3,139 research outputs found

    Classifying and generalizing successful parameter combinations for sound design

    Get PDF
    Operating parametric systems in the context of sound design imposes cognitive and practical challenges. The present contribution applies rule extraction to analyze and to generalize a set of parameter combinations, which have been preselected by a user since they produce sound results within a desired perceptual category. Then, it is discussed how and under which conditions these generalizations can be used, for example, for the automation of specific tasks.Peer ReviewedPostprint (author's final draft

    Emotional classification of music using neural networks with the MediaEval dataset

    Get PDF
    The proven ability of music to transmit emotions provokes the increasing interest in the development of new algorithms for music emotion recognition (MER). In this work, we present an automatic system of emotional classification of music by implementing a neural network. This work is based on a previous implementation of a dimensional emotional prediction system in which a multilayer perceptron (MLP) was trained with the freely available MediaEval database. Although these previous results are good in terms of the metrics of the prediction values, they are not good enough to obtain a classification by quadrant based on the valence and arousal values predicted by the neural network, mainly due to the imbalance between classes in the dataset. To achieve better classification values, a pre-processing phase was implemented to stratify and balance the dataset. Three different classifiers have been compared: linear support vector machine (SVM), random forest, and MLP. The best results are obtained with the MLP. An averaged F-measure of 50% is obtained in a four-quadrant classification schema. Two binary classification approaches are also presented: one vs. rest (OvR) approach in four-quadrants and binary classifier in valence and arousal. The OvR approach has an average F-measure of 69%, and the second one obtained F-measure of 73% and 69% in valence and arousal respectively. Finally, a dynamic classification analysis with different time windows was performed using the temporal annotation data of the MediaEval database. The results obtained show that the classification F-measures in four quadrants are practically constant, regardless of the duration of the time window. Also, this work reflects some limitations related to the characteristics of the dataset, including size, class balance, quality of the annotations, and the sound features available

    A Computational Model for the Acquisition and Use of Phonological Knowledge

    Get PDF
    Does knowledge of language consist of symbolic rules? How do children learn and use their linguistic knowledge? To elucidate these questions, we present a computational model that acquires phonological knowledge from a corpus of common English nouns and verbs. In our model the phonological knowledge is encapsulated as boolean constraints operating on classical linguistic representations of speech sounds in term of distinctive features. The learning algorithm compiles a corpus of words into increasingly sophisticated constraints. The algorithm is incremental, greedy, and fast. It yields one-shot learning of phonological constraints from a few examples. Our system exhibits behavior similar to that of young children learning phonological knowledge. As a bonus the constraints can be interpreted as classical linguistic rules. The computational model can be implemented by a surprisingly simple hardware mechanism. Our mechanism also sheds light on a fundamental AI question: How are signals related to symbols

    Branch-and-Prune Search Strategies for Numerical Constraint Solving

    Get PDF
    When solving numerical constraints such as nonlinear equations and inequalities, solvers often exploit pruning techniques, which remove redundant value combinations from the domains of variables, at pruning steps. To find the complete solution set, most of these solvers alternate the pruning steps with branching steps, which split each problem into subproblems. This forms the so-called branch-and-prune framework, well known among the approaches for solving numerical constraints. The basic branch-and-prune search strategy that uses domain bisections in place of the branching steps is called the bisection search. In general, the bisection search works well in case (i) the solutions are isolated, but it can be improved further in case (ii) there are continuums of solutions (this often occurs when inequalities are involved). In this paper, we propose a new branch-and-prune search strategy along with several variants, which not only allow yielding better branching decisions in the latter case, but also work as well as the bisection search does in the former case. These new search algorithms enable us to employ various pruning techniques in the construction of inner and outer approximations of the solution set. Our experiments show that these algorithms speed up the solving process often by one order of magnitude or more when solving problems with continuums of solutions, while keeping the same performance as the bisection search when the solutions are isolated.Comment: 43 pages, 11 figure
    corecore