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Reconstruction of Iberian ceramic 
potteries using generative 
adversarial networks
Pablo Navarro1,2, Celia Cintas3, Manuel Lucena4,5, José Manuel Fuertes4,5, Rafael Segura4,5, 
Claudio Delrieux6 & Rolando González‑José1*

Several aspects of past culture, including historical trends, are inferred from time-based patterns 
observed in archaeological artifacts belonging to different periods. The presence and variation of these 
objects provides important clues about the Neolithic revolution and given their relative abundance 
in most archaeological sites, ceramic potteries are significantly helpful in this purpose. Nonetheless, 
most available pottery is fragmented, leading to missing morphological information. Currently, the 
reassembly of fragmented objects from a collection of thousands of mixed fragments is a daunting 
and time-consuming task done almost exclusively by hand, which requires the physical manipulation 
of the fragments. To overcome the challenges of manual reconstruction and improve the quality of 
reconstructed samples, we present IberianGAN, a customized Generative Adversarial Network (GAN) 
tested on an extensive database with complete and fragmented references. We trained the model with 
1072 samples corresponding to Iberian wheel-made pottery profiles belonging to archaeological sites 
located in the upper valley of the Guadalquivir River (Spain). Furthermore, we provide quantitative 
and qualitative assessments to measure the quality of the reconstructed samples, along with domain 
expert evaluation with archaeologists. The resulting framework is a possible way to facilitate pottery 
reconstruction from partial fragments of an original piece.

Material evidence of past foraging populations is a prolific research field in archaeology. Among the many fac-
tors that inform the Neolithic transition, ceramic potteries are very informative in terms of cultural selection 
processes. They are one of the most frequently found archaeological artifacts, as well. Since they are usually 
short-lived, researchers find these artifacts useful to explore chronological and geographical, given that shape 
and decoration are subject to significant fashion changes over time and space1. This gives a basis for dating the 
archaeological strata, and provides evidence from a large set of valuable data, such as local production, trade 
relations, and consumer behavior of the local population2–4. Several prior studies analyze various aspects of 
ceramics using complete pottery profiles. Automatic profile classification5–9 and feature extraction10–17 have been 
widely studied, ranging from traditional image processing techniques to deep learning approaches. Unfortu-
nately, ceramics are fragile, and therefore most of the actual ceramics recovered from archaeological sites are 
broken, so the vast majority of the available material appears in fragments. The reassembly of the fragments is a 
daunting and time-consuming task done almost exclusively by hand, which requires the physical manipulation 
of the fragments. An intuitive way to understand the fragmentation process, as well as to improve the reconstruc-
tion task, is to produce large amounts of potteries imitating the procedures followed by the Iberian craftsmen, 
breaking them, and then analyzing the resulting sets of fragments. Unfortunately, these and similar manual 
processing methods for this type of incomplete material are very time-consuming and labor-intensive, even for 
skilled archaeologists18. Due to these factors, there is an increasing interest in automatic pottery reassembly and 
reconstruction19–21 and fragment analysis22. Nonetheless, existing work resolves the fragments problem using 
comparisons between known pieces. The best match within the dataset is the best fragment for that pottery. 
Here we propose a deep learning approach in which the “best fragment” is artificially generated based on a set 
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of known fragments in the model, thus creating new virtual pottery with the same features as the real ones. The 
main contributions of this paper are:

•	 We present IberianGAN, a framework based on generative models that reconstruct pottery profiles from rim 
or base fragments (see Fig. 1A,B).

•	 We generate artificial fragment samples using a method to partition the full pottery profiles into two parts 
(resp. base and rim, see Fig. 1C).

•	 We evaluate four more approaches for comparison with our architecture. Furthermore, we validate the five 
methods using a study based on geometric morphometrics (see Fig. 1D and Fig. 2), a domain experts’ valida-
tion and open/closed shape classifier (Fig.S1).

Figure 1.   Overview of the proposed approach. (A) IberianGAN architecture. The G(x) generator is based on 
an encoder-decoder architecture. Upon receiving a fragment of pottery, the encoder transforms it into a vector 
and then the decoder generates the missing or unknown fragment. The discriminator D(x) receives the complete 
profile to determine if it is true or false. (B) Criteria for profile partitioning into rim and base of profiles. (C) 
Examples of IberianGAN generated samples from fragments for both open and closed shapes (shown in lighter 
color). (D) Semi-landmark analysis and RMSE values as comparing actual and artificially generated samples.
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Iberian pottery data.  The raw data belong to binary profile images, corresponding to Iberian wheel-made 
pottery from various archaeological sites of the upper valley of the Guadalquivir River (Spain). The available 
images consist of a profile view of the pottery, where image resolutions (in pixels), corresponding to size scale, 
may vary according to the acquisition settings (Fig. S2). We partitioned these images into rim and base portion 
to simulate the fractures in the profiles. The partitioning criterion and orientation depends on the initial shape 
(closed or open, see Fig. 1B). The resulting dataset is composed of 1075 images, randomly divided into a training 
subset containing 752 images (70%), a validation set of 108 (10%), and a test set of 215 images (20% of the total 
dataset).

Algorithmic background.  GANs have shown remarkable results in various computer vision tasks such as 
image generation23,24, image translation25,26, face image synthesis27–29 and recently text30,31 and audio generation32. 
A typical GAN33 framework contains a generative (G) and a discriminative (D) neural network such that G aims 
to generate realistic samples, while D learns to discriminate if a sample is from the real data distribution (H0) or 
not. D(x) should be high when x comes from training data and low when x comes from the generator. The vari-
able z is a latent space vector sampled from a normal distribution. G(z) represents the generator function which 
maps the latent vector z to data-space of Iberian pottery profiles.

(1)minG maxDV(D,G) = Ex∼pdata (x)

[

logD(x)
]

+ Ez∼pz (z)

[

log(1− D(G(x)))
]

Figure 2.   Shape validation. In orange, generated profile with an actual rim. In blue, complete actual Iberian 
profile. In pink, the k-closest neighbors of the actual fragment (excluding the input rim). dr is the distance 
between the actual and the generated rim. dg is the minimum distance (in the base morphometric space) 
between the generated fragment and its K neighbors in the rim morphometric space.
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Multiple iterations will inform G on how to adjust the generation process to fool D. In our case, the data element 
x, corresponds to a binary two-dimensional array containing the pottery profile geometry. D(G(z)) is the prob-
ability that the output of the generator G is a real sample from the Iberian pottery dataset. D tries to maximize 
(log D(x)), which is the probability of having a correct classification of actual shapes, while G tries to minimize 
(log (1 − D(G(x))), which is the probability of D recognizing any of the faked outputs generated by G. Deep Con-
volutional Generative Adversarial Networks (DCGAN)34 are among the most popular and successful networks 
designed for GANs. The model is mainly composed with convolution layers without max pooling or fully con-
nected layers. It uses convolutional stride and transposed convolutions for down-sampling and up-sampling. 
In other works, the vector z is constructed from one or more input images, the generated sample is conditioned 
by the input. To this type of Autoencoding GAN (AE-GAN) is added a network of encoders that is trained to 
learn an E : X → Z function, mapping each real sample to a point (z) in latent space35. The detailed design and 
implementation of our proposed generative approach is described in “Materials and methods” section.

Results
Results from IberianGAN were compared with multiple approaches based on AE-GAN35. All approaches contain 
variations in the architecture or training process (see the “Materials and methods” section). We assess the meth-
ods across several generative metrics, a geometric morphometric analysis, a validation based on an open and 
closed shape classifier, and a validation test made by domain experts. Particularly, to evaluate the quality of images 
produced by IberianGAN, we computed the following generative metrics: Root Mean Square Error (RMSE), 
Frechet Inception Distance (FID)36, Geometry Score (GS)37, and Dice Coefficient38. RMSE allows evaluating 
the generated results in comparison with the actual profiles. RMSE quantifies how different two images are. The 
smaller an RMSE value, the more similar the profiles are. The metric FID is aimed to compare the distribution of 
generated images with the distribution of real images. A lower FID value indicates better-quality images, and a 
higher score indicates a lower quality output. The GS allows comparing the topology of the underlying manifolds 
for two shapes (in this case, actual pottery and synthetic ones) in a stochastic manner37. Low GS values indicate 
similar topologies between two sets of data. Finally, the Dice coefficient is used to compare two binary images 
(black or white pixels). The metric takes a normalized value in [0, 1], where 0 means two images are completely 
different, and 1 occurs when both are the same image. In Table 1 we present the performance metrics for the test 
set from the Iberian dataset. For RMSE, FID, and DC scores, IberianGAN has a significantly better performance 
when compared with the architectures presented elsewhere.

This means that the generated profiles have a similar geometric distribution with respect to the actual samples, 
and thus the resulting potteries are comparable to the actual samples. A proposed alternative with reinforcement 
learning (AE-GAN-LR) improves the topology similarity (GS metric). Nonetheless, the topological similarity 
is not the most relevant factor, and that there is indeed an overlap between synthetic topologies generated by 
AE-GAN-LR and IberianGAN (see Fig. 3A) we consider that the synthetic samples generated by the latter can 
be regarded as topologically correct as compared to the actual samples. Furthermore, we evaluated the distribu-
tion of data qualitatively. For this, we created a feature space using Principal Component Analysis (PCA) with 
the images from actual and generated pottery. In Fig. 3B, we observe that the distribution in this feature space of 
the actual images is similar to the distribution of images generated with IberianGAN. We qualitatively compare 
the results of all approaches. In Fig. 4, we show some results using the same input and comparing it with the 
original image of the dataset. As observed, IberianGAN looks at the input image and completes the fragment 
with convincing results (see further results in Fig. S4). Given the results mentioned above, IberianGAN can be 
used satisfactorily to estimate missing fragments and provide realistic, complete pottery profiles, maintaining 
the geometric properties of original potteries.

Shape validation.  In the real profile dataset, the base shape of a profile appears in combination with only a 
subset of the entire rims set (and vice-versa), i.e. not all base/rim combinations are present in real profiles. This 
is because the entire structure of the pottery is usually designed to serve only one purpose (e.g. liquid storage, 
cooking, transportation, drinking, ritual, etc.). Some base/rim combinations would create useless or impracti-
cal pots (e.g., with a very small base and a large rim). A similar effect is seen when analyzing the design of the 
projectile point39 where the variations of the designs of the stem and the blade (two parts of a projectile point) 
of these artifacts are studied in a modular way to determine the relation in the designs of its shapes. Thus, we 
evaluate the ability of IberianGAN to generate rims with a valid shape from existing bases and vice-versa. Based 
on39, we extracted semi-landmarks to analyze the shape of the generated fragments. Using the profile dataset of 

Table 1.   Quantitative performance evaluation for different approaches using a dataset test. The best value per 
metric are in [bold].

Model RMSE DICE CONF FID GS-SCORE

AE-GAN 0.2354 0.5485 0.0149 0.0194

AE-GAN-MP 0.2312 0.5511 0.0178 0.0147

AE-GAN-MP + MSE 0.2310 0.5653 0.0345 0.0027

AE-GAN-RL 0.2452 0.5010 0.0460 0.0018

IberianGAN 0.1663 0.7734 0.0045 0.0337
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Figure 3.   (A) GS distribution of the real (blue) and generated (orange) data set. For more information about 
the GS metric see section “Materials and methods”: Evaluation metrics. (B) PCA comparison on the full real 
dataset and randomly generated 1200 samples.

Figure 4.   Random examples were sampled to compare the performance of IberianGAN against the other 
approaches. The generated pottery is in orange. In black is the input fragment.
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actual pottery, we created a morphometric space using the semi- landmarks of the fragments as input for a PCA. 
We worked with four morphometric spaces, two for closed and two for open pottery shapes, each one contain-
ing its corresponding rims and bases. In order to obtain a metric that allows us to compare generated profiles, 
we analyze the Euclidean distance between the generated fragments and the real pottery profiles in these mor-
phometric spaces (see a graphical description in Fig. 2). Given a pot generated from an existing fragment (e.g., 
a rim), we first divide the generated profile and locate the two resulting halves on their corresponding spaces, 
and then analyze the distance between the actual and the generated fragments (dr in Fig. 2). To evaluate the 
other half of the generated profile, we use the closest K fragments (K = 50) to the real one (the input fragment) 
in the first space, and we place its pairs in the other space (in our example, the space generated for all of the real 
bases). We calculate the minimum distance in this space between the generated fragment and its neighbors in 
the first space (dg in Fig. 2). This type of morphometric validation establishes the ability of the method to gener-
ate a fragment with an actual shape from an input fragment. In Table 2 we show the mean Euclidean distances 
in all the approaches tested in this work (see “Materials and methods” section). The table presents two parts, 
corresponding to open and closed shapes. We considered two scenarios, when the input is a rim or is a base. As 
IberianGAN only generated the unknown fragment, the distances between the input and the known fragment 
are close to zero. In the approaches where the network generated the shape for the entire profile, the distances 
between known and unknown fragments are similar.

Sample quality validation based on open and closed shape classifier.  Separately from the genera-
tive modes, we trained a binary classifier. This model is capable of classifying open and closed vessel profiles. We 
used pre-trained weights of ResNet-1840. This validation aims to verify that the data generated by the different 
models is able to imitate the real samples and that the classifier can predict the correct classes even when trained 
with only real data samples. Table S1 shows the classification metrics using the different datasets. In particular, it 
can be seen that the classifier is not affected by the generated data. Notably, the metrics improve compared to the 
actual test data portion in all cases. Additionally, in Fig. S1, we can see a graphic representation of the sensitivity 
versus the specificity of the classifier as the discrimination threshold is varied. This type of result shows that the 
generated new samples are similar in their distribution and shape to the real data. In addition, note that they do 
not affect the accuracy of the classifier.

Domain expert validation.  We designed an experiment for domain archaeology experts to evaluate the 
capability of IberianGAN to create pottery profiles with an adequate Iberian style. For this purpose, we present 
in the form of an online questionnaire a set of images (see Fig. S3) to six archaeologists specialized in Iberian cul-
ture. In the survey, we display a random selection of 20 images where half of them correspond to actual Iberian 
pottery profiles and half IberianGAN-generated. Each image has a multiple-choice to rate it between 0 and 5 to 
determine the level of similarity with an Iberian style, where 0 means unrelated to the Iberian Style, and 5 means 
fully within Iberian Style. Overall, generated samples rated 3.88 on average with a standard deviation in 1.43 
across all archaeologists and actual samples rated 3.93 ± 1.45. To conclude, the archaeologists consider that the 
potteries generated have on average an Iberian style similar to that found in actual potteries. This is important 
since IberianGAN is capable of generating an Iberian-style pottery from an incomplete fragment.

Discussion
Ceramics are one of the most frequently found archaeological artifacts and constitute the central remains usually 
used to investigate variations in style, materials employed, and manufacturing techniques. Exploring diachronic 
and geographical variation in pottery is of key importance to reconstruct the dynamics of the Neolithic transition 
in different regions. However, ceramics are fragile, and therefore most of the recovered material from archaeologi-
cal sites is broken. Consequently, the available samples appear in fragments. The reassembly of the fragments is a 
daunting and time-consuming task made almost exclusively by hand, which requires the physical manipulation 

Table 2.   Euclidean distances in morphometric spaces for open and closed Iberian pottery shapes. The best 
value per metric are in [bold].

Model Known rim (dr) Generated base (dg) Known base (dr) Generated rim (dg)

Closed shapes

AE-GAN 0.0620 ± 0.0288 0.0191 ± 0.0083 0.1407 ± 0.0859 0.0219 ± 0.0090

AE-GAN-MP 0.0900 ± 0.0398 0.0250 ± 0.0141 0.1197 ± 0.0771 0.0289 ± 0.0101

AE-GAN-MP+MSE 0.0756 ± 0.0263 0.0218 ± 0.0138 0.1701 ± 0.1183 0.0213 ± 0.0123

AE-GAN-RL 0.0813 ± 0.0284 0.0181 ± 0.0094 0.1507 ± 0.1024 0.0235 ± 0.0126

IberianGAN 0.0006 ± 0.0023 0.0206 ± 0.0110 0.0001 ± 0.0009 0.0265 ± 0.0088

Open shapes

AE-GAN 0.0356 ± 0.0261 0.0360 ± 0.0184 0.1728 ± 0.0907 0.0127 ± 0.0069

AE-GAN-MP 0.0337 ± 0.0275 0.0364 ± 0.0204 0.1670 ± 0.1176 0.0147 ± 0.0096

AE-GAN-MP + MSE 0.0222 ± 0.0186 0.0363 ± 0.0200 0.2080 ± 0.1317 0.0126 ± 0.0072

AE-GAN-LR 0.0472 ± 0.0346 0.0474 ± 0.0285 0.1536 ± 0.1111 0.0140 ± 0.0079

IberianGAN 0.0005 ± 0.001 0.0418 ± 0.0286 0.0002 ± 0.0008 0.0204 ± 0.0215
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of the ceramic shreds. Thus, a generative approach, such as IberianGAN, that automatically processes fragments 
and provides a reconstruction analysis can assist archaeologists in the reassembly process.

Such an approach has a broader impact by providing a general framework for object reassembly. Our pro-
posed framework is flexible to work on different ceramic datasets that present a variety of fractured materials 
(see results from Roman Pottery in Fig. S6). IberianGAN could be used beyond just ceramic pottery in order to 
reconstruct other archaeological (e.g. projectile points, historical buildings, etc.) and anthropological remains 
(e.g. crania, postcranial bones, etc).

We have evaluated the performance of IberianGAN on the basis of three different but complementary 
approaches: (a) classical metrics to evaluate the generative process of images (see Table 1 and Fig 2); (b) shape 
analysis based on pottery structure (see section “Results”: Shape validation), and (c) validation via independent 
examination of archaeologists specialized in Iberian heritage (“Results”: Domain expert validation).

Results obtained under the three approaches suggest that our approach is capable of generating potteries 
that satisfy the image, pottery morphometric structure, and expert validation criteria. While encouraging per-
formance is achieved with IberianGAN for the prediction of fragments in the database of Iberian wheel-made 
pottery, some limitations need to be addressed. In general, archaeologists work with fragments belonging to the 
base or top of the pottery. Therefore the network was trained always using a base or rim fragment, meaning that 
the model will always position a fragment as a base or rim. Furthermore, our approach uses large fragments 
during training and evaluation. Additional studies are needed to determine the minimum accepted size of a 
fragment for the model to perform as expected. Nonetheless, we believe our proposed framework is the first step 
towards broader use of generative networks for the recognition and assembly of fragments, which will open new 
avenues of research related to applications on different measurements of fragments and even in 3D ceramics in 
particular and objects in general.

Related work
Previous research on pottery includes both classical approaches, based on the comparative analysis of shape, 
dimensions, decoration, technological elements, color, geometric characteristics, axis of symmetry, used mate-
rials, etc; and novel methods based on machine learning techniques in general and deep learning in particular 
applied towards ceramic characterization. As a whole, pottery profiles were used in the context of classification5–9, 
and to study variations in shape and/or style attributes10–17. As previously stated, not all the potteries found in the 
excavations are complete; that is why it is critical to improve characterization methods aimed to identify frag-
mented ceramics. Rasheed et al19 presented a method based on a polynomial function for reconstructing pottery 
from archaeological fragments. Given an image of a fragment, the edge curve is extracted and approximated by 
a polynomial function to obtain a coefficient vector. The best matching between pairwise pottery fragments is 
done according to the relationship of their coefficients.

Other authors proposed a method to generate missing pieces of an archaeological find20,21 departing from 
a 3D model. In the area where the missing fragments are supposed to be, sketches are created through reverse 
modeling and consequently used to design the missing fragments. Finally, the digital reproduction of the missing 
part is achieved Additive Manufacturing technology.

GANs have shown remarkable results in various application domains. Their ability to learn complex distribu-
tions and generate semantically meaningful samples has led to multiple variations in network design and novel 
training techniques (GANs33, conditional GANs41, InfoGAN42, BAGAN43). Customized loss functions (Content 
loss44, Cycle consistency loss45), and domain adaptation approaches (ADDA46, CycleGAN47), etc. A more com-
prehensive review of the different GAN variants and training techniques can be found in48–50.

Furthermore, there are multiple examples of GANs applied to cultural heritage domains. For instance, tech-
niques such as automated image style transfer51, were used to develop a model aimed to generate Cantonese 
porcelain styled images departing from user-defined masks. Similar techniques were also applied to material 
degradation47,52–56. Hermoza et al.57, for instance, introduced ORGAN, a 3D reconstruction GAN to restore 
archaeological objects. This is based on an encoder-decoder 3D DNN on top of a GAN based on cGANs41. This 
network can predict the missing parts of an incomplete object. A similar approach is followed in 58, where a 
Z-GAN translates a single image of a damaged object into voxels in order to reconstruct the original piece. Both 
studies address the problem of the prediction of missing geometry on damaged objects that have been 3D mod-
eled and voxelized. More specifically, these studies depart from the assumption that man-made objects exhibit 
some kind of structure and regularity. The most common type of structure used is symmetry. Starting from a 
GAN they learn the structure and regularity of a collection of known objects and use it to complete and repair 
incomplete damaged objects. Another example of cultural heritage preservation can be found in reference59, 
where an image completion approach is adapted60 for the curation and completion of damaged artwork.

Materials and methods
We designed, trained, and evaluated five different generative networks based on AE-GAN but used multiple 
training procedures during the experimentation phase. In this section, we detailed each incremental strategy 
applied in the process and their corresponding hyperparameters and training techniques and setup. The data and 
source code with the hyperparameter setup and different approaches analyzed in this study are openly available in 
IberianGAN at https://​github.​com/ celiacintas/vasijas/tree/iberianGAN for extension and replication purposes.

Experimental setup and training.  All the resulting networks were trained for 5000 epochs using Binary 
Cross Entropy as a loss function, at a learning rate 2 × 10−4 for the generative network (G) and 2 × 10−5 for the 
discriminator (D). To optimize the training process of all models, we scaled the images to a uniform resolution of 
128 × 128 pixels and inverted the colors. We applied data augmentation, particularly a random rotation (between 

https://github.com/
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0 and 45 degrees). We used ADAM optimization61 for both G and D with β1 = 0.5 and β2 = 0.999 and used Binary 
Cross Entropy as the loss function. Particularly, for the training of D, we used Label Smoothing62, the real set is 
represented with a random number between 0.7 and 1.2 and the generated set with 0.0 and 0.33.

AE‑GAN incremental variations and IberianGAN.  Initially, we trained a typical AE-GAN to generate 
a complete pottery profile. We implemented a generator (G) with an architecture that allows two images as input 
and a discriminator (D) with three input images (the two inputs and the generated image). During training and 
to speed the convergence process of G, we create different input types with the same probability and select a 
pair of images. The possible input types were rim/base (or base/rim), base/black image or rim/black image (see 
Fig. S5-A). Subsequently, aiming to obtain a translation from the input fragment to the complete pottery profile, 
we modify the architecture of the encoder in the AE-GAN part of the generator, called AE-GAN-MP. In this 
case, the generator encoder processes one input image at a time. We do this to embed the input images separately 
and apply a max-pooling layer to join the two representations, see Fig. S5-B. This modification allows more vari-
ability in the representation for generating the full profile.

Additionally, we define a new loss function for training the generator of the AE-GAN-MP architecture. 
Using the strategy of multiple types of input (rim/base, base/rim, rim/black, and base/black), we compute this 
new loss function only when the inputs are complete (e.g., rim/base or base/rim). For this, we use Mean Square 
Error (MSELoss) defined as follows:

where ŷ is the predicted pottery and y is the real example. The goal is that the generator minimizes the MSE 
error between the result and the target (real pottery profile). Finally, to obtain a stronger relationship between 
the inputs and the generated pottery we design a strategy to modify the resulting pottery (or iterate to get a more 
precise result). We do this by using the input with the previous result to generate new pottery (the final result) 
with two iterations. The intermediate result adds to the input using image matrix operations, see Fig. S5-C. We 
called this approach AE-GAN with reinforcement learning (AE-GAN-RL).

IberianGAN is based on the AE-GAN, where the generator is an Autoencoding network 
Encode(x) → z ∈ Rm, Decode(Z) → x′ , where x ∈ [0, 1]m×m , is the input fragment, a binary two-dimensional 
array containing the fragment shape information, and x’ is a missing generated part. To train the discriminator 
network, we use D(y) where y = x + x′ for the examples generated. At this point, the network generates only 
an unknown fragment and the discriminator is trained with the complete profile. As IberianGAN only generates 
the missing fragment, for its training process, it is not necessary to use two images as input (see Fig. 1A). For 
training, we only use an image that corresponds to the base or the rim of the profile. The complete definition, 
implementation, training and evaluation of IberianGAN can be found here: https://​github.​com/​celia​cintas/​vasij​
as/​tree/​iberi​anGAN.

Evaluation metrics.  In this section, we show the process of evaluating the quality of the generated samples. 
To compare the results of the different approaches, we use two approaches. First, a set of measurements used to 
evaluate GANs, these metrics refer to the general distribution of all the potteries generated. Additionally, we use 
metrics comparing the result obtained with the actual potteries, for example, to evaluate the known fragments 
in the potteries generated. For the first type, we consider evaluating the distribution and shape of the generated 
profiles. First, we use Frechet Inception Distance (FID)36, which is currently one of the most common metrics to 
evaluate GANs63. FID allows the quantification of the differences in the density of two distributions in the high-
dimensional feature space of an InceptionV3 classifier64. In detail, FID embeds the images in a descriptor space 
(defined by an intermediate layer of Inception-V3) with a high level of abstraction. This feature space is used to 
calculate the mean and variance of the generated data and the actual data. The Fletcher distance is calculated 
between these distributions. FID is calculate following this equation:

where (µr, Σr) and (µg, Σg) are the mean and co-variance of the actual data and the generated distributions, 
respectively. Small distances indicate that the distribution of the data is similar, in our case, that the generated 
potteries have a distribution similar to the real ones. FID is based on a classifier network. It has been shown 
that this type of metric focuses on textures rather than shapes65, so we decided to evaluate the approaches with 
a shape-based metric, Geometry Score (GS)37.

GS is a metric for comparing the topological properties of two data sets. Formally GS is the l2 distance 
between means of the relative lifetime vectors (RLT) associated with the two groups of images. The RLT of a 
group of images (encoded in a feature space, for example) is an infinite vector (v1, v2, ..., vi) where the i-th entry is 
a measure of persistent intervals that have a persistent homologous group rank equal to i. vi is defined as follows:

where Ij = 1 is the rank of a persistent homologous group with dimension 1 in the interval [d j, d j + 1] is i and 
Ij = 0 is the opposite37. Low GS values indicate similar topology between the set of images. On the other hand, 
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for the second group of metrics, we evaluate the results against the complete potteries. It is important to clarify 
that we do not try that the results are the same as the actual pottery since it is generated only with a fragment, 
with this objective, we use two frequent metrics in image processing, Root Mean Square Error (RMSE) and 
DICE Coefficient38.

RMSE is a metric that enables similarity comparisons between two samples (pottery profiles in this case). 
This is measured using the square root of the average of the squared differences between the pixels in the gener-
ated image and the actual image. The RMSE between a actual profile image, (image d) and the generated image, 
(image f ) is given by

This metric is calculated pixel by pixel, where di and fi are the pixels of the image D and F respectively. In this 
formula, low RMSE values show a minor error. The DICE coefficient allows to evaluate the geometry between the 
generated profile and the real one. This metric is commonly used to evaluate results in segmentation networks66. 
That is why to calculate the DICE coefficient, the images must be binary (black and white). This coefficient evalu-
ates the images as two overlays of shapes. To do this, the region of the generated image and the region of the actual 
profile are calculated. Given the generated profile A and the real profile B, DICE is calculated38:

where A and B is the size in pixel of the profile. The maximum value of the metric is 1 when the shape is identical 
to the real one and 0 when the total shape does not match.

Data availability
The data and code that support the findings of this study are openly available in IberianGAN at https://​github.​
com/​celia​cintas/​vasij​as/​tree/​iberi​anGAN for extension and replication purposes.
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