pre-trained word embeddings when

applied to our dataset [78].

All experiments were run on individual NVIDIA V100 GPUs. The ensemble

models were trained in parallel, with their output combined to form the final

predictions.

3.4.9 Evaluation Metrics

We evaluated the performance of the models by computing the micro F1 score

(Equations 3.3-3.5) in the test dataset and in the OOD dataset. We note that for our

problem, micro F1 score is equivalent to accuracy.

When working with highly imbalanced datasets, using micro F1 scores can be

misleading. That is because the majority classes will drive a large portion of this score,

and information about the model performance on the rare classes is lost. In order to

better understand the performance of the model in minority classes, we also calculated

macro F1 scores (Equation 3.6). The macro F1 score is a common evaluation metric

used in problems with class imbalance because it averages the model’s accuracy on

individual classes independently of their frequency in the datasets. In other words,

this metric gives equal importance to every class.

Precision =
True Positive

True Positives + False Positives
(3.3)

Recall =
True Positives

True Positives + False Negatives
(3.4)

Micro F1 = 2 ∗ (Precision)×(Recall)

Precision + Recall
(3.5)

Macro F1 =
1

|C|

C∑
Ci

F1(Ci) (3.6)
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In Equation 3.6, F1(Ci) is the accuracy score for class i, and |C| represents the

total number of classes in the dataset.

3.4.10 Performance on Rare Cancer Types

We performed an additional analysis of the model performances in minority classes.

This in-depth study focused on the histology task because it has a larger number

of classes and more extreme levels of class imbalance. For this analysis, we sorted

the classes by frequency in the dataset and then created groups of 50 classes so that

the first group contains the top 50 classes and the last group consists of the 50 least

common classes. Then, we used the models that were trained in the entire datasets

to predict on each of the specific groups. The motivation for this analysis is to gain

more insight into the models’ performance on minority classes beyond a single macro

F1 score.

3.5 Results

3.5.1 Class distribution in OOD datasets

Given the large number of classes in the two tasks considered, we hypothesize that

the class distribution in the training and OOD datasets will differ considerably for

the rare cancer types. In order to test this hypothesis, we plotted the distribution of

classes as percentages of their respective datasets in Figure 3.2, using registry 6 as

the OOD dataset. We note that for the top classes (Figure 3.2a), the distribution is

similar in both datasets. However, there are substantial differences in the distribution

of the least common cancer types (Figure 3.2b).

The implications of these distributional differences are one of the focus of this

study. Deep learning models are known to be biased towards the top classes since

they drive the loss function. Hence, the distribution of classes will affect the features

it learns and which classes receive higher priority. The distribution of minority classes
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differs greatly across registries leading to a large underperformance of the model in

OOD datasets in terms of macro scores.

3.5.2 F1 Scores

Our experimental setup yields seven individual sets of results (one for each registry

left-out) for each of our two tasks. Here, we present the average scores across the

seven registries for histology (Table 3.2) and subsite (Table 3.3). The pattern found

in this table is representative of the outcomes found in the individual registry results,

but the scale may differ slightly (see Appendix B.1 for individual registry results).

We found that training a baseline CNN leads to decent micro scores but low macro

scores. This was an indication of the model’s bias against the top classes: it learned

features that were important to classify common cancer types and reduce the loss,

but it ignored patterns that were relevant for the more rare cancer types.

Adding class weights to the model helped the minority classes but it also hurt

the performance on the majority classes (in the case of the histology task). We note

that this technique is prone to produce a trade-off between micro and macro scores,

since giving special attention to minority classes will reduce the performance on top

classes.

Using two-phase learning without weights effectively improved the test macro

scores in both tasks by a significant amount (∼7% and ∼4%). It also improved the

micro test scores (∼1% for both tasks). This method also introduced a small decrease

in OOD micro. In terms of OOD macro scores, the improvement was small (∼1%)

for histology, and there was no improvement for subsite.

Two-phase learning with class weights pushed the macro scores further but

resulted in mediocre micro scores that were below the baseline CNN. We also note

that the increase in macro scores between the test and OOD datasets was highly

disproportional when comparing it with the baseline CNN: for histology, the test

macro increased by ∼10% and the OOD macro increased by ∼2% . For subsite, the
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(a) Classes 0-24 (top 25 major classes)

(b) Classes 350-374 (a subset of the minority classes)

Figure 3.2: Differences in class distribution between the training data and registry
6 (see Section 3.4.7) for the histology task. The specific class names associated with
the encoded labels can be found in the SEER website [86].
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test macro increased by ∼9% and the OOD macro increased by only 0.2%. In both

cases, the test macros were the highest scores across the board. The disproportional

increase in macro scores between test and OOD is a potential sign of overfitting in

some of the minority classes. Two-phase learning is potentially more susceptible to

overfitting the minority classes since these documents are introduced during both

training phases.

Ensemble methods outperformed other models in terms of micro test and micro

OOD. They also provided high macro scores when compared to single models.

Between the two standard ensemble methods that we implemented (majority-voting

and softmax-average), the scores were similar for subsite. For histology, taking

the average of the softmax vectors across the ensemble showed slightly better

performance.

Our class-specialized ensemble method produced the highest OOD macro score

across the board, outperforming the baseline CNN results by ∼4% for both tasks. It

also produced higher test macro scores (between ∼3% and ∼4%) than the standard

ensemble methods. In terms of micro scores, the class-specialized model outperformed

the baseline CNN but performed slightly worse than the other ensemble models.

We also compared the performance gap between test and OOD scores for all

models (Table 3.4). Higher values in this table indicates lack of robustness. We

observed that two-phase learning led to the highest performance gap. The implication

of this result is that methods like two-phase learning can be highly misleading when

trained in a lab setting without access to an OOD dataset because lab results may

not correlate with real world performance. The table also shows the baseline CNN

with class weights resulted in the smallest performance gap.

During our experiments, we found that undersampling is not an effective technique

for the classification of cancer pathology reports. Discarding documents from the

majority classes diminishes the model micro F1 scores to non-permissible levels with

no significant improvement in macro F1 scores. The results table with different

undersampling thresholds are included in Appendix B.2 (Section 3.4.4, Table B.1)
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We note that in task such as ours, with extreme class imbalance and a large number

of classes, it is common to observe relatively low macro F1 scores. Classifiers are not

able to correctly identify features that are relevant for classes that are extremely rare.

This is exacerbated by the lengthiness of cancer pathology reports – on average each

report is approximately 700 words in length, so it is difficult to distinguish which

words are relevant to a particular class when there are very few samples. In our

previous work, we demonstrated that low macro scores persist across different deep

learning architectures ([2]).

3.5.3 Classification Performance in Minority Classes

Figure 3.3 shows the micro F1 scores obtained when predicting in different class

groups ordered by frequency. In the case of the test dataset, we observed that

two-phase learning with class weights clearly outperforms other methods for all

the groups, except for the first one (the top 50 classes). However, for the OOD

dataset, the differences in performance becomes smaller and class-specialized ensemble

outperforms other methods for some of the groups. We note that the top 50 classes

drive most of the micro F1 score, and we observe that models which excel in this

group often show lower performance in the rest of the groups.

Figure 3.2a (also see 3.4.7 for exact percentage values) shows that the top two

classes were especially common in the dataset. These two classes have a lot of

influence during the training phase because they drive most of the loss function.

Models which focus on learning features that are important for top classes will show

degraded performance on the rest of the classes while obtaining high F1 micro scores.

Therefore, we also analyzed the performance of the models when these two top classes

are left out at testing time. The motivation of this experiment was to understand

how much bias is involved in the learning process. We were interested in observing

which model captures the most characteristics relevant for the non-top classes. The

results for this experiment complement the macro F1 score further, and provide a
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Table 3.2: Histology Results. Overall micro and macro scores for the test and
the out-of-distribution data (unseen registry). Scores were calculated by taking the
average of the individual results for each of the seven registries.

Model Test Micro Test Macro OOD Micro OOD Macro
CNN 0.8007 0.4089 0.7749 0.3552

CNN w/ Class Weights 0.7885 0.4104 0.7704 0.3677
Two-Phase 0.8071 0.4815 0.7723 0.3624

Two-Phase w/ Class Weights 0.7942 0.5169 0.7631 0.3771
Ensemble (Maj.Vot.) 0.8096 0.4373 0.7866 0.3781

Ensemble (Softmax. Avg.) 0.8119 0.4458 0.7876 0.3841
Class-Specialized Ensemble 0.8085 0.4809 0.7778 0.4003

Table 3.3: Subsite Results. Overall micro and macro scores for the test and the out-
of-distribution data (unseen registry). Scores were calculated by taking the average
of the individual results for each of the seven registries.

Model Test Micro Test Macro OOD Micro OOD Macro
CNN 0.7133 0.4005 0.6717 0.3269

CNN w/ Class Weights 0.7077 0.4232 0.6701 0.3371
Two-Phase 0.7230 0.4476 0.6671 0.3232

Two-Phase w/ Class Weights 0.7090 0.4873 0.6543 0.3290
Ensemble (Maj.Vot.) 0.7319 0.4320 0.6902 0.3462

Ensemble (Softmax. Avg.) 0.7371 0.4397 0.6896 0.3492
Class-Specialized Ensemble 0.7253 0.4785 0.6746 0.3658
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Table 3.4: Absolute differences in micro and macro scores between the corresponding test scores and the OOD score.
Bold values represent the largest differences (lack of robustness) while underlined values represent the smallest differences.

Histology Subsite
Model Test-OOD Mic Test-OOD Mac Test-OOD Mic Test-OOD Mac
CNN 2.57 5.36 4.16 7.35

CNN w/ Class Weights 1.81 4.28 3.76 8.61
Two-Phase 3.48 11.92 5.59 12.44

Two-Phase w/ Class Weights 3.12 13.98 5.48 15.83
Ensemble (Maj.Vot.) 2.30 5.91 4.16 8.58

Ensemble (Softmax. Avg.) 2.43 6.17 4.75 9.06
Class-Specialized Ensemble 3.06 8.10 5.08 11.26



broader insight about models performance on minority classes and their differences

in performance with respect to test and OOD datasets.

Table 3.5 shows the micro and macro F1 scores obtained when predicting in a

subset of the datasets which excludes the top two classes. We found that under

this experimental setting, the class-specialized ensemble outperforms other methods

in terms of test micro scores and OOD macro scores. Moreover, consistent with

previous results, two-phase learning obtains the highest test macro.

3.6 Discussion

This is the first study which quantifies the performance of the TextCNN for cancer

pathology report classification on OOD datasets. In the histology task, we observed

drops in performance of up to 3.48% and 13.98% for micro and macro scores,

respectively. For the subsite task, the observed values were 5.59% (micro) and 15.83%

(macro). These scores demonstrated that the baseline CNN model is not robust under

natural distribution shifts when classifying cancer reports.

We note that our methods have different effects in the test and OOD datasets.

While we tried to increase the performance of the model on the OOD dataset, we

often found that what works well in the OOD dataset also works well (or better) in

the test dataset. Thus, there was a consistent gap between the test and OOD dataset.

The implication of this result is that improving performance in a closed environment

can be highly misleading. That is because improvements in the test dataset do not

necessarily correlate with improved performance at deployment time on new data.

Other authors have found that larger and diverse datasets can help with robustness

[100]. Our models were trained with a large amount of data from different registries

across the country, yet we still identified serious drops in performance when predicting

on unseen registries.

Through a data profiling analysis, we detected large class distribution differences

of the non-common cancer types. Some of the minority classes which appeared in
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(a) Test Dataset (registries 1,2,3,4,5,6) combined.

(b) OOD Dataset (Registry 7)

Figure 3.3: Class group performance for the histology task using registry 7 as the
OOD dataset. Classes are ordered by frequency which is shown by the gray bars.
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low proportions in the training dataset can often appear much more frequently on

the unseen registries. We argue that these class distribution differences are one of

the sources of performance drop when deploying the model, especially in terms of

macro score. Thus, we explored techniques developed in prior studies to deal with

imbalanced datasets and improve the performance on the rare cancer types. While

some common methods such as ROS and RUS are not adequate for our specific

problem, we showed that other techniques such as two-phase learning and class

weights are efficient.

Our experiments showed that the CNN with class weight effectively improves

the macro score and provides the lowest difference when comparing the test and

OOD scores. The downside of this method was that the micro scores were relatively

lower. Using two-phase learning pushed the macro scores further without degrading

the micro score performance. In fact, this method provided the highest test macro

scores among all experiments. As one would expect when combining multiple models,

ensemble methods had the highest micro scores across the board and improved the

OOD macro. Finally, our novel class-specialized ensemble method, inspired by the

mixture-of-experts model, obtained the highest OOD macro score while maintaining

competitive test macro and micro scores.

For two-phase learning, the increase in macro scores was highly disproportional

when comparing the test and OOD scores; that is, the increase in OOD macro is

relatively low. We hypothesize that the performance of this technique is highly

dependent on the class distribution of minority class documents. Two-phase learning

is able to capture more features that are relevant for the classification of non-majority

classes. Because of the large differences in class distribution with respect to the OOD

dataset, the OOD macro score did not experience a meaningful improvement. Another

possibility is that two-phase learning is overfitting on the minority documents, which

leads to low generalization power.
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Our methods comparison provided insight that can help other machine learning

practitioners deal with extreme class imbalance and issues caused by natural distri-

bution shifts. Based on our results, we provide the following four recommendations:

1) if micro score or accuracy is the main concern independently of the model’s

performance in minority classes, then using traditional ensembles is appropriate, 2) if

classification of minority classes is a priority, we recommend using our class-specialized

ensemble implementation, 3) if one is primarily concerned with minimizing differences

in performance between the test and OOD datasets, then simply using the CNN

with class weights may be sufficient, and 4) if one cannot afford the computational

cost of ensemble methods, then two-phase learning is a simple and effective option.

However, the high test macro scores can be misleading in terms of the robustness and

generalization of the model.

We acknowledge that our study lacks a formal analysis of the statistical significance

of our results. The main reason for this design choice is that we used large datasets

(∼2 million documents) which made the experiments computationally expensive (a

single model trained on six registries and tested on the seventh unseen registry takes

∼8hs). We considered statistical tests such as the McNemar's test, which are common

in circumstances where training multiple models is expensive. However, this test

computes a p-value based on the differences in class predictions between two models,

and we observed that for the tasks considered in this research (with large number

of classes) the p-value is too close to 0. Nevertheless, the main results of this paper

(Table 3.2, 3.3) are the average of seven individual registries which exhibit the same

pattern (micro and macro scores for each individual registry are included in Appendix

B.1). Therefore, we feel confident of the validity of our results.

3.7 Conclusion

The issue of performance drop at deployment time is complex, and the source of

the problem is likely due to multiple factors. In this study, we showed that natural
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distribution shifts degrade the performance of a TextCNN for the task of classifying

cancer pathology reports. We particularly focused on improving the performance

of the model on rare cancer types, increasing the macro scores of the model. We

presented a novel version of ensemble learning in which each model learns features

that are relevant for a specific group of classes. Our class-specialized ensemble model

outperformed other techniques implemented in this paper in terms of OOD macro

scores while obtaining competitive test macro and micro scores. Our results helped

formulate a series of suggestions for other machine learning practitioners working with

highly imbalanced datasets and robustness issues.

Our methods are computationally intensive due to ensembles of models operating

on millions of pathology reports from seven different states. Although computation

at this scale is feasible for supercomputing centers, the average medical center may

not have the same volume of data and therefore require the same computational

capabilities. Additionally, the majority of resources are needed for training and not

for applying the models. And if the trained models are more robust to begin with,

less frequent training and deployments are needed. This is of particular importance

for models integrated in clinical workflows where minimization of system downtimes

and clinical disruptions is a target.

The results presented in this paper form the basis for future research in

model robustness on out-of-distribution clinical text. We showed that the class

distribution of rare cancers varies widely across different registries, which translates

into diminished performance on minority classes and low macro scores. We

hypothesize that distinct vocabulary patterns that are unique to individual registries

can also contribute to the disparity in performance. In addition, we showed that

ensemble methods outperform single models even when testing on OOD datasets.

A natural question that follows is whether a model distilled from the ensemble can

maintain the performance advantage over baseline models. This would enable us to

obtain similar robustness levels while enjoying the low-resource advantages of a single

model.
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Table 3.5: Histology Results. Accuracy results when testing in all but the two most
frequent classes. The top two classes represent 40.95% of the dataset.

Model Test Micro Test Macro OOD Micro OOD Macro
CNN 0.6985 0.4090 0.6663 0.3559

CNN w/ Class Weights 0.7118 0.4144 0.6899 0.3720
Two-Phase 0.7077 0.4816 0.6590 0.3623

Two-Phase w/ Class Weights 0.6885 0.5203 0.6445 0.3797
Ensemble (Maj.Vot.) 0.7077 0.4365 0.6770 0.3779

Ensemble (Softmax. Avg.) 0.7119 0.4453 0.6792 0.3842
Class-Specialized Ensemble 0.7251 0.4890 0.6831 0.3994
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Chapter 4

Using Ensembles and Distillation

to Optimize the Deployment of

Deep Learning Models for the

Classification of Electronic Cancer

Pathology Reports
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4.1 Abstract

Objective: We aim to reduce overfitting and model overconfidence by distilling

the knowledge of an ensemble of deep learning models into a single model for the

classification of cancer pathology reports.

Materials and Methods: We consider the text classification problem that involves

five individual tasks. The baseline model consists of a multitask convolutional

neural network (MtCNN), and the implemented ensemble (teacher) consists of 1,000

MtCNNs. We performed knowledge transfer by training a single model (student)

with soft labels derived through the aggregation of ensemble predictions. We evaluate

performance based on accuracy and abstention rates by using softmax thresholding.

Results: The student model outperforms the baseline MtCNN in terms of abstention

rates and accuracy, thereby allowing the model to be used with a larger volume of
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documents when deployed. The highest boost was observed for subsite and histology,

for which the student model classified an additional 1.81% reports for subsite and

3.33% reports for histology.

Discussion: Ensemble predictions provide a useful strategy for quantifying the

uncertainty inherent in labeled data and thereby enable the construction of soft labels

with estimated probabilities for multiple classes for a given document. Training

models with the derived soft labels reduce model confidence in difficult-to-classify

documents, thereby leading to a reduction in the number of highly confident wrong

predictions.

Conclusions: Ensemble model distillation is a simple tool to reduce model

overconfidence in problems with extreme class imbalance and noisy datasets. These

methods can facilitate the deployment of deep learning models in high-risk domains

with low computational resources where minimizing inference time is required.

4.2 Background and Significance

The American Cancer Society (ACS) estimates 1.9 million new cancer cases will

be diagnosed in 2022 [95]. Because cancer is a reportable disease, states rely

on population-based registries to maintain a database of cancer pathology reports.

Information contained in these documents is key to identifying new reportable cancers

and their characteristics across the country.

Electronic pathology reports are stored as unstructured text, and current

information extraction relies almost completely on manual processing by trained

personnel, which is expensive, time consuming, and prone to error. In the

last few years, researchers have reported promising results when training deep

learning (DL) models to automate the information-extraction process for pathology

reports [36, 38, 2, 35].

Data noise is a serious issue when training DL models for classifying cancer

pathology reports. Documents often describe multiple specimens and biopsies that

involve different organs analyzed for diagnosis. Manual annotators read the results of
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each biopsy and assign a specific cancer site label for the entire report. Although this

is a standard way to annotate data, this process leads to a large volume of data noise

because large portions of pathology reports focus on the analysis of specimens that

are associated with a different site and are not relevant to the context of their ground-

truth label. Pathology reports also include information (e.g., names and addresses)

that contributes to additional noise. Training neural networks with noisy data can

yield models that learn spurious correlations and shortcuts [114, 41].

Label noise presents additional challenges. Annotators are tasked with selecting

a class out of hundreds of options. Tasks such as cancer subsite and histology

determination involve the identification of specific classes that often share similarities

(e.g., “overlapping lesion of other and unspecified parts of mouth,” “mouth not-

specified”). Human annotation errors will naturally occur when working with a large

number of similar classes and documents in which multiple specimens associated with

different classes are reviewed. Additionally, errors can derive from data processing.

For example, labels are defined at the cancer/tumor/case (CTC) level. CTC is a

data entity that encapsulates all diagnostic, staging, and treatment for a reportable

neoplasm. Consequently, pathology reports created during diagnosis are assigned

labels based on the CTC—even if these documents analyze specimens associated

with different labels.

Extreme class imbalance combined with data noise can lead to serious overfitting

issues. The cancer subsite and histology coding tasks consist of 326 and 639 classes,

respectively. Some of the classes in these tasks are extremely common. For example,

in the subsite task for breast cancer, upper-outer quadrant of breast constitutes 8.9%

of the data, whereas for the top class in histology, adenocarcinoma, NOS corresponds

to 21.7% of the data. On the other side of the spectrum, there are cancer types that

rarely appear. There are 16 classes in subsite and 127 classes in histology with less

than ten instances. When few samples are available during training, DL models tend

to memorize specific patterns that do not generalize well [63, 64]. Thus, overfitting

is a major challenge when classifying cancer pathology reports.
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During classification, it is often desirable to keep only the predictions produced

with high confidence. For example, cancer registries from Kentucky, Utah, New Jer-

sey, Washington, and New Mexico (Section 4.4.1) currently require machine learning

models to achieve 97% accuracy on a standard test dataset before deployment. The

high accuracy imposed on models is necessary to limit potentially costly mistakes

in processing healthcare records. Like other high-risk fields such as self-driving cars

and medical diagnosis, the goal is to minimize error and maximize coverage. Previous

investigators have referred to this research area as selective classification [40, 116, 26],

prediction with a reject option [15], and model abstention [102].

The literature on selective classification for traditional machine learning is

extensive, with one of the first papers published in the 1950s [16, 15, 47]. However,

few papers have discussed model abstention in the context of DL [40]. Previous work

in this area focused mostly on deriving an optimal softmax threshold given a certain

cost/risk constraint. Because softmax layers are common in DL architectures, the

softmax thresholding framework is a simple and convenient rejection rule that can be

applied to most models, including pretrained networks.

Model overconfidence deteriorates the efficiency of abstention mechanisms that

are based on softmax thresholding. Previous researchers have hypothesized about

the source of model overconfidence. They pointed out that using one-hot (hard)

labels during training leads to overconfidence because it encourages the model to

produce predictions with 100% confidence [103, 99]. From an overfitting perspective,

overconfidence is the result of overfitting the negative log-likelihood loss, which

encourages the model to produce outputs with low entropy [28]. Additionally,

hard labels do not allow for degrees of truth, and assigning 100% confidence to

noisy documents that mention specimens associated with numerous classes may not

accurately represent the input. Model overconfidence leads to a larger volume of

highly confident but wrong predictions, and that has a direct negative impact in

abstention mechanisms that are based on softmax thresholding.

88



One could train models with soft labels to reduce overconfidence and provide

accurate input representation. However, creating accurate soft labels imposes several

challenges. Manual creation of soft labels would involve assigning probabilities to

each class, which can be subject to the annotator’s interpretation and is often not

feasible owing to time constraints.

A simple way to derive soft labels is label smoothing. Given some constant, α, with

α ∈ (0, 1), this method assigns a 1− α to the ground-truth class and splits α equally

among the rest of the classes (i.e., 0 becomes α
K−1 , where K is the number of classes).

However, label smoothing does not introduce any information about the underlying

class hierarchies or knowledge related to the quality of the input. Additionally,

although label smoothing can potentially reduce model overconfidence, that does

not imply improved abstention performance when choosing a softmax threshold. In

fact, we hypothesize that this method is likely to deteriorate abstention rates because

it is prone to shorten the distribution of model predictions (i.e., from [0, 1] to [0, α]),

thereby making it more difficult to find a softmax threshold that separates between

right and wrong predictions.

Ensemble learning is a simple solution to reduce overfitting. The benefits of

ensembles in the context of overfitting have been quantified extensively by previous

researchers [12, 17]. Highly parallelizable ensemble methods are especially attractive

because they can be implemented and tested quickly. However, cancer registries across

the country have limited computing resources, thereby making ensemble methods

unfeasible in the deployment/inference phase. Ensembles also require additional

testing time because a single prediction often requires the output of every single model

in the ensemble. Thus, ensembles remain a computationally expensive technique, and

that limits their utility and prevents their deployment in numerous environments.

Model distillation is a promising, low-resource solution that leverages the benefits

of ensembles without using hard labels. The idea behind model distillation is to

transfer and compress the knowledge of a larger model (teacher) into a smaller

(student) network. In the context of ensemble model distillation, researchers have
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attempted to transfer the combined knowledge of a group of models into a single,

low-resource network [50]. Thus, they aim to maintain the high performance of the

ensemble while enjoying the computational flexibility of a single model. One intuitive

way to perform ensemble model distillation is to train a student model with soft

labels obtained through the aggregation of the ensemble predictions. That is, training

the student model using ensemble predictions instead of the annotated labels. This

method permits automatic derivation of soft labels that contain information about

the variability within the ensemble and avoids the use of hard labels.

Previous work explored model abstention for ensemble learning [107, 31]. Existing

work focused on deriving rejection boundaries based on the statistics of the ensemble

predictions. The downside of these studies is that they focused on simple binary

problems, and more complex classification tasks, such as the ones we have described

for electronic pathology report information extraction, are not considered. To the

best of our knowledge, the effect of ensemble model distillation in the context of

selective classification remains an understudied research area.

4.3 Objective

The objective of this study was to investigate the feasibility of ensemble model

distillation as a low-resource alternative for the deployment of DL models for cancer

pathology report classification. We hypothesized that ensemble model distillation

would allow us to enjoy both the overfitting reduction benefits of the ensemble

and a reduction of model overconfidence caused by hard labels. Performance was

quantified as accuracy and abstention rates by using softmax thresholding tuned to

yield 97% accuracy. We provided additional analysis of the benefits of ensemble model

distillation on data and label noise. These findings may provide solutions to other

machine learning researchers working in high-risk domains with limited computational

resources where low-error rates are required.
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4.4 Materials and Methods

4.4.1 Dataset

Classifying electronic cancer pathology reports consists of five individual tasks. That

is, each pathology report must be labeled with a specific site, subsite, laterality,

histology, and behavior. The number of classes in each task is shown in Table 4.1.

For this study, we used datasets from the Louisiana Tumor Registry (LTR),

Kentucky Cancer Registry (KCR), Utah Cancer Registry (UCR), New Jersey State

Cancer Registry (NJSCR), Seattle Cancer Registry (SCR), and New Mexico Tumor

Registry (NMTR). The sizes of the six individual datasets are listed in Table 4.2. To

satisfy de-identification requirements, we used integers instead of the actual names

to represent each of the datasets.

The dataset exhibits extreme class imbalance. For example, the top two histology

classes (i.e., adenocarcinoma, NOS and ductal carcinoma) constitute 41.0% of the

dataset. In the subsite task, the top two classes (i.e., upper-outer quadrant of breast

and prostate gland) correspond to 17.3% of the data. It is not uncommon to see fewer

than ten instances for rare cancer types.

4.4.2 Experimental Setup

We aimed to develop experiments that would simulate real-world deployment. To

achieve this, we implemented a leave-one-registry-out approach in which we first

combined five registries for training and validation. Once the model was trained,

we deployed the model by predicting the left-out (out-of-distribution) dataset. We

expected the left-out dataset to contain natural variations not observed during

training.

This experimental setup simulates real-world deployment and allows us to evaluate

the generalizability of the classifier. In a previous study [21], we quantified the

performance disparity between a test dataset, which was taken from the same
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distribution as the training and validation data, and a completely unseen (left-out)

registry. In that study, we observed that R4 exhibited the largest performance drop.

Therefore, for this study, we used R4 as our left-out dataset. Leaving out R4 and

combining the rest of the registries leads to a total of 1,525,545 pathology reports for

training and validation and 441,732 (size of R4) documents for testing.

DL models were trained using early stopping as a standard overfitting prevention

practice. We set the patience parameter to 5, so if the validation loss does not decrease

for 5 consecutive epochs, then training stops, and the model recovers the best set of

weights. Figure 4.1 shows an overview of our training pipeline.

4.4.3 Multitask TextCNN

The base model for our experiments is the TextCNN. We use this specific DL model

because: 1) in our previous publication involving pathology report classification, we

showed that the TextCNN model performs about the same or better than transformer

based models [35], 2) we can train ensembles of MtCNNs in parallel since it is

a computationally cheap model (in terms of memory and speed), and 3) the low

computational requirements of the MtCNN makes it accessible to cancer registries

across the country, allowing for rapid deployment.

We used a specific version of the TextCNN known as the multitask CNN (MtCNN),

which has been implemented in numerous previous studies involving cancer pathology

report classification [20, 1, 2, 36, 21, 8]. The MtCNN simultaneously outputs

predictions for all five tasks.. The input to the MtCNN first passes through an

embedding layer, in which each word token is mapped to a 300-dimensional word-

embedding vector. The resulting matrix passes through three parallel convolutional

layers with filter sizes of 3, 4, and 5 consecutive words; each of the convolutional layers

contains 300 filters. The output of the convolutional layers is then concatenated and

sent to a global max pooling over time layer. Finally, the resulting vector goes through
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Table 4.1: Number of classes in each task.

Task Site Subsite Laterality Histology Behavior
Classes 70 326 7 639 4

Table 4.2: Size of individual registries.

Registry R1 R2 R3 R4 R5 R6
e-Path

Reports
85,789 577,094 137,135 441,732 360,375 365,152

Figure 4.1: Overview of our training pipeline with a hypothetical example in which
three different models classify a pathology report as stomach, esophagus, and colon.
Our actual implementation consists of 1,000 teacher models.
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five parallel dense layers (one for each of the five classification tasks), and the five

predictions are produced.

4.4.4 Ensemble Learning

Ensemble learning is a machine learning method that utilizes multiple models

to obtain better predictions. Several ensemble learning algorithms are available,

including bootstrap aggregation (bagging) [10], boosting [32], and a mixture of experts

[53].

Previous studies have noted that training deep neural networks with more data

led to better performance, and bagging can hurt performance because models only

see ∼63% of the data [58, 60]. These studies showed that using the entire training

dataset is more efficient than bagging approaches, which sample the training dataset

with replacement. Therefore, in this study, we trained 1,000 MtCNN models using

the entire training dataset but different random initialization seeds. Our method is

highly parallelizable and simple to implement.

The ensemble inference was derived by normalizing the summation of the outputs

from the multiple models: D(x) =
∑T

i=1 di(x), where x is some document input, di is

the prediction vector for model i in the ensemble, and T is ensemble size (T = 1, 000).

Then we applied the softmax function to the ensemble output D to infer the ensemble

decision.

Notably, to obtain a prediction for a given document, x, one must first use all

T models for the prediction and then aggregate their predictions to obtain the final

output. This can be time consuming and computationally demanding. Therefore,

ensemble learning is often a nonviable method for several real-world applications.

4.4.5 Distillation

In a typical supervised learning setting, a neural network is trained with data in the

form (x, y), where in our case, x is a pathology report, and y is the associated label
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depending on the task (e.g., cancer site, subsite). This type of learning uses hard

labels, which means y is a one-hot encoded vector that contains binary information:

either y belongs to a certain class or it does not (i.e., [0,0,1]). Alternatively, one could

train a model with data in the form of (x, ~y), where ~y could be interpreted as the

probability that x belongs to each class (i.e., [0.1,0.1,0.8]). This paradigm is known

as soft labeling.

To distill the knowledge of the ensemble, we trained a single MtCNN using

the ensemble predictions (aggregated vectors) as the class labels for the respective

documents. Thus, the student model was trained with the same training documents,

X, but with the soft labels derived from the ensemble instead of the original hard

labels. Notably, our distillation implementation uses the categorical cross-entropy

loss function: CE(y, ŷ) =
∑K

k=1 y ∗ log ŷ where y is the soft label, ŷ if the softmax

prediction vector, and K is the number of classes. The following list describes the

steps we took to distill the knowledge of the ensemble model:

• Train 1,000 MtCNN models.

• Extract the softmax prediction vector of the 1,000 MtCNNs for each document

in the training set.

• Aggregate the prediction vectors by summing and normalizing. This will form

a new set of ~y labels, where the labels are vectors (soft labels).

• Train a single MtCNN using the original pathology reports, X, but with the

soft labels ~y instead of the original ground-truth labels.

By using the soft labels of the ensemble as the truth labels, we hypothesized that

the model would identify the same features that the ensemble used to produce the

classification probabilities.
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4.4.6 Selective Classification with Softmax Thresholding

In numerous application such as ours, low error rates are tolerated. In these problems,

abstention mechanisms are implemented so that only models with highly confident

predictions are used. In this study, we seek to maintain an error rate below 3% based

on the consensus of state cancer registry partners.

To accomplish this, we implemented a straightforward version of model abstention

that can be used with any trained model. Our goal was to satisfy the requirements

by finding a softmax threshold that will yield 97% accuracy. The specific procedure

is described as follows:

• Create a list of potential thresholds from 0 to 1 with a step size of 0.001 (i.e.,

[0.001, 0.002, ..., 0.999]).

• Using the validation dataset, find the smallest threshold so that when predic-

tions are filtered out with a softmax below this threshold, the accuracy is ≥0.97.

• Use this threshold as a rejection rule. At test time, discard predictions that

have a confidence below the selected threshold.

• Compute the percentage of documents that remain in the dataset after

abstention and measure accuracy of that subset of the data.

Although the abstention rate refers to the proportion of documents left out during

testing, in this study, we report results in terms of retention proportions : RP = X̂
X

where X̂ is the number of predictions made with confidence higher than the rejection

threshold, and X is the size of the dataset. Also note that RP=(100%-abstention

rate). Ideally, one will retain a large percentage of the data (high coverage) and

obtain an accuracy of ∼0.97 on these documents.
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4.4.7 Statistical Significance

We wanted to analyze if the student model performance was statistically better than

a standard MtCNN model trained with hard labels. To account for natural variation,

we used the 1,000 MtCNN models that we trained for the ensemble to derive 95%

confidence intervals.

4.4.8 Model Overconfidence

We analyzed model overconfidence by focusing on wrong predictions. We first

determined the distribution of prediction confidence (softmaxes) for all wrong

predictions. In this analysis, we compared the baseline MtCNN with the student

model to understand the extent to which the student model can reduce the number

of wrong predictions with high confidence.

In our second analysis of model overconfidence, we analyzed the number of

highly confident but wrong predictions for different ensemble sizes. In particular,

we quantified the number of wrong predictions made with a confidence of >0.97. Our

choice of a 0.97 threshold is based on the consensus of the cancer registries’ error

tolerance. This analysis was performed by averaging multiple samples obtained by

bootstrapping MtCNNs from the pool of 1,000 models and then creating ensembles

of the respective sizes.

4.4.9 Data and Label Noise Analysis

We hypothesized that data and label noise were both issues when training models for

classifying cancer pathology reports. We investigated the effects of model distillation

on data and label noise by examining the distribution of ensemble predictions and

inspecting individual reports.

We first verified that the ensemble predictions could effectively fix noisy labels.

To that end, we inspected documents in which a wrong prediction was made with

100% agreement between the 1,000 models.
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Our analysis of data noise was based on the assumption that the amount of

noise contained in the input will manifest itself in the distribution of votes across

the ensemble. Traditional majority voting uses Equation 4.1 to infer the ensemble

predictions [25], where dt,j = 1 if model t of the ensemble T predicts class j and

dt,j = 0 otherwise. Here, we were interested in cases where the number of votes were

split almost equally between two or three classes, meaning that there is not a clear

winner. For cases in which half of the ensemble predicts class y1, and the other half

predicts y2, we expected to observe a report that contained lexical patterns common

to both classes.

max
1≤j≤k

T∑
t=1

dt,j (4.1)

The distribution of ensemble votes have a direct impact on the derived soft labels.

For example, given a pathology report about the gum, half of the ensemble may

predict upper gum, and the other half may predict lower gum. Naturally, the resulting

soft label for such input is expected to represent such a division (i.e., [0.5,0.5,0, ...] =

[lower gum, upper gum, ...]). Thus, we wanted to visualize what aspect of the input

drives this type of predictive pattern and how that relates to the derived soft label.

4.5 Results

4.5.1 Selective Classification

Table 4.3 presents the results in terms of retention proportions (i.e., the percentage

of documents that would be classified when deploying the models). As expected,

when combining predictions from multiple classifiers, the ensemble model yielded the

best overall performance. We also observed that the student model outperformed

the baseline MtCNN for all tasks except for behavior (the task containing only 4

classes). We note that the major boost in performance was observed for subsite
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and histology, for which the absolute increase in coverage was ∼1.81% and ∼3.33%,

respectively. These are the two most difficult tasks because they are characterized by

a large number of classes and severe class imbalance.

Using the percentages from Table 4.3 and the size of the test dataset (R4: 441,732),

one can translate these values into the number of pathology reports. For example,

in subsite, the MtCNN and the student model classify 152,485 and 160,481 of the

441,732 reports, respectively. This indicates that the student model can be used to

classify an additional 7,996 documents. A similar calculation for the histology task

showed that the student model can predict an additional 14,710 pathology reports

(i.e., 120, 151− 105, 441 = 14, 710).

Table 4.4 lists the accuracy scores obtained among the non-abstained documents.

Although the individual softmax thresholds were tuned with the validation dataset

to yield a 97% accuracy, we still observed accuracy below our target performance in

all tasks except for behavior. This type of drop was expected owing to the natural

distribution shifts when applying models to new registries, and in practice, this drop

can be easily mitigated by using a higher target accuracy. Notably, the baseline

MtCNN exhibits performance well below the 97% target (see subsite and histology

in Table 4.4). The student model alleviates the performance drop, but it still fails to

reach the target.

4.5.2 Wrong Prediction Confidence

When implementing a softmax–threshold abstention mechanism, minimizing the

number of highly confident but wrong predictions is essential. That is because

having too many highly confident wrong predictions pushes the softmax threshold

toward 1, thereby leading to higher abstention percentages (i.e., less coverage).

We compared the prediction confidence distributions of the wrong predictions for

histology (Figure 4.2) and subsite (Figure 4.3). For both tasks, the student model

generated fewer wrong predictions with softmaxes above 90%, and this difference
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Table 4.3: Retention proportions results. The numbers shown represent the percentage of document remaining after
abstention (higher percentages means more coverage). Intervals represent 95% confidence intervals.

Model Site Subsite Laterality Histology Behavior
MtCNN 90.62 34.52 87.83 23.87 99.46

(90.61,90.63) (34.48,34.56) (87.82,87.85) (23.77,23.97) (99.45,99.46)
Student 91.10 36.33 88.49 27.20 99.98
Ensemble 92.17 39.00 89.60 34.16 99.42

Table 4.4: Accuracy results. Intervals represent 95% bootstrap confidence intervals.

Model Site Subsite Laterality Histology Behavior
MtCNN 96.06 94.43 96.05 95.12 97.69

(96.06,96.07) (94.42,94.45) (96.04,96.05) (95.10,95.14) (97.69,97.70)
Student 96.27 94.82 96.19 95.84 97.60
Ensemble 96.19 94.55 96.10 95.78 98.00



was particularly noticeable in the histology task. These plots illustrate the effects of

training models with hard and soft labels and their impact on selective classification

scores.

Figure 4.4 shows the effects of ensemble sizes on the number of wrong predictions

made with a confidence >0.97. We observed that the number of wrong predictions

decreased as the ensemble sizes increased, but this trend converges after an ensemble

size of approximately 200 models. We also note that most of the improvement occurs

with the addition of the first few models. That is, the ensembles with between 2 and

10 models exhibit the highest performance boost.

4.5.3 Data and Label Noise Analysis

We analyzed the effects of ensemble model distillation in terms of label noise

by manually reading pathology reports that were classified incorrectly with 100%

ensemble agreement. In every document we inspected, we found that those documents

were mistakenly annotated. As an example, we de-identified one of the documents

that was annotated as stomach but was classified as esophagus by every model

(Figure 4.5). This was a case in which a pathology report discussed the biopsy

of only one specimen, and lexical patterns tend to be consistent with the predicted

class. Notably, in cases in which there is a 100% agreement within the ensemble, the

associated softmax approximates the hard label (e.g., the predicted class contains a

value close to 1).

We also analyzed data noise by examining individual pathology reports based

on particular ensemble prediction patterns. Intuitively, we expected that when the

ensemble votes were split across multiple sites, the pathology report would discuss

specimens and biopsies that were associated with each of the predicted sites. As an

example, we de-identified a pathology report in which the ensemble votes were split

into three equivalent-size groups for the predictions of stomach, esophagus, and colon

(Figure 4.6). This is an example where the input contained lexical patterns related
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Figure 4.2: Histology Task. Distribution of softmaxes for the wrong predictions.

Figure 4.3: Subsite Task. Distribution of softmaxes for the wrong predictions.
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Figure 4.4: Wrong histology predictions made with confidence >0.97.

Figure 4.5: Incorrectly annotated pathology that was fixed during the distillation
process. Some sentences were removed to conserve privacy.
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to all three classes (see sections path comments and nature of specimens in Figure

4.6), and this misled the models’ predictions.

4.6 Discussion

This is the first study to quantify the abstention performance of ensemble model

distillation by using softmax thresholding for the classification of electronic cancer

pathology reports. Our results indicate that soft labels derived through ensemble

model distillation can effectively improve abstention performance. Therefore, in real-

world settings where inference resources are limited, our proposed distillation method

yielded considerable improvements while maintaining the computational cost of a

single model.

We measured performance by calculating the percentage of documents kept in the

dataset after abstention and the accuracy of those documents. We observed that the

student model outperformed the baseline MtCNN under both metrics and for four of

the five tasks. The most substantial improvements occurred in the two most difficult

tasks (subsite and histology), which contained the highest number of classes (326 for

subsite and 639 for histology). Thus, we showed that ensemble model distillation

can help increase the DL models’ coverage when deploying models in the real world,

thereby allowing practitioners to use AI systems in a larger volume of documents and

reduce the cost and time associated with manual annotation.

Although the performance increase obtained with the student model may seem

small, these improvement become substantial at a large scale. For the subsite

and histology tasks, the student model increases coverage by ∼1.81% and ∼3.33%,

respectively. These values represent 7,996 and 14,710 pathology reports using our

current test dataset. However, given the ACS predicts that 1.9 million new cancer

cases could be diagnosed in 2022 [95], and it takes approximately 2 minutes to read

each report, these percentages could represent 10,000+ pathology reports and 1,000s

of hours of manual annotation saved.
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Analyzing the distribution of ensemble votes and their resulting soft labels yielded

additional insight into data noise in pathology reports. During cancer diagnosis, it

is common to analyze multiple samples from tissues outside of the diseased organ.

The result is multiple pathology reports from numerous biopsies. We argue that

data noise is a serious issue in these reports because they contain lexical patterns

commonly associated with classes outside of their assigned ground-truth label. When

analyzing the ensemble vote distribution, we found that these particularly confusing

pathology reports can be identified by inspecting documents in which the ensemble

votes are split into equivalent-sized groups (Figure 4.6). In these cases, assigning a

soft label allows for degrees of truth to indicate that the word patterns and context of

the input do not belong exclusively to one class but to a group of classes. Conversely,

when inspecting documents with high ensemble agreement (i.e., cases in which soft

labels approximate hard labels), we found clear pathology reports that focus on one

specific class (Figure 4.5). The importance of this ensemble agreement and soft-

label relationship is that we can guide the student model to make highly confident

predictions for documents with little noise while lowering confidence for documents

that involve multiple sites.

An additional benefit of ensemble model distillation is alleviating label noise.

When predicting with 1,000 models, one can naturally expect that a 100% agreement

in predictions is likely to correspond with correct predictions. When inspecting

pathology reports that were wrongly classified with 100% ensemble agreement,

we found that these reports were actually incorrectly annotated (Figure 4.5).

Consequently, ensemble model distillation is a useful tool to reduce label noise

issues and is particularly beneficial in domains with a high number of highly related

classes. This result is consistent with previous work that used ensembles for label

correction [122, 92].

Notably, developing efficient abstention mechanisms is still an open area of

research. In this study, we implemented softmax thresholding, which is a common

abstention mechanism compatible with most DL models. We used the validation

105



dataset to identify a threshold that would yield a 97% accuracy. However, we observed

that when using this threshold in the holdout dataset, the resulting accuracy can be

as low as 94.42% (see subsite in Table 4.4). We hypothesize that this performance

disparity is amplified because of our leave-one-registry-out experimental setup, and it

may be a sign of further overfitting. The discrepancy observed between the validation

and test dataset highlights the need for future research that focuses on more efficient

abstention techniques.

Our results yielded insight into the effect of ensemble size on model overconfidence.

In this study, we implemented an ensemble of 1,000 models. However, our results

indicated that even an ensemble with between 4 and 100 models can reduce the

number of wrong predictions made with high confidence. This highlights the

accessibility of our methods because DL practitioners who have limited computational

resources can still benefit from the overconfidence reduction obtained through

ensemble model distillation.

The methods presented in this study are simple and highly parallelizable. The

literature on model ensembles and distillation is extensive and includes a large variety

of implementations. One can easily experiment by combining distillation with a

particular ensemble technique such as boosting [84] or bagging [11]. In this paper,

we focused on a simple implementation that involves training multiple versions of

our current classifier with different initializations. Previous work has shown that

the training models with distinct random seeds can infuse diversity in terms of the

inductive biases learned by the networks [19]. We hope that the simplicity of our

method can provide a convenient solution for other DL practitioners who intend to

reduce the number of highly confident but wrong predictions for the deployment of

DL models in high-risk domains.
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4.7 Conclusion

Extreme class imbalance together with data and label noise leads to serious overfitting

issues when training DL models for the classification of electronic cancer pathology

reports. Ensemble methods are a simple solution to alleviate these issues, but these

methods are computationally expensive and unsuitable for deployment by cancer

registries across the country. Thus, this study quantified the use of ensemble

model distillation as a low-resource alternative. The soft labels derived through

model aggregation contain information about the variability in ensemble predictions.

We showed that training a student model with the derived soft labels can reduce

the number of highly confident but wrong predictions, thereby leading to a boost

in abstention rates when using softmax thresholding. The implemented methods

provide a simple and highly parallelizable solution for researchers working in high-

risk domains. Our ensemble model distillation code is available on Github.∗

∗https://github.com/kevindeangeli/EnsembleDistillation/
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Figure 4.6: Pathology report in which the ensemble prediction votes were split into
three equivalent groups. This report includes results of three analyzed specimens
related to the stomach, esophagus, and colon. Some sentences were removed to ensure
privacy.
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Chapter 5

Conclusion
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5.1 Summary of Findings

Overfitting is a common issue in domains with high class imbalance because ML

models tend to memorize samples from under-represented classes, leading to poor

generalization [65]. This is a serious issue in cancer pathology report classification

where, for example, two of the 639 histology classes compose ∼ 40% of the dataset.

One way to alleviate overfitting of the minority classes is by obtaining more

documents (training samples) from these rare cancer types. However, as previously

mentioned, obtaining labels for cancer pathology reports is a costly and time-

consuming task. In addition, annotators typically select a random subset of the pool

of unlabeled data to assign labels, and it is impossible to tell if this subset contains

any minority classes at all. As more and more data is annotated, the class imbalance

remains relatively constant even if the number of documents belonging to rare classes

increase. Thus, in Chapter 1 we introduced the following research question:

How can we intelligently select a distinct subset of a larger pool of unlabeled

data so that manual annotator efforts are maximized? In other words, can

we focus annotation efforts on pathology reports that will maximize the

information gain and reduce overfitting? And what are the implications of

selecting a particular subset of data in terms of class imbalance and rare

classes?

In Chapter 2 we implemented 11 active learning algorithms and showed that these

algorithms can help us identify informative documents from a large pool of unlabeled

data. Our experiments showed that by using active learning techniques, we can

achieve peak performance with only half of the available data. Furthermore, one of

the most valuable finding of this study is that active learning can be highly valuable

in domains with extreme class imbalance since these algorithms effectively sample

documents from minority classes, increasing their representation in the dataset and

reducing class imbalance.

110



Overall, Chapter 2 presents a potential set of tools that trained annotators could

use to sort and prioritize which documents should be labelled first. The significance of

our results is that we can potentially reduce expensive annotators costs by integrating

AL techniques into the data annotation workflow. Based on our study, we formulated

a comparison table of the 11 algorithms in terms of micro/macro scores obtained and

the computational cost of each technique. We hope our table can serve as a guide to

other ML practitioners working on problems with large amount of labels and extreme

class imbalance.

One potential drawback is that some of the documents selected by the active

learning algorithms may be considered informative when in reality they make contain

a lot of noise. In other words, a DL model may find documents that are hard to classify

not because it does not know enough about that class, but because the information

contained in the pathology report is not representative of any class. This potential

problem is hard to quantify since it involves manually reading documents filled with

technical, domain-specific terms. Nevertheless, we expect that even if AL techniques

sample some noisy documents, the proportion is likely so be small since the accuracy

and macro scores are still relatively high.

We note that we observed a boost in performance with a relatively small dataset.

Late iterations of AL have a small subset of the data available to select documents,

and the pool of pathology reports may not be highly informative. Thus, most of

the boost in performance occurs during the early iterations of the experiments. This

would be different if AL techniques were deployed in the real world because new

unlabeled cancer pathology reports are stored every day, and the pool of unlabeled

data would continue to increase instead of shrinking.

While active learning showed promising results as a potential tool to reduce

overfitting by sampling documents from minority documents, we were still missing a

proper way to quantify the differences in performance between lab testing and real-

world deployment as reported by NCI. Thus, the second research question and topic

that we proposed in Chapter 1 was:
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Can we design experiments that are more reflective of the real-world

deployment so that we can quantify the performance drop reported by

registries? We want to analyze how the distribution of rare cancer classes

varies between in-lab training and real world deployment. We consider

the use of ensemble learning to tackle overfitting and mixture-of-experts

methods to boost rare classes performance.

In chapter 3, we focused on quantifying the performance of the MtCNN in out-

of-distribution datasets. To that end, we developed experiments following a leave-

one-out-approach. Previous studies involving the classification of cancer pathology

reports were developed by combining the individual datasets from all six registries

into one main dataset and performing a 80/10/10 split after random shuffle. Instead

of combining all the individual datasets, here we combined five of them that we

used for training and validation, and use the left-out dataset as an out-of-distribution

dataset for testing. We then analyzed the differences between the training and testing

datasets and found that different prevalence of cancers leads to large variations of class

distribution between the training/validation and testing datasets. The implications of

this finding is that there exists cancer types which are common within a region of the

country and constitute a large percentage of the data, but are considered rare in other

areas. Deep learning models are known to be biased towards the top classes since they

drive the loss function. Hence, the distribution of classes will affect the features it

learns and which classes receive more attention. The distribution of minority classes

differs greatly across registries leading to a large underperformance of the model in

OOD datasets in terms of macro scores. To alleviate this issue, we experimented

with traditional class imbalance techniques to reduce overfitting and boost macro

scores. We compared the performance of techniques from two major groups: data-

level techniques and algorithm-level methods. One of the main takeaways of this

chapter is the efficient generalization power obtained by ensemble methods. However,

ensemble models are computationally expensive, which limit their usability when
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deployed in the real world by cancer registries. This lead us to our third research

question presented in Chapter 1:

Can we distill the knowledge of an ensemble into a low-resource model that

can be used by cancer registries? In addition to the overfitting reduction

benefits associated with ensembles, we want to use ensemble learning to

derive soft labels that quantify the uncertainty inherent in labeled data.

We hope that the derived soft labels will help us boost abstention rates

so that the model can be used in a larger subset of data. In this chapter,

we tackle the problem of data and label noise with soft labels.

In Chapter 5 we experimented with distilling the knowledge of 1,000 MtCNN

models into a single MtCNN. We showed that ensemble predictions provide a useful

strategy for quantifying the uncertainty inherent in labeled data, enabling the

construction of soft labels with estimated probabilities for multiple classes for a given

document. A key takeaway of this work is that the derived soft-labels provide an

alternative solution to deal with the extreme levels of noise found in the pathology

reports. Documents that are hard to classify (either because they belong to rare

classes or because of the noise present) are naturally associated with high ensemble

disagreement. As a result, these documents receive soft-labels which tend to be

uniform, allowing for degrees of truth that more accurately represent such pathology

reports. We argued that this has implications in terms of predictive confidence

because during training, the model is not guided to predict with a confident of 1

for these noisy documents. Predictive confidence is directly connected to softmax-

based abstention, and we showed that ensemble model distillation can effectively boost

abstention performance. Ultimately, we showed that by distilling the knowledge into

a single model, cancer registries could deploy a low-resource classifier that will abstain

less and allow them to apply the model to a higher percent of documents.
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5.2 Future Work

5.2.1 Registry-specific models

As we previously stated, differences in data collection and processing across registries

create variations which likely hurt the model performance. A standard pathology

report from the raw dataset, before we apply preprocessing steps, consists of different

sections such as textPathComments, textPathFormalDx, textPathGrossPathology, and

textPathNatureOfSpecimens. Depending on the registry that collected a specific

report, some document populate all these fields while other pathology reports from a

different registry may only populate half of these sections. Thus, differences in the way

information is stored create natural variations between the dataset. One natural way

to deal with these variations is by training registry-specific models which are trained

using only the data from those registries. In such scenario, these models would then

only be deployed in their respective registries. Advantages of having registry-specific

models include 1) data will be consistent which is likely to help during model training,

and 2) the class distribution would be representative of the population, leading to

more calibrated prior probabilities.

A negative side of this approach is that if constitutes one step away from the ideal

goal of having a single model that works for all cancer pathology reports. In addition,

such solution will involve the maintenance and recurrent training of multiple models

(one for each registry) which, in the long term, may be expensive and time-consuming.

5.2.2 Class Hierarchy, Cascade Learning, and Domain Knowl-

edge

The dense layer that generates the output of the current MtCNN model treats classes

as independent. However, there exists some natural relations between classes. For

example, a prediction of Site limits the subset of potential Subsite predictions. That

is, predicting Site = C34: Bronchus and Lungs and Site = C50.1: Central portion of
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breast for the same document is a clear contradiction. Currently, although uncommon,

there is nothing in the model that prevents these contradictions.

We argue that class relations not only should be taken into consideration to avoid

illogical predictions, but these relations can be used to model the problem more

efficiently. Manually inspecting and defining rules for all class relationship could be

unfeasible. However, integrating a few conditions as domain knowledge could simplify

the problem and potentially boost performance. As an example, the official coding

manual states that when labeling Laterality one should “Assign code 0 when a. The

primary site is not a paired site, b. Primary site is unknown (C809), [...]”. The

significance of this coding rule is that a prediction for Site could potentially give you

the prediction for Laterality and vice versa.

From a modeling perspective, one can attempt to model the problem so that a

prediction for one task is taken into consideration when predicting some other class.

Future research could investigate redesigning the MtCNN as a cascade model where,

for example, a prediction for Site is fed into another layer that produces the prediction

for Subsite. Alternative, one could attempt to allow the model to decide for what

classes it produces a prediction based on the input document and then use those

outputs to predict the rest of the tasks.

5.2.3 Alternative Data Pre-processing

The current prepossessing steps involve concatenating all the available sections

(see Section 5.2.1) of the pathology into one single document. This practice

was adopted because 1) most NLP models were developed to accept one input,

and 2) because of the variation across registries, it is never guaranteed that a

pathology report will include text in all sections (for example, not all reports include

textPathNatureOfSpecimens).

However, we argue that there is a possibility that we may be losing information

when concatenating all the fields of the path report into one main document. That
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is, perhaps the most important word segments for one class are included in one of the

sections. By concatenating all the fields, we may be generating noise and losing some

structural information that could be exploit by a machine learning model. Future

research direction could investigate variations of multi-input neural networks such as

the one implemented in [98].

5.2.4 Problem Complexity Reduction

The histology and subsite tasks consists of 639 and 326 classes, respectively. As

previously mentioned, some of these classes are extremely rare and a very small

percentage of the data belongs to these classes. As a result, ML models may not

have enough information to identify patterns to successfully classify these minority

classes at test time. Considering the low error rate requirements, we hypothesize that

it may be beneficial to focus on the classes which appear frequently enough so that

the ML models can extract the features to accurately classify these classes. However,

we acknowledge that there are numerous challenges associated with this approach.

Firstly, the model will have to be calibrated well enough so that when it encounters

one of the left-out classes, it abstains to predict; otherwise, these minority classes

would be erroneously classified as one of the more frequent classes. Secondly, it can

be challenging to establish a threshold to decide what classes the model knows well

enough to include and which classes should be excluded.
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A Chapter 2 Supporting Information

A.1 Additional file 1 — Dataset class imbalance plots.

(a)

(b)

Figure A.1: Class imbalance plots.

A.2 Additional file 2 — Text preprocessing steps.

1. Remove identifier segments (registry ID, patient ID, tumor number, and

document ID)

2. Remove XML tags
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3. Convert unicode to ASCII

4. Lowercase

5. Replace tabs and line breaks with spaces

6. Replacing all instances of floats with the string “floattoken”

7. Replace all integers higher than 100 with the string “largeinttoken” (to reduce

the number of unique tokens associated with numbers)

8. If the same non-alphanumeric character appears consecutively more than once,

replace it with a single copy of that character

9. Add a space before and after every non-alphanumeric character

10. Remove words longer than 25 characters to reduce noise (these are generally

artifacts from format conversions)

11. Tokenize document

12. Replace any token that appears less than 5 times across the entire corpus with

the string “unknowntoken”

13. Add padding or truncate document to 1500 tokens

A.3 Additional file 3 — Bootstrapping procedure for confi-

dence. interval

The 95% confidence intervals presented in this paper were computed as follows:

1. Compute and save the accuracy of every model on the test data set; this is the

original accuracy.

2. Create a new dataset by sampling documents with replacement from the test

dataset.
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3. Find the accuracy of the model in this new dataset.

4. Repeat steps two and three 2,000 times and store all accuracy results.

5. Calculate the 95% confidence interval by finding the 2.5 and 97.5 percentiles.

A.4 Additional file 4 — Performance of cold start ratio sam-

pling, warm start ratio sampling, and random sampling

on the histology task (small dataset).

Figure A.2: Cold start ratio sampling vs. warm start ratio sampling.

A.5 Additional file 5 — Training/testing and inference time

for the histology experiment (large dataset) using ratio

sampling.
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Table A.1: Training inference time.

Data Used Time (seconds)

15K 811.93

30K 1328.5

45K 1255.31

60K 1785.73

75K 1361.69

90K 1835.19

105K 1814.94

120K 1857.69

135K 2551.22

150K 3206.75

162K 3228.64

Table A.2: Testing inference time.

Time Complexity 1 Sample

(Testing) 0.000419609035934 Seconds

A.6 Additional file 6 — Large dataset: micro/macro F-1

scores table - histology task.

This table was included as an external file in excel format (see AF 1 6.xlsx).

A.7 Additional file 7 — Large dataset: micro/macro F-1

scores table - subsite task.

This table was included as an external file in excel format (see AF 1 7.xlsx).
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A.8 Additional file 8 — Small dataset: micro/macro F-1

scores table - histology task.

This table was included as an external file in excel format (see AF 1 8.xlsx).

A.9 Additional file 9 — Small dataset: micro/macro F-1

scores table - subsite task.

This table was included as an external file in excel format (see AF 1 9.xlsx).

A.10 Additional file 10 — Large dataset: class imbalance -

histology task.

Figure A.3: class imbalance - histology task.

A.11 Additional file 11 — Large dataset: class imbalance -

subsite task.
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Figure A.4: class imbalance - subsite task.
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A.12 Additional file 12 — Small dataset: class imbalance -

histology task.

Figure A.5: class imbalance - histology task.

A.13 Additional file 13 — Small dataset: class imbalance -

subsite task.

Figure A.6: class imbalance - subsite task.
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A.14 Additional file 14 — Large dataset: class proportion

plots - histology.

Figure A.7: Large dataset: class proportion plots - histology task.
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A.15 Additional file 15 — Large dataset: class proportion

plots - subsite task.

Figure A.8: Large dataset: class proportion plots - subsite task
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A.16 Additional file 16 — Small dataset: class proportion

plots - histology task.

Figure A.9: Small dataset: class proportion plots - histology task
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A.17 Additional file 17 — Small dataset: class proportion

plots - subsite task.

Figure A.10: class proportion plots - subsite task.
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A.18 Additional file 18 — Document embeddings generated

via TSNE for histology task (small dataset) with and

without 10 iterations of active learning. Documents

are colored by majority class (number of total samples

in dataset above average) and minority class (number

of total samples in dataset below average).

Figure A.11: Document embeddings.

146



B Chapter 3 Supporting Information

B.1 Supplementary material.

Class frequencies for histology and subsite.

Class frequencies were included as an external file in excel format (see ClassDistribu-

tions.xlsx). Full names associated with each class code can be found in [86].

Micro and macro scores for each individual registry.

Score tables were included as an external file in excel format (see IndividualReg-

istryResults.xlsx)

B.2 Undersampling Results

Table B.1: Undersampling results for the histology task. As in our previous result,
this table represents the average of 7 individual results, one for each left-out registry
(see 3.4.8). Discarding pathology reports from the top classes diminishes the micro
F1 scores to non-permissive levels.

Percentile Threshold Test Micro Test Macro OOD Micro OOD Macro

50th 0.4528 0.3585 0.4456 0.2979

90th 0.6330 0.4585 0.6222 0.3768

95th 0.6885 0.4539 0.6705 0.3808
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