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Abstract. The rapid expansion of multimedia digital
collections brings to the fore the need for classifying not
only text documents but their embedded non-textual
parts as well. We propose a model for basing classifica-
tion of multimedia on broad, non-topical features, and
show how information on targeted nearby pieces of text
can be used to effectively classify photographs on a first
such feature, distinguishing between indoor and outdoor
images. We examine several variations to a TF*IDF-
based approach for this task, empirically analyze their
effects, and evaluate our system on a large collection
of images from current news newsgroups. In addition,
we investigate alternative classification and evaluation
methods, and the effects that secondary features have on
indoor/outdoor classification. Using density estimation
over the raw TF*IDF values, we obtain a classification
accuracy of 82%, a number that outperforms baseline es-
timates and earlier, image-based approaches, at least in
the domain of news articles, and that nears the accuracy
of humans who perform the same task with access to com-
parable information.

Keywords: Image categorization – High-level image fea-
tures – Text similarity features – Probabilistic TF*IDF –
Evaluation in the presence of uncertainty

1 Introduction

As digital collections on the World Wide Web, corpo-
rate intranets, and CD-ROMs increase vastly in size and
availability, it is becoming increasingly important to find
efficient methods of categorizing not only text documents
but also images, video, sound files, and other multime-
dia embedded within a document. Work in information
retrieval has focused primarily on text, and then on classi-
fying an entire document as relevant to a particular query

or as a member of a specific class. Yet, much is to be
gained by independently categorizing and indexing pieces
of a document from different media; multimedia informa-
tion arguably follows a different classification hierarchy
than text, and more factors than topical relevance come
into play when an image or other non-text data is in-
cluded within a document. For example, a news article
on the recent events in Kosovo may include a picture of
an airplane at a U.S. base, even though that particular
aircraft never participated in the operations described in
the article. The same image can frequently be found in
multiple related documents, and, conversely, an indepen-
dent classifier of images could help select an image from
a broad, separate collection for illustrating a summary of
a text-only source. Undesirable images (e.g., advertise-
ments) could also be detected and pruned before a docu-
ment is displayed to the user.

In the present work, we explore such an independent
classification for images, using information from associ-
ated text sources such as captions and the surrounding
text in the document in which the image is embedded.
We are informed and motivated in this endeavor by the
parallel development of a multimedia, multiple-document
summarizer [1], where appropriate images can enhance
the text summary. Our approach centers on the develop-
ment of a suitable class hierarchy of broadly applicable
visual features that will facilitate the selection of appro-
priate images for such summaries, even when fine distinc-
tions (such as the subject matter of the image) are not
available. Such features include classifying the images as
indoor or outdoor; as containing one or a few persons or
a crowd or no people at all; and as depicting a natural
landscape versus a city scene. If independent classifiers
can be designed for these features, then we can infer the
appropriateness of the image for a particular descriptive
purpose with high likelihood given only a little domain
guidance. For example, an outdoor image with no peo-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161444117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


262 C.L. Sable, V. Hatzivassiloglou: Text-based approaches for non-topical image categorization

ple from the terrorism news domain is likely to show the
scene of an event or its aftermath, while an indoor photo-
graph with a crowd of people probably refers to a related
press conference. Additional techniques can refine these
inferences by using, for example, information extraction
methods [44] to identify the location of an event or the
names of specific participants in the images.

The more traditional technique of searching the text
associated with an image for relevant keywords (such
as “meeting” or “press conference”) may not always be
successful, given the variability and richness of natural
language. For example, an examination of press confer-
ence photographs in the collection of images we describe
in Sect. 3 shows that often the captions do not include
the words “press conference” or its synonyms, but other
related words such as “speaks”, “answers questions”,
“faces reporters”, etc. Sometimes the text cannot be in-
terpreted without significant inferencing on the part of
a word-indexing system, as is the case with the headline
“Greenspan best prescription for economy”, announcing
Greenspan’s re-appointment as chairman of the Federal
Reserve Bank. On the other hand, an approach that bases
classification on broader features that can be reliably ex-
tracted can offer an alternative means for classifying cases
where synonymy, polysemy, and paraphrases hamper tra-
ditional text-based classification.

We report in this paper on our methods and results for
classifying images as indoor versus outdoor. We chose this
visual feature as a basis for a first division of the images
because of its plausibility as an indicator of image con-
tent and because it is used as a high-level feature in image
ontologies for image and digital signal processing [42]. It
is also a feature for which purely visual classifiers can be
built [22, 40]; in fact, we are developing such classifiers
in parallel with the text-based ones described here and
investigating ways to integrate them. Although we have
focused on this category, the methods described in the
paper are independent of the specific feature and can be
applied to any of the broad categories identified earlier.1

Our indoor/outdoor classifier for images is based
on information retrieval measures of text similarity,
such as term frequency and inverse document frequency
(TF*IDF) [28, 30]. Unlike information retrieval, however,
we have to work with small pieces of text (a caption or
a portion of a caption). Hence, we examined and eval-
uated several potential improvements to standard IR
techniques, such as using targeted parts of the avail-
able text, limiting ourselves to particular word classes,
and partially disambiguating words according to their
part of speech. We collected a large sample of 1675 im-
ages for training and evaluation, and had multiple human
volunteers assign indoor or outdoor labels to them. We
measured individual human performance on this task

1 The main cost for moving on to new categories involves the ne-
cessary manual labeling of a large set of images for training and
evaluation.

against the standard implied by their agreement, and
compared our system’s performance to the humans, a de-
fault baseline classifier, and image-based classifiers that
operate on purely visual features (e.g., color, texture, and
edge direction features). We optimized our classifier using
three-fold cross-validation, varying several of the TF*IDF
parameters and optional features and determining which
of the features have a major effect on performance. Using
probability density estimates for the output of the classi-
fier, we are able to correct several potential misclassifica-
tion errors. Our results show that the automatic system
outperforms the baseline and image-based classifiers, ap-
proaching the accuracy of the human volunteers, at least
in our collection of news-related images. We extend these
results by considering an experiment on an evenly dis-
tributed data set, an alternative evaluation method, and
the effects of lenient versus strict definitions of the in-
door and outdoor categories. We also explore another
method for identifying words that discriminate between
the two categories, we measure the effect of additional
high-level features (in this case, the number of people
in each image) for indoor/outdoor classification, and we
summarize parallel research we are involved in together
with image processing researchers at Columbia, on the
development of an image-based system for the same task.

2 Related work

Our classification approach draws on a long line of
work for measuring text similarity, mostly in an infor-
mation retrieval context. Most of the information re-
trieval approaches rely on single words (e.g., [28, 30]),
although sometimes compounds and collocations have
been used [35]. Some of the features we explore (e.g., ig-
noring capitalization) are also used by default in most IR
systems. Other, more natural language-informed features
have found mixed success in information retrieval (e.g.,
[Salton and Smith 1989; Gay and Croft 1990; Smeaton
1992]), although the usefulness of each feature needs to
be evaluated separately for each application. (Classify-
ing images based on captions is different than classifying
entire documents.)

For topical image classification, keywords extracted
from a document have been used to index an associated
image [2, 38], and similarity between images has been
measured on the basis of shared image features [19, 23,
37] and by a combination of textual and image feature
matches [20, 38]. Rowe and Guglielmo [26] and Smeaton
and Quigley [36] use information from captions for re-
trieving (rather than classifying) images given a query.
Harmandas et al. [10] combined evidence from text con-
tent and the hypertext structure of the Web for retriev-
ing images from the Web. Srihari [39] uses face detection
techniques along with name extraction from the captions
for linking faces in images to specific people. Satoh et al.
[32] use face detection techniques along with name ex-
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Table 1. Number of images assigned each combination of labels by human evaluators for the in-
door/outdoor classification. The table is presented in symmetric form, by combining cases where

evaluator A uses labelX and evaluator B label Y with the cases where the two evaluators are reversed

First evaluator
Second evaluator

Indoor Likely indoor Ambiguous Likely outdoor Outdoor

Indoor 401 62 28 17 39

Likely indoor 12 12 15 17

Ambiguous 14 11 21

Likely outdoor 12 76

Outdoor 938

traction from closed captions for linking faces in video to
specific people.

Classification of images along broad-based, non-topical
features such as those we are exploring has received less
attention in the image processing literature, although this
is beginning to change. Forsyth and Fleck [7] present an
image-based detector for naked people. Szummer and Pi-
card [40] describe an approach for separating consumer
photographs into indoor and outdoor classes. Both of
these approaches utilize as their input only low-level
visual features, such as color and edge direction. Schnei-
derman and Kanade [33] use local appearance and spa-
tial relationships to detect faces or profiles. Oliva et al.
[21] and Torralba and Oliva [41] use spectral templates
to classify real-world scenes along broad semantic axes.
Fung and Loe [8] use a mix of primitive semantics and
scene semantics to classify images into scene classes such
as rural, farm, beach, etc. Lipson et al. [18] present an
approach which uses qualitative spatial and photometric
relationships within and across regions in low resolution
images to classify natural scenes.

3 Data set

Our raw data set consists of 21,086 news postings from
April 1997 to May 1998 from a variety of Usenet current
news newsgroups. Of these, 1490 contain, in addition to
a text article, one or two embedded images, each with
an associated caption. Due to some articles having two
embedded images with captions, our collection contains
a total of 1675 image/caption pairs. Captions are gener-
ally two to four sentences long. The first sentence in the
caption tends to describe the image, while the remainder
usually gives background information and establishes the
relevance of the image to the story. For example:

BANGKOK, THAILAND, 9-NOV-1997: New Thai
Prime Minister Chuan Leekpai gives a traditional
“wai” to thank members of his party applauding his
entrance, November 9, during a ceremony appointing
him as the country’s 23rd prime minister in Bangkok,

Thailand. Chuan was named prime minister for the
second time, replacing Chavalit Yongchaiyudh at the
helm of a country plagued by economic woes.

For training and testing, a web-based interface was
set up allowing volunteers to label images according to
two high-level features. The first feature corresponded
to the indoor versus outdoor dichotomy, and the choices
given were Indoor, Outdoor, Likely Indoor, Likely Out-
door, and Ambiguous. The second feature was the number
of people, and the available choices were No People, One
Person, Two People, Three or More People, Crowd, and
Ambiguous. In both cases, the authors went over a sample
of images in advance, identified potential problems, and
supplied the evaluators with detailed instructions which
can be viewed at http:// www. cs. columbia. edu/ ~sable/
research/readme.html.2

Using our interface, fourteen volunteers labeled the
images under different access conditions: by viewing the
image alone, the caption alone, both the image and the
caption, or just the first sentence of the caption. Each
image was categorized by two different people under the
full access condition (when volunteers viewed both the
image and caption), which we consider representative of
normal use of the images in multimedia documents. We
use the labels obtained for this condition as the basis for
both our training and testing sets. A single label for each
of the indoor/outdoor and number of people questions
was obtained for each image under the other conditions,
and these were used to estimate human performance and
for comparison with our system (which uses only text in-
formation). Table 1 shows the distribution of label pairs
for the indoor/outdoor classification task.

For the indoor versus outdoor distinction, analysis of
the assigned labels reveals that in most cases (87.7%),

2 For several classification tasks, a large portion of the data will
be classified as “other”, in a category containing cases to which the
classification does not apply (e.g., if the classification involves dif-
ferent types of vehicles, non-vehicle images will fall into the “other”
category). We assumed that such cases would be infrequent in the
two classification tasks examined here, a position that is supported
by the low numbers of images classified as “Ambiguous” or in dif-
ferent categories by different evaluators.
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a definite indoor or outdoor judgement was made, and
only 3% of labels assigned were “Ambiguous”. Agreement
between humans was also high: in 1377 of the 1675 images
(82.2%), the two evaluators assigned exactly the same la-
bel to an image, and 90.4% of the images had compatible
labels, although sometimes with different degrees of con-
fidence. There was, however, some disagreement between
human categorizers. One hundred and thirty-seven im-
ages had labels that differed by more than one step on
the scale from “definite indoor” to “definite outdoor”,
and 39 of them had in fact one “definite indoor” and one
“definite outdoor” label. Our analysis of the labels for
the number of people feature indicated a somewhat lower
but still significant level of agreement (80.4%). Inspec-
tion of the images that received conflicting labels reveals
that several of the disagreements are due to mistakes by
the categorizers, but in some cases, even markedly differ-
ent labels can be attributed to different opinions about
how terms like “indoor” and “outdoor” should be de-
fined. For example, close-ups of people within a vehicle
such as a car or a plane, or pictures of people under the
roof of a structure with no walls, were often labeled differ-
ently by different judges. Figure 1 shows one of the images
that reasonable people could disagree on; more can be in-
spected at http://www.cs.columbia.edu/~sable/ unusual.
html.

We have compiled five different sets of images accord-
ing to these manual categorizations. First, we consider
the images for which both evaluators provide a definite
judgement in the same direction on the indoor versus out-
door question. This set contains 1339 images (79.9% of
the original 1675) and is the primary focus of our ex-
periments. 401 (29.9%) of these images were classified as
indoor while 938 (70.1%) were classified as outdoor.

Our second experimental data set relaxes the require-
ment of strong beliefs from each evaluator. It consists of
those images that received two judgements in the same di-
rection on the indoor versus outdoor question, regardless
of the reported degrees of confidence. This set includes
1501 images (89.6% of the original 1675). Four hundred

Fig. 1. An image that is hard to classify as indoor or outdoor

and seventy-five (31.6%) of them are classified as indoor
while 1026 (68.4%) are classified as outdoor.

We also created a third data set with an equal num-
ber of indoor and and outdoor images. This is a subset
of the primary set defined above. It consists of the same
401 indoor images and also 401 of the outdoor images. See
Sect. 6 for a further discussion of how the outdoor images
were selected for this data set.

Turning to the number of people question, we define
a fourth set, consisting of the images that received identi-
cal (non-ambiguous) judgements from both evaluators on
that question. This set includes 1346 images (80.4% of the
total), further divided as 88 (6.5%) with no people, 304
(22.6%) with one person, 213 (15.8%) with two people,
609 (45.2%) with three or more people, and 132 (9.8%)
with crowds. We also define a fifth experimental set for
studying the interaction between the indoor/outdoor and
number of people categories, as the intersection of the
first and fourth sets described above. This last set con-
tains 1081 images (64.5% of the total).

4 Measuring similarity
for indoor/outdoor classification

We base our classification of images into indoor or out-
door classes on a measure of similarity between each docu-
ment we examine and the two category prototypes that
correspond to the two classes. The term document is used
above with a general sense, standing for any piece of text
that is associated with the image under consideration; in
many of our experimental runs, this is much smaller than
the entire article that contains the image.

For a single piece of text, a word’s TF, or term fre-
quency, is the number of times that this word occurs in
that text. For a category (such as all indoor images), the
TF assigned to a word is the number of times that word
occurs in all documents of that category. A word’s IDF, or
inverse document frequency, is the logarithm of the ratio
of the total number of documents to the word’s DF, or
document frequency, which is the number of documents
that contain that word; this measure remains constant
independently of the particular document or category ex-
amined. Their product, TF*IDF,

TFIDF (word) = TF (word)× log

Total number
of documents
DF (word)

(1)

is therefore highest when a word contains a balance of
high frequency within a document or category (signifying
high importance to the document or category) and low
overall dispersion within the collection (signifying high
specificity). Note that (1) applies to both single docu-
ments and categories; in each case, only the TF quantity
changes in the formula.

Every document and category is represented by a vec-
tor of TF*IDF values, with each element corresponding
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to a word. By abstracting content in this manner, word
vectors of documents and categories can be compared to
determine how well a document fits in each category. We
use the inner product between document and category
vectors, i.e.,

Score(document, category) =∑

i

TFIDFdocument [i]×TFIDFcategory [i] (2)

as our measure of similarity. Each document is then as-
signed to the category for which the fit is best, i.e., for
which (2) is maximized.

We varied this measure of similarity in different ex-
perimental runs by using different restrictions on what
enters the TF*IDF formula (i.e., what a “word” is) and by
modifying (2) with the introduction of normalizing fac-
tors. Our first set of parameters, corresponding to the
definition of words, involves four choices:

– Text span considered. What is the text that should
be associated with each image, becoming the “doc-
ument” in the TF*IDF calculations above? We have
experimented by using the entire article, the article
without the image caption, just the caption, or only
the first sentence of the caption. While the articles
are longer and provide more information about the
related story than the caption, they are less related
to the specific image, and therefore may contain too
much noise to be helpful for the type of categorization
we are performing. Hence, we can trade some informa-
tion of questionable quality for increased specificity by
limiting ourselves to the caption only. Similarly, the
first sentence of the caption tends to be more descrip-
tive of the image than the rest, which often provides
background information.

– Restriction to specific grammatical categories.
Should all the words in the selected text span be
included in the TF*IDF computations? Open-class
words (i.e., adjectives, nouns, verbs, and adverbs)
carry in general most of the content information, while
words such as numbers and pronouns do not usually
affect an image’s classification. We used a statistical
part-of-speech (POS) tagger [4] to automatically as-
sign a grammatical category tag to each word, and
then experimented with using all words, only open-
class words and prepositions (because of the nature of
the indoor/outdoor distinction), and open-class words
and prepositions with proper nouns excluded.

– Disambiguation of words. A word’s sense is fre-
quently ambiguous, and sometimes knowing its gram-
matical part-of-speech can help disambiguate it. For
example, can is most often an auxiliary verb, but
sometimes a noun with a different meaning. We ex-
perimented with keeping the POS tag as part of the
word (thus distinguishing between the two senses of
can/modal and can/noun above), versus ignoring this
information.

– Case sensitivity. Should capitalization matter for
treating words as different? Capitalization may in-
dicate a proper noun, but may also be the result of
sentence-initial placement. We experimented with col-
lapsing words that differ only in capitalization to the
same token versus treating words as different if they
differ in case.

Each combination of the above parameters results
in a different set of TF*IDF vectors for each document.
Three more parameters were varied when calculating the
similarity between a document and a category:

– Ignoring words with low TF*IDF during sim-
ilarity computations. We have experimented with
optionally ignoring words whose TF*IDF values within
a document fall below a given constant, for several
alternative values of that constant. This eliminates
relatively insignificant words, which have minimal
impact on the classification, while potentially speed-
ing up the necessary calculations and avoiding some
rare words whose TF and IDF are hard to estimate
accurately.

– Normalization of category vectors. The size of
each of the two classes does not enter (2) or the
TF*IDF calculations. Yet, it is natural to expect that
the a priori most frequent category will have higher
TF values, simply because it contains more docu-
ments. This is a concern for our experiments, since the
“outdoor” category contains more than two-thirds of
the images in our collection. We therefore experiment
with a modification to (2), where the TF*IDF value of
each word in a category vector is divided by the total
number of documents that fall into that category.
This modification, which replaces total frequency with
average per document frequency, makes the TF*IDF
values directly comparable across categories.

– Density estimation. The standard approach for
assigning documents to categories is to select the cat-
egory for which similarity is largest. This, however,
implicitly assumes that the similarity scores are on
the same scale for both categories, and makes it hard
to tell when a difference between the similarity scores
for the two categories is large enough for the system
to be confident in its decision. We experimented with
a modification of the category decision rule by trans-
forming the difference of the raw similarity scores be-
tween the two categories into the corresponding prob-
ability that a document with the given score difference
belongs in the indoor category. In other words, we em-
pirically estimate the probability density of the com-
posite random variable Score(document, indoor )−
Score(document, outdoor). We calculate the histogram
of this difference function from the training part of
the data (see the next section), and then use a rect-
angular smoothing window on top of the histogram to
estimate the probability density [34]. For a new image
in the test set, we again compute the difference and
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apply the conversion procedure that was fixed during
training. The resulting probability is more directly in-
terpretable than the difference of the raw similarity
scores, automatically adjusts the cut-off point be-
tween the two categories (from the arbitrary 0 on the
unrestricted difference scale to the now well-justified
0.5 on the 0–1 probability scale), and provides a meas-
ure of confidence in the system’s decision (values near
0 or 1 indicate higher confidence) that can be easily
combined with information from other independent
categorizers.

5 Results and evaluation

We randomly selected 894 (approximately two-thirds)
of the 1339 images that had definite human agreement
on the indoor versus outdoor classification question for
training, and the remaining 445 images for testing. Two
hundred and seventy-six (30.9%) of the training images
were indoor while 618 (69.1%) were outdoor. One hun-
dred and twenty-five (28.1%) of the testing images were
indoor while 320 (71.9%) were outdoor. So, on that par-
ticular breakdown of our main experimental image set,
a default classifier would achieve 71.9% accuracy on the
test set by labeling every image with the more frequent
category in the training set.

Using this training/testing partition, we calculated
the TF*IDF vectors and similarity scores described in
the previous section for each of the 768 possible combi-
nations of parameters, performing a complete designed
experiment [13]. The training set was randomly divided
into three equal parts, and for each such experiment, we
repeatedly trained on two parts and measured system
performance on the third. This three-fold cross valida-
tion on the training set gives us the ability to compare
the relative performance of the various settings for the
experimental parameters. It also allows us to select the
best combination of parameters, which is fixed for subse-
quent experiments and, in particular, for scoring against
the completely unseen test set.

We found a wide variety in the obtained average
accuracy score (percentage of correct categorizations)
depending on the parameter settings. The parameters
which had the most major effect were:

– Text span. Restricting analysis to the first sentences
of captions accounted for the 37 top scoring experi-
ments. First sentences clearly outperformed captions,
while text spans that included the entire article (with
or without the caption) were far behind. This pro-
vides support to our thesis that specifically selected
and narrowly targeted pieces of text can be more use-
ful for classifying embedded multimedia information
than the document as a whole.

– Restriction to specific grammatical categories.
Using only open-class words plus prepositions ac-
counted for four of the top five experiments. The

average accuracy over all experiments for this setting
was also higher that that for using all parts of speech,
which, in turn, was higher than that using open-class
words plus prepositions but excluding proper nouns.
So it appears that proper nouns help in this clas-
sification task, a somewhat counter-intuitive result,
especially since we generally have a high number of
low-frequency proper nouns.

– Normalization of category vectors. Normalizing
category vectors accounted for 12 of the top 15 ex-
periments, and had a higher average accuracy among
all experiments, even more so for cases where dens-
ity estimates were used. Interestingly, however, if we
only look at experiments using the standard TF*IDF
method (without transforming to probability esti-
mates), normalization according to category size has,
on average, a slight detrimental effect.

– Density estimation. Using probability densities in-
stead of raw similarity scores improved performance
in almost every case, including all combinations of pa-
rameters ranked near the top. This optional compon-
ent had one of the most pronounced effects in overall
system performance.

On the other hand, ignoring words with low TF*IDF,
keeping the part of speech information for disambigua-
tion, and ignoring case differences played much smaller
roles. High thresholds for including words in the TF*IDF
vector were clearly bad, but other than that, all setting
of these parameters were used in some of the best experi-
ments, and the average accuracy for each were similar.
Table 2 summarizes the effect of each value of each pa-
rameter over all experiments, while Table 3 shows the top
fifteen combinations of parameters (those which achieved
over 82.5% accuracy) in terms of performance during the
three-fold cross validation on the training set. The aver-
age cross-validated accuracy of all 384 experiments that
directly use the TF*IDF scores was 71.74%, and of the
384 experiments that include the probability conversions,
74.26%. Note that these overall accuracies are close to
the baseline of the default classifier (71.9%), while 31
of the 768 combinations of parameters performed better
than 82% during cross validation. This indicates that an
informed choice of the parameters is important for this
classification task.

On the other hand, Table 2 shows the average ac-
curacy for a given setting of each parameter, across all
possible combinations of values for the other parameters.
Several of these combinations lead to low accuracy scores,
lowering the average accuracy scores listed in the Table,
to the extent that many of them are close or even lower
than the baseline accuracy of 71.9%. Because of this aver-
aging, the scores on Table 2 should not be interpreted as
a judgment on the relevance or usefulness of a particular
parameter, but as a means for comparing different set-
tings for a given parameter.
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Table 2. Average overall accuracy during cross-validation of all experiments with the given value
of each parameter

Parameter Value Average accuracy

Text span

First sentences of captions 79.45%
Captions 76.06%
Articles (including captions) 69.22%
Articles (excluding captions) 67.26%

Part of speech restriction

Open-class and prepositions 73.54%
All words 73.09%
Open-class and preposi-
tions, excluding proper
nouns

72.36%

Keeping tags for disambiguation
Yes 73.08%
No 72.91%

Case sensitivity
Yes 73.01%
No 72.99%

Threshold on TF*IDF

Medium 73.63%
Low 73.57%
None 73.21%
High 71.57%

Normalization according to
category size

Yes 73.36%
No 72.64%

Using probability density estimates
Yes 74.26%
No 71.74%

Results for all combinations of parameters are available
in a Microsoft Excel spreadsheet located at http:// www.
cs. columbia. edu/ ~sable/ research/ all_results.xls.
The reader is invited to experiment with a pivot table
we have created in this spreadsheet (in the “Play with
Fields”ply)whichallowsthedynamiccomputationofaver-
age accuracy for any subset of parameter combinations.

On the basis of these cross-validation experiments,
we selected the following combination of parameters for
our system: using the first sentences of captions only;
restricting words to those of an open class plus prepo-
sitions; treating words that differ only in part of speech
as identical; keeping capitalization information; not ap-
plying any thresholds for including words in the TF*IDF
vector; normalizing according to category size; and apply-
ing the density transformation. These are the parameters
that were used in the experiment represented by the first
line of Table 3, which was one of two that tied for the
best results during cross-validation. With these parame-
ters fixed, we retrained on the full training set and tested
on the unseen test set. The corresponding categorizer
achieved 82.02% accuracy on the test set, and 90.72%
on the training set.3 If the density estimate transform-
ations were not employed, the accuracy on the test set
falls dramatically to 72.36%. Tables 4 and 5 are contin-
gency tables further breaking down these accuracy scores
on a per category basis, separately for the cases where
the density adjustments are used or not. Without density

3 An indoor output probability of more than 50% is translated to
a decision in favor of the indoor category during this evaluation.

estimation, the F1 measures for the indoor and outdoor
categories, defined as

F1 =
2×Precision×Recall

Precision+Recall

[43], were 54.80% and 77.84% respectively. With density
estimation, the F1 measures for the indoor and outdoor
categories were 65.22% and 87.88%, respectively.

Note that the use of probability densities tends to shift
the system’s categorizations from the smaller category to
the larger category. Therefore, the smaller category winds
up having a higher precision and lower recall, while the
larger category ends up with a lower precision and higher
recall. Both categories have significantly higher F1 mea-
sures. Detailed results on our 445 individual test images
can be observed at http://www.cs.columbia.edu/~sable/
research/demo_results/demo_results.cgi.

Naturally, we want to compare these results with al-
ternative classifiers, including humans. Our accuracy on
the test set (82.02%) clearly surpasses that of the default
classifier which always selects the “outdoor” label for
every image (71.9%). We estimate human performance on
this task by measuring the percentage of correct classifi-
cations achieved by a human volunteer who looked only
at the captions of the images (i.e., who had access to the
same kind of information that our system does). Of the
1339 images in our main set, 1172 (87.52%) were correctly
categorized under this access condition.4 This figure can

4 For this purpose, any categorization in the right direction (i.e.,
indoor or outdoor), regardless of the degree of confidence, was
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Table 3. Top fifteen combinations of TF*IDF experiment parameters after three-fold cross validation
on the training set. The “tags” column indicates whether tags were kept for disambiguating words;
the “case” column indicates whether word comparisons were case sensitive; and the “norm.” column
indicates whether the normalization for category size was applied during the similarity calculations

Text span Part of speech
restriction

Tags Case Threshold
on TF*IDF

Norm.
Accuracy
without
densities

Accuracy
with

densities
first sentences
of captions

open-class plus
prepositions

no yes none yes 75.06% 83.22%

first sentences
of captions

open-class plus
prepositions

no yes low yes 75.06% 83.22%

first sentences
of captions all words yes no medium yes 78.08% 82.89%

first sentences
of captions

open-class plus
prepositions no no low yes 74.83% 82.89%

first sentences
of captions

open-class plus
prepositions no no none yes 74.61% 82.89%

first sentences
of captions

all words no no medium yes 79.08% 82.77%

first sentences
of captions

open-class plus
prepositions

no yes none no 78.75% 82.77%

first sentences
of captions

all words yes no medium no 78.97% 82.66%

first sentences
of captions all words no yes low yes 77.29% 82.66%

first sentences
of captions all words no no low yes 76.73% 82.66%

first sentences
of captions

open-class plus
prepositions yes no low yes 75.17% 82.66%

first sentences
of captions

open-class plus
prepositions

no yes medium no 81.99% 82.55%

first sentences
of captions

all words no yes none yes 77.40% 82.55%

first sentences
of captions

all words no no none yes 77.07% 82.55%

first sentences
of captions all words yes no none yes 76.96% 82.55%

Table 4. Contingency table showing the breakdown of the
system’s categorizations on the test set with conversions

to probability densities

Actual Actual Precision
indoor outdoor

System indoor 75 30 71.43%

System outdoor 50 290 85.29%

Recall 60.00% 90.63%

Table 5. Contingency table showing the breakdown of the
system’s categorizations on the test set using the raw

similarity scores

Actual Actual Precision
indoor outdoor

System indoor 106 104 40.48%

System outdoor 19 216 91.91%

Recall 84.80% 67.50%

serve as a reasonable, approximate upper bound for how
well we might hope our system to perform given only text
information. On the other hand, humans who looked only
at the image matched our reference standard in 95.47% of
the cases, indicating that for humans, the image is a more
accurate source for answering the indoor/outdoor ques-
tion than the accompanying text.

Recently, an image-based approach for classifying
photographs as indoor or outdoor has been proposed [40].
This approach is based on a decomposition of the image
by applying a 4×4 grid on it and taking measures of low-
level image features such as color and texture on each of
the 16 image regions. Then, similarities between blocks
in a given image and blocks in known indoor and outdoor
images are calculated, and the image is assigned to one of
the two categories. In cooperation with image processing
researchers at Columbia,5 we reimplemented this tech-

considered correct while assignments of the “Ambiguous” label re-
ceived half credit.
5 Seungyup Paek, Alejandro Jaimes, and Shih-Fu Chang, of the

Department of Electrical Engineering, Columbia University.
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Table 6. System accuracy stratified according to high, medium, or low confidence

Confidence level Number correct Number incorrect Accuracy

p≥ 0.9 or p≤ 0.1 234 21 91.76%

0.7≤ p < 0.9 or 0.1< p≤ 0.3 89 32 73.55%

0.3< p < 0.7 42 27 60.87%

Total 365 80 82.02%

nique and measured its performance on our collection of
photographs. We found that its accuracy on our test set
was 74%, significantly less than what we obtain with our
text-based methods. We also added supplemental low-
level features, such as edge direction histograms, to those
used by Szummer and Picard, and a machine learning
component for estimating classification thresholds. With
these improvements, the resulting image-based classifier
achieves 76% performance, still less than the methods
described in this paper.

For each of the above comparisons, we calculated
a level of significance by applying Pearson’s chi-square
test [6] on the contingency table that represents the
cross-classification of the answers of the two compared
methods.6 We observe that the difference between the
performance of our system and either the default base-
line, Szummer’s and Picard’s image-based classifier, or
(regrettably) the human judges, is strongly significant
at the 1% level or less; the probability that similar or
more pronounced differences in the observed accuracy
rates between the compared methods would be observed
by chance is 0.046%, 0.464%, and 0.460%, respectively.
When comparing our system to our extended implemen-
tation of the image-based model, the difference is still
significant at the 5% level (P -value of 3.24%).

We should stress here that without an extensive eval-
uation over multiple domains and classification tasks,
we cannot draw definite conclusions about which of the
methods (ours, the one by Szummer and Picard, or our
extension of their method) would perform better on a new
domain or task. Szummer and Picard worked with va-
cation images and report significantly higher accuracy
values for indoor/outdoor classification in their domain.
It is possible that their method works better in the vaca-
tion image domain rather than the news articles domain.7

On the other hand, the comparison of the techniques in
our data collection and domain indicates that at least for
news images, the text-based approach leads to a more ac-
curate indoor/outdoor classification.

6 The large-sample assumption of the chi-square test is sat-
isfied for these contingency tables. Because we test on several
hundreds of images, the exact Fisher’s test [5] is computationally
impractical.
7 Szummer and Picard’s images do not come with captions, as

they are photographs taken by vacationers, so we cannot apply our
technique to their data.

A final evaluation question is how reliable the confi-
dence estimates provided by our system’s output prob-
abilities are. Preferably, decisions with a high degree of
confidence should be more likely to be accurate than deci-
sions given a low degree of confidence. We have therefore
broken down the test set into three subsets according to
the probability assigned by our system, p, that a given
image is indoor. These three ranges of p were defined
as high confidence (p ≥ 0.9 or p ≤ 0.1), medium confi-
dence (0.7≤ p < 0.9 or 0.1< p≤ 0.3), and low confidence
(0.3 < p < 0.7). Note that the indoor probability equals
1 minus the outdoor probability, with the classifier se-
lecting the indoor category when p > 0.5 and the outdoor
category otherwise; hence, probabilities of p and 1−p are
equivalent in terms of the expressed confidence. Table 6
shows the accuracy of our system within each confidence
category, and verifies that decisions given a higher level of
confidence are more likely to be correct, thus validating
our confidence estimates. In particular, 255 (57.3%) of the
445 test images were labeled with over 90% confidence,
and 91.76% of these categorizations were correct.

6 Experimenting with an evenly distributed
data set

In order to ensure that our system does not require
a skewed distribution between the target classes to achieve
good results, we tested it on the third data set defined
in Sect. 3 (that with an equal number of indoor and out-
door images). To create this data set, we started with the
training set and testing set from our primary data set. For
each, we kept all of the indoor images and randomly se-
lected an equal number of outdoor images. Therefore, the
new training set is a subset of the old training set and the
new testing set is a subset of the old testing set. The new
training set contains 552 images (276 indoor and 276 out-
door) and the new testing set contains 250 images (125
indoor and 125 outdoor).

We re-trained and tested our system on this balanced
data set both with and without the use of density esti-
mation. Without density estimation the overall accuracy
was 76.00% and with density estimation the overall ac-
curacy was 76.40%. These accuracy scores are lower than
those obtained for our main data set, perhaps because
the uneven prior probabilities in the main data set aided
our system or perhaps because this data set has a smaller
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Table 7. Contingency table showing the breakdown of the
system’s categorizations on the balanced test set with

conversions to probability densities

Actual Actual Precision

indoor outdoor

System indoor 97 31 75.78%

System outdoor 28 94 77.05%

Recall 77.60% 75.20%

Table 8. Contingency table showing the breakdown of the
system’s categorizations on the balanced test set using the

raw similarity scores

Actual Actual Precision

indoor outdoor

System indoor 103 38 73.05%

System outdoor 22 87 79.82%

Recall 82.40% 69.60%

training set, but they are still quite reasonable and well
above the new baseline of 50%. Tables 7 and 8 are contin-
gency tables further breaking down these accuracy scores
on a per category basis, separately for the cases where
the density adjustments are used or not. Without density
estimation, the F1 measures for the indoor and outdoor
categories were 77.44% and 74.36%, respectively. With
density estimation, the F1 measures for the indoor and
outdoor categories were 76.68% and 76.11%, respectively.
In general, density estimation tended to push the preci-
sion and recall values closer together for each category,
but it did not make a significant overall improvement
when the collection consisted of equally sized categories.
This is of course consistent with the main motivation that
led to the introduction of density estimation in our sys-
tem in the first place: density estimation offers a means
for normalizing the TF*IDF classification scores across
categories, but when categories are equiprobable, these
scores are on the same scale, leaving little for the density
estimation step to correct.

7 Identifying words
with high discriminating power

Methodology. A second approach to the classification
problem is to automatically locate words (or multi-word
phrases) whose presence strongly indicates one of the
competing classes. We explore this technique by first ex-
tracting all open-class words plus prepositions from the
first sentences of captions. We exclude proper nouns from
this analysis since they are unlikely to be general indi-
cators of one of the categories, and only consider words
occurring five times or more in our training set. This last

step is done to ensure that the words we keep will be fre-
quent enough to be general discriminators, and to avoid
cases where a particular word occurs in a few captions of
images from a particular class simply by chance.

We construct a log-linear regression model [31] using
binary variables corresponding to the occurrence of each
of these words as predictors and the output feature (e.g.,
indoor or outdoor image) as the response. The model is
fitted with iterative reweighted least squares [3], and the
fit assigns a weight to each of the candidate discrimina-
tors. Words with higher weights are those that actually
help discriminate between the two classes.

As an alternative machine learning technique, we also
consider decision trees [24]. The prediction model re-
mains the same, but now the tree is constructed with
recursive partitioning, with the most discriminating vari-
able being selected first. The resulting tree is shrunk [11]
(node probabilities are optimally regressed to their par-
ents) to reduce the possibility of overfitting; we select the
shrinking parameter α through cross-validation within
the training set.
Results. Using the same training/test set division as with
the TF*IDF experiments reported in the previous sec-
tion, our list of candidate discriminators contains 665
words. Both the log-linear regression model and the tree
select a subset of these words as classification features; in
the case of the constructed tree, 80 words are used during
classification.

It is interesting to note which these words are, es-
pecially since the results of this procedure are likely to
generalize to other sets of images. The five words most
favoring an indoor classification are conference, meet-
ing, meets, hands (plural noun), and L, while the five
words most strongly indicating an outdoor image are of,
from, soldiers, police, and demonstration. Some of
them are expected (e.g., demonstration or police for an
outdoor image, or conference for an indoor one), but some
come as a surprise, for example, the “words” C, L, and
R (indicating an indoor image) used in parentheses to
identify people in images by position (i.e., center, left, or
right).

Overall performance of the word discriminant method
was 93.62% over the training set and 78.65% over the test
set.
Integrating the two classifiers. The two classifiers dis-
cussed in the present section and in Sect. 5 utilize dif-
ferent methods to arrive at similar classification per-
formance. Hence, it is natural to investigate how corre-
lated their answers are, and whether a combined clas-
sifier might improve overall performance on the in-
door/outdoor classification task.

We have built such combined classifiers using both
general machine learning techniques discussed above
(log-linear models and decision trees). However, the over-
all performance of the composite classifiers was in both
cases slightly less than that obtained by the best individ-
ual classifier (82.02%). We attribute this to overtraining
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during the construction of the composite classifiers, es-
pecially since the same training set was used for building
each of them and for combining them.8 Nevertheless, our
implementation of two classification methods provides us
with two different general tools that can be easily ported
to other high-level classification tasks; and the ability to
identify key discriminating words may prove helpful in
future exploration of what makes images in distinct cat-
egories different.

8 An alternative evaluation metric

So far, all reported accuracies considered the system to
be completely right if the category with the higher prob-
ability was correct and completely wrong otherwise. An
alternative evaluation method is to take the probability
assigned by the system to the correct category and con-
sider that to be the system’s score for that document, in
a manner similar to the partial credits proposed in [12].
For example, let’s say that the system analyzes an image
and says the probability that the image is indoor is 65%
(meaning that the probability that the image is outdoor is
35%). If the image is actually indoor, the system is given
a score of 0.65 for this image, while if the image is ac-
tually outdoor, the system is given a score of 0.35. The
overall accuracy of the system is then the sum of the sys-
tem’s scores for all images divided by the total number
of images. In the ideal case, the system would assign all
indoor images a probability of 1 of being indoor, and all
outdoor images a probability of 0 of being indoor. Thus
its total overall accuracy would be 1, or 100%. Indeed, if
the system always has complete confidence in its decisions
(whether correct or not), the revised evaluation method
becomes equivalent to the standard one.

In this way, the system receives partial credit for each
answer, more if the system leans in the correct direc-
tion and directly increasing as the system’s confidence in
a correct decision increases. In general, when a system al-
ready classifies most images correctly under the original
0/1 scoring method, it will tend to be penalized for its
uncertainty on correct decisions more than it is credited
for uncertain wrong answers. This is the case in our task
when our classifier is evaluated on our main set of images
(those with definite agreement by the human volunteers);
the system achieves 82.02% accuracy under the original
evaluation method, and 76.71% under the revised one.
However, we consider this modified method as more re-
vealing, as it offers a way to evaluate the system’s confi-
dence in its decisions; the accuracy computed using this
method is equal to the average confidence given to the
correct category for each image. The alternative evalua-
tion technique is not a substitute for the original evalua-
tion technique, at least in cases where there is certainty

8 A further subdivision of our image data in two separate train-
ing sets and a test set would leave us with too few images in each
set.

about the labels in the test set. It relates, however, to two
evaluation dimensions not captured by the standard eval-
uation techniques:

– It provides an internal quality measure useful during
system development. While ultimately what counts
for applications is whether the system produces the
correct answer or not, during development it is im-
portant to rank better a system that comes closer to
the correct answer, even if it still rates higher a wrong
answer.

– It provides a measurement of the confidence of the sys-
tem in the correct answers. Hence, it can be used to
predict how well the system will perform for different
thresholds of confidence (high values of the measure
justify the use of a high confidence threshold, with the
expectation of increased accuracy and a small loss in
coverage).

To further illustrate how this alternative evaluation
technique can be used to reveal aspects of the evalua-
tion not obvious from the traditional scores, and also the
generality of our parameter selection mechanism, we re-
peated our training of the indoor/outdoor classifier on
our second set of images, those that had any kind of
agreement from the human judges (not necessarily with
strong beliefs; see Sect. 3). We randomly selected 1000
(approximately two-thirds) of the 1501 images in that
set for training and the remaining 501 images for test-
ing, and retrained the classifier using the optimal combi-
nation of parameters determined in Sect. 5. Three hun-
dred and eight (30.8%) of the training images were in-
door while 692 (69.2%) were outdoor; within the test set,
167 (33.3%) images were indoor, while 334 (66.7%) were
outdoor. Using our first, standard evaluation model, the
system achieved on the test set 77.05% accuracy using
the raw TF*IDF similarities and 80.04% after converting
those to probability estimates. The latter of these results
is the most important, and it is 1.98% lower than the
result from the main set with definite agreement. This
makes sense, since manual categorizations with a lower
degree of confidence are less likely to be accurate, and also
may indicate images that are inherently harder to classify.
This is in fact reflected in the system’s confidence meas-
ure, which tends to be lower on these problematic cases;
applying the alternative evaluation method to this second
test set, we obtain overall accuracy of 76.56%, almost as
high as that measure is for the first test set.

9 Using information about number of people

Earlier on, we noted that our goal in this line of research is
to develop multiple classifiers for a number of broadly ap-
plicable classification features. It is natural to consider in-
teractions between such classifiers, as information about
one feature may well help the categorization according to
another feature. In this section, we report on investiga-
tions regarding the effect knowledge about the number of
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Table 9. Breakdown of the set of images with definite agreement on indoor/outdoor and number
of people features into indoor and outdoor images for each value of the number of people feature

Number of people Indoor images Outdoor images Percentage of indoor images
No people 2 75 2.6%
One person 122 108 53.0%
Two people 75 85 46.9%
Three or more people 155 332 31.8%
Crowd 8 119 6.3%
Total 362 719 33.5%

people in a photograph has on our ability to classify the
image as indoor or outdoor.

We have not yet built a text-based classifier for this
second feature,9 so we use instead ideal knowledge, pro-
vided by the human categorization of images according
to this feature. We analyze the set of images that has
both definite agreement between the human judges in
the indoor/outdoor question and agreement in the num-
ber of people question (excluding ambiguous labels). This
set contains 1081 images, 362 (33.5%) of which are in-
door and 719 (66.5%) are outdoor, a similar distribution
as in the larger set which we used for our main experi-
ments. However, if we take the number of people as given,
the distribution of indoor versus outdoor images within
each category of the secondary feature changes, some-
times dramatically, as Table 9 shows.

To utilize this information, we need a formula that
connects f(I|c, d), the probability density of an image
being indoor given that it belongs to category c accord-
ing to the number of people feature and that it receives
a similarity difference of d, to our old probability dens-
ity estimates, f(I|d). Unfortunately, a Bayesian expan-
sion of f(I|c, d) involves the joint density f(c, d), which
we cannot estimate without a classifier that predicts the
number of people c from the difference d (or vice versa).
Therefore, we intuitively derive an approximate formula
for f(I|c, d) as follows: given N images with similarity
difference in a small neighborhood ∆d around d, approxi-
mately P (I|∆d) ·N of them will be indoor. Now, for any
image that has a specific number of people c, its odds
for being indoor will change (for better or worse) from
the global proportion of indoor images P (I) by the ratio
P (I|c)/P (I). If P (c) is the global proportion of images
with c people in them, the overall number of indoor im-
ages with c people among the initial N images with sim-
ilarity difference close to d can be estimated as

N(I|c,∆d)≈ P (c) ·
P (I|c)

P (I)
·P (I|∆d) ·N (3)

Similarly, the overall number of outdoor images with c
people among the sameN images can be estimated as

N(O|c,∆d)≈ P (c) ·
1−P (I|c)

1−P (I)
· (1−P (I|∆d)) ·N (4)

9 Although work is under way for building one based on face
detection combined with name extraction from captions.

By combining (3) and (4), we get our formula for up-
dating P (I|∆d):

P (I|c,∆d)≈
N(I|c,∆d)

N(I|c,∆d)+N(O|c,∆d)
(5)

We applied this update formula to the images in the
set with definite agreement on both the indoor/outdoor
and number of people questions. Since that set is a subset
of our main experimental image set, we took those images
that were in the training set for the main set (see Sect. 5)
as our training images, and the remaining as test images.
The resulting training set had 732 images, of which 249
(34.0%) were indoor, and the testing set contained 349
images, of which 113 (32.4%) were indoor. If the methods
of Sect. 5 are applied to this training/test set partition
while ignoring the number of people information, we ob-
tain 79.94% accuracy on the test set. If instead we assume
perfect knowledge of the number of people variable and
update the probability estimates by applying (5) (esti-
mating quantities such as P (I) and P (I|c) from the train-
ing set), we obtain 80.23% accuracy on the test set. This
is only a minor improvement, not statistically significant.
However, if the alternative evaluation metric of the previ-
ous section is employed, accuracy improves from 74.96%
to 77.19%. So, while few categorizations actually changed
from wrong to right or vice versa, the system’s confidence
values in its decisions were more appropriate when the
number of people was taken into account. In other words,
on average, correct decisions were given higher confidence
while the reverse happened to incorrect decisions.

10 Integration with an image-based approach
developed at Columbia University

Recently, image processing researchers at Columbia,
working in cooperation with the authors of the present
paper, have implemented a novel classifier [22] using
a vector-based approach relying on visual objects’ fre-
quency and dispersion across images, a method that is
analogous to TF*IDF. Images are divided into 64 (8×8)
regions of equal size, and a set of texture- and color-
related features are computed for each region. The feature
vectors associated with all the blocks from the training
set are clustered, and the centroid of each cluster that is
generated defines an object. For each image in the test
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set, feature vectors defined on the image’s regions are
compared to the cluster centroids from the training set,
and the closest such centroid (or object) is considered
matched. For a single image, the OF, or object frequency,
is the number of times an object occurs in that image; for
a category, the OF is the number of times that object oc-
curs over all images in that category. An object’s IIF, or
inverse image frequency, is the log of the ratio of the total
number of images to the number of images that contain
that object. Once OF*IIF scores have been computed for
each image and category, similarity scores between im-
ages and categories can be computed with a dot product,
similar to the text-based TF*IDF scheme (1). As with our
TF*IDF approach, our colleagues used density estima-
tion to estimate probabilities for each category.

Our colleagues started with the same collection of im-
ages as we did but divided it into a training set and test-
ing set differently. They randomly selected approximately
half of the 1339 images for training and used the rest
for testing. Using this data set, their image-based classi-
fier achieved an 82.4% accuracy rate, and our text-based
classifier achieved an 83.3% accuracy rate. The image-
based approach developed by Szummer and Picard only
achieved a 74.7% accuracy rate on this set. Note that the
82.4% accuracy rate obtained by the image-based clas-
sifier was on a different training/testing division of the
data set used in the experiments of Sect. 5 (where we re-
ported an 82.02% accuracy rate); on common data, the
text-based approach still performs (slightly) better.

Although our text-based approach still beat the
image-based approach developed by our colleagues, the
two systems did not necessarily do well on the same
types of images, and it was natural to integrate the
two approaches together. We did this by computing for
each image/category pair a single similarity score which
was a weighted sum of the similarity scores that the
TF*IDF and OF*IIF systems computed. This final sys-
tem achieved a classification accuracy of 86.2% on the test
set of Paek et al., which was significantly better than how
either approach did on its own.

11 Conclusions and future work

We have shown that our methods for categorization of
images as indoor or outdoor strongly beat baseline per-
formance and previous image-based techniques, and even
begin to approach human performance, at least for the
task and domain tested in our experiments. In fact, our
system provides 93.72% of the correct answers that a hu-
man judge with access to the same kind of information
does (82.02% versus 87.52% overall accuracy). By stay-
ing within the TF*IDF paradigm but experimenting with
several parameters and adding the use of probability
density estimates, we have created a system that achieves
82% accuracy on unseen images, without using any visual
information in the images. The output of our system is in

terms of a probability, which is readily interpretable and
provides a level of confidence in the system’s decision. We
have explored additional techniques both for image clas-
sification and for evaluating the constructed classifiers.
In addition, we investigated the possibility of using ad-
ditional information about images that might change the
a priori probabilities of an image being indoor or outdoor,
and there is some promise that the system’s results may
be improved. Our methods are general, use no prior know-
ledge about the news domain, and could be applied to
other high-level visual features or non-visual categories,
although currently our model of probability densities as-
sumes dichotomous classifications.

We have examined a classification approach that re-
lates to the Rocchio paradigm [25, 27] and combines
TF*IDF estimates with a probabilistic normalization.
A future alternative is to compare our results with pure
probabilistic approaches such as naive Bayes [15] and con-
nectionist models [16]. Certainly, we have not exhausted
the space of possible features and transformations of the
input data; we plan to examine additional such options,
including morphological transformations/stemming, se-
mantic information linking related words, normalization
schemas that take into account document length, and dif-
ferent weighing of identified named entities.

We also summarized work done in conjunction with
our image processing colleagues. They have developed an
image-based classification system, using a method anal-
ogous to TF*IDF, that performs almost as well as our
system for indoor versus outdoor classification on their
test set. Integrating the two approaches together led to
improved performance over either method individually.

One future step is to expand the range of classifica-
tion questions considered. We wish to explore high-level
classifications such as indoor versus outdoor, number of
people, and city versus landscape, and complement the
general classifiers with specific image feature detectors
(e.g., detectors of skies, handshakes, or faces). Our goal
is to provide a hierarchy of such classifiers and analyze
their interactions so that we can build a model that re-
lates a combination of the high-level visual features to
specific conditions under which an image is appropriate
for inclusion in a multimedia document. It is also possible
to use the text-based classifier as a bootstrapping com-
ponent, classifying a subset of images for a task for which
only few images have associated text, and passing on the
results to the training stage of an image-based classifier.

We have also recently generalized our method of dens-
ity estimation so that it is usable when there are more
than two categories. We are currently applying this ex-
tended density estimation technique to the task of classi-
fying each of our news documents (as opposed to just the
images) into one of the semi-topical categories Struggle,
Politics, Crime, Disaster, or Other. Initial results indicate
that our system works quite well, achieving about 87%
accuracy on our test set. We believe that these new cat-
egories may have interesting interactions with the indoor
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versus outdoor categories examined in this paper. Highly
confident decisions for one set of categories should aid
predictions for the other set of categories. For example,
our system achieves almost perfect precision and recall
for the Disaster category, and almost all images which
are part of these documents are outdoor images. Addi-
tionally, combining decisions concerning different sets of
categories might tell us more about an image than a clas-
sification into a single set of categories. For example, in-
door images which are part of political documents are
almost always pictures of meetings or press conferences.

We are also in the process of generalizing our system
to work for binary categorization in which a document
can have multiple categories and a separate “yes”/“no”
decision is made for every document/category pair. We
have applied our system to the Reuters-21578 corpus [17],
a collection of news articles frequently used in text cate-
gorization tasks [14, 45], and initial results indicate that
our generalized density estimation significantly improves
the accuracy of a TF*IDF based approach, although we
are still not doing quite as well on that task as other ad-
vanced methods such as Support Vector Machines [14].

Eventually, we would like to train our system on many
sets of categories representing both broad-based, non-
topical visual features of images and also higher level,
content-based properties of images or entire news docu-
ments. Our colleagues using image-based approaches will
also continue building classifiers for additional sets of cat-
egories. It is likely that text-based classifiers will achieve
better results for some categories and image-based classi-
fiers will achieve better results for others. One interesting
question might be to further investigate which properties
of categories affect which type of system will have bet-
ter results. Once we have various types of categorizers
trained, we hope to further explore possible interactions
between such systems. In the end, we want to automat-
ically determine as much as possible about images with
associated text using all the information at our disposal.
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