117 research outputs found

    Ancient Coin Classification Using Graph Transduction Games

    Full text link
    Recognizing the type of an ancient coin requires theoretical expertise and years of experience in the field of numismatics. Our goal in this work is automatizing this time consuming and demanding task by a visual classification framework. Specifically, we propose to model ancient coin image classification using Graph Transduction Games (GTG). GTG casts the classification problem as a non-cooperative game where the players (the coin images) decide their strategies (class labels) according to the choices made by the others, which results with a global consensus at the final labeling. Experiments are conducted on the only publicly available dataset which is composed of 180 images of 60 types of Roman coins. We demonstrate that our approach outperforms the literature work on the same dataset with the classification accuracy of 73.6% and 87.3% when there are one and two images per class in the training set, respectively

    Reconhecimento automático de moedas medievais usando visão por computador

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaThe use of computer vision for identification and recognition of coins is well studied and of renowned interest. However the focus of research has consistently been on modern coins and the used algorithms present quite disappointing results when applied to ancient coins. This discrepancy is explained by the nature of ancient coins that are manually minted, having plenty variances, failures, ripples and centuries of degradation which further deform the characteristic patterns, making their identification a hard task even for humans. Another noteworthy factor in almost all similar studies is the controlled environments and uniform illumination of all images of the datasets. Though it makes sense to focus on the more problematic variables, this is an impossible premise to find outside the researchers’ laboratory, therefore a problematic that must be approached. This dissertation focuses on medieval and ancient coin recognition in uncontrolled “real world” images, thus trying to pave way to the use of vast repositories of coin images all over the internet that could be used to make our algorithms more robust. The first part of the dissertation proposes a fast and automatic method to segment ancient coins over complex backgrounds using a Histogram Backprojection approach combined with edge detection methods. Results are compared against an automation of GrabCut algorithm. The proposed method achieves a Good or Acceptable rate on 76% of the images, taking an average of 0.29s per image, against 49% in 19.58s for GrabCut. Although this work is oriented to ancient coin segmentation, the method can also be used in other contexts presenting thin objects with uniform colors. In the second part, several state of the art machine learning algorithms are compared in the search for the most promising approach to classify these challenging coins. The best results are achieved using dense SIFT descriptors organized into Bags of Visual Words, and using Support Vector Machine or Naïve Bayes as machine learning strategies.O uso de visão por computador para identificação e reconhecimento de moedas é bastante estudado e de reconhecido interesse. No entanto o foco da investigação tem sido sistematicamente sobre as moedas modernas e os algoritmos usados apresentam resultados bastante desapontantes quando aplicados a moedas antigas. Esta discrepância é justificada pela natureza das moedas antigas que, sendo cunhadas à mão, apresentam bastantes variações, falhas e séculos de degradação que deformam os padrões característicos, tornando a sua identificação dificil mesmo para o ser humano. Adicionalmente, a quase totalidade dos estudos usa ambientes controlados e iluminação uniformizada entre todas as imagens dos datasets. Embora faça sentido focar-se nas variáveis mais problemáticas, esta é uma premissa impossível de encontrar fora do laboratório do investigador e portanto uma problemática que tem que ser estudada. Esta dissertação foca-se no reconhecimento de moedas medievais e clássicas em imagens não controladas, tentando assim abrir caminho ao uso de vastos repositórios de imagens de moedas disponíveis na internet, que poderiam ser usados para tornar os nossos algoritmos mais robustos. Na primeira parte é proposto um método rápido e automático para segmentar moedas antigas sobre fundos complexos, numa abordagem que envolve Histogram Backprojection combinado com deteção de arestas. Os resultados são comparados com uma automação do algoritmo GrabCut. O método proposto obtém uma classificação de Bom ou Aceitável em 76% das imagens, demorando uma média de 0.29s por imagem, contra 49% em 19,58s do GrabCut. Não obstante o foco em segmentação de moedas antigas, este método pode ser usado noutros contextos que incluam objetos planos de cor uniforme. Na segunda parte, o estado da arte de Machine Learning é testado e comparado em busca da abordagem mais promissora para classificar estas moedas. Os melhores resultados são alcançados usando descritores dense SIFT, organizados em Bags of Visual Words e usando Support Vector Machine ou Naive Bayes como estratégias de machine learning

    A Survey of Geometric Analysis in Cultural Heritage

    Get PDF
    We present a review of recent techniques for performing geometric analysis in cultural heritage (CH) applications. The survey is aimed at researchers in the areas of computer graphics, computer vision and CH computing, as well as to scholars and practitioners in the CH field. The problems considered include shape perception enhancement, restoration and preservation support, monitoring over time, object interpretation and collection analysis. All of these problems typically rely on an understanding of the structure of the shapes in question at both a local and global level. In this survey, we discuss the different problem forms and review the main solution methods, aided by classification criteria based on the geometric scale at which the analysis is performed and the cardinality of the relationships among object parts exploited during the analysis. We finalize the report by discussing open problems and future perspectives

    Application of multi-modal 2D and 3D imaging and analytical techniques to document and examine coins on the example of two Roman silver denarii

    Get PDF
    This case study is applying imaging and analytical techniques from multiple scientific disciplines to digitise coins and evaluate 3D multi-modal visualisation. Two ancient Roman silver denarii were selected as test objects to establish whether the proposed digital recording methods can support professional numismatic comparison of features and properties. The coins raise questions concerning their provenance, authenticity, design, purpose of issue and historic usage, but they also pose considerable recording challenges due to their material and surface properties, which are the main focus in this paper. The coins have been examined by the following techniques: dome photography for image sets for PTM/RTI visualisation and photometric stereo; X-ray microtomography for detection of cracks or impurities; Scanning Electron Microscopy for detailed surface investigation; Energy-Dispersive X-ray Spectroscopy for elemental analysis; micro X-ray fluorescence spectrometry mapping; 3D laser and structured light scanning for 3D spatial capture; photogrammetry/structure from motion, focus-stacking. The results indicate the feasibility of such techniques for museum documentation and as contribution to scientific examination of coins in general

    Coin Wear Estimation and Automatic Coin Grading

    Get PDF
    In numismatic studies, coin grading is referred to as the set of detailed experiments on a coin in order to estimate its quality, which is the most important factor to estimate the coin's value. Usually, the task is done by three expert numismatists to minimize personal biases. Each numismatist tests the coin's wear, coloration, and toning under different lighting conditions. Coin grading is a sensitive task to be done by humans. There are different parameters that can define the coin's value, however, dependent on the numismatist expert conducting the test, some parameters are neglected and some are given a heavier weight, which makes the procedure very subjective. A computer-aided algorithm for coin grading is considered an asset to help conduct more objective coin grading experiments. We propose a coin wear estimation algorithm, which is fully based on features extracted from the digital images of coins. Apart from coin grading, the proposed algorithm is useful to find and dismiss the heavily worn out currency from the market. As online trading is getting more and more popular among coin collectors, it has become easier for individuals to sell a low-quality coin instead of a high-quality one or foist fake copies instead of real coins. This study is concentrated on the feasibility of having a computer-aided program to conduct coin grading. The required specifications for the dataset are fully investigated and the final dataset is collected after lots of experiments. In our proposed method, SIFT key points are used to distinguish the amount of wear on the coins. These key points are known for their high accuracy in shape detection problems. Our approach in using these descriptors to estimate the amount of wear on the coins attains a high accuracy of 93%

    Selection of Robust Features for Coin Recognition and Counterfeit Coin Detection

    Get PDF
    Tremendous numbers of coins have been used in our daily life since ancient times. Aside from being a medium of goods and services, coins are items most collected worldwide. Simultaneously to the increasing number of coins in use, the number of counterfeit coins released into circulation is on the rise. Some countries have started to take different security measures to detect and eliminate counterfeit coins. However, the current measures are very expensive and ineffective such as the case in UK which recently decided to replace the whole coin design and release a new coin incorporating a set of security features. The demands of a cost effective and robust computer-aided system to classify and authenticate those coins have increased as a result. In this thesis, the design and implementation of coin recognition and counterfeit coin detection methods are proposed. This involves studying different coin stamp features and analyzing the sets of features that can uniquely and precisely differentiate coins of different countries and reject counterfeit coins. In addition, a new character segmentation method crafted for characters from coin images is proposed in this thesis. The proposed method for character segmentation is independent of the language of those characters. The experiments were performed on different coins with various characters and languages. The results show the effectiveness of the method to extract characters from different coins. The proposed method is the first to address character segmentation from coins. Coin recognition has been investigated in several research studies and different features have been selected for that purpose. This thesis proposes a new coin recognition method that focuses on small parts of the coin (characters) instead of extracting features from the whole coin image as proposed by other researchers. The method is evaluated on coins from different countries having different complexities, sizes, and qualities. The experimental results show that the proposed method compares favorably with other methods, and requires lower computational costs. Counterfeit coin detection is more challenging than coin recognition where the differences between genuine and counterfeit coins are much smaller. The high quality forged coins are very similar to genuine coins, yet the coin stamp features are never identical. This thesis discusses two counterfeit coin detection methods based on different features. The first method consists of an ensemble of three classifiers, where a fine-tuned convolutional neural network is used to extract features from coins to train two classifiers. The third classifier is trained on features extracted from textual area of the coin. On the other hand, sets of edge-based measures are used in the second method. Those measures are used to track differences in coin stamp’s edges between the test coin and a set of reference coins. A binary classifier is then trained based on the results of those measures. Finally, a series of experimental evaluation and tests have been performed to evaluate the effectiveness of these proposed methods, and they show that promising results have been achieved

    Reconstruction of Iberian ceramic potteries using generative adversarial networks

    Get PDF
    Several aspects of past culture, including historical trends, are inferred from time-based patterns observed in archaeological artifacts belonging to different periods. The presence and variation of these objects provides important clues about the Neolithic revolution and given their relative abundance in most archaeological sites, ceramic potteries are significantly helpful in this purpose. Nonetheless, most available pottery is fragmented, leading to missing morphological information. Currently, the reassembly of fragmented objects from a collection of thousands of mixed fragments is a daunting and time-consuming task done almost exclusively by hand, which requires the physical manipulation of the fragments. To overcome the challenges of manual reconstruction and improve the quality of reconstructed samples, we present IberianGAN, a customized Generative Adversarial Network (GAN) tested on an extensive database with complete and fragmented references. We trained the model with 1072 samples corresponding to Iberian wheel-made pottery profiles belonging to archaeological sites located in the upper valley of the Guadalquivir River (Spain). Furthermore, we provide quantitative and qualitative assessments to measure the quality of the reconstructed samples, along with domain expert evaluation with archaeologists. The resulting framework is a possible way to facilitate pottery reconstruction from partial fragments of an original piece.Fil: Navarro, Jose Pablo. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ingeniería - Sede Puerto Madryn. Departamento de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; ArgentinaFil: Cintas, Celia. Catholic University Of Eastern Africa; KeniaFil: Lucena, Manuel. Universidad de Jaén; EspañaFil: Fuertes, José Manuel. Universidad de Jaén; EspañaFil: Segura, Rafael. Universidad de Jaén; EspañaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur; ArgentinaFil: Gonzalez-Jose, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentin

    Report on shape analysis and matching and on semantic matching

    No full text
    In GRAVITATE, two disparate specialities will come together in one working platform for the archaeologist: the fields of shape analysis, and of metadata search. These fields are relatively disjoint at the moment, and the research and development challenge of GRAVITATE is precisely to merge them for our chosen tasks. As shown in chapter 7 the small amount of literature that already attempts join 3D geometry and semantics is not related to the cultural heritage domain. Therefore, after the project is done, there should be a clear ‘before-GRAVITATE’ and ‘after-GRAVITATE’ split in how these two aspects of a cultural heritage artefact are treated.This state of the art report (SOTA) is ‘before-GRAVITATE’. Shape analysis and metadata description are described separately, as currently in the literature and we end the report with common recommendations in chapter 8 on possible or plausible cross-connections that suggest themselves. These considerations will be refined for the Roadmap for Research deliverable.Within the project, a jargon is developing in which ‘geometry’ stands for the physical properties of an artefact (not only its shape, but also its colour and material) and ‘metadata’ is used as a general shorthand for the semantic description of the provenance, location, ownership, classification, use etc. of the artefact. As we proceed in the project, we will find a need to refine those broad divisions, and find intermediate classes (such as a semantic description of certain colour patterns), but for now the terminology is convenient – not least because it highlights the interesting area where both aspects meet.On the ‘geometry’ side, the GRAVITATE partners are UVA, Technion, CNR/IMATI; on the metadata side, IT Innovation, British Museum and Cyprus Institute; the latter two of course also playing the role of internal users, and representatives of the Cultural Heritage (CH) data and target user’s group. CNR/IMATI’s experience in shape analysis and similarity will be an important bridge between the two worlds for geometry and metadata. The authorship and styles of this SOTA reflect these specialisms: the first part (chapters 3 and 4) purely by the geometry partners (mostly IMATI and UVA), the second part (chapters 5 and 6) by the metadata partners, especially IT Innovation while the joint overview on 3D geometry and semantics is mainly by IT Innovation and IMATI. The common section on Perspectives was written with the contribution of all
    corecore